1703.10594v3 [cs.DS] 23 Sep 2020

arxXiv

The Dynamics of Rank-Maximal and Popular
Matchings*

Pratik Ghosal, Adam Kunysz, and Katarzyna Paluch

University of Wroctaw, Wroclaw, Poland

Abstract. Given a bipartite graph, where the two sets of vertices are
applicants and posts and ranks on the edges represent preferences of ap-
plicants over posts, a rank-maximal matching is one in which the maxi-
mum number of applicants is matched to their rank one posts and subject
to this condition, the maximum number of applicants is matched to their
rank two posts, and so on. We study the dynamic version of the problem
in which a new applicant or post may be added to the graph and we
would like to maintain a rank-maximal matching. We show that after
the arrival of one vertex, we are always able to update the existing rank-
maximal matching in O(min(c'n,n?) + m) time, where n denotes the
number of applicants, m the number of edges and ¢’ the maximum rank
of an edge in an optimal solution. Additionally, we update the matching
using a minimal number of changes (replacements). All cases of a dele-
tion of a vertex/edge and an addition of an edge can be reduced to the
problem of handling the addition of a vertex. As a by-product, we also
get an analogous O(m) result for the dynamic version of the (one-sided)
popular matching problem.

Our results are based on the novel use of the properties of the Edmonds-
Gallai decomposition. The presented ideas may find applications in other
(dynamic) matching problems.

Keywords: rank-maximal matching, dynamic matching, popular matching,
Edmonds-Gallai decomposition

1 Introduction

We consider the dynamic version of the rank-maximal matching problem. In the
rank-maximal matching problem, we are given a bipartite graph G = (AUP, &),
where A is a set of applicants, P a set of posts and edges have ranks. An edge
(a,p) has rank 4 if the post p is one of the applicant a’s ith choices. A matching
of the graph G is said to be rank-mazimal if it matches the maximum number
of applicants to their rank one posts and subject to this condition, it matches
the maximum number of applicants to their rank two posts, and so on. A rank-
maximal matching can be computed in O(min(cy/n, n)m) time, where n denotes

*

This work was partially funded by Polish National Science Center grant UMO-
2018/29/B/ST6/02633

the number of applicants, m the number of edges and ¢ the maximum rank of an
edge in an optimal solution [I2]. The algorithm from [12] consists in successive
computations of a maximum matching M; of a so-called reduced graph G;. The
reduced graph G contains an appropriately trimmed set of edges of rank at most
7 and the computation of the maximum matching M; is always conducted by
extending the previously found maximum matching M;_; of the reduced graph
G’_;. Rank-maximal matchings have applications in assigning papers to referees
[8], projects to students etc.

In the dynamic variant of the problem a new vertex may be added to the
graph and we would like to maintain a rank-maximal matching. When the new
vertex v is added to the graph G we assume that the graph G itself does not
change. In particular, if a new post p arrives, the applicants of G cannot change
their preferences over the posts that are already included in G. Let us call the
graph G extended by v and the edges incident to v as the graph H. In order to
have a rank-maximal matching of H, we would like to be able to transform a
rank-maximal matching M of G into a rank-maximal matching N of H, making
only the smallest needed number of changes. In some cases a rank-maximal
matching of G is also rank-maximal in H. We design an algorithm that updates
M by an application of only one alternating path P, i.e, M @ P = (M \ P)U
(P\ M) is a rank-maximal matching of H. To be able to compute P efficiently,
we need access to the reduced graphs G, G5, ..., G’ of G (the notion is defined
in [12] and also recalled in Section [2) and their Edmonds-Gallai decompositions.
The reduced graphs and their decompositions can be stored in O(n? +m) space.
We show that we can compute a required alternating path P as well as update the
reduced graphs H{, H), ..., H., of H and their Edmonds-Gallai decompositions
in O(min(c¢'n,n?) + m) time (¢ is defined analogously). The time bound can
be considered optimal under the circumstances, as improving it would imply a
better running time for the rank-maximal matching problem.

The result may seem rather surprising in the sense that we are able to com-
press r phases, each of which requires the computation of a matching and the
update of the Edmonds-Gallai decomposition, into one phase with the running
time of O(min(¢'n,n?) + m). For comparison, let us note that it is much easier
to update the matching gradually - separately in each of the graphs H; that
consists of edges of rank at most i. In such an approach, however, it is required
to compute and apply r alternating paths. Each such computation and update
of the reduced graph H] can be carried out in O(n+m) time and thus the overall
running time is O(r(n + m)). This is how the problem is dealt with in a recent
paper by Nimbhorkar and Rameshwar [I5]. We, instead, abstain from updating
the matching until the last phase when we have collected all the necessary data
in the form of a carefully built alternating subgraph 7. This subgraph is rooted
at the new vertex v and contains all possible alternating paths, whose applica-
tion results in a rank-maximal matching of H. To be able to efficiently build this
subgraph and hence update a rank-maximal matching, we identify new proper-
ties of the Edmonds-Gallai decomposition, that are of independent interest and
are potentially applicable to other (dynamic) matching problems. We want to

observe that even a simple checking whether the matching needs to be updated
at all is not easy to carry out faster than in O(em) time. In the paper we show
how it can be done in O(m) time. For the case when the matching requires to
be altered, one of the main new ideas that allows us to do so in a good time
bound is that of recognizing the alternating paths that will finally belong to the
alternating subgraph 7" and ignoring those that will not.

Observe that our algorithm is significantly faster than the one in [I5] - the
improvement is always of the order of £2(m/n) and may be even {2(m) for the
case when 7 is of the order of 2(m). (In standard settings r is O(n), however,
each edge in the graph may be assigned a different rank (because we give priori-
ties to certain applicants) and then the number of distinct ranks may be £2(m).)
Additionally, to update the matching we use a minimal number of changes (re-
placements). To achieve this, from all alternating paths P’ such that M & P’ is
a rank-maximal matching of the new graph, we select the shortest one.

We present an algorithm for the version, in which a new applicant is added to
the graph. This solution applies to the situation when a new post arrives - note
that ranks are assigned to edges and, from the point of view of the algorithm
there is no real difference between applicants and posts (there is one, however, in
their interpretation). We show, that all cases of: a deletion of a vertex from the
graph, an addition or a deletion of a new edge or even a change of the rank of a
given edge can be reduced to the problem of handling the addition of a vertex.

The popular matching problem in the one-sided version is defined as follows.
The input is the same as in the rank-maximal matching problem - we are given
a bipartite graph G, in which the vertices of one side of the graph express their
preferences over the vertices of the other side. The goal is to find a popular
matching in G, if it exists. A matching M is said to be popular if there exists
no other matching M’ such that M’ is more popular than M. A matching M’ is
more popular than M if the number of applicants preferring M’ to M is greater
than the number of applicants preferring M to M’ and an applicant a prefers
M’ to M if (i) he is matched in M’ and unmatched in M or (ii) he prefers
the post M'(a) to M(a). Not every instance of the problem admits a popular
matching. Nevertheless, Abraham et al. [2] gave an O(y/nm) time algorithm
that computes a popular matching, if it exists. The algorithm is in a certain
sense similar to the one computing a rank-maximal matching. It consists of two
phases that are the same as in the algorithm for rank-maximal matchings, but
the edges participating in the second phase are defined on the basis of so-called
first and second posts. To put it differently, every popular matching of G is
an applicant-complete rank-maximal matching of a subgraph of G that only
contains edges connecting each applicant to its first and second posts. To obtain
a solution for the dynamic version of the popular matching problem, we can
thus directly use the algorithm for the dynamic version of the rank-maximal
matching problem. Since the number of phases is two, we are able to update a
popular matching in O(m) time after the arrival/deletion of a new vertex/edge.
Nimbhorkar and Rameshwar [I5] are also able to update a popular matching in
O(m) time, however, they have no control over the number of applied changes.

The algorithm for updating a rank-maximal matching can be also used
for updating a bounded unpopularity matching in the same time bound of
O(min(c'n,n?) +m) [10].

Previous work A rank-maximal matching can be found via a relatively
straightforward reduction to a maximum weight matching. The running time of
the resulting algorithm is O(r2y/nmlogn), where r denotes the maximal rank of
an edge, if we use the Gabow-Tarjan [7] algorithm, or O(rn(m+nlogn)) for the
Fredman-Tarjan algorithm [6]. The first algorithm for rank-maximal matchings
was given by Irving in [II] for the version without ties and with the running
time of O(d?n?), where d denotes the maximum degree of an applicant in the
graph (thus d < r). The already mentioned [12] gives a combinatorial algorithm
that runs in O(min(n, cy/n)m) time. The capacitated and weighted versions were
considered, respectively, in [16] and [13]. A switching graph characterisation of
the set of all rank-maximal matchings is described in [9]. Independently of our
work, in a recent paper [I5] Nimbhorkar and Rameshwar also study the dynamic
version of the rank-maximal matching problem and develop an O(r(n + m))
algorithm for updating a rank-maximal matching after the addition or deletion
of a vertex or edge.

Related Work Matchings under preferences in the dynamic setting have
been studied under different notions of optimality. In [I4] McCutchen introduced
the notion of an unpopularity factor and showed that it is NP-hard to compute
a least unpopular matching in one-sided instances. Bhattacharya et. al. [4] gave
an algorithm to maintain matchings with an unpopularity factor of (A + k) by
making an amortized number of O(A + A? /k) changes per round, for any & > 0
where A denotes the maximum degree of any applicant in any round. Note that
this is the number of changes made to the matching and not the update time,
which is much higher and requires a series of computations of a maximum weight
matching.

In [3] Abraham and Kavitha describe the notion of a so-called voting path. A
voting path is a sequence of matchings which starts from an arbitrary matching,
and ends at a popular matching and each matching in the sequence is more
popular than the previous one. The authors showed that in the one-sided setting
with ties there always exists a voting path of length at most two. They also
show how to compute such paths in linear time, given a popular matching in the
graph, which allows them to maintain a popular matching under a sequence of
deletions and additions of vertices to the graph, however, in (O(y/nm) time per
each update.

Pareto optimality is another well-known criterion. In [I] authors gave an
O(y/nm) time algorithm for computing Pareto optimal matchings. In [5] Fleis-
cher and Wang studied Pareto optimal matchings in the dynamic setting. The
authors gave a linear time algorithm to maintain a maximum size Pareto match-
ing under a sequence of deletions and additions of vertices.

Organization Section [2]recalls the definitions and the rank-maximal match-
ing algorithm. Section [3| contains a description of the simplified variant of the
problem, in which we only want to check if the update is necessary, i.e., if the

rank-maximal matching of G is also a rank-maximal matching of the new graph
H. In Section [4] we describe the ideas behind the alternating subgraph 7' that
contains all paths, whose application to the current matching yields an updated
rank-maximal matching. In Section [6| we present the algorithm for updating the
rank-maximal matching and give the proof of its correctness. Section [7] contains
two examples illustrating the algorithm presented in Section [6] In Section [§] we
present an algorithm that efficiently updates reduced graphs after applying Al-
gorithm[3] Finally in Section[I0] we present an algorithm for the dynamic popular
matching problem.

2 Preliminaries

Let G = (AU P, &) be a bipartite graph and let M be a maximum matching
of G. We say that a path is M -alternating if its edges belong alternately to M
and £\ M. We say that a vertex v is free or unmatched in M if no edge of M is
incident to v. An M-alternating path is said to be M -augmenting (or augmenting
if the matching is clear from the context) if it starts and ends at an unmatched
vertex.

By V(G) and £(G) we denote, respectively, the set of vertices of G and the
set of edges.

Given a maximum matching M, we can partition the vertex set of G into
three disjoint sets F, O and U. Vertices in E, O and U are called even, odd
and unreachable respectively and are defined as follows. A vertex v € V(G) is
even (resp. odd) if there is an even (resp. odd) length alternating path in G with
respect to M from an unmatched vertex to v. A vertex v € V(G) is unreachable
if there is no alternating path in G with respect to M from an unmatched vertex
to v. For vertex sets A and B, we call an edge connecting a vertex in A with a
vertex in B an AB edge.

The following lemma is well known in matching theory.

Lemma 1. Edmonds-Gallai decomposition (EG-decomposition) [17],
[12] Let M be a mazimum matching in G and let E, O and U be defined as
above.

1. The sets E, O, U are pairwise disjoint.
2. Let N be any mazimum matching in G.
(a) N defines the same sets E, O and U.
(b) N contains only UU and OF edges.
(c) Every vertex in O and every vertex in U is matched by N.
(d) IN| = O]+ |U]/2.
8. There is no EU and no EE edge in G.

Throughout the paper we consider many graphs at once, thus to avoid con-
fusion, for a given graph G we denote the sets of even, odd and unreachable
vertices as F(G), O(G) and U(QG) respectively.

2.1 Rank-Maximal Matchings

Next we review an algorithm by Irving et al. [I2] for computing a rank-maximal
matching. Let G = (AU P,E) be an instance of the rank-maximal matching
problem. Every edge e = (a, p) has a rank reflecting its position in the preference
list of applicant a. £ is the union of disjoint sets &; ,i.e., E =& UEUE;3...UE,,
where &; denotes the set of edges of rank 1.

Definition 1. [T2] The signature of a matching M is defined as an r-tuple
p(M) = (x1,...,x,) where, for each 1 < i < r, x; is the number of applicants
who are matched to their i-th rank post in M.

Let M and M’ be two matchings of G, with the signatures p(M) = (21, ..., ;)
and p(M") = (y1,...,yr). We say M = M’ if there exists 1 < k < r such that
Tk > yr and x; = y; for each ¢ < k with 4 € N,

Definition 2. A matching M of a graph G is called rank-mazimal if and only
if M has the best signature under the ordering > defined above.

We give a brief description of the algorithm of Irving et al. [I2] for computing
a rank-maximal matching, whose pseudocode (Algorithm [1]) is given below. Let
us denote G; = (AUP,E UEU...UE;) as a subgraph of G that only contains
edges of rank smaller or equal to i. G} is called the reduced graph of G; for 1 <
i < r. The algorithm runs in phases. The algorithm starts with G} = G; and a
maximum matching M; of G1. In the first phase, the set of vertices is partitioned
into E(GY), O(G}) and U(G}). The edges between O(G}) and O(G}) UU(GY)
are deleted. Since any vertex in O(G}) U U(G}) has to be matched in G; in
every rank-maximal matching, the edges of rank greater than 1 incident to such
vertices are deleted from the graph G. Next we add the edges of rank 2 and
call the resulting graph G%. The graph G may contain some M;j-augmenting
paths. We determine the maximum matching My in G5 by augmenting M. In
the i-th phase, the vertices are partitioned into three disjoint sets E(G}), O(G%)
and U(G}). We delete every edge between O(G}) and O(G}) UU(GY). Also, we
delete every edge of rank greater than ¢ incident to vertices in O(G}) U U(G5).
Next we add the edges of rank (i + 1) and call the resulting graph G, ,. We
determine the maximum matching M;,; in G} by augmenting M;.

The pseudocode of Irving et al.’s algorithm [12] is denoted as Algorithm

Theorem 1. [12] Algorithm computes a rank-mazrimal matching in
O(min{cy/n,n}tm) time, where ¢ < r denotes a maximal rank in the optimal
solution.

The following invariants of Algorithm |1| are proven in [12].

1. For every 1 < i < r, every rank-maximal matching in G; is contained in G..

2. The matching M; is rank-maximal in G;, and is a maximum matching of G%.

3. If a rank-maximal matching in G has signature (s1,$2,...,8;,...,S,) then
M; has signature (s1, s2, ..., 8;)-

Algorithm 1 for computing a rank-maximal matching

1: Gll +— G4

2: Let M; be any maximum matching of GY.

3: fori=1,2,...,7 do

4: Determine a partition of the vertices of G} into the sets E(G}), O(G%) and

U(GY).

Delete all edges in &; (for j > i) which are incident on nodes in O(G}) UU(GY).
Delete all O(G;)O(G5) and O(G;)U(G}) edges from Gj.
Add the edges in &11 and call the resulting graph Gj ;.

Determine a maximum matching M;;1 in Gj,; by augmenting M;.
return M,

4. The graphs G} (1 < i <r) constructed during the execution of Algorithm
are independent of the rank-maximal matching computed by the algorithm.

We say that a vertex v is alive in G} iff v € ﬂ;;ll E(G%). Alive(i) denotes
the set of vertices that are alive in GJ.

Fact 2 Each edge of G, \ Gi_; (1 <i <) has both endpoints in Alive(i).

This follows from line 5 of Algorithm [I]

Algorithm [I] can be modified so that it terminates in c¢ iterations, where c is
the maximum rank of an edge in an optimal solution. We simply stop when there
are no more edges to add. It is shown in [I6] that the last iteration, in which
edges are added is iteration c. Observe also that by Fact [2]in every iteration, in
which G contains edges of rank ¢, matching M; is augmented and thus contains
at least one edge of rank i.

2.2 The Dynamic Rank-Maximal Matching Problem

In the dynamic variant of the rank-maximal matching problem, we are given a
graph G and we wish to maintain a rank-maximal matching of this graph under
a sequence of the following kinds of operations:

1. Add a vertex v along with the edges incident to it to G.

2. Delete a vertex v along with the edges incident to it from G.
3. Add an edge e to G.

4. Delete an edge e from G.

In order to perform the above operations efficiently, we additionally main-
tain all structures which are normally computed by Algorithm [1] i.e. the reduced
graphs G along with their FG-decompositions and the matchings M;. Let us de-
note the modified graph obtained from G after performing one of the operations
1—4by H=(AUP FLUFU...UF,), where F; consists of the edges of rank
i in H. Similarly for each 1 < ¢ < r denote: H; = (A'UP’, FUFU...UF;) and
H = (AUP FIUF,U...UF]). Our goal is to compute a rank-maximal match-
ing of H along with all the reduced graphs H and the matchings IV; (where N;

is a rank-maximal matching of H;). Note that we do not execute Algorithm [I|on
H but update the existing graphs G} in order to obtain H} and the matchings
M; in order to obtain N;. Also, before finding the reduced graphs H}, we first
compute graphs H; = (A'UP’, F, UFyU...UF!) that may differ slightly from
graphs H/. Each graph H; has the property that every edge of any rank-maximal
matching of H; is contained in H; and H, = H;.

It turns out that we do not actually need to construct separate algorithms
for each of the operations 1 — 4. As we show in Section [9] only the operation 1
is truly needed. We prove that the remaining updates can be simulated with a
constant number of executions of the operation 1. In the remainder of the paper,
we focus on the implementation of the operation 1.

It is easy to observe that an algorithm that maintains a rank-maximal match-
ing after adding an applicant is symmetrical to the case where we add a post.
Hence, without loss of generality, in the remainder of the paper, we can as-
sume that a new applicant ag arrives and we want to maintain a rank-maximal
matching after adding that applicant.

3 Algorithm for Checking if Update is Necessary

Before we describe our algorithm for maintaining a rank-maximal matching un-
der a sequence of operations of type 1, we first introduce and solve a simplified
variant of the problem. The main goal of this section is to build some intuition.

Our first assumption is that a newly arriving applicant ag has only one edge
incident on it. We also slightly change our goal. Instead of computing a rank-
maximal matching of H we only wish to determine if a rank-maximal matching
M of G remains rank-maximal in H. Our goal is to solve this problem in O(m)
time. The following is the main theorem of this section:

Theorem 3. Assume that we are given reduced graphs G', G5, ...,G. | of G,
their EG-decompositions and matchings My, Ms, ..., M,. Then there is an O(m)
time algorithm that determines if M, is a rank-maximal matching of H.

Let us first describe the main idea behind Algorithm [2| From Invariant 2 of
Algorithm [1} it directly follows that if M, is not a rank-maximal matching of
H, then there exists j such that M; is not a rank-maximal matching of H; and
for each i < j matching M; is rank-maximal in H;. From the same invariant,
it follows that H J’ contains a larger maximum matching than M;. Our goal is
to iterate over i = 1,2,...,r and for each i to determine the structure of the
reduced graph H]. Based on the structure of H/, we simply check whether H
contains a larger matching than M;. If in some iteration j, we determine that
M; is not a maximum matching of H]’ then obviously M, is not a rank-maximal
matching of H. Otherwise we claim that M, remains rank-maximal in H.

Note that if we follow the above approach, in the worst case we have to
check whether M; is a maximum matching of H/ for each 1 < i < r. Since we
are interested in an O(m) time algorithm we cannot afford to compute each
H] from scratch as in Algorithm (1} We claim that since G and H differ only

by one edge for each i, we can construct the graph H, based on G} and H/_;.
Additionally, we can also check whether M; is a maximum matching of H] based
on the EG-decomposition of G.

In the following auxiliary lemma, we examine how the maximum matching
M in a bipartite graph G and the EG-decomposition of G change when we add
one edge to the graph.

We say that a vertex v has type even, odd or unreachable in G if v €
E(G), v € O(G) or v € U(G), respectively. Similarly, we say that v has the
same type in G and J if (v € X(G) iff v € X(J)), where X € {E,0,U}.

Lemma 2. Let G = (AUP,E) be a bipartite graph, M a mazimum matching of
G and a € A and p € P two vertices of G such that (a,p) ¢ £ and a has type E
in the EG-decomposition of G (a € E(QG)). Then the graph J = (AUP,EU(a,p))
has the following properties:

1. If p € E(Q), then the edge (a,p) belongs to every mazimum matching of J.
A mazimum matching of J is of size |M| + 1.

2. Ifp € O(QG), then the edge (a,p) belongs to some mazimum matching of J but
not to every one and M remains a mazimum matching of J. Additionally,
the EG-decomposition of the graph J is the same as that of G.

3. Ifp € U(Q), then the edge (a,p) belongs to some mazimum matching of J but
not to every one and M remains a mazimum matching of J. Additionally, the
EG-decomposition of the graph J is different from that of G in the following
way. A vertex v € U(G) belongs to E(J) (respectively, O(J)) if there exists
an even-length (corr., odd-length) alternating path starting from the vertex
a that contains the edge (a,p) and ends at v. Apart from this every vertex
has the same type in the EG-decompositions of G and J.

Proof. We first prove (1). Since we have a,p € E(G), from the properties of
Edmonds-Gallai decomposition there exist alternating paths P; and P, in G
with respect to M from free vertices vi,vs ending in respectively a and p. vy
and vy must be distinct otherwise the alternating paths P, and P, and the edge
(a,p) creates an odd cycle. It can be easily shown that we can combine P; and
P, to obtain an augmenting path from v; to vy containing (a,p). This implies
that any maximum matching of J is of size |M| + 1 and (a, p) belongs to every
maximum matching of J.

Let us now prove (2). We first show that M is a maximum matching of J.
Let us assume by contradiction that it is not true. Then in J there exists an
augmenting path P; from a free vertex x; to another free vertex xo with respect
to M. The path P; contains (a,p) as otherwise M would not be a maximum
matching of G. Let us consider a subpath of this path which does not contain
(a, p) but contains p. Such a subpath is of course of even length and is contained
in G. This implies that p € E(G), which leads to a contradiction. Thus M is a
maximum matching of J.

Let us now consider an alternating path P of even length from a free vertex
that contains (a,p) and ends with the matched edge incident to p. Note that
M @ P is a maximum matching of J containing (a, p).

10

We now prove that FEG-decompositions of G and J are identical. Let
v € E(G). From the properties of EG-decomposition in G there exists an alter-
nating path of even length from a vertex xg to v with respect to M. Such a path
is also contained in J thus we have v € E(J). This implies that E(G) C E(J).
We can similarly show that O(G) C O(J). To prove that EG-decompositions are
identical it suffices to show that U(G) C U(J). Let us now assume by contradic-
tion that there exists v € U(G) such that v ¢ U(J). Let P be an M-alternating
path from a free vertex to v in the graph J. P must contain the edge (a,p),
otherwise the path is also present in G. Let P; denote the even length subpath
of P from the free vertex to a and P, the subpath between p and v. Clearly,
both P; and P, appear in G.

Let P, = {p = v1,v2,...,v, = v} be the alternating path where p € O(G)
and v € U(G). Let i be the smallest index such that v; € U(G). Then v;_1 €
E(G)UO(G). If v;—1 € E(G), then by Lemma [I| point [3| v; € O(G). If v;_1 €
O(G) then by the construction of Py, (v;—1,v;) € M. Then by Lemma [1| point
2b]v; € E(G). In both cases, we arrive at a contradiction. Therefore v € O(G) U
E(G).

It remains to show (3). The majority of the proof is analogous to (2). We can
similarly prove that M is a maximum matching of J and that (a,p) belongs to
some maximum matching of J but not to all of them. Analogously we show that
E(G) C E(J) and O(G) € O(J). Suppose v € U(G) but v ¢ U(J). Without
loss of generality, assume that v € E(J). We prove that there is an even length
alternating path from the vertex a to v. Since v € E(J) there is an even length
alternating path P from a free vertex to v in J. Clearly P contains the edge (a,p)
and let us define P; as the even length subpath of P from the free vertex to a.
Thus P\ P is an even length alternating path from a to v. Conversely, let there
be an even length alternating path P, between a and v. Since a € E(J) there is
an even length alternating path P; between a free vertex and a. Consequently,
P, U P, contains an even length alternating path from a free vertex to v in J.
Therefore v € E(J). The proof is analogous if v € U(G) N O(J). O

Based on the above lemma, we can determine if a maximum matching of
H is larger than a maximum matching of G. If maximum matchings of G and
H are of the same size, then we can obtain the EFG-decomposition of H from
the EG-decomposition of G. If p € O(G) both EG-decompositions are identical.
If we have p € U(G) we can easily update the FG-decomposition of G to the
EG-decomposition of H by a simple breadth-first search along alternating paths
from the edge (a,p).

Below we describe Algorithm [2] in more details. In particular, we show how
to apply Lemma [2[in order to efficiently obtain H] from graphs H/_; and G.

Let us assume that the newly added edge (ag,po) is of rank k. From the
pseudocode of Algorithm [T we can see that for each i such that 1 < i < k we
have G, = H/, and that M; is a rank-maximal matching of H;. How do graphs
G}, and Hj, differ? One can easily see that either G}, + (ag, po) = Hj, or G}, = Hj,
holds. The latter case happens when the edge (ag,po) is removed from Fj. It
can only happen if in some iteration j < k we have py ¢ E(G).

11

From now on we assume that py € ﬂf;ll E(GY). One can check that when
we enter the loop for in line 4 of Algorithm (1| we have G}, + (ao,po) = Hj},. We
can use Lemma [2| to obtain the information about the EG-decomposition of Hj,
from the decomposition of Gj.. From the statement of Lemma [2| it follows that
there are three cases depending on the type of py in G

Case (1) - pg € E(G},). We can simply halt the algorithm and claim that M
is not a rank-maximal matching of H.

Case (2) - po € U(G},). From Lemma [2| we can see that some vertices may
belong to U(G),) N E(H},) or U(G},) N O(H},). If a vertex v € U(G),) N E(Hj,)
(resp. v € U(G)) N O(H},)) then we say that v changes its type from U to E
(resp. O) in phase k. What implications does this fact have on the execution of
Algorithm [Ifon H? Note that in lines 5 and 6 of Algorithm [I} we remove some
edges incident to vertices of types O and U. If v changes its type from U to FE
in phase k then the edges incident to v that are deleted in phase k£ during the
execution of Algorithm|[I]in G, are not deleted in H. Such edges become activated
and in the pseudocode we denote the set of these edges as AFE,. Additionally,
vertices which change type from either U to E are called activated vertices. The
set of such vertices is denoted as AV.

Case (3) - po € O(G},). We already know from Lemma[2) that the presence of
(ap,po) in Hj, does not affect its EG-decomposition. It turns out however that
if for some k" > k we have py € U(G},) but po € O(G),_,) then the presence
of (ag,po) in H might affect the EG-decomposition of Hj,, but will not have
any impact on the decompositions of graphs H] for k < I < k’. Such edges also
become activated and added to AE,.

The main idea behind the remaining part of the algorithm is to maintain
the set AE of activated edges so that in any phase ¥/ > k a reduced graph
Hj, is obtained from G}, by adding the activated edges to this graph. The EG-
decomposition of H}, is then computed with the aid of decompositions of G,
and Hj, ;. It is important to note that in phase k graphs G}, and Hj, differ by
exactly one edge which allows us to apply Lemma[2] whereas in phase k' (k' > k)
Hj, may potentially contain multiple activated edges. We simply apply Lemma
2] to each activated edge in order to determine if M}, is a maximum matching
of H},.

The correctness of the algorithm follows from the above discussion and
Lemma [2 It is also included in Theorem [4l

In the pseudocode of the algorithm the subgraph C contains a new vertex
agp and vertices that are at this point unreachable in G (contained U(G%)) but
belonging to E(H!) U O(H}). Thus each activated vertex belongs to C' and C
contains (the "upper") part of the alternating subgraph 7 mentioned in the
introduction. R represents the rest of the graph - vertices that have the same
type in G and H].

The following example (Figure[l) illustrates the implementation of Algorithm
In this example we check if a rank-maximal matching of G is also a rank-
maximal matching of H or not. Here py is an alive vertex in iteration 3, hence
we can add (ag, po) of rank 3 to G. a; is an activated vertex in the third iteration.

12

Algorithm 2 for checking if M, is a rank-maximal matching of H
1: C « {ao}, AV < {ao}, AE 0
2: 1+ 1

3: while i <r do

4: R+ Gj\C

5.

6

7

for all a € AV do
AE < AEU{(a,p) € Fi :a € AV Ap € Alive(i)}

if there exists (a,p) € AE such that p € E(G}) then return M, is not a
rank-maximal matching of H

8: else

9: H + CURUAE

10: AE, < {(a,p) € AE: p e U(G})}

11: for all S : S is an even-length M;-alt. path in H; between ao and a € U(G?)
do

12: V(C)« V(C)UV(S), &)<+ EC)U{(a,p) € Gi:a,pe S}

13: AV + AV U {a}

14: AE, < {(a,p) e AEUG; :a € C A p € O(G))}

15: AE +— AEUAE, \ AE,

16: 11+ 1

return M, is a rank-maximal matching of H

Both (a1,p1) and (a1, p2) are the activated edges of rank 4 incident to a1. Note
that p1 € U(G)) and py € O(G)). Hence we add the edge (a1,p1) to AE, and
(a1,p2) to AE, after iteration 4. p, becomes an unreachable vertex after iteration
6, we move ps to AE,, after this iteration.

There is no iteration 1 < ¢ < 6, such that we have an edge (a,p) incident
to the activated vertex a and p € E(G}). Therefore, we can conclude that a
rank-maximal matching of GG is indeed a rank-maximal matching of H.

4 Overview of the Algorithm

In this section, we present some of the ideas behind Algorithm [3] for updating a
rank-maximal matching. The algorithm is essentially an extension of Algorithm
[2l The main difference is that at some point Algorithm [2]in line 8 may encounter
an edge (v, w) such that v belongs to U(G%) N E(H]) and w belongs to E(G})
and then output "M, is not a rank-mazimal matching of H".

If we encounter such a situation in phase 7, we have to compute matchings V;,
N1, ..., N, basedon M;, M; 4, ..., M,. Note that we cannot separately search
for augmenting paths in each of the graphs H;, H;1, ..., H, as this would lead
to an algorithm of O(r(n + m)) complexity (matching the complexity of [15]),
instead of claimed O(min(c¢'n,n?) +m).

Let us examine two examples depicted in Figure Here the edge (ag, po) is of
rank 1 and the edge (az, p1) of rank 2. The vertex a1 belongs to U(G%5) N E(HY)
and thus is an activated vertex and p; belongs to E(G%) - hence Algorithm
outputs the answer "M, is not a rank-maximal matching of H". This means

13

P2

Fig. 1. An example illustrating the implementation of Algorithm

that in H) there exists an Ms-augmenting path containing the edges (ag,po)
and (a1, p1).

In the first example of Figure[2] we can notice that H) contains two activated
edges of rank 2 - (a1, p1) and (a1, p2), and to obtain a rank-maximal matching of
Hs, we can augment M using either an augmenting path starting at ag, going
through (a1, p1) and ending at pg or a path going through (a1, p2) and ending at
ps. If H did not contain any edges of rank greater than 2, then the alternating
subgraph T mentioned in the introduction would consist of exactly those two
paths. At this point, i.e., in phase 2 we do not know, however, if at the end of
the algorithm - in phase r, T' will also contain these paths. The only thing we
are certain of is that to obtain a rank-maximal matching of H, we have to apply
a path beginning at ag, containing (ag, po), (po,a1) and some activated edge
incident to a;. Therefore at this point T' counsists of edges (ag,po) and (po,a1)
and we keep an eye on the edges (a1,p1), (a1, p2).

Next, we observe that H} does not contain any new activated vertices. The
graph HY is identical to H} and to obtain a rank-maximal matching of Hj
we may use one of the same two augmenting paths. T' does not change. The
vertex p; belongs to E(G}) for every i such that 2 < ¢ < 4 but the vertex
po belongs to E(GY) for i € {2,3} and ps € U(G}). We can also see that the
graph G} U {(ao,po), (a1,p1), (a1,p2)} contains only one My-augmenting path.
Thus, if we had augmented M using the path going through (a1, p2), we would

14

have to change it to get a rank-maximal matching of H;. On the other hand
the path containing (aj,p;) was present in the graph G5 U {(ag,p0), (a1,p1)}
and is still augmenting in the graph G’ U {(ag, po), (a1,p1)}. We can check that
after applying this path we indeed obtain a rank-maximal matching of H,. The
subgraph T does not change but we stop observing the edge (a1, p2) - we know
that eventually this edge will certainly not belong to a rank-maximal matching of
H. Therefore, to be able to update a rank-maximal matching in an efficient way,
we observe the endpoints of the activated edges. If there exists an activated edge
e, whose one endpoint is an activated vertex and the other a vertex of E(G}),
then we know that to get a rank-maximal matching of H;, we have to augment a
rank-maximal matching of G;. We do not, however, augment the matching, but
continue observing the endpoints.

In the second example of Figure |2} the vertex p; belongs to E(GY) for ev-
ery i such that 1 < ¢ < 4 and it belongs to U(G%). Thus in phases 2 — 4
there are no new activated vertices and we use an augmenting path containing
(a1, p1). The endpoint p; of the activated edge (a1, p1) does not belong to F(G5).
Hence, (a1, p1) ceases to be part of an augmenting path in phase 5. Indeed, the
graph G U {(ag,po), (a1,p1)} does not contain any augmenting paths and we
are stuck with a matching M5 which is not rank-maximal in Hs. We observe
that if we had augmented My in the graph G’ U {(ao,p0), (a1,p1)} obtaining a
rank-maximal matching N4 of Hy, then one of the edges of rank 5 would not
be present in the maximum matching of G5 U {(ao, po), (a1, p1)} if we computed
it by augmenting N,. So, in order to get a rank-maximal matching of H5 from
My we should "undo" one of the augmentations that was carried out in phase
5. Using matching terminology we should apply any even length M;s-alternating
path starting at a and containing (aq,p;) and one of the edges of rank 5 be-
longing to Ms. Observe also that the vertices as,as belong to U(G%) but in
H{ they are part of E(HY) - thus we have new activated vertices. Till phase
4 the alternating subgraph consists of edges (ag,po), (po,a1) and we observe
the edge (a1,p1). In phase 5 the subgraph T contains additionally the edges
(a1,p1), (p1,a2), (az,p2), (P2, as), (as,ps3), (ps,as) and we observe the activated
edges incident to ag and ay.

g 1 py 1 ag pe_5_as
4 1 1
Pe ag P11 D2 as az p3
1 1 1 1 - 1 1
bs @ po 9 Np, lay

ay 1 1 2

Fig. 2. The thick edges belong to the matching.

To summarize, Algorithm [3|is an extension of Algorithm [2] where once we
discover in phase ¢ that M is not a rank-maximal matching of H, we make a note

15

that the matching will have to be augmented and start building an alternating
subgraph T'. It turns out that we do not need to augment all of the matchings
M;, M;+1, ..., M, one by one. Instead we can afford to wait till phase r and then
apply either an augmenting path or an even length alternating path contained in
the alternating subgraph 7T'. During the course of the computation and before we
actually update the matching we keep observing the endpoints of the activated
edges. Each activated edge has exactly one endpoint in the subgraph 7" and forms
a potential extension of T'. If the endpoint of at least one activated edge belongs
to E(G}), we are in a so-called augmenting phase. In this phase we do not activate
new vertices and do not extend the subgraph 7. We wait till the endpoints of
activated edges fall in U(G}) U O(G}) or the last phase. If the endpoints of
activated edges belong to U(G}) U O(G}), we are in a non-augmenting phase,
where we do not need to change the matching but instead have to activate some
new vertices and also extend the subgraph 7. Augmenting and non-augmenting
phases may alternate. An important thing that allows to save time is that we do
not traverse the graph H beyond the subgraph T

Once we have N,., we can obtain matchings N;, N;y1, ..., N._1 easily. We
also show how to update reduced graphs G} in order to obtain reduced graphs
H]. This part of the algorithm is presented in Section

More detailed description of this approach is presented in Section [6] In order
to prove its correctness we make use of two technical lemmas (Lemma [3[and
Lemma . Lemma (4| is particularly useful and gives a good characterisation of
which vertices need to be activated. It is also crucial for the computation of the
Edmonds-Gallai decompositions of the reduced graphs HJ.

5 Technical Lemmas

Let G = (AUP,E) be any bipartite graph. Then e = (a,p) is said to be a new
edge for Gife ¢ £ and a € A,p € P.If M is any matching of G, then a matching
N of G is said to be M -augmented mazimum if it is a maximum matching of G
obtained by augmenting M.

Lemma 3. Let G = (AUP,E) be a bipartite graph, M its mazimum matching
and C' a connected component of G that contains exactly one free verter ag of A
in M.

Let & = {(a1,p1), (a2,p2), ... (ar,pr)} denote a set of new edges for G such
that each a; belongs to CNE(G) and no p; belongs to C. Let G denote the graph
GU&; and ng = |M|. Then we have:

1. If there exists i such that p; € E(G), then:

(a) Every M-augmented mazimum matching of G1 contains ng edges of €
and one edge (a;,p;) € & such that p; € E(G). Conversely, each edge
(ai,p;) € &1 such that p; € E(G) belongs to some mazimum matching
of G1. Thus, no edge (a;,p;) € & such that p; ¢ E(G) belongs to any
M -augmented mazximum matching of G.

16

(b) (i) Each vertex of G\ C either has the same type in G and Gy or (i) it
belongs to E(G)UO(G) and U(G1). Each vertex of C belongs to U(G)
or (E(G)NO(G1)) U (O(G) N E(Gr)).

(¢) No edge (a,p) of G such that one of its endpoints belongs to O(G) and the
other to O(G) UU(G) belongs to any M -augmented mazimum matching
Of Gl .

2. If there exists no i such that p; € E(G), then:

(a) Every mazimum matching of G is also a mazimum matching of G1. Let
P’ be any even length M -alternating path starting at ag. Then M & P’
is a mazimum matching of Gy, which contains ng— 1 edges of £ and one
edge of &1.

(b) Every edge (a;,p;) € &1 belongs to some even length M -alternating path
starting at ag.

(¢) (i) Each vertex of G\ C either has the same type in G and Gy or (i) it
belongs to U(G) and E(G1) U O(G1). Each vertex of U(G) that belongs
also to E(G1)UO(G1) is reachable in Gy from ag by an even/odd length
M -alternating path. FEach vertex of C' has the same type in G and Gi.

(d) An edge (a,p) such that a € U(G)NE(G1) and p € O(G) belongs to some
mazimum matching of G1. Every other edge (a,p) of G such that one of
its endpoints belongs to O(G) and the other to O(G) U U(G) belongs to
no mazximum matching of G1.

H

G

Fig. 3. The pictorial representation of G, G1, G2 and H as described in Lemma [3] and
Lemma [

Proof. We first prove 1(a) — 1(c). Let us assume that there exists 7 such that
p; € E(G).

From the fact that a;,p; € E(G) and Lemma |l} we can see that in G there
exists an M-alternating path P; from a free vertex to a; and an M-alternating
path P, from a free vertex to p;. Since a; € C, the path P; is contained in C
and hence P; is between ag and a;. Similarly, the path P, is contained in V' \ C.

17

Thus paths P; and P, along with the edge (a;, p;) form an M-augmenting path
P'in G;. Let M’ = M & P’. Obviously M’ contains ng edges of £ and one edge
of 51.

Observation: We can note that no M-alternating path can contain two
edges of &;.

This is because all endpoints of £; belonging to C' are contained in 4. There-
fore an M-alternating path connecting two endpoints of the edges of & in C
must have even length. But every edge of & is non-matching. Thus we cannot
include any two of them in an M-alternating path.

We now prove that M’ is a maximum matching of G;. Assume by contradic-
tion that there exists a matching M” such that |M"| = |M|+ 2. The symmetric
difference M" @& M contains two vertex disjoint M-augmenting paths in Gy. At
least one of these paths has both endpoints in (A U P) \ C. Let this path be
X. The path X has to contain at least two edges of £; as otherwise it would be
contained in the graph G, contradicting the maximality of M. However, by the
observation above we know that it is not possible. By the same observation any
M-augmenting path contains at most one edge of £, which proves 1(a).

Note that from the above discussion, it already follows that each edge
(a;,p;) € &1 such that p; € E(G) belongs to some maximum matching of Gy
and that no edge (a;, p;) € & such that p; ¢ E(G) belongs to any M-augmented
maximum matching of G;.

1(b). Let us consider the case v € C first. It suffices to show that v € E(G;)
implies v € O(G) and that v € O(Gy) implies v € E(G). Let v € O(Gy). Let us
consider a maximum matching M7 in G and any Mj-alternating path P from a
free vertex vg € (AUP)\ C to v crossing the set &;. Let (x,y) be the first edge of
&1 on this path and = ¢ C, y € C. Our goal is to show that (x,y) ¢ M;. Assume
by contradiction that (z,y) € M;. Let P’ be a subpath of P from a free vertex v
to y. Note that P’ has even length and thus M; @ P’ is a maximum matching in
G of size |[M|+1 - a contradiction. Hence, (z,y) ¢ M; and we have y € O(Gy).
From the definition of &, we also have y € E(G). Since y € O(G1) N E(G),
v € O(G1) and there is an alternating path from y to v, one can easily see that
v € E(G). Similarly, if v € C belongs to E(G;) then it belongs to O(G). This
completes the proof of 1(d) for the case when v € C.

Suppose next that v ¢ C. Without loss of generality, we may assume that
there exists an M-augmenting path P; in G; that contains an edge (a;,p;) € &1
and p; is free in M. This is because, we can apply an even-length M-alternating
path from a free vertex to p; and obtain a maximum matching M’ of G, in
which p; is free. Let My = M @ P;. Note that each edge e € M; with both
endpoints in V' \ C belongs also to M. Let us observe that any M;j-alternating
path P’ that has both endpoints in V' \ C and crosses C (V(P") NV (C) # 0)
contains two edges of £, exactly one of which belongs to M;. This follows from
the observation in 1(a). Suppose that a vertex v € V'\ C belongs to E(G1). There
exists then an even-length M;-alternating path P(v) starting at a free vertex v’
in M; and ending at v. The free vertex v’ must belong to V'\ C. If P(v) does not
go through any vertex of C, then it is also M-alternating and hence v € E(G).

18

Suppose then that P(v) goes through C. It contains then the edges (a;, p;) and
(aj,pj) of &1. We observe that the path P(v) must leave the part V' \ C via a
non-matching edge, hence by (p;,a;). This follows from the fact that otherwise
it would have to leave (V' \ C) via p;, but p; is free in M, which would contradict
the maximality of M. We split P(v) into three parts P;(v), P2(v), P3(v), where
Py (v) has endpoints v" and p;, Py(v) - p; and p; and Ps(v) - p; and v. Any
M;-alternating path with both endpoints in P (posts) must have even length.
Therefore each of the paths P (v), Py(v), Ps(v) has even length. We notice that
Ps(v) is an even length M-alternating path from a free vertex p; to v, which
means that v € E(G). The proof for the case when v € V' \ C belongs to O(G1)
is symmetric.

1(c). Assume by contradiction that there exists an edge (a,p) of G such that
a € O(G), p € O(G)UU(G) and (a,p) belongs to a maximum matching M7 of
G1. Consider a matching M’ = M1NE. We have (a,p) € M', |M'| = |M;|-1, and
From 1(a), M’ is a maximum matching of G. However from Lemma [] it follows
that (a,p) does not belong to any maximum matching of G - a contradiction.

Let us now prove that 2(a) — 2(d) hold. Assume that there exists no i such
that p, € E(G).

2(a). We first show that M remains a maximum matching of G;. Assume
by contradiction that there exists an M-augmenting path P in G;. Let = be
the endpoint of the path not belonging to C and let (aj,p;) be the first edge
of P going from x belonging to &£;. The existence of a subpath from = to p;
implies that p; € E(G) - a contradiction. Thus every maximum matching of G
is also a maximum matching of GG;. The fact that a maximum matching of G,
can contain at most one edge of & follows from the observation in the proof of
1(a).

2(b). Let (aj,p;) be any edge of &;. Since a; € E(G), there exists an M-
alternating path P in G from a free vertex ag to a;. Note that p; ¢ E(G) and
Lemma (1] imply that p; is matched in M to some M(p;) # a;. The path P
together with edges (aj,p;) and (p;, M(p;)) form an even length M-alternating
path P’ in G;. Clearly M @ P’ is a maximum matching in G; containing the
edge (aj,p;), thus 2(b) holds.

2(c). Recall that M is a maximum matching in both G and G;, where G
is a subgraph of G;. Let v be an even(resp. odd) vertex in G. There exists an
even(resp. odd) length M-alternating path in G from a free vertex to v. Such a
path is present in G1, as G is a subgraph of G1. Hence, v is an even (resp. odd)
vertex in G;. Let us have v € U(G) and v € E(G1) UO(G1). From Lemma []]
there exists an M-alternating path P from a free vertex x to v. We know that
v € U(G) thus at least one edge of £ belongs to P. By the observation in the
proof of 1(a), it follows that exactly one edge of & belongs to P. Note that this
also means that P starts from the only free vertex ag of C, thus 2(c) holds.

2(d). Let (a,p) be an edge such that a € U(G)UE(G1) and p € O(G). Hence,
a is reachable from a free vertex ap in C' by an even length M-alternating path.
Therefore, p is reachable from ag by an odd length M-alternating path in G;. If

19

we apply the alternating path, then (a, p) is matched in some maximum matching
of Gl.

Now let (a,p) be an edge such that a € (U(G) UO(G)) N (O(G1) UU(G1))
and p € O(G). Hence, p € O(G1). Thus, the edge (a,p) is an OO or OU edge
in G1. Therefore, the edge (a,p) is never matched in any maximum matching of
Gy. O

We say that a graph G is reduced if it does not contain any edge (u,v) such
that either both w and v belong to O(G) or exactly one of the vertices belongs
to U(G) and the other one to O(G).

Let G,G1,Ga, H be graphs such that G = (V,€),G; = (V,EU&)), G2 =
(V,EU&) and H = (V,EUE; UEs). Let M be a maximum matching of G. For
i € {1,2}, we say that a matching M’ of H is (M, G;)-augmented if it is obtained
by augmenting an M-augmented maximum matching of G;.

Lemma 4. Let G = (AUP,E) be a reduced bipartite graph and C a connected
component of G that contains exactly one free vertex ag of A in a mazximum
matching M of G.

Let & = {(a1,p1), (a2,p2),...(ar,pr)} and E denote two sets of new edges
for G such that each endpoint of a new edge belongs to E(G). Also, each edge of
&1 connects a vertex of CNA with a vertex not contained in C and each edge of £,
connects two vertices not belonging to C. Let G1,G2 and H denote respectively
GUE, GUE and GUE UE,. Mis denotes a set of mazimum (M, G1)-augmented
matchings of H and May a set of mazimum (M, Gs)-augmented matchings of H.
Let ng = |M| and ny denote the number of edges of Ea contained in a mazrimum
M -augmented matching of Go. Then we have:

1. If there exists i such that p; € E(G2), then M1 = M2 and each matching
of Mys contains ng edges of £, ny edges of £ and one edge of &;.
2. If there exists no i such that p; € E(G3), then:

(a) A matching of Mya contains ng edges of €, no — 1 edges of E2 and one
edge of £1. On the other hand, every matching of Msy is a maximum
matching of Gs.

(b) A matching of H belongs to My if and only if it has the form M’ & P/,
where M' € Msy and P’ is an even length M’-alternating path with
one endpoint in ag and the other in a verter v € E(G) N E(Gy), which
contains exactly one edge of &;.

Proof. (1) Let My be a maximum matching of G and (a;,p;) € &1 an edge with
both endpoints in E(G2). After the addition of & to Ga, H contains an M-
augmenting path P’ containing (a;,p;). The path has one edge from &, some
even length path segments consisting of the edges from £ and some edges from
&y. Since very augmenting path has an odd number of edges, the number of
edges & in P’ must be even. Because every two edges from & are separated by
an even length path segment consisting of edges from &£, an edge of My N &Esis
followed by an edge & \ Ms and vice versa. Hence, half of the edges of & in
P’ belongs to Ms. Therefore, after the application of P’ to M, the number of

20

matched edges of £ and & remains the same. The number of matched edges of
& increases to 1. By the construction every such matching belongs to Ms; and
contains ng edges of £, ny edges of & and one edge of &;.

Next we show that Ms; = Mijs. Let N € Ms;. Consider the symmetric
difference N @& M. It contains ne + 1 M-augmenting paths, one of which, say P’
contains an edge of £; and each of the remaining ones one edge of €. Notice that
order of applying the M-augmenting paths of M & N to M is inconsequential -
we will always get V. Since we can first apply P’ and afterwards the remaining
augmenting paths, it means that N € M.

Similarly, it can be shown that Mo C Ms;. We conclude that Mo = Mo, .

2(a) There are two ways of obtaining a maximum matching H by augmenting
a maximum matching M of G. We can first add & to the graph G and augment
M in the thus built Gg, getting a maximum matching My of G3. After the
addition of & to Gg, there does not exist any edge (a;,p;) € & such that
p; € E(G2). Since we do not have any Ms-augmenting path in H, the maximum
matching of G5 is a maximum matching of H. This shows that any matching of
Mo, is a maximum matching of Gs.

Alternatively, we can first augment M in (3. Since both endpoints of each
edge of & belong to E(G), each such edge is contained in an M-augmenting
path in G;. If we apply any of these M-augmenting paths, we get a maximum
matching M; of G;. Note that we can apply only one such path, because C
contains only one free vertex in M. M; contains 1 edge from & and ng edges
from &.

Next, we add & and augment M;. We know that none of the vertices of
C is free in M;. Therefore there does not exist any M;j-augmenting path in H
starting from a vertex of C'. Hence, we have two types of augmenting paths. The
first possibility is that the augmenting path is totally contained in G5. The other
one is that the augmenting path contains one matched edge and one unmatched
edge from &;. Recall that C' can be reached only by edges of & . Thus, each
Mi-augmenting path in H increases the number of the matched edges from &,
by exactly 1 and does not change the number of matched edges of & or of £.
We already know that the size of a maximum matching of H is ng + no. Hence,
any matching of M1, contains 1 edge from &, ng edges from &£ and ny — 1 edges
from &,.

2(b). Consider a symmetric difference of two matchings N € M5 and M’ €
M. Since ag is matched in N and unmatched in M’ and because both matchings
are maximum in H, N @& M’ contains an even length M’-alternating path P’
starting at ag. Observe that in any alternating path or cycle of N @ M’, any two
edges not belonging to G are separated by an even length path segment consisting
of edges from &. (Because all edges not contained in G have their endpoints in
E(G) and hence all endpoints of such edges incident to one connected component
of G are either all contained in A or all contained in P.) Thus, any two edges
not belonging to G must alternate between edges of N and edges of M’ on any
alternating path or cycle. N @ M’ contains exactly one edge of &, which is
necessarily contained in P’. P’ contains also some number of edges of &.

21

We claim that there exists a number 2k + 1 such that P’ has k + 1 edges
of NN & and k edges of M’ N &,. To prove it, note that any maximal under
inclusion alternating path of M @ N apart from P’ has the same number of edges
of & in M’ and in N. The same applies to any alternating cycle of N & M’. On
the other hand, we know that the number of edges of £ in M’ is smaller by 1
than in N. Therefore, P’ must indeed contain an odd number of edges of £ and
M' & N yields a matching of M.

Next, we prove that the other endpoint of P’ belongs to E(G) N E(G1).
Because P’ has even length, the other endpoint a’ of P’ must belong to A. Let
(aj,p;) denote an edge of & contained in P’. Since p; € E(G), p; is contained
in a component of GG, which contains a free vertex of P in M. The path P’ goes
between components of G, in which a free vertex in M belongs alternately to P
and to A. Because P’ contains one edge of £; and an odd number of edges of &,
it ends in a component with a free vertex in M belonging to A. This component
is, of course, different from C. This shows that o’ € E(G). To see that o’ belongs
also to E(G1), notice that no endpoint of £ belongs to a connected component
in G different from C with a free vertex of A in M. Therefore for every such
component C’ # C with a free vertex in AN M, it holds that any vertex v € C’
has the same type in G and Gj.

Conversely, let P’ be any even length M’-alternating path with one endpoint
in ag, the other in o’ € E(G) N E(G1) and containing exactly one edge of £;. By
the same reasoning as above, we get that P’ contains an odd number 2k + 1 of
edges of &, k + 1 of which belong to N. This means that N @ P’ has ng edges
of £, one edge of & and ny — 1 edges of €. Also, if we remove from P’ edges of
M' N &y, we obtain ny vertex-disjoint M-augmenting paths in H, one of which
contains an edge of &;. Therefore, N & P’ belongs to M. a

6 Algorithm for Updating a Rank-Maximal Matching

In this section we present an algorithm for computing a rank-maximal matching
of H. Its pseudocode is written as Algorithm[3] In Algorithm[3|for each 1 <i <,
a matching M; denotes a rank-maximal matching of G;. Also, for each r > j > i
a matching M; is contained in M;.

By phase i of Algorithm [3] we mean an i-th iteration of the loop for. By C;
and R; we denote C or R, respectively, at the beginning of phase i. By phase
0 we denote the part of Algorithm [3] before the start of phase 1. Depending on
whether during phase i lines 7-13 or 15-19 are carried out, the phase is either
called augmenting or non-augmenting.

We say that a vertex v is active in G} if v € O(G}) U E(G}) and not active
or inactive (or unreachable) otherwise.

In Algorithm [3] the subgraph C; contains an "upper" part of the alternating
subgraph T mentioned in the introduction and in Section [4] i.e., at the end of
the algorithm T contains all alternating paths, whose application to M, results
in a rank-maximal matching of H. The subgraph C; may also be viewed as the
subgraph that encompasses the ("positive") changes between graphs H] and G.

22

C; always contains a new vertex ag that belongs to H and not to G as well as
vertices that are at this point unreachable in G, i.e., they belong to U(G}). If
there exist vertices that are active in H/ but inactive in G, then they belong
to C;. Also, any vertex of C; is active in some graph H]’ such that j < ¢ but
inactive in G;. Any edge that belongs to H; \ G} is either contained in C; or one
of its endpoints belongs to C;. Each such edge belongs to the set AE at some
point and is called an activated edge. The subgraph C; does not encompass all
changes - in particular, it may happen that some vertex v ¢ C; is active in G
but unreachable in H/ or that some edge belongs to G \ C; but not to H..

During phase i we construct a graph H; that contains every edge belonging
to some rank-maximal matching of H;. At the beginning of phase i, the set AV
contains activated vertices, each of which is alive in H/ but not alive in GJ,.

We later show in Theorem [that a rank-maximal matching of H; may be
obtained from a rank-maximal matching M; by the application of any alternating
path s; € 5;, defined below, and that every matching obtained in this way is
rank-maximal. The paths s; of S; are defined as follows.

Let AV; denote the set of activated vertices at the end of phase 3.

Definition 3. For each i € {1,2,...,r} we define the set S; of M;-alternating
paths contained in H;, each of which starts at ag.

If phase i is augmenting, then s; € S; iff it is an M;-augmenting path ending
at any free vertex in M;. (Each such path contains one edge of AE.)

Otherwise, if phase i is non-augmenting, s; € S; iff (i) it is an M;-alternating
path ending at any vertex of AV; (each such path contains exactly one edge of
AE, oris a path of length 0) or (ii) it is an M;-alternating path ending at any
vertex of Alive(i) (each such path contains exactly one edge of AE,).

The mentioned earlier alternating subgraph T is formed by paths of S, i.e.,
T =, cg, Sr- Before phase r (or strictly speaking, before phase ¢’), we are not
sure which paths of S; will eventually belong to T, therefore some paths of S;
are contained only partially in C' and thus also only partially in 7.

In order to obtain a rank-maximal matching N, that differs from M, in the
smallest possible way, we choose that path s, € S,, which is shortest.

Theorem 4. For each i € {1,2,...,r} it holds:

1. H; contains every edge belonging to some rank-mazimal matching of H;.

2. C; has the properties of C' from Lemma[3 with respect to the matching M;.
C; contains no vertex that is active in Gj. After the execution of line 4 of
phase i each edge of AE connects a vertex of C; with a vertex of R;.

3. For each s; € S; a matching M; & s; is a rank-mazimal matching of H; and
a mazimum matching of H;.

4. At the end of phase i the set AV consists of all vertices that are alive in
Hi, | but not alive in Gj,.

23

Algorithm 3 for computing a rank-maximal matching of H
1: C <+ {ao}, AV + {ao}, AE <0

2: fori=1,2,...,r do

3: R+ Gj\C

4: AE < AEU{(a,p) € F; :a € AV Ap € Alive(i)}

5. Hi+ CURUAE

6: if each (a,p) € AF is such that p € U(G5) UO(G;) then

7 AE, < {(a,p) € AE: p e U(G})}

8: for all even-length M;-alt. path S in H; between ag and a € U(G})NAlive(i)
do

9: V(C)« V(C)UV(S), &)<+ EC)U{(a,p) € Gi:a,pe S}

10: AV «+ AV U {a}

11: AE, + {(a,p) € AEUG, :a € CA pe O(G))}

12: AE « AE U AE, \ AE,

13: else

14: (there exists (a,p) € AFE such that p € E(G}))

15: for all (a,p) € AE such that p € O(G;) UU(G;) do

16: AE «+ AE\ {(a,p)}

17: AV + 0

18: return M, @ sy, where sy - a path of S, of minimal length

Proof. Point 1. At the end of phase 0, the subgraph Cy as well as the set AV
contains exactly one vertex ag. We can notice that H; = H; = Hj. Using Lemma
[B]it is easy to check that the theorem holds for i = 1.

Suppose now that ¢ > 1. We first argue that every edge of H]\ H/_, is present
in H;. By Fact [2 every edge of H/ \ H!_, has both endpoints in the set of alive
vertices of H]. If both endpoints of such an edge belong to R;, then they are
also alive in G, (a vertex that is not alive in G \ C; is also not alive in H}) and
thus such an edge is included in H;. If one of the endpoints v of such edge (v, w)
belongs to C;, then v must belong to the set AV - by the induction hypothesis
point 4 and hence edge (v, w) is added to H; in line 4.

The edges belonging to H;_; \ H; are either those belonging to G%_, \ G/, or
those removed in line 17 during phase ¢ — 1. By Lemma |3| 1(b), 1(c) and 2(d),
no such edge belongs to a maximum matching of H,;_; and therefore by the
induction hypothesis point 3, no such edge belongs to a rank-maximal matching
of Hifl.

We have thus proved that H; contains every edge belonging to some rank-

maximal matching of H;.

Point 2. Tt is easy to see that C; satisfies all the properties stated in point 2
of the theorem.

Point 3. We will now show that every matching M; @ s; is a maximum
matching of H; that contains a rank-maximal matching of H;_;. We are going
to make use of the following claim.

24

Claim: Suppose that i > 1 and H; contains every edge belonging to some
rank-maximal matching of H;. Then a maximum matching of H; that contains
a rank-maximal matching of H;_q, is a rank-maximal matching of H;.

Case 1: Phases i — 1 and i are augmenting. There exists then an edge (a,p) €
AFE such that p € E(G}). In phase ¢ — 1 the edge (a,p) also belongs to AE,
because in phase ¢ we do not add any new edges to AE since AV = (). We claim
that p € E(G}_;). If it were the case that p ¢ E(G}_,), then (a,p) would have
been deleted during phase ¢ — 1 in line 17. Since (a,p) is such that p € E(G}),
there exists in H; an M;-augmenting path 7' containing (a,p) that ends at some
free vertex p’ in G\ C;. The vertex p’ is also free in G;_; \ C;_1. If T is contained
in H;_1, then by the definition of the set S;_; the path T belongs to S;_; and
thus by the induction hypothesis, M;_1 @ T is a rank maximal matching of H;_1.
This then means that M; T is a rank-maximal matching of H;, because M; T
contains the same number of rank i edges as M;.

Next assume that the path T’ is not contained in H; (Figure a)). Let T'
denote the maximal subpath of T that starts at ag and is contained in I:Ii_l.
It must end at a vertex p” that is free in M;_; and matched in M;. We know
that M;_1 & T” is a rank-maximal matching of H;_ ;. The path T = T\ T"
connects two vertices that are alive in G| +1, one of which is free in M;. Also,
T" is contained in G} \ C;. Theorem 1 of [J] states that given a rank-maximal
matching M; of G; and an even-length M;-alternating path 7" with one endpoint
free in M; and the other alive in G;1, the matching M; & T" is rank-maximal
in G;. Thus, the matching M; @ T” is rank-maximal in G;, which means that
M; & T is a rank-maximal matching of H;.

Case 2: Phase i — 1 is augmenting and ¢ non-augmenting. Let ng denote the
number of edges of M; that have rank smaller than ¢ and ny the number of
edges of M; with rank i. Let us note, that since phase 7 — 1 is augmenting, each
matching M; 1@ s;_1 contains one edge more than M, ;. A maximum matching
of H; has the same cardinality as M;. Therefore, a rank-maximal matching of
H; contains at most ny — 1 edges of rank .

Each s; from S; is an even length M;-alternating path connecting a¢ and a
vertex a € AV; U Alive(i + 1). By Lemma[d] 2(a),2(b) the matching M; & s; is a
maximum matching of H; that has one edge of AE, ngy edges not belonging to
AFE and of rank strictly smaller than ¢ and no — 1 edges of rank ¢. Each of the
paths s; € S; contains some path s;_1 € S;_1. Also, each edge of AFE belongs to
S; NS;_1. It is so because each edge (a,p) that belongs to AE at the beginning
of phase i is such that p € F(G}_,) and thus (a,p) is contained in some s;_; as
well as some s;. Hence, M; & s; is a rank-maximal matching of H;.

Case 3: Suppose now that phase ¢ — 1 is non-augmenting and phase ¢ aug-
menting (Figure [f{b)). It means that there exists an edge e = (a,p) € AE such
that p € E(G}). If the edge e did not belong to AE in phase i — 1, it means that
a € AV;_1 and thus there exists a path s;_; ending at a, whose application to
M,;_; yields a rank-maximal matching of H;_1. Also, in G} \ C; there exists an
even length M;-alternating path 7' that starts at p € Alive(i + 1) and ends at
a free vertex p’. By Theorem 1 of [9], the matching M; & T is rank-maximal in

25

G;. The edge e clearly has rank i. Therefore M; & ({e} UT Us;_1) is a maximum
matching of H; that contains a rank-maximal matching of H,;_; and has one
edge of rank ¢ more than M; - therefore it is rank-maximal in H;.

If the edge e did belong to AF in phase i — 1, then p € O(G._;). In G} \ C;
there exists an even length M;-alternating path 7" that starts at p and ends at
a free vertex p’ (Figure c)) Let T denote the maximal subpath of T starting
at p and contained in G}_; \ C; and let 7" denote T'\ T". Also, let s denote an
M;-alternating path from ag to p. We notice that T’ ends at a vertex a” alive in
G’ and thus M;_1 @ (sUT") is rank-maximal in H;_;. Let us note that the edge
e = (p”,a") is of rank 3. Also, M; @ (T" \ €”) is rank-maximal in G;. Therefore
M; ® (s UT) is rank-maximal in H;.

Case 4: In the final case, we assume that phases i — 1 and ¢ are both non-
augmenting. Hence a maximum matching of H; has the same cardinality as
M;. Each of the paths s; € S; contains some path of S;_;. Let s;_; denote a
maximal subpath of s; that belongs to S;_1. First we prove that M; & s;_1 is
a rank-maximal matching of H;. Since phase i — 1 is non-augmenting, s; 1 is
an even length alternating path from ag to some o' € AV;_; U Alive(i) and
M;_1 & s;—1 yields a rank-maximal matching of H;_;. Therefore M; & s;_1 is
also a maximum matching of H; that contains a rank-maximal matching of H;_1.
Thus M; & s;_1 is a rank-maximal matching of H;.

Let T = s; \ s;_1. Since s;_1 is a maximal subpath belonging to S;_1, the
edge in T incident to o’ is of rank ¢ and T does not contain any edge from C;_;.
Therefore TNG)_; is a collection of path segments contained in G;_; \ C;_; and
T is obtained by connecting such segments with rank i edges. The endpoints of
these path segments belong to Alive(i). In other words, TN G}_; is a collection
of even length alternating paths in G;_; \ C;_1 from a free vertex to an alive
vertex. By Theorem 1 of [9], (T'N G}_;) ® M;_; is a rank-maximal matching
of (G;_1 and consequently a rank-maximal matching of H;_1. Thus M; ® s; is
a maximum matching of 1{[1- and contains a rank-maximal matching of H;_;.
Therefore, M; @ s; is a rank-maximal matching of H;.

Point 4. Before proving point 4, let us note the following relationships be-
tween EG-decompositions of H; and H!: (i) if v € E(H}), then v € E(H;), (ii)
if v € O(H}), then v € O(H;). They follow from the fact that each EO-edge of
H] belongs to some rank-maximal matching of H; and hence, by point 1 of the
current theorem it also belongs to H;. The corollary of these two implications
is: (iii) if v € U(H;), then v € U(H!).

If phase i is augmenting, then we set the set AV as empty. This is because
by point 1(b) of Lemma |3} any vertex v that belongs to C' changes type. On
the other hand any vertex that belongs to R has the same type in G} and H;.
Therefore, it cannot belong to AV; either.

Suppose now that phase 7 is non-augmenting. We first prove that every vertex
v € AV is alive in H] | but not in G} ;. We have two possibilities. First, assume
that AV contains v at the end of phase i — 1.

By the induction hypothesis, at the end of phase i — 1, v is alive in H/ but
not in G%. It means that it was added to AV during some phase j < 4. In phase

26

Jj there also existed an even-length Mj-alternating path P’ from ag to v. This
path was added then to C. Thus the path P’ is also present in H; (because no
edge or veretx is removed from C) and it belongs to S;. By point 3 of the current
theorem M; & P’ is a rank-maximal matching of H;, in which v is free. It means
that v € E(H]). Therefore, v is indeed alive in H},; but not in G ;.

On the other hand, if v is added to AV during phase 4, then it is an endpoint
of some path s; € S; and by point 3 of the current lemma, M; & s; is a rank-
maximal matching of H;. Thus v is free in the rank-maximal matching M; & s;
of H;, which means that is is also free in some rank-maximal matching of H; for
each j < i. Therefore, v is alive in H] and since v € U(GY}), it is not alive in GJ.

Conversely, suppose that v is alive in H], ; but not alive in G7 ;. Then there
is an even length alternating path from a free vertex to the alive vertex v in H}.
Now, by Theorem 1 of [9], every edge of the path belongs to some rank-maximal
matching of H;. Hence the whole path is present in H; and v € E(H;). Since v
is alive in H] |, v is also an alive vertex in Hiyq. If v is not alive in G/, then by
the induction hypothesis, v is added to AV during phase ¢ — 1 and since phase 4
is non-augmenting, it also belongs to AV in phase i. Suppose now that v is alive
in G%. This implies that v € R after phase i — 1. Since phase i is non-augmenting
and v is an alive vertex in H;y; but not in G, 1, by point 2(c) of Lemma |3, v
must belong to U(G}) N E(H;). There is an even length M;-alternating path P’
from a free vertex to v in H; but there is no such path in G Therefore the path
P’ must contain at least one activated edge. No activated edge belongs to M; in
H;. Once P’ enters C using that activated edge, the path can’t leave C' and ag
is the only free vertex inside C'. Hence, there is an even length alternating path
from ag to v in H;. Finally, by lines 8 and 10 of Algorithm [3] v is added to AV
during phase 1. a

Theorem 5. Algorithm@ runs in O(min(c'n,n?) +m) time.

Proof. Without any additional assumptions the running time of Algorithm [3]is
O(rn + m). The extension of C to include M;-alternating paths may be easily
implemented to take O(m) time in total as the set C' does not shrink. Also,
during the process of the extension of C' to include M;-alternating paths, we
only traverse R starting from the activated edges of type (a;, p;), where a; € C
and p; € U(G}). We never reach C while traversing these paths and each such
traversal ends with the inclusion of some path to C in after that phase. Hence
we do not traverse any edge inside C' or inside R more than once.

The executions of line 8 and 15 may require O(rn) time as every edge (a,p)
may belong to AFE for a number of phases and in each one of them we need to
check to which of the sets E(G}), U(G%), O(G}) the endpoint p belongs. The rest
of the time the algorithm takes is O(m).

Now we show how to store the reduced graphs after every phase and their
GE-decomposition efficiently. Let us consider a vertex v € V(G). Before the
first iteration v is an even vertex. During the algorithm, the type of v switches
between an even vertex and an odd vertex. If v € U(G}) for some iteration

27

p i p
> T »

(a)

T
- >
c

i p P

(b)

"

Fig. 4. The figures represent different cases we encounter during the correctness proof
of the algorithm. (a-b) The first two figures represent the case when both iterations
i —1 and ¢ are augmenting. (c) The third figure represents the case when the iteration
i — 1 is non-augmenting but ¢ augmenting.

28

1 <4 < r, then v remains an unreachable vertex for every subsequent iterations.

Hence we maintain an ordered list ¢y < 72 < ... < ix, which denotes the phases

when v changes its type, i.e., v belongs to O(G7,), E(G},), ..., U(Gj,). Each such

list has length at most n. Combining these lists, we obtain a list of lists of size

O(n?). This list of lists stores the GE-decomposition of every reduced graphs
1Ghy Gl

For any edge (a,p) in G, its presence in each reduced graph can be computed
from the GE-decomposition of the end-points of that edge. Hence we do not need
to store any extra information about the edges of G to reconstruct the reduced
graphs.

Also, similarly as in the case of the algorithm for a rank-maximal matching,
we may modify the algorithm so that it runs in O(min(c¢'n, n?)+m) time, where
¢’ denotes the maximal rank in an optimal solution. To this end, it suffices to
stop when there are no new edges to add. O

Theorem 6. Assuming we are given the reduced graphs G, G5, ..., G, the re-
duced graphs of H can be computed in O(min(c'n,n?) +m) time.

7 Example of How Algorithm |3 Works

as

Fig. 5. On the right-hand side there is the graph H obtained by adding the vertex ao
and the edge (ao,po) to G. The graph Hs is presented on the left-hand side. In this
particular example the graph on the right-hand side is also equal to Hs (i.e. H = I:I'g,).
The vertices inside the ellipse form the set C'. Label of each edge is equal to its rank.

29

Let us take a look at what Algorithm [3] does when executed on the graph
presented on Figure [f] At the beginning of the first iteration, C' contains only
vertex ag, R contains the rest of the graph. The vertex aq is added to the set AV.
The edge (ao, po) is added to the set AE of activated edges. Since py € U(G}),
sets C'and AV are updated. The set C' from now on contains the subgraph inside
the ellipse on the left-hand side of Figure [f]and AV contains the vertices a¢ and
ai. In order to get a rank maximal matching of H;, we may apply one of the
two alternating paths - each one starts at ag and one of them finishes at a; and
the other at ag (a zero-length path).

In the second iteration the algorithm first updates the set of activated edges.
The updated graph is presented on the left-hand side of Figure |5l At this point
the set AF contains two edges incident to a; and crossing the ellipse. Since both
endpoints of edges of AE at this point belong to E(H>), the algorithm enters
an augmenting phase. The set AV is reset to empty. In order to obtain a rank-
maximal matching of Hy any augmenting path of Hy may be applied. Sets C
and R remain the same.

In the third iteration the algorithm first updates the sets AV and C. The
set AV contains the vertices as and az. The updated graph is presented on
the right-hand side of Figure [5] Since there are no edges in AE such that both
endpoints belong to E(Hg), the algorithm enters a non-augmenting phase. The
set AFE contains an edge of rank 2 crossing the ellipse. Vertices which are alive
and reachable from aqg after this iteration are denoted as a4 and as. In order
to obtain a rank-maximal matching of H3 we can either apply an even length
alternating path starting at ag and ending at an alive vertex or apply an even
length alternating path starting at ap and ending at a vertex of AV.

s 3 as pu1 5 ann

ag Po P a4 ps ag 4 py au

Fig. 6. The figure presents the graph H which is obtained by adding the edge (ao, po)
to G. Thick edges belong to a rank-maximal matching of G.

30

Let us now take a look at the example presented in Figure [f] This example
gives us an idea about changing from an augmenting phase to a non-augmenting
phase and vice versa. Before the first iteration, the vertex aq is an activated ver-
tex and (ag, po) is an activated edge and the algorithm enters a non-augmenting
phase after the first iteration. In the second iteration the edges (ai,p2), (a1,p3),
(a1, p4) of rank 2 become activated. Also ps, p3 and py4 are the even vertices in G5,
thus the algorithm enters an augmenting phase and a rank-maximum matching
in Hy can be obtained by applying any of the augmenting paths starting from
ap. The vertices pa, p3 and p4 change their type to unreachable in G%. Therefore,
the algorithm changes to a non-augmenting phase.

In iteration 4, ag and ag are some of the activated vertices present in the
graph. (ag,ps) and (ag, pg) are two activated edges of rank 4. Since both pg and
pg belong to E(GY), the phase changes to an augmenting phase. After phase 5,
there is no augmenting path starting from ag present in the graph. Therefore
the graph enters to a non-augmenting phase after the final iteration. After the
final phase, a1, a12, a13 and aj4 are the activated vertices present in the graph.
A rank-maximal matching of H can be computed by applying an even length
alternating path from ag to any of the activated vertices.

8 Updates of Reduced Graphs H;

Algorithm [3| computes graphs H; such that H; contains every edge that belongs
to some rank-maximal matching of H;. Our goal now is to determine which edges
of H; do not belong to H..

By Theorem [] point 3 for any s; € S; matching M; @ s; is rank-maximal in
H;. For each i we choose an arbitrary s; € S; and denote the matching M; & s;
as IV;.

Lemma 5. A vertez v belongs to E(H!) (resp. O(H.)) iff in the graph H; there
exists an N;-alternating path P’ from a free vertez u to a vertex w € Alive(i +
1)UAV; such that v lies on P’ and its distance on P’ from u is even (respectively,

odd).

Proof. Suppose first that v € E(H!). Then in H} there exists an N;-alternating
path P’ from a free vertex u to a vertex w € (;_, E(H}) such that v lies on P’
and its distance on P’ from u is even. By Theorem 1 of [9] N; @ P’ is also a rank-
maximal matching of H;. This means that every edge of P’ belongs to some
rank-maximal matching of H; and therefore by Theorem [4 point 1 the graph
H; contains each edge of P’. By Theorem {| point 4 we have ﬂ;zl E(H}) =
Alive(i + 1) U AV;.

The case when v € O(HY) is analogous.

Let us assume now that in the graph H; there exists an N;-alternating path
P’ from a free vertex u to a vertex w € Alive(i + 1) U AV; such that v lies on P’
and its distance on P’ from u is even. It suffices to show that every edge of P’
belongs to some rank-maximal matching of H;, because it will mean that every
edge of P’ belongs to H].

31

If every edge of N; N P’ belongs also to M;, then the whole path P’ lies in
G\ C; and thus by Theorem 1 from [9] N; @ P’ is also a rank-maximal matching
of H; and we are done.

Next assume that P’ is not totally contained in G} \ C;. In other words,
V(P'NC;) # ¢. Let u denote an endpoint of s;. Clearly, u € Alive(i + 1) U AV;.

Assume that phase ¢ is non-augmenting. Then by Definition [3] every path of
S; ends with a vertex matched in M;. After the application of s;, u is the only
free vertex that is reachable from C' by an N;-alternating path. Therefore, the
free vertex in P’ must be u. Let the other endpoint of P’ be w.

Let x be the last vertex on P’ (considered from u to w) that belongs to s;.
It must hold that z € C; - otherwise, P’ is contained in G} \ C;.

Let P, denote the subpath of P’ between x and w and s} the subpaths of
s; between ag and z. We can notice that the path consisting of two subpaths s}
and P, forms a path s} that belongs to S;. Therefore, M; @ s is a rank-maximal
matching of H;, in which w is free. A path consisting of a single vertex ag also
belongs to S;, hence every edge of M; belongs to H]. This means that every edge
of s; and hence every edge of P> belongs to H.

When we look at the symmetric difference of P’ and s;, it consists of s} and
possibly some number of cycles. The cycles of P’ @ s; and the path s} are vertex-
disjoint, because every vertex on s; is matched both in M; and N; with an edge
belonging to s;. This means that each vertex on P’ is matched via an N;-edge,
which does not belong to P’ @ s; (because such an edge belongs both to P’ and
s;). For the same reason each cycle C’ contained in P’ @ s; is M;-alternating.
To complete the proof it suffices to show that every edge of C’ belongs to some
rank-maximal matching of H;.

Claim: Any M;-alternating cycle C’ in H; is also present in G,.

Proof. If C' is not contained in G}, then it must contain some activated edges.
No activated edge belongs to M;. We label each vertex v of C’ as follows: we give
it a label R if it does not belong to C' at the beginning of phase i; otherwise, we
give v a label Cj if it was added to C during phase j < i. Let e = (a, p) be any
activated edge contained in C’. No activated edge belongs to M;. Then, either
(i) a € Cj,p € Cj for some j < j' < ior (ii) a € Cj,p € R. Let k be a minimum
index such that some vertex of C’ belongs to Cj. Recall that no activated edge
belongs to M;. Hence, the part of C’ contained in C} would have to be of odd
length (compare the observation in the proof of Lemma. But this means that
we have arrived at a contradiction, because all activated edges of C’ incident to
C}, are incident to vertices of A. This means that C’ is present in Gj. a

By Theorem 1 of [9], every edge of C’ belongs to some rank-maximal matching
of Gz

s; and C' are vertex disjoint. When we apply the alternating path s, to
M; obtaining N/, it does not affect the vertices of C’. Hence, every edge of C’
belongs to some rank-maximal matching of H;, because we can also apply s/
to a rank-maximal matching M] = M; & C’ of G; and obtain a rank-maximal
matching N/ of H;.

32

If phase 7 is augmenting, every path of S; path ends at a free vertex in M;.
After the application of s;, u is the only matched vertex in Alive(i + 1) U AV
reachable from C. Hence, once again u is one of the endpoints of P’. The rest of
the proof is analogous to the previous case. This completes the proof. a

3

Fig. 7. In the figure, P’ represents an alternating path from u to w via vertex x. Here
s; is the alternating path from ag to u

It remains to show how to efficiently compute EG-decompositions of graphs
H! given H;. Note that we cannot simply apply Lemma [5| a multiple number of
times for each of the graphs I;TZ-, as such an approach would lead to an algorithm
of complexity O(rm). Below we describe a general idea behind Algorithm
for computing FG-decompositions of H/, then in Theorem [7| we show that it is
possible to implement this algorithm to achieve an O(m+min(c'n,n?)) runtime.

Lemma 6. 1. Free vertices in N; are the same in H] and H;.
2. If a vertex v is reachable in H; from a free vertex in N; via an N;-alternating
path and ending at an alive vertex in ﬁi+1; then:
(a) v is reachable in ﬁj from a free vertex in N; via an Nj-alternating path
ending at an alive vertex in ﬁj+1 for every j < 1.
(b) for every j <i such that v € E(G;)UO(G%) v has the same type in H;
and G, i.e., v € E(G}) & v € E(H}) and v € O(G}) & v € O(H}).
(c) for every j < i such that v € U(GY}), v has the same type in H as in
H] if phases i and j are either both augmenting or both non-augmenting
and otherwise, v € O(H}) < v € E(H]) and v € E(H}) < v € O(H]).

Proof. We first prove (1). From Theorem [4] point 3 we know that N; is a rank-
maximal matching of H; and also a maximum matching of H, ! ~Theorem point
3 implies that IV; is a maximum matching of H;. Both H] and H; have the same

33

set of vertices, thus free vertices with respect to IV; are the same in H] and H,
and (1) holds.

2(a). This part directly follows from Lemma

2(b). Let v € E(G}) U O(GY)). This assumption implies that v ¢ C. From
Lemma (3| points and [2¢| we know that v has the same type in G;- and Flj.
Additionally v is reachable from a free vertex by an alternating path ending
at an alive vertex in the graph fI]—H. By Lemma [5| v € E(fIJ) if and only if
v € E(H}). Similarly we have v € O(H;) if and only if v € O(H}), hence 2(b) is
proven.

2(c). Let v € U(GY) for some j < i. There is a N;-alternating path from a

free vertex to an alive vertex in H,,; that contains v. Hence from part 2(a),
there is a Nj-alternating path from a free vertex to v in flj, hence v € C.

Let k be the phase during which v is included to C. Since C' is augmented
only in non-augmenting phases, £ must be non-augmenting. After the addition
of v to C, there exists in C' an Mj-alternating path T from ag to v. The length
of T is either odd or even. We can notice that for each j > k, T remains included
in Cj, because we do not remove any edges from C, and it is an Mj-alternating
path from ag to v, because M), C M;. Therefore, by Lemma for each j > k, the
type of v in H ; is the same as parity of 1" iff j is non-augmenting and otherwise
(if j is augmenting), its type in H. ;j is opposite to the parity of T'. Also, the parity
of T is the same as v’s type in Hj,.

By Lemma |5, v has the same type in ﬁj and HJ’ for each j < ¢ and hence
2(c) holds. O

From Lemma@ we know that if P’ is a path in H; from a free vertex u to a
vertex w € Alive(i+1)UAV;, then we can determine types of all vertices of P’ in
H|. Additionally from Lemma@ it is possible to determine types of such vertices
in graphs H J’ for each j < i. The above observations are a basis of Algorithm
We start with ¢« = r and determine the set Z; of all vertices belonging to paths
as described above (i.e. from a free vertex u to a vertex w € Alive(i+ 1)U AV;).
Then we update the type of each vertex from Z; using Lemma [0} set i i — 1
and repeat the process for the new graph H;. We continue iterating over ¢ until
we reach ¢ = 0. Note that if for some vertex v we have v € Z; and v ¢ Z; for each
J > i, then we have v € U(HJ’) for each j > i. Thus we can correctly determine
types of all the vertices using this approach.

Of course a naive implementation of the above idea does not achieve an
O(m + min(c¢'n, n?)) runtime. Additional observations are needed. Let v be any
vertex. First we note that if ¢ is maximal such that v belongs to Z; then types
of v in graphs Hy, H), ..., H] can be correctly determined. There is no need to
update the type of v anymore even if it belongs to some Z; for j < 4. Thus
throughout the execution of the algorithm we maintain the set Z of vertices for
which we have already computed types and make sure to only update the types
of vertices belonging to Z; \ Z. In order to speed up the algorithm we need to
show how to efficiently compute sets Z; \ Z.

34

Let us first show how to find vertices belonging to Z;. We first build an
N;-alternating forest of vertices reachable from the set F; of free vertices with
respect to NNV;. Then we determine the set X of vertices belonging to T; and
Alive(i+ 1) U AV. Next we consider a graph (V(T;), W;) where W; is the set of
edges with both endpoints in T;. It is easy to see that all vertices reachable by
alternating paths from X in this graph form the set Z;. Note that from Lemma
[6] it follows that V(T;) € V(T}) for j < i, hence we do not have to build the
alternating forest from scratch in each iteration. Instead for each ¢ we simply
determine 7T; using the forest T; 1. The set Z; \ Z can be determined similarly to
the set Z;. Instead of considering a graph (V(T;), W;) we simply consider a graph
(V(T;) \ Z,W;) and claim that Z; \ Z is equal to the set of vertices reachable
from X in this graph.

Computations of forests T; take O(m + min(nc’,n?)) time in total. It is a
straightforward consequence of the fact that V(T;) C V(T;_1). Similarly we can
see that the time needed to compute all vertices reachable from X in graphs
(V(T3) \ Z,W;) over the duration of the algorithm is also bounded by O(m +
min(nc’,n?)). It is a consequence of the fact that once a vertex v is detected to
be in Z; \ Z it is added to Z and none of the edges incident to such a vertex is
visited in any of the following iterations.

From the above discussion we obtain the correctness of the following lemma.

Theorem 7. Algorithm computes EG-decompositions of graphs H! in O(m+
min(c'n,n?)) time.

In the first part of this section, we detected and removed the edges that are
present in H but not in H’. There may also be some edges that are present in
H’ but not in H. For example, in Figure a) we notice that , a € O(Hs) and
p € U(Hs), hence the edge (a,p) doesn’t belong to AE. Therefore by Line 4 of
Algorithm the edge is not added to Hs. But if we consider H} (Figure (b)),
(a,p) is an UU edge and is not deleted from the graph. Therefore to complete
updating the reduced graphs of H we need to include (a,p) to Hj.

From Theorem [point 1, we know that every edge belonging to some rank-
maximal matching of H is present in the graph H. Suppose the edge (a,p) ¢ H.
Then the edge can’t be matched in any rank-maximal matching of H. But if
(a,p) is present in H', then the edge must be of type UU. We know that every
EO edge in H' lies in an alternating path from a free vertex to an alive vertex.
By Theorem 1 of [9], every edge of the path belongs to some rank-maximal
matching.

As a last step of updating the reduced graphs Hj, H, ... we deal with edges
belonging to H/\ H;. All such edges are of type UU in H{. For each vertex v, we
find the minimum rank 4 such that v € O(H;) NU(H!), if it exists. Next we find
every edge incident to v such that the other endpoint belongs to O(H;)UU (Hj).
This edge is of type OOUOQU and is removed from H. Finally, if both endpoints
of the edge belong to U(H}), then we add it to H]. Identification of such edges
take O(m) time in total as we check every edge at most once. For each vertex v,

we can find the minimum rank ¢ with v € O(H;) NU(H{) in constant time using

35

Algorithm 4 for computing EG-decompositions of graphs H/
1: Z+0

2: F« 0

3: NT+1 < NT

4: fori=r,r—1,...,1do

5: N; Ni+1 \.7'—1'.;_1
6: F; < free vertices with respect to IV;
7.
8
9

0

T; + an N;-alternating forest in fL starting from vertices of F;

W, « edges of H; with both endpoints in 7}

X < vertices belonging to T; and Alive(i + 1) U AV

Z; \ Z < all vertices reachable in (V(T3) \ Z, W;) from X via an N;-alternating
path
11: for allv e Z;\ Z do

10:

12: for every j > i, v e U(Hj)

13: v € E(H]) (resp. O(Hj)) if v is reachable via an even (resp. odd) length
Nj;-alternating path

14: if v € E(G;) UO(G;) then

15: for every j <, v’s type in Hj is the same as in G

16: else

17: for every j < i such that v € U(G}), v’s type in H; is determined as in

Lemma [6] 2¢
18: Z+—ZUZ;
19: for allv € V' \ Z do
20: v € U(H]) for every i

the ordered list that we maintain to store the GE-decomposition of the vertex
in every reduced graphs of H.

9 Remaining Update Operations

Let us remind that the algorithm for the dynamic version of the rank-maximal
matching problem supports the following operations:

1. Add a vertex v along with incident edges to G

2. Delete a vertex v along with incident edges from G
3. Add an edge e to G

4. Delete an edge e from G

We have already shown how to implement operation (1). In this section we
prove that (2) — (4) can be essentially reduced to (1). The following lemma is
crucial for the reduction.

Lemma 7. Let G be a an instance of the rank-maximal matching problem. Let
a1 and py be two vertices of G such that (a1, p1) is matched in every rank-mazimal
matching of G. If M is a rank-mazimal matching of G then M \ {(a1,p1)} is a
rank-mazimal matching of the graph G\ {a1,p1}.

36

(a) (b)

Fig. 8. In Figure (a), the edge (a,p) is removed from the graph Hs, but in Figure (b)
the edge (a,p) is a UU edge in Hj and is not deleted from the graph

Proof. Let M be a rank-maximal matching of G. Since (a1, p;) is a matched
edge in G, M \ {(a1,p1)} is a matching of G \ {a1,p1}. Suppose M \ {(a1,p1)}
is not a rank-maximal matching of G \ {a1,p1}. We assume that M’ is a rank-
maximal matching of G\ {a1,p1}. Hence M’ has a strictly better signature than
M\ {(a1,p1)} in G\ {a1,p1}. If we consider the matching M’ U {(a1,p1)}, it
is a matching of G and it has a strictly better signature than M in G. But M
is a rank-maximal matching of G. Therefore we arrive at a contradiction. Thus
M\ {(a1,p1)} is a rank-maximal matching of the graph G \ {a1,p1}. O

9.1 Deletion of a Vertex

In order to implement operation (2) we modify the graph so that we can apply
operation (1) to delete a vertex from G. Let us assume that we want to delete
an applicant a1 from G. We introduce a dummy post py and a rank ‘zero’. A
post has rank ‘zero’ in the preference list of an applicant if he prefers that post
more than his rank 1 post. We add py as a rank ‘zero’ post in the preference list
of a;. We define the new graph as H. Note that the graph H contains only one
edge (a1, pq). We calculate a rank-maximal matching of H from a rank-maximal
matching of G with the aid of operation (1). Let M be a rank-maximal matching
of H. It can easily be verified that (a1,pq) is matched in every rank-maximal
matching of H. By Lemma [7] the matching M \ {(a1,pq)} is a rank-maximal
matching of H\{a1,pq} and obviously also a rank-maximal matching of G\ {a1}.
In order to delete a post p; from G, we proceed analogously but this time we
add a dummy applicant a4 to the graph instead of a dummy post.

37

9.2 Addition and Deletion of an Edge

Both operations (3) and (4) can be implemented in a very similar way using
operations (1) and (2). We first show how to implement operation (3), i.e. how
to add an edge to the graph. Let us assume that we wish to add an edge (a,p)
to the graph G. In order to do so we first use the operation (2) to delete the
vertex a along with its incident edges from G. Next we simply use the operation
(1) to add the vertex a again, but this time the incidence list of this vertex is
larger by one, i.e. it contains all the edges incident to the old "copy" of a along
with the new edge (a,p).
Operation (4) can be implemented in an analogous way.

10 Dynamic Popular Matching

In this section, we give a simple reduction which allows us to use our dynamic
rank-maximal matching algorithm to solve the dynamic popular matching prob-
lem. First we formally define popular matching. Let G = (AUP, £) be a bipartite
graph and a € A be an applicant. For two matchings M and M’ of G we say
that a prefers M to M’ if either a is matched in M and unmatched in M’, or
rank(a, M(a)) < rank(a, M'(a)).

Definition 4. A matching M is said to be more popular than M’ if the number
of applicants preferring M’ is no more than the number of applicants preferring
M. A matching M is said to be popular in G if that matching is more popular
than any other matching of G.

As mentioned in 2], an unique last resort post I(a) is added to each applicant
a as their least preferred post. For an applicant a, f(a) denotes the set of rank
1 posts adjacent to a. These posts are called f posts. And s(a) denotes the set
of most preferred posts of a belonging to E(G;), where Gy is the subgraph of G
containing rank 1 edges. Abraham et al. [2] proved the following theorem.

Theorem 8. A matching M is popular in G iff

1. M N¢&; is a mazimum matching of G1 = (AU P, &),
2. for each agent a, M(a) € {f(a) Us(a)}.

Given an instance of popular matching G, we are going to introduce Ggasar,
such that we can find a popular matching of G by computing a rank-maximal
matching in Ggarpr. We define Gryryr = (AUP, Dy UDs) where sets of vertices
in G and G are identical and each edge has rank ¢ € {1,2}. Here as D; we
denote rank 1 edges in G. Edges of Dy are rank 1 in Ggpsps. For each a € A,
Dy contains the most preferred edges incident to a that are also incident to a
post belonging to E(Graar,1). We assign the ranks to the edges of Dy in the
following way. If an edge is rank 1 in G, then it is rank 1 in Ggrasar, otherwise
we set the rank of this edge to 2.

38

In order to compute a popular matching of G, we first calculate a rank-
maximal matching of Grprps. Next we check if the matching of Grasas is ap-
plicant complete or not. A matching is called an applicant complete matching
if it matches every applicant present in the graph. If the matching is an appli-
cant complete matching, then we claim that it is also a popular matching of G,
otherwise no popular matching exists in G.

Lemma 8. Let G be a bipartite graph and we calculate Gryar = (AU P, Dy U
Ds) from G by the reduction described above. If we can compute an applicant
complete rank-mazimal matching of Ggrarnr, then that is also a popular matching
of G. Otherwise G does not contain a popular matching.

Proof. First, we can notice that the graphs G and Graar,1 are identical. After
the first iteration of rank-maximal matching on Gy, We compute a maxi-
mum matching of Grarar,1, which satisfies the first condition of Theorem 8| To
prove the second condition, we observe the edges present in Ggsps- The edges
belonging to D; are between an applicant and his f posts. Since we have shown
that G and Gramar,i are identical, the Gallai Edmonds decomposition of G
and Grarm,1 are the same. Thus, D, contains the edges between each applicant
and his s post. Therefore, for each a, Grarps contains the edges incident to
{f(a), s(a)}. Therefore any applicant complete rank-maximal matching satisfies
the second condition of Theorem [§ Thus a rank-maximal matching of Ggraar
is indeed a popular matching of G. a

It is easy to observe that Ggrarps is the same graph as the reduced graph
that we get during the combinatorial algorithm [2] for popular matching. Only
the ranks of the edges may not be the same in these two graphs. In the next
algorithm, we give a pseudocode for dynamic popular matching with the help of
the algorithm for dynamic rank-maximal matching.

As we can see above it may happen that at some point during the execution of
the dynamic algorithm no popular matching exists. It is important to emphasise
that our algorithm maintains a rank-maximal matching of Grasas regardless
of whether a popular matching exists or not. Then the existence of a popular
matching can be easily checked based on the rank-maximal matching of Grasas-
In particular it may happen that at some point as a result of an update operation
a previously unsolvable instance G becomes solvable. Note that in this case we
do not have to compute a popular matching from scratch as we already have a
precomputed rank-maximal matching of Grasps which is not applicant complete.
We simply update such a matching and obtain an applicant complete matching
of GRrary which is popular in G.

39

Algorithm 5 Dynamic Popular Matching

11:

12:
13:
14:

Construct the graph G’ = (AU P, £), where € = {(a,p)|p € f(a) Us(a),a € A}
Compute the graph G rarar by reassigning the ranks of the edges of G’

Let M be a popular matching of G and a rank-maximal matching of G raas
H=GU{a}

Hpryvv = Grum U {a}, where a is isolated

Add the edges corresponding to f posts of a to Hrnm

Perform the first iteration of Algorithm [3]and update the Gallai-Edmonds decom-
position of the graph Hrarar1

Update s posts of each applicant and add the edges corresponding to newly found
s posts to D2

Assign appropriate ranks to the newly added edges of D2

: Perform the second iteration of Algorithm [3] on Hryam and update the Gallai

Edmonds decomposition
if the rank-maximal matching of Hraras is an applicant complete rank-maximal
matching then
The rank-maximal matching of Hraras is a popular matching of H
else
H does not have a popular matching

References

1.

10.

11.

David J. Abraham, Katarina Cechlarova, David Manlove, and Kurt Mehlhorn.
Pareto optimality in house allocation problems. In Proceedings of the 16th Inter-
national Symposium on Algorithms and Computation (ISAAC), Sanya, Hainan,
China, pages 1163-1175, 2005.

. David J. Abraham, Robert W. Irving, Telikepalli Kavitha, and Kurt Mehlhorn.

Popular matchings. SIAM J. Comput., 37(4):1030-1045, 2007.

David J. Abraham and Telikepalli Kavitha. Voting paths. SIAM J. Discrete Math.,
24(2):520-537, 2010.

Sayan Bhattacharya, Martin Hoefer, Chien-Chung Huang, Telikepalli Kavitha, and
Lisa Wagner. Maintaining near-popular matchings. In Proceedings of the 42nd
International Colloquium on Automata, Languages and Programming (ICALP),
Kyoto, Japan, Part II, pages 504-515, 2015.

Rudolf Fleischer and Yihui Wang. Dynamic pareto optimal matching. In Proceed-
ings of the Fourth International Symposium on Information Science and Engineer-
ing, volume 2, pages 797-802. IEEE, 2008.

Michael L Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in
improved network optimization algorithms. J. ACM, 34(3):596-615, 1987.

H. Gabow and R. Tarjan. Faster scaling algorithms for network problems. STAM
J. Comput., 18:1013-1036, 1989.

Naveen Garg, Telikepalli Kavitha, Amit Kumar, Kurt Mehlhorn, and Julidn
Mestre. Assigning papers to referees. Algorithmica, 58(1):119-136, 2010.

Pratik Ghosal, Meghana Nasre, and Prajakta Nimbhorkar. Rank-maximal match-
ings - structure and algorithms. Theoret. Comput. Sci., 767:73-82, 2019.
Chien-Chung Huang, Telikepalli Kavitha, Dimitrios Michail, and Meghana Nasre.
Bounded unpopularity matchings. Algorithmica, 61(3):738-757, 2011.

Robert W. Irving. Greedy matchings. Technical report tr-2003-136, University of
Glasgow, 2003.

40

12.

13.

14.

15.

16.

17.

Robert W. Irving, Telikepalli Kavitha, Kurt Mehlhorn, Dimitrios Michail, and
Katarzyna E. Paluch. Rank-maximal matchings. ACM Trans. Algorithms,
2(4):602—610, 2006.

Telikepalli Kavitha and Chintan D. Shah. Efficient algorithms for weighted rank-
maximal matchings and related problems. In Proceedings of the 17th International
Symposium on Algorithms and Computation (ISAAC), Kolkata, India, pages 153—
162, 2006.

Richard Matthew McCutchen. The least-unpopularity-factor and least-
unpopularity-margin criteria for matching problems with one-sided preferences. In
Proceedings of the 8th Latin American Theoretical Informatics (LATIN), Buzios,
Brazil, pages 593-604, 2008.

Prajakta Nimbhorkar and Arvind Rameshwar V. Dynamic rank-maximal and
popular matchings. J. Comb. Optim., 37(2):523-545, 2019.

Katarzyna E. Paluch. Capacitated rank-maximal matchings. In Proceedings of the
8th International Conference on Algorithms and Complexity (CIAC), Barcelona,
Spain, pages 324-335, 2013.

Alexander Schrijver. Combinatorial Optimization- Polyhedra and Efficiency.
Springer-Verlag Berlin Heidelberg, 2003.

	The Dynamics of Rank-Maximal and Popular Matchings This work was partially funded by Polish National Science Center grant UMO-2018/29/B/ST6/02633
	1 Introduction
	2 Preliminaries
	2.1 Rank-Maximal Matchings
	2.2 The Dynamic Rank-Maximal Matching Problem

	3 Algorithm for Checking if Update is Necessary
	4 Overview of the Algorithm
	5 Technical Lemmas
	6 Algorithm for Updating a Rank-Maximal Matching
	7 Example of How Algorithm 3 Works
	8 Updates of Reduced Graphs H'i
	9 Remaining Update Operations
	9.1 Deletion of a Vertex
	9.2 Addition and Deletion of an Edge

	10 Dynamic Popular Matching

