
Linear-time Computation of DAWGs, Symmetric Indexing Structures,
and MAWs for Integer Alphabets

Yuta Fujishigea,b, Yuki Tsujimaruc, Shunsuke Inenagaa, Hideo Bannaid, Masayuki Takedaa

aDepartment of Informatics, Kyushu University, Japan
bFujistu Limited (current affiliation)

cDepartment of Electrical Engineering and Computer Science, Kyushu University, Japan
dM&D Data Science Center, Tokyo Medical and Dental University, Japan

Abstract

The directed acyclic word graph (DAWG) of a string y of length n is the smallest (partial)
DFA which recognizes all suffixes of y with only O(n) nodes and edges. In this paper, we
show how to construct the DAWG for the input string y from the suffix tree for y, in O(n)
time for integer alphabets of polynomial size in n. In so doing, we first describe a folklore
algorithm which, given the suffix tree for y, constructs the DAWG for the reversed string ŷ
in O(n) time. Then, we present our algorithm that builds the DAWG for y in O(n) time for
integer alphabets, from the suffix tree for y. We also show that a straightforward modification
to our DAWG construction algorithm leads to the first O(n)-time algorithm for constructing
the affix tree of a given string y over an integer alphabet. Affix trees are a text indexing
structure supporting bidirectional pattern searches. We then discuss how our constructions can
lead to linear-time algorithms for building other text indexing structures, such as linear-size
suffix tries and symmetric CDAWGs in linear time in the case of integer alphabets. As a
further application to our O(n)-time DAWG construction algorithm, we show that the set
MAW(y) of all minimal absent words (MAWs) of y can be computed in optimal, input- and
output-sensitive O(n+ |MAW(y)|) time and O(n) working space for integer alphabets.

Keywords: string algorithms, DAWGs, suffix trees, affix trees, CDAWGs, minimal absent
words

1. Introduction

1.1. Constructing DAWGs for integer alphabets

Text indexes are fundamental data structures that allow for efficient processing of string
data, and have been extensively studied. Although there are several alternative data structures
which can be used as an index, such as suffix trees [1] and suffix arrays [2] (and their compressed
versions [3, 4, 5]), in this paper, we focus on directed acyclic word graphs (DAWGs) [6], which
are a fundamental data structure for string processing. Intuitively, the DAWG of string y,
denoted DAWG(y), is an edge-labeled DAG obtained by merging isomorphic subtrees of the
trie representing all suffixes of string y, called the suffix trie of y. Hence, DAWG(y) can be
seen as an automaton recognizing all suffixes of y. Let n be the length of the input string y.

Email addresses: inenaga.shunsuke.380@m.kyushu-u.ac.jp (Shunsuke Inenaga), hdbn.dsc@tmd.ac.jp
(Hideo Bannai)

Preprint submitted to Elsevier July 6, 2023

ar
X

iv
:2

30
7.

01
42

8v
1

 [
cs

.D
S]

 4
 J

ul
 2

02
3

Table 1: Space requirements and construction times for text indexing structures for input strings of length n
over an alphabet of size σ.

space
(in words)

construction time
ordered alphabet integer alphabet constant-size alphabet

suffix tries O(n2) O(n2) O(n2) O(n2)

suffix trees O(n) O(n log σ) [11] O(n) [12] O(n) [1]

suffix arrays O(n) O(n log σ) [11]+[2] O(n) [12]+[2] O(n) [1]+[2]

DAWGs O(n) O(n log σ) [6] O(n) [this work] O(n) [6]

CDAWGs O(n) O(n log σ) [8] O(n) [13] O(n) [8]

symmetric CDAWGs O(n) O(n log σ) [8] O(n) [this work] O(n) [8]

affix trees O(n) O(n log σ) [10] O(n) [this work] O(n) [10]

linear-size suffix tries O(n) O(n log σ) [14] O(n) [this work] O(n) [14]

Despite the fact that the number of nodes and edges of the suffix trie is Ω(n2) in the worst
case, Blumer et al. [6] proved that, surprisingly, DAWG(y) has at most 2n− 1 nodes and 3n− 4
edges for n > 2. Crochemore [7] showed that DAWG(y) is the smallest (partial) automaton
recognizing all suffixes of y, namely, the sub-tree merging operation which transforms the
suffix trie to DAWG(y) indeed minimizes the automaton.

Since DAWG(y) is a DAG, more than one string can be represented by the same node
in general. It is known that every string represented by the same node of DAWG(y) has the
same set of ending positions in the string y. Due to this property, if z is the longest string
represented by a node v of DAWG(y), then any other string represented by the node v is a
proper suffix of z. Hence, the suffix link of each non-root node of DAWG(y) is well-defined; if
ax is the shortest string represented by node v where a is a single character and x is a string,
then the suffix link of ax points to the node of DAWG(y) that represents string x.

One of the most intriguing properties of DAWGs is that the suffix links of DAWG(y) for any
string y forms the suffix tree [1] of the reversed string of y. Hence, DAWG(y) augmented with
suffix links can be seen as a bidirectional text indexing data structure. This line of research
was followed by other types of bidirectional text indexing data structures such as symmetric
compact DAWGs (SCDAWGs) [8] and affix trees [9, 10].

1.1.1. Our Contributions to Text Indexing Constructions

Time complexities for constructing text indexing data structures depend on the underlying
alphabet. See Table 1. For a given string y of length n over an ordered alphabet of size σ, the
suffix tree [11], the suffix array [2], the DAWG, and the compact DAWGs (CDAWGs) [8] of y
can all be constructed in O(n log σ) time. Here, we recall that the CDAWG of a string y is
a path-compressed version of the DAWG for y, or equivalently, the CDAWG of y is a DAG
obtained by merging isomorphic subtrees of the suffix tree of y. The aforementioned bounds
immediately lead to O(n)-time construction algorithms for constant-size alphabets.

In this paper, we are particularly interested in input strings of length n over an integer
alphabet of polynomial size in n. Farach-Colton et al. [12] proposed the first O(n)-time suffix
tree construction algorithm for integer alphabets. Since the out-edges of every node of the suffix
tree constructed by McCreight’s [11] and Farach-Colton et al.’s algorithms are lexicographically
sorted, and since sorting is an obvious lower-bound for constructing edge-sorted suffix trees,
the above-mentioned suffix-tree construction algorithms are optimal for ordered and integer
alphabets, respectively. Since the suffix array of y can be easily obtained in O(n) time from
the edge-sorted suffix tree of y, suffix arrays can also be constructed in optimal time. In
addition, since the edge-sorted suffix tree of y can easily be constructed in O(n) time from

2

the edge-sorted CDAWG of y, and since the edge-sorted CDAWG of y can be constructed in
O(n) time from the edge-sorted DAWG of y [8], sorting is also a lower-bound for constructing
edge-sorted DAWGs and edge-sorted CDAWGs. Using the technique of Narisawa et al. [13],
edge-sorted CDAWGs can be constructed in optimal O(n) time for integer alphabets. On the
other hand, the only known algorithm to construct DAWGs was Blumer et al.’s O(n log σ)-time
online algorithm [6] for ordered alphabets of size σ, which results in O(n log n)-time DAWG
construction for integer alphabets. In this paper, we show that the gap between the upper
and lower bounds for DAWG construction can be closed, by introducing how to construct
edge-sorted DAWGs in O(n) time for integer alphabets, in two alternative ways.

It is known that the suffix tree can be augmented with Weiner links, which are a general-
ization of the reversed suffix links. The DAG consisting of the nodes of the suffix tree for a
string y and its Weiner links coincides with the DAWG of the reversed string ŷ [6, 15]. In this
paper, we first describe an O(n)-time folklore algorithm which computes the sorted Weiner
links for integer alphabets, given that the suffix tree of the string is already computed. This
immediately gives us an O(n)-time algorithm for constructing the edge-sorted DAWG for the
reversed string ŷ over an integer alphabet.

It was still left open whether one could efficiently construct the DAWG for a string y from
the suffix tree for y, in the case of integer alphabets. We close this question by proposing
an O(n)-time algorithm that builds the edge-sorted DAWG for the input (forward) string y.
Our algorithm builds DAWG(y) for a given string y by transforming the suffix tree of y to
DAWG(y). In other words, our algorithm simulates the minimization of the suffix trie of y to
DAWG(y) using only O(n) time and space. Our algorithm also computes the suffix links of
the DAWG, and can thus be applied to various kinds of string processing problems. This also
means that we can construct the suffix tree for the reversed string ŷ, as a byproduct.

A simple modification to our O(n)-time DAWG construction algorithm also leads us to
the first O(n)-time algorithm to construct edge-sorted affix trees for integer alphabets. We
remark that the previous best known affix-tree construction algorithm of Maaß [10] requires
O(n log n) time for integer alphabets.

In addition, we show that our construction algorithms for DAWGs and affix trees lead to
linear-time constructions of other indexing structures such as symmetric CDAWGs [8] and
linear-size suffix tries [14] in the case of integer alphabets.

1.2. Computing Minimal Absent Words for Integer Alphabets

As yet another application of our O(n)-time DAWG construction algorithm, we present
an optimal time algorithm to compute minimal absent words for a given string. There are
a number of applications to minimal absent words, including data compression [16, 17] and
molecular biology [18, 19, 20, 21, 22, 23, 24]. Hence, it is important to develop efficient
algorithms for computing minimal absent words from a given string.

Let MAW(y) be the set of minimal absent words of a string y. Crochemore et al. [25]
proposed an algorithm to compute MAW(y) in Θ(nσ) time and O(n) working space. Their
algorithm first constructs DAWG(y) with suffix links in O(n log σ) time and computes MAW(y)
in Θ(nσ) time using DAWG(y) and its suffix links. Since |MAW(y)| = O(nσ) [26], the output
size |MAW(y)| is hidden in the running time of their algorithm.

Later, Barton et al. proposed an alternative algorithm that computes MAW(y) using the
suffix array, in Θ(nσ) time and space [27]. The algorithm presented in [28] can be seen as
a parallel version of this Barton et al.’s algorithm using suffix arrays. While all of these

3

algorithms achieve O(n) running time in the case of constant-size alphabets (σ ∈ O(1)), it can
require O(n2) time when σ ∈ Ω(n).

Mignosi et al. [26] gave a tight bound on |MAW(y)| such that σ ≤ |MAW(y)| ≤ (σy −
1)(|y| − 1) + σ, where σ is the size of the underlying alphabet and σy is the number of distinct
characters occurring in y. However, |MAW(y)| can be o(nσ) for many strings. Thus, it is
important to develop an algorithm whose running time is output-sensitive, namely, linear in
the output size |MAW(y)|.

In this paper, we show that MAW(y) can be computed in optimal O(n+ |MAW(y)|) time
given that the edge-sorted DAWG of y is already computed. In more detail, given the edge-
sorted DAWG for y, which can be computed in O(n) time as above, our algorithm computes
MAW(y) in O(n + |MAW(y)|) optimal time. We remark that our algorithm for computing
MAW(y) itself works within this time for general ordered alphabets.

Our algorithm is a modification of Crochemore et al.’s algorithm [25] for finding MAW(y).
We emphasize that for non-constant-size alphabets Crochemore et al.’s algorithm takes super-
linear time in terms of the input string length independently of the output size |MAW(y)|, and
thus our result greatly improves the efficiency for integer alphabets.

1.2.1. Other efficient algorithms for computing MAWs

Belazzougui et al. [29] showed that using a representation of the bidirectional BWT of the
input string y of length n, MAW(y) can be computed in O(n+ |MAW(y)|) time. Although the
construction time for the representation of the bidirectional BWT was not given in [29], it
was later shown by Belazzougui and Cunial [30] that the bidirectional BWT of a given string
y over an integer alphabet can be incrementally constructed in O(n) time.

Independently of our work, Charalampopoulos et al. [31] proposed an O(n)-space data
structure which, given a positive integer l, computes the set MAWl(y) of all minimal absent
words of length l in O(1 + |MAWl(y)|) query time. This data structure can be constructed in
O(n) time and space. By querying this data structure for all possible l = 1, . . . , n+ 1, one can
compute MAW(y) =

⋃n+1
l=1 MAWl(y) in O(n+ |MAW(y)|) total time.

Fici and Gawrychowski [32] showed an optimal O(N + |MAW(T)|)-time algorithm for
computing all MAWs for a rooted tree T of size N in the case of integer alphabets. It is
known that the DAWG of a tree of size N can have Ω(N2) edges while its number of nodes is
still O(N) [33, 34]. Instead of explicitly building the DAWG for T , the algorithm of Fici and
Gawrychowski [32] simulates DAWG transitions by cleverly using lowest common ancestor
queries on the suffix tree of the reversed input tree T̂ . In this view, their method can be seen
as a tree input version of our linear-time algorithm for computing MAWs.

Recently, Akagi et al. [35] proposed a space-efficient representation of all MAWs for the
input string y which is based on the run length encoding (RLE). Their data structure takes
O(m) space and can output all MAWs in O(|MAW(y)|) time, where m is the RLE size of y.

New Materials

A preliminary version of this paper appeared in [36]. Below is a list of the new materials
in this full version:

• A clear description of the folklore linear-time construction of DAWG(ŷ) for the reversed
input string ŷ from the suffix tree for the input string y (Section 3);

• The observation that our linear-time affix tree construction algorithm can also build
DAWG(ŷ) for the reversed input string ŷ (Section 6.1);

4

• The first linear-time construction of symmetric CDAWGs in the case of integer alphabets
(Section 6.2);

• The first linear-time construction of linear-size suffix tries in the case of integer alphabets
(Section 6.3).

2. Preliminaries

2.1. Strings

Let Σ denote the alphabet. An element of Σ∗ is called a string. Let ε denote the empty
string, and let Σ+ = Σ∗ \{ε}. For any string y, we denote its length by |y|. For any 1 ≤ i ≤ |y|,
we use y[i] to denote the ith character of y. For any string y, let ŷ denote the reversed string
of y. If y = uvw with u, v, w ∈ Σ∗, then u, v, and w are said to be a prefix, substring, and
suffix of y, respectively. For any 1 ≤ i ≤ j ≤ |y|, y[i..j] denotes the substring of y which begins
at position i and ends at position j. For convenience, let y[i..j] = ε if i > j. Let Substr(y)
and Suffix(y) denote the set of all substrings and that of all suffixes of y, respectively.

Throughout this paper, we will use y to denote the input string. For any string x ∈ Σ∗,
we define the sets of beginning and ending positions of occurrences of x in y, respectively, by

BegPos(x) = {i | i ∈ [1, |y| − |x|+ 1], y[i..i+ |x| − 1] = x},
EndPos(x) = {i | i ∈ [|x|, |y|], y[i− |x|+ 1..i] = x}.

For any strings u, v, we write u ≡L v (resp. u ≡R v) when BegPos(u) = BegPos(v) (resp.
EndPos(u) = EndPos(v)). For any string x ∈ Σ∗, the equivalence classes with respect to
≡L and ≡R to which x belong, are respectively denoted by [x]L and [x]R. Also, −→x and ←−x
respectively denote the longest elements of [x]L and [x]R.

For any set S of strings where no two strings are of the same length, let long(S) =
argmax{|x| | x ∈ S} and short(S) = argmin{|x| | x ∈ S}.

In this paper, we assume that the input string y of length n is over the integer alphabet
[1, nc] for some constant c, and that the last character of y is a unique character denoted by $
that does not occur elsewhere in y. Our model of computation is a standard word RAM of
machine word size log2 n. Space complexities will be evaluated by the number of words (not
bits).

2.2. Suffix trees and DAWGs

Suffix trees [1] and directed acyclic word graphs (DAWGs) [6] are fundamental text data
structures. Both of these data structures are based on suffix tries. The suffix trie for string y,
denoted STrie(y), is a trie representing Substr(y), formally defined as follows.

Definition 1. STrie(y) for string y is an edge-labeled rooted tree (VT,ET) such that

VT = {x | x ∈ Substr(y)}
ET = {(x, b, xb) | x, xb ∈ VT, b ∈ Σ}.

The second element b of each edge (x, b, xb) is the label of the edge. We also define the set LT
of labeled “reversed” edges called the suffix links of STrie(y) by

LT = {(ax, a, x) | x, ax ∈ Substr(y), a ∈ Σ}.

5

As can be seen in the above definition, each node v of STrie(y) can be identified with the
substring of y that is represented by v. Assuming that string y terminates with a unique
character that appears nowhere else in y, for each non-empty suffix y[i..|y|] ∈ Suffix(y) there
is a unique leaf ℓi in STrie(y) such that the suffix y[i..|y|] is spelled out by the path from the
root to ℓi.

It is well known that STrie(y) may require Ω(n2) space. One idea to reduce its space
to O(n) is to contract each path consisting only of non-branching edges into a single edge
labeled with a non-empty string. This leads to the suffix tree STree(y) of string y. Following
conventions from [8, 37], STree(y) is defined as follows.

Definition 2. STree(y) for string y is an edge-labeled rooted tree (VS,ES) such that

VS = {−→x | x ∈ Substr(y)}
ES = {(x, β, xβ) | x, xβ ∈ VS, β ∈ Σ+, b = β[1],

−→
xb = xβ}.

The second element β of each edge (x, β, xβ) is the label of the edge. We also define the set LS
of labeled “reversed” edges called the suffix links of STree(y) by

LS = {(ax, a, x) | x, ax ∈ VS, a ∈ Σ},

and denote the tree (VS, LS) of the suffix links by SLT(y).

Observe that each internal node of STree(y) is a branching internal node in STrie(y). Note
that for any x ∈ Substr(y) the leaves in the subtree rooted at −→x correspond to BegPos(x). By
representing each edge label β with a pair of integers (i, j) such that y[i..j] = β, STree(y) can
be represented with O(n) space.

An alternative way to reduce the size of STrie(y) to O(n) is to regard STrie(y) as a partial
DFA which recognizes Suffix(y), and to minimize it. This leads to the directed acyclic word
graph DAWG(y) of string y. Following conventions from [8, 37], DAWG(y) is defined as follows.

Definition 3. DAWG(y) of string y is an edge-labeled DAG (VD,ED) such that

VD = {[x]R | x ∈ Substr(y)}
ED = {([x]R, b, [xb]R) | x, xb ∈ Substr(y), b ∈ Σ}.

We also define the set LD of labeled “reversed” edges called the suffix links of DAWG(y) by

LD = {([ax]R, a, [x]R) | x, ax ∈ Substr(y), a ∈ Σ, [ax]R ̸= [x]R}.

See Figure 1 for examples of STrie(y), STree(y), DAWG(y), and CDAWG(y).

Theorem 1 ([6]). For any string y of length n > 2, the number of nodes in DAWG(y) is at
most 2n− 1 and the number of edges in DAWG(y) is at most 3n− 4.

Minimization of STrie(y) to DAWG(y) can be done by merging isomorphic subtrees of
STrie(y) which are rooted at nodes connected by a chain of suffix links of STrie(y). Since the
substrings represented by these merged nodes end at the same positions in y, each node of
DAWG(y) forms an equivalence class [x]R. We will make an extensive use of this property in
our O(n)-time construction algorithm for DAWG(y) over an integer alphabet.

6

Suffix TreeDAWG

Suffix Triea

a

b

$

b

b

a

$

$
b

a

$

$

a

a

b

$

b

b

a

$

$
b

a

$

$

a

b b

b
$

b$

a

a

$

CDAWG

a
b b

b
$

b
$

a

a

$

a
$

$

Figure 1: The suffix trie, the suffix tree, the DAWG, and the CDAWG for string y = abba$. The solid arcs
represent edges, and the broken arcs represent suffix links. The DAWG can be obtained by merging isomorphic
subtrees of the suffix trie, while the suffix tree can be obtained by performing path-compressions on the
suffix trie. The CDAWG can be obtained by merging isomorphic subtrees of the suffix tree, or by performing
path-compressions on the DAWG.

2.3. Minimal Absent Words

A string x is said to be an absent word of another string y if x /∈ Substr(y). An absent
word x of y is said to be a minimal absent word (MAW) of y if Substr(x) \ {x} ⊂ Substr(y).
The set of all MAWs of y is denoted by MAW(y). For example, if Σ = {a, b, c} and y = abaab,
then MAW(y) = {aaa, aaba, bab, bb, c}.

Lemma 1 ([26]). For any string y ∈ Σ∗, σ ≤ |MAW(y)| ≤ (σy− 1)(|y|− 1)+σ, where σ = |Σ|
and σy is the number of distinct characters occurring in y. These bounds are tight.

The next lemma follows from the definition of MAWs.

Lemma 2. Let y be any string. For any characters a, b ∈ Σ and string x ∈ Σ∗, axb ∈ MAW(y)
iff axb /∈ Substr(y), ax ∈ Substr(y), and xb ∈ Substr(y).

By Lemma 2, we can encode each MAW axb of y in O(1) space by (i, j, b), where ax = y[i..j].

3. Folklore Algorithm to Construct DAWG(ŷ) from STree(y) in O(n) Time for
Integer Alphabet

For the suffix tree STree(y) = (VS,ES), we define the set WL of edges called Weiner links
of STree(y) by

WL = {(x, a, axβ) | a ∈ Σ, β ∈ Σ∗, x ∈ VS,
−→ax = axβ ∈ VS}.

The following lemma on the relation between Weiner links and DAWG is well known.

7

$

$

$

$

b
b

a

$

$

a

b

c

a

b

c

a

b

$

a

c

a

b

c

a

b

$

c

a

b

$

c

a

b

$

b

c

a

bc

$

$

$

$

b
b

a

$

$

a

b

c

a

b

c

a

b

$

a

c

a

b

c

a

b

$

c

a

b

$

c

a

b

$

b

c

a

bc

Figure 2: (Left): Illustration of the suffix tree STree(y) for y = aabcabcab$ with its suffix links. (Right):
Illustration of the suffix tree STree(y) for y with its Weiner links.

Lemma 3 ([6, 15]). For the suffix tree STree(y) = (VS,ES) of a string y, (V,E) is the
DAWG of ŷ, where V = {[x]L | x ∈ VS} and E = {([x]L, a, [axβ]L) | (x, a, axβ) ∈ WL}, and
L = {([xbβ]L, b, [x]L) | b ∈ Σ, x, β ∈ Σ∗, (x, bβ, xbβ) ∈ ES} are the suffix links of the DAWG
(V,E) of ŷ.

Each Weiner-link (x, a, axβ) ∈ WL is called explicit if β = ε (namely, ax ∈ VS or
equivalently −→ax = ax), and it is called implicit otherwise. By definition, the explicit Weiner
links are identical to the reversed suffix links. Figure 2 shows a concrete example of suffix
links and Weiner links.

By the above argument, what is left is to compute the implicit Weiner links. In this section,
we describe a folklore algorithm for computing the Weiner links in linear time, from a given
suffix tree STree(y) augmented with the suffix links.

Let p1(x) be p(x) and pi(x) be the parent of pi−1(x) for i > 1 in the suffix tree STree(y).
Then the following properties hold.

Observation 1 ([38]). For each implicit Weiner link (x, a, axβ) ∈ WL of STree(y) with
β ∈ Σ+, there exists the explicit Weiner link (xβ, a, axβ). For each explicit Weiner link
(w, a, aw), if k is the smallest integer such that p(aw) = apk(w) (i.e. k is the smallest integer
such that (pk(w), a, p(aw)) is an explicit Weiner link), then (pi(w), a, aw) is an implicit Weiner
link for each 1 ≤ i < k. See Figure 3 and Figure 4.

From Observation 1, every implicit Weiner link of STree(y) is of the form (pi(w), a, aw)
described above for some explicit Weiner link (w, a, aw). Thus we can obtain all implicit
Weiner links in linear time by computing (pi(w), a, aw) for all explicit Weiner links (w, a, aw)
which are the reversed edges of LS of STree(y). This computation takes O(n) total time.

Theorem 2. Given STree(y) and its suffix links LS of string y of length n over an integer
alphabet, the Weiner links WL of STree(y) can be computed in O(n) time.

We can obtain DAWG(ŷ) from STree(y) by Lemma 3 and Theorem 2. We remark however
that the edges of DAWG(ŷ) might not be sorted, since the Weiner links WL of STree(y) might
not be sorted. Still, we can easily sort all the edges of DAWG(ŷ) in O(n) total time after they
are constructed: First, extract all edges of DAWG(ŷ) by a standard traversal on DAWG(ŷ),

8

!"!#

"! !

!#$$"!#

!#"!#%&%%"%

'

!!""#

!#"#!!#"#

!""#

$

!%&"'"#

!%$%(&"'"#

Figure 3: (Left) Illustration for implicit Weiner links and explicit Weiner links. The double-lined arrows
represent Weiner links, the single-lined arrows represent suffix tree edges, and the white circles represent suffix
tree nodes. (Right) Illustration for a relation between implicit Weiner links and their corresponding equivalence
classes w.r.t. ≡L.

a

b

c

a

b

c

a

b

!

$

$

$

$

b

$

$

c

a

b

c

a

b

$

c

a

b

$

c

a

b

ba

b

c

a

b

c

a

b

$

a

c

a

b

$

b

c

a

a

b

c

a

b

c

a

b

!

Figure 4: Illustration of some Weiner links in STree(aabcabcab$)

9

$

$

$

$

b
b

a

$

$

a

b

c

a

b

c

a

b

a

c

a

b

c

a

b

$

c

a

b

$

c

a

b

$

c

a

bc

$

b

Figure 5: Illustration of STree′(y) with string y = aabcabcab$.

which takes O(n) time. Next, radix sort them by their labels, which takes O(n) time because
we assumed an integer alphabet of polynomial size in n. Finally, re-insert the edges to their
respective nodes in the sorted order.

Theorem 3. Given STree(y) and its suffix links LS of string y of length n over an integer
alphabet, the edge-sorted DAWG(ŷ) of the reversed string ŷ with suffix links can be constructed
in O(n) time and space.

In some applications such as bidirectional pattern searches, it is preferable that the in-
coming suffix links at each node of DAWG(ŷ) are also sorted in lexicographical order, but the
algorithm described above does not sort the suffix links. However, one can sort the suffix links
in O(n) time by the same technique applied to the edges of DAWG(ŷ).

Remark. It is noteworthy that the parallel DAWG construction algorithm proposed by Breslauer
and Hariharan [39] can be seen as a parallel version of the above folklore algorithm.

4. Constructing DAWG(y) from STree(y) in O(n) Time for Integer Alphabet

In this section, we present an optimal O(n)-time algorithm to construct DAWG(y) with
suffix links LD for a given string y of length n over an integer alphabet. Our algorithm
constructs DAWG(y) with suffix links LD from STree(y) with suffix links LS. The following
result is known.

Theorem 4 ([12]). Given a string y of length n over an integer alphabet, edge-sorted STree(y)
with suffix links LS can be computed in O(n) time.

Let L and R be, respectively, the sets of longest elements of all equivalence classes on
y w.r.t. ≡L and ≡R, namely, L = {−→x | x ∈ Substr(y)} and R = {←−x | x ∈ Substr(y)}. Let

10

STree′(y) = (V′
S,E

′
S) be the edge-labeled rooted tree obtained by adding extra nodes for strings

in R to STree(y), namely,

V′
S = {x | x ∈ L ∪R},

E′
S = {(x, β, xβ) | x, xβ ∈ V′

S, β ∈ Σ+, 1 ≤ ∀i < |β|, x · β[1..i] /∈ V′
S}.

Notice that the size of STree′(y) is O(n), since |L ∪ R| ≤ |VS|+ |VD| = O(n), where VS and
VD are respectively the sets of nodes of STree(y) and DAWG(y).

A node x ∈ V′
S of STree′(y) is called black iff x ∈ R. See Figure 5 for an example of

STree′(y).

Lemma 4. For any x ∈ Substr(y), if x is represented by a black node in STree′(y), then every
prefix of x is also represented by a black node in STree′(y).

Proof. Since x is a black node, x =←−x . Assume on the contrary that there is a proper prefix
z of x such that z is not represented by a black node. Let zu = x with u ∈ Σ+. Since
z ≡R

←−z , we have x = zu ≡R
←−z u. On the other hand, since z is not black, we have |←−z | > |z|.

However, this contradicts that x is the longest member ←−x of [x]R. Thus, every prefix of x is
also represented by a black node.

Lemma 5. For any string y, let BT(y) be the trie consisting only of the black nodes of
STree′(y). Then, every leaf ℓ of BT(y) is a node of the original suffix tree STree(y).

Proof. Assume on the contrary that some leaf ℓ of BT(y) corresponds to an internal node of
STree′(y) that has exactly one child. Since any substring in L is represented by a node of

the original suffix tree STree(y), we have ℓ ∈ R. Since ℓ =
←−
ℓ , ℓ is the longest substring of y

which has ending positions EndPos(ℓ) in y. This implies one of the following situations: (1)
occurrences of ℓ in y are immediately preceded by at least two distinct characters a ≠ b, (2) ℓ
occurs as a prefix of y and all the other occurrences of ℓ in y are immediately preceded by a
unique character a, or (3) ℓ occurs exactly once in y as its prefix. Let u be the only child of
ℓ in STree′(y), and let ℓz = u, where z ∈ Σ+. By the definition of ℓ, u is not black. On the
other hand, in any of the situations (1)-(3), u = ℓz is the longest substring of y which has
ending positions EndPos(u) in y. Hence we have u =←−u and u must be black, a contradiction.
Thus, every leaf ℓ of BT(y) is a node of the original suffix tree STree(y).

Lemma 6 ([13]). For any node x ∈ VS of the original suffix tree STree(y), its corresponding
node in STree′(y) is black iff (1) x is a leaf of the suffix link tree SLT(y), or (2) x is an internal
node of SLT(y) and for any character a ∈ Σ such that ax ∈ VS, |BegPos(ax)| ≠ |BegPos(x)|.

Using Lemma 5 and Lemma 6, we can compute all leaves of BT(y) in O(n) time by a
standard traversal on the suffix link tree SLT(y). Then, we can compute all internal black
nodes of BT(y) in O(n) time using Lemma 4. Now, by Theorem 4, the next lemma holds:

Lemma 7. Given a string y of length n over an integer alphabet, edge-sorted STree′(y) can be
constructed in O(n) time.

We construct DAWG(y) with suffix links LD from STree′(y), as follows. First, we construct
a DAG D, which is initially equivalent to the trie BT(y) consisting only of the black nodes of
STree′(y). Our algorithm adds edges and suffix links to D, so that the DAG D will finally
become DAWG(y). In so doing, we traverse STree′(y) in post order. For each black node

11

!! !"

"#!!$

!% !& !' !(!) !* !+ !,

"#!"$ "#!%$

"#!&$ "#!'$

"#!*$

"#!,$

"#!+$

"#!)$"#!($

#!

#% #& #'#"

$%

#(

%"

$'

%&

$(

%'

!! !"

"#

#$

"%

#&

"'

#%

Figure 6: (Left): Illustration for a part of STree′(y), where the branching nodes are those that exist also in
the original suffix tree STree(y). Suppose we have just visited node x = s0 (marked by a star) in the post-order
traversal on STree′(y). Here, s0, . . . , s9 are connected by a chain of suffix links starting from s0, and s9 is the
first black node after s0 in the chain. In the corresponding DAG D, we will add in-coming edges to the black
nodes in the path from p(x) to x, and will add suffix links from these black nodes in the path. The sequence
s0, . . . , sm of nodes in STree′(y) is partitioned into blocks, such that the parents of the nodes in the same block
belong to the same equivalence class w.r.t. ≡R. (Right): The in-coming edges and the suffix links have been
added to the nodes in the path from p(x) to x = s0.

x of STree′(y) visited in the post-order traversal, which is either an internal node or a leaf
of the original suffix tree STree(y), we perform the following: Let p(x) be the parent of x
in the original suffix tree STree(y). It follows from Lemma 4 that every prefix x′ of x with
|p(x)| ≤ |x′| ≤ |x| is represented by a black node. For each black node x′ in the path from
p(x) to x in the DAG D, we compute the in-coming edges to x′ and the suffix link of x′.

Let s0, . . . , sm be the sequence of nodes connected by a chain of suffix links starting from
s0 = x, such that |BegPos(si)| = |BegPos(s0)| for all 0 ≤ i ≤ m − 1 and |BegPos(sm)| >
|BegPos(s0)| (see the left diagram of Figure 6). In other words, sm is the first black node
after s0 in the chain of suffix links (this is true by Lemma 6). Since |si| = |si−1| − 1 for every
1 ≤ i ≤ m− 1, EndPos(si) = EndPos(s0). Thus, s0, . . . , sm−1 form a single equivalence class
w.r.t. ≡R and are represented by the same node as x = s0 in the DAWG.

For any 0 ≤ i ≤ m− 1, let d(si) = |si|− |p(si)|. Observe that the sequence d(s0), . . . , d(sm)
is monotonically non-increasing by the property of suffix trees. We partition the sequence
s0, . . . , sm of nodes into blocks so that the parents of all nodes in the same block belong to
the same equivalence class w.r.t. ≡R. Let r be the number of such blocks, and for each
0 ≤ k ≤ r−1, let Bk = sik , . . . , sik+1−1 be the kth such block. We can easily compute all these
blocks by comparing |p(si−1)| and |p(si)| for each pair si−1 and si of consecutive elements in
the sequence s1, . . . , sm of nodes. Note that for each block Bk, p(sik) is the only black node
among the parents p(sik), . . . , p(sik+1−1) of the nodes in Bk, since it is the longest one in its
equivalence class [p(sik)]R. Also, every node in the same block has the same value for function
d. Thus, for each block Bk, we add a new edge (p(sik), bk, qk) to the DAG D, where qk is the
(black) ancestor of x such that |qk| = |x| − d(sik) + 1, and bk is the first character of the label
of the edge from p(sik) to sik in STree′(y). Notice that this new edge added to D corresponds
to the edges between the nodes in the block Bk and their parents in STree′(y). We also add a
suffix link (p(qk), a, p(sik)) to D, where a = sik−1[1]. See also the right diagram of Figure 6.

For each 2 ≤ k ≤ r − 1, let Pk be the path from qk−1 to gk, where gk = p(p(qk)) for

12

2 ≤ k ≤ r − 2 and gr−1 = x = s0. Each Pk is a sub-path of the path from p(s0) to s0, and
every node in Pk has not been given their suffix link yet. For each node v in Pk, we add the
suffix link from v to the ancestor u of sik such that |sik | − |u| = |s0| − |v|. See also the right
diagram of Figure 6.

Repeating the above procedure for all black nodes of STree′(y) that are either internal
nodes or leaves of the original suffix tree STree(y) in post order, the DAG D finally becomes
DAWG(y) with suffix links LD. We remark however that the edges of DAWG(y) might not be
sorted, since the edges that exist in STree′(y) were firstly inserted to the DAG D. Still, we
can easily sort all the edges and suffix links of DAWG(y) in O(n) total time after they are
constructed by the same technique as in Section 3.

Theorem 5. Given a string y of length n over an integer alphabet, we can compute edge-sorted
DAWG(y) with suffix links LD in O(n) time and space.

Proof. The correctness can easily be seen if one recalls that minimizing STrie(y) based on its
suffix links produces DAWG(y). The proposed algorithm simulates this minimization using
only the subset of the nodes of STrie(y) that exist in STree′(y). The out-edges of each node of
DAWG(y) are sorted in lexicographical order as previously described.

We analyze the time complexity of our algorithm. We can compute STree′(y) in O(n) time
by Lemma 7. The initial trie for D can easily be computed in O(n) time from STree′(y). Let
x be any node visited in the post-order traversal on STree′(y) that is either an internal node or
a leaf of the original suffix tree STree(y). The cost of adding the new in-coming edges to the
black nodes in the path from p(x) to x = s0 is linear in the number of nodes in the sequence
s0, . . . , sm connected by the chain of suffix links starting from s0 = x. Since s0 and sm are
the only black nodes in the sequence, it follows from Lemma 6 that the chain of suffix links
from s0 to sm is a non-branching path of the suffix link tree SLT(y). This implies that the
suffix links in this chain are used only for node x during the post-order traversal of STree′(y).
Since the number of edges in SLT(y) is O(n), the amortized cost of adding each edge to D is
constant. Also, the total cost to sort all edges is O(n), as was previously explained. Now let
us consider the cost of adding the suffix links from the nodes in each sub-path Pk. For each
node v in Pk, the destination node v can be found in constant time by simply climbing up the
path from sik in the chain of suffix links. Overall, the total time cost to transform the trie for
D to DAWG(y) is O(n).

The working space is clearly O(n).

Example 1. Figure 7 shows snapshots of the DAWG construction for string y = aabcabcab$
by our algorithm. Step 0: (Left): STree′(y) with suffix links LS and (Right): the initial trie for
D. We traverse STree′(y) in post order. Step 1: We arrived at black leaf node x1 = aabcabcab$
(indicated by a star). We determine the in-coming edges and suffix links for the black nodes in
the path from p(x1) = a and x1 (indicated by thick black lines). To the right is the resulting
DAG D for this step. Step 2: We arrived at black branching node x2 = abcab (indicated by
a star). We determine the in-coming edges and suffix links for the black nodes in the path
from p(x2) = ab and x2 (indicated by thick black lines). To the right is the resulting DAG D
for this step. Step 3: We arrived at black branching node x3 = ab (indicated by a star). We
determine the in-coming edges and suffix links for the black nodes in the path from p(x3) = a

and x3 (indicated by thick black lines). To the right is the resulting DAG D for this step.
Step 4: We arrived at black branching node x4 = a (indicated by a star). We determine
the in-coming edges and suffix links for the black nodes in the path from p(x4) = ε and x4

13

b

a

a

b

c

a

b

c

a

b

a

$

b

$

$

$

$

b
b

a

$

$

a

b

c

a

b

c

a

b

a

c

a

b

c

a

b

$

c

a

b

$

c

a

b

$

c

a

bc

$

b

c

!"#$%&

$

$
$

c

$

$

$

$

b
b

a

$

$

a

b

c

a

b

c

a

b

a

c

a

b

c

a

b

$

c

a

b

$

c

a

b

$

c

a

bc

$

b

b

a

a

b

c

a

b

c

a

b

a

$

b

c

!"#$%&

$

$

$

$

b
b

a

$

$

a

b

c

a

b

c

a

b

a

c

a

b

c

a

b

$

c

a

b

$

c

a

b

$

c

a

bc

$

b

$

$
$

c

b

a

a

b

c

a

b

c

a

b

a

$

b

c

!"#$%&

c

$

$

$

$

b
b

a

$

$

a

b

c

a

b

c

a

b

a

c

a

b

c

a

b

$

c

a

b

$

c

a

b

$

c

a

bc

$

b

$

$
$

c

b

a

a

b

c

a

b

c

a

b

a

$

b

c

!"#$%&

b c

$

$
$

c

b

a

a

b

c

a

b

c

a

b

a

$

b

c

$

$

$

$

b
b

a

$

$

a

b

c

a

b

c

a

b

a

c

a

b

c

a

b

$

c

a

b

$

c

a

b

$

c

a

bc

$

b

!"#$%&

Figure 7: Snapshots for the construction of DAWG(y) with y = aabcabcab$.

(indicated by thick black lines). To the right is the resulting DAG D for this step. Since all
branching and leaf black nodes have been processed, the final DAG D is DAWG(y) with suffix
links.

5. Constructing Affix Trees in O(n) Time for Integer Alphabet

Let y be the input string of length n over an integer alphabet. Recall the sets L =
{−→x | x ∈ Substr(y)} and R = {←−x | x ∈ Substr(y)} introduced in Section 4. For any set
S ⊆ Σ∗ × Σ∗ of ordered pairs of strings, let S[1] = {x1 | (x1, x2) ∈ S for some x2 ∈ Σ∗} and
S[2] = {x2 | (x1, x2) ∈ S for some x1 ∈ Σ∗}.

The affix tree [9] of string y, denoted ATree(y), is a bidirectional text indexing structure
defined as follows:

14

$

$

b

a

$

$

c

a

b

c

a

b

$

c

a

b

$

c

a

b

$

$

ba

b

c

a

b

c

a

b

a

c

a

b

$

c

$

b

Figure 8: Illustration of ATree(y) with string y = aabcabcab$. The solid arcs represent the forward edges in
EF
A , while the double-lined arcs represent the backward edges in EB

A . For simplicity, the labels of backward
edges are omitted.

Definition 4. ATree(y) for string y is an edge-labeled DAG (VA,EA) = (VA,E
F
A ∪ EB

A) which
has two disjoint sets EF

A ,E
B
A of edges such that

VA = {(x, x̂) | x ∈ L ∪R},
EF
A = {((x, x̂), β, (xβ, β̂x̂)) | x, xβ ∈ VA[1],

β ∈ Σ+, 1 ≤ ∀i < |β|, x · β[1..i] /∈ VA[1]},
EB
A = {((x, x̂), α̂, (αx, x̂α̂)) | x̂, x̂α̂ ∈ VA[2],

α ∈ Σ+, 1 ≤ ∀i < |α|, x̂ · α̂[1..i] /∈ VA[2]}.

EF
A is the set of forward edges labeled by substrings of y, while EB

A is the set of backward edges
labeled by substrings of ŷ.

Theorem 6. Given a string y of length n over an integer alphabet of polynomial size in n, we
can compute edge-sorted ATree(y) in O(n) time and space.

Proof. Clearly, there is a one-to-one correspondence between each node (x, x̂) ∈ VA of
ATree(y) = (VA,E

F
A ∪ EB

A) and each node x ∈ V′
S of STree′(y) = (V′

S,E
′
S) of Section 4 (see

also Figure 5 and Figure 8). Moreover, there is a one-to-one correspondence between each
forward edge (x, β, xβ) ∈ EF

A of ATree(y) and each edge (x, β, xβ) ∈ E′
S of STree′(y). Hence,

what remains is to construct the backward edges in EB
A for ATree(y). A straightforward

modification to our DAWG construction algorithm of Section 4 can construct the backward
edges of ATree(y); instead of working on the DAG D, we directly add the suffix links to
the black nodes of STree′(y) whose suffix links are not defined yet (namely, those that are
neither branching nodes nor leaves of the suffix link tree SLT(y)). Since the suffix links are
reversed edges, by reversing them we obtain the backward edges of ATree(y). The labels of the
backward edges can be easily computed in O(n) time by storing in each node the length of the
string it represents. Finally, we can sort the forward and backward edges in lexicographical
order in overall O(n) time, using the same idea as in Section 4.

15

6. Constructions of other text indexing structures

In this section, we present how our algorithms for building DAWGs and affix trees can be
applied to constructing other text indexing data structures in linear time.

6.1. DAWG for the reversed string

Here we show that the algorithm that computes affix trees from Section 5 can also be
regarded as a linear-time algorithm which computes the Weiner links for the forward and
reversed strings simultaneously. This will be a key to our efficient construction of other text
indexing structures, which will be shown later in this section.

For the sake of simplicity, we here use a slightly different version of Weiner links than WL
in Section 3, which are called modified Weiner links and are defined as follows:

mWL = {(x, a, ax) | a ∈ Σ, x ∈ VS, ax ∈ Substr(y)}.

The difference from the normal Weiner links is that the destination nodes of the modified
Weiner links ax can be implicit (i.e. non-branching) nodes in the suffix tree (see the right
diagram of Figure 9). Hence, it is clear that there is a one-to-one correspondence between WL
and mWL, and it is easy to convert mWL to WL and vice versa.

As in the case with (normal) Weiner links WL, we call each modified Weiner link (x, a, ax) ∈
mWL explicit if ax ∈ VS, and implicit otherwise. For each implicit modified Weiner link
(x, a, ax), we consider an auxiliary nodes ax. We note that such auxiliary nodes ax are exactly
the type-2 nodes of linear-size suffix tries [14].

The following theorem holds for the modified Weiner links.

Theorem 7. For any edge ((x, x̂), α̂, (αx, x̂α̂)) ∈ EB
A of ATree(y), x ∈ L∧αx /∈ L iff (x, a, ax)

is an implicit modified Weiner link of STree(y) where a = α[|α|] (see Figure 9).

!

!

!

!

!

!

!

!

"##$%&'()) *+##$%&,())&-$,.&/01$#$)1&2)$3)(&4$356

!

! !

!

!

!

!

Figure 9: Illustration for a relation between affix trees and modified Weiner links. The black circles represent
black nodes x ∈ L of affix trees, while the striped circles represent auxiliary nodes ax /∈ VS for modified implicit
Weiner link.

Proof. (⇐) Since (x, a, ax) is an implicit modified Weiner link of STree(y), x is in L and wax
is not in L for any string w ∈ Σ∗. Thus x ∈ L ∧ αx /∈ L.
(⇒) By the definition of EB

A , for any i (1 ≤ i < |α|), we have x̂ · α̂[1..i] /∈ VA[2]. Thus
α[|α|]x /∈ L. Obliviously ax ∈ Substr(y), and thus (x, a, ax) is an implicit modified Weiner
link of STree(y).

16

By Theorem 7, when constructing the affix tree ATree(y) of the input string y, the set of
modified Weiner links mWL of STree(y) is also computed. Because affix trees are symmetric
data structures for the string and its reversal, the modified Weiner links of the suffix tree
STree(ŷ) for the reversed string ŷ are also computed at the same time.

6.2. Symmetric CDAWGs

The Compact DAWG [8] (CDAWG) of string y, denoted CDAWG(y) is an edge-labeled
DAG that can be obtained by merging isomorphic subtrees of STree(y), or equivalently by
performing path-compressions to DAWG(y). Each internal node of CDAWG(y) corresponds to
a maximal repeat of the string y, where a substring x of y is called a maximal repeat of y if
x occurs in y more than once, and prepending or appending a character to x decreases the
number of its occurrences in y. By the nature of maximal repeats, CDAWG(y) for string y
and CDAWG(ŷ) can share the same set of nodes. The resulting data structure is yet another
bidirectional text indexing structure, called symmetric CDAWG for y. Blumer et al. [8] showed
the following:

Theorem 8 ([8]). Given STree(y) and DAWG(ŷ) for string y which share the same nodes,
one can build the symmetric CDAWG for string y in linear time.

The algorithm by Blumer et al. in the above theorem does not use character comparisons.
Thus, by applying this method after building DAWG(ŷ) over STree(y) using our technique
from Section 6.1, we obtain the following corollary:

Corollary 1. Given a string y of length n over an integer alphabet of polynomial size in n,
we can compute edge-sorted symmetric CDAWG for y in O(n) time and space.

6.3. Linear-size suffix tries

When reversed and unlabeled, the modified Weiner links are the suffix links of the so-called
type-2 nodes of the linear-size suffix tries [14]. Let LSTrie(y) denote the linear-size suffix trie
of string y. Intuitively, LSTrie(y) is an edge-labeled rooted tree obtained from STree(y) as
follows:

(1) For each reversed and unlabeled modified Weiner link (ax, x), insert a non-branching
explicit node ax if ax is not a branching node of STree(y). Such non-branching nodes
are called type-2 nodes.

(2) Retain the first character in each edge label, and remove all the following characters
along the edge.

It is known that one can restore the whole edge label efficiently on LSTrie(y), without explicitly
storing the input string y [14, 40, 41]. Now the following corollary is immediate from Theorem 6
and Theorem 7:

Corollary 2. Given a string y of length n over an integer alphabet of polynomial size in n,
we can compute edge-sorted LSTrie(y) in O(n) time and space.

17

!

!
"

##!

!!$"%

&

!
$

!$"%

$

Figure 10: Computing minimal absent words for the input string from the DAWG. In this case, axb is a MAW
since it does not occur in the string while ax and xb do.

7. Computing Minimal Absent Words in O(n + |MAW(y)|) Time

As an application to our O(n)-time DAWG construction algorithm of Section 4, in this
section we show an optimal time algorithm to compute the set of all minimal absent words of
a given string over an integer alphabet.

Finding minimal absent words of length 1 for a given string y (i.e., the characters not
occurring in y) is easy to do in O(n+ σ) time and O(1) working space for an integer alphabet,
where σ is the alphabet size. In what follows, we concentrate on finding minimal absent words
of y of length at least 2.

Crochemore et al. [25] proposed a Θ(σn)-time algorithm to compute
MAW(y) for a given string y of length n. The following two lemmas, which show tight
connections between DAWG(y) and MAW(y), are implicitly used in their algorithm but under
a somewhat different formulation. Since our O(n+ |MAW(y)|)-time solution is built on the
lemmas, we give a proof for completeness.

Lemma 8. Let a, b ∈ Σ and x ∈ Σ∗. If axb ∈ MAW(y), then x =←−x , namely, x is the longest
string represented by node [x]R ∈ VD of DAWG(y).

Proof. Assume on the contrary that x ̸=←−x . Since x is not the longest string of [x]R, there
exists a character c ∈ Σ such that cx ∈ Substr(y) and [x]R = [cx]R. Since axb ∈ MAW(y), it
follows from Lemma 2 that xb ∈ Substr(y). Since [x]R = [cx]R, c always immediately precedes
x in y. Thus we have cxb ∈ Substr(y).

Since axb ∈ MAW(y), c ̸= a. On the other hand, it follows from Lemma 2 that ax ∈
Substr(y). However, this contradicts that c always immediately precedes x in y and c ̸= a.
Consequently, if axb ∈ MAW(y), then x =←−x .

For any node v ∈ VD of DAWG(y) and character b ∈ Σ, we write δD(v, b) = u if (v, b, u) ∈ ED

for some u ∈ VD, and write δD(v, b) = nil otherwise. For any suffix link (u, a, v) ∈ LD of

18

Algorithm 1: Θ(nσ)-time algorithm (MF-TRIE) by Crochemore et al. [25]

Input: String y of length n
Output: All minimal absent words for y

1 MAW← ∅;
2 Construct DAWG(y) augmented with suffix links LD;
3 for each non-source node u of DAWG(y) do
4 for each character b ∈ Σ do
5 if δD(u, b) = nil and δD(slD(u), b) ̸= nil then
6 MAW← MAW∪{axb}; // (u, a, slD(u))∈LD, x= long(slD(u))

7 Output MAW;

DAWG(y), we write slD(u) = v. Note that there is exactly one suffix link coming out from
each node u ∈ VD of DAWG(y), so the character a is unique for each node u.

Lemma 9. Let a, b ∈ Σ and x ∈ Σ∗. Then, axb ∈ MAW(y) iff x = ←−x , δD([x]R, b) = [xb]R,
slD([ax]R) = [x]R, and δD([ax]R, b) = nil .

Proof. (⇒) From Lemma 8, x = ←−x . From Lemma 2, axb ̸∈ Substr(y). However, ax, xb ∈
Substr(y), and thus we have δD([ax]R, b) = nil , δD([x]R, b) = [xb]R, and slD([ax]R) = [x]R,
where the last suffix link exists since x =←−x .

(⇐) Since δD([x]R, b) = [xb]R and slD([ax]R) = [x]R, we have that xb, ax ∈ Substr(y). Since
ax ∈ Substr(y) and δD([ax]R, b) = nil , we have that axb ̸∈ Substr(y) Thus from Lemma 2,
axb ∈ MAW(y).

From Lemma 9 all MAWs of y can be computed by traversing all the states of DAWG(y)
and comparing all out-going edges between nodes connected by suffix links. See also Figure 10
for illustration.

A pseudo-code of the algorithm MF-TRIE by Crochemore et al. [25], which is based on
this idea, is shown in Algorithm 1. Since all characters in the alphabet Σ are tested at each
node, the total time complexity becomes Θ(nσ). The working space is O(n), since only the
DAWG and its suffix links are needed.

Next we show that with a simple modification in the for loops of the algorithm and with a
careful examination of the total cost, the set MAW(y) of all MAWs of the input string y can
be computed in O(n+ |MAW(y)|) time and O(n) working space. Basically, the only change is
to move the “δD(slD(u), b) ̸= nil” condition in Line 5 to the for loop of Line 4. Namely, when
we focus on node u of DAWG(y), we test only the characters which label the out-edges from
node slD(u). A pseudo-code of the modified version is shown in Algorithm 2.

Theorem 9. Given a string y of length n over an integer alphabet, we compute MAW(y) in
optimal O(n+ |MAW(y)|) time with O(n) working space.

Proof. First, we show the correctness of our algorithm. For any node u of DAWG(y),
EndPos(slD(u)) ⊃ EndPos(u) holds since every string in slD(u) is a suffix of the strings
in u. Thus, if there is an out-edge of u labeled c, then there is an out-edge of slD(u) labeled c.
Hence, the task is to find every character b such that there is an out-edge of slD(u) labeled b
but there is no out-edge of u labeled b. The for loop of Line 4 of Algorithm 2 tests all such
characters and only those. Hence, Algorithm 2 computes MAW(y) correctly.

19

Algorithm 2: Proposed O(n+ |MAW(y)|)-time algorithm

Input: String y of length n
Output: All minimal absent words for y

1 MAW← ∅;
2 Construct edge-sorted DAWG(y) augmented with suffix links LD;
3 for each non-source node u of DAWG(y) do
4 for each character b such that δD(slD(u), b) ̸= nil do
5 if δD(u, b) = nil then
6 MAW← MAW∪{axb}; // (u, a, slD(u))∈LD, x= long(slD(u))

7 Output MAW;

Second, we analyze the efficiency of our algorithm. As was mentioned above, minimal
absent words of length 1 for y can be found in O(n+ σ) time and O(1) working space. By
Lemma 1, σ ≤ |MAW(y)| and hence the σ-term is dominated by the output size |MAW(y)|.
Now we consider the cost of finding minimal absent words of length at least 2 by Algorithm 2.
Let b be any character such that there is an out-edge e of slD(u) labeled b. There are two
cases: (1) If there is no out-edge of u labeled b, then we output an MAW, so we can charge
the cost to check e to an output. (2) If there is an out-edge e′ of u labeled b, then the trick is
that we can charge the cost to check e to e′. Since each node u has exactly one suffix link
going out from it, each out-edge of u is charged only once in Case (2). Since the out-edges of
every node u and those of slD(u) are both sorted, we can compute their difference for every
node u in DAWG(y), in overall O(n) time. Edge-sorted DAWG(y) with suffix links can be
constructed in O(n) time for an integer alphabet as in Section 4. Overall, Algorithm 2 runs in
O(n+ |MAW(y)|) time. The space requirement is clearly O(n).

8. Conclusions

In this paper, we proposed O(n)-time algorithms for constructing DAWG(y) and ATree(y)
of a given string y of length n, over an integer alphabet of size polynomial in n. These
algorithms transform the suffix tree of y to DAWG(y) and ATree(y). We also showed how to
build the symmetric CDAWG and linear-size suffix trie for the input string over an integer
alphabet.

As a further application of DAWG(y), we presented an optimal O(n + |MAW(y)|)-time
algorithm to compute the set MAW(y) of all minimal absent words of y when the edge-sorted
DAWG for y is already computed.

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers JP18J10967 (YF), JP17H01697,
JP26280003, JP22H03551 (SI), JP16H02783, JP20H04141 (HB), JP25240003, JP18H04098
(MT).

References

[1] P. Weiner, Linear pattern matching algorithms, in: 14th Annual Symposium on Switching
and Automata Theory, 1973, pp. 1–11.

20

[2] U. Manber, E. W. Myers, Suffix arrays: A new method for on-line string searches, SIAM
J. Comput. 22 (5) (1993) 935–948.

[3] K. Sadakane, New text indexing functionalities of the compressed suffix arrays, J. Algo-
rithms 48 (2) (2003) 294–313. doi:10.1016/S0196-6774(03)00087-7.

[4] R. Grossi, J. S. Vitter, Compressed suffix arrays and suffix trees with applications to
text indexing and string matching, SIAM J. Comput. 35 (2) (2005) 378–407. doi:

10.1137/S0097539702402354.

[5] K. Sadakane, Compressed suffix trees with full functionality, Theory Comput. Syst. 41 (4)
(2007) 589–607. doi:10.1007/s00224-006-1198-x.

[6] A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. T. Chen, J. I. Seiferas, The
smallest automaton recognizing the subwords of a text, Theoretical Computer Science 40
(1985) 31–55.

[7] M. Crochemore, Transducers and repetitions, Theor. Comput. Sci. 45 (1) (1986) 63–86.

[8] A. Blumer, J. Blumer, D. Haussler, R. M. McConnell, A. Ehrenfeucht, Complete inverted
files for efficient text retrieval and analysis, Journal of the ACM 34 (3) (1987) 578–595.

[9] J. Stoye, Affix trees, Tech. Rep. Report 2000-04, Universität Bielefeld (2000).
URL https://www.techfak.uni-bielefeld.de/~stoye/dropbox/report00-04.pdf

[10] M. G. Maaß, Linear bidirectional on-line construction of affix trees, Algorithmica 37 (1)
(2003) 43–74.

[11] E. M. McCreight, A space-economical suffix tree construction algorithm, Journal of the
ACM 23 (2) (1976) 262–272.

[12] M. Farach-Colton, P. Ferragina, S. Muthukrishnan, On the sorting-complexity of suffix
tree construction, Journal of the ACM 47 (6) (2000) 987–1011.

[13] K. Narisawa, S. Inenaga, H. Bannai, M. Takeda, Efficient computation of substring
equivalence classes with suffix arrays, in: Proc. CPM 2007, 2007, pp. 340–351.

[14] M. Crochemore, C. Epifanio, R. Grossi, F. Mignosi, Linear-size suffix tries, Theoretical
Computer Science 638 (2016) 171–178.

[15] M. T. Chen, J. Seiferas, Efficient and elegant subword-tree construction, Combinatorial
Algorithms on Words (1985).

[16] M. Crochemore, F. Mignosi, A. Restivo, S. Salemi, Text compression using antidictionaries,
in: ICALP 1999, 1999, pp. 261–270. doi:10.1007/3-540-48523-6_23.

[17] T. Ota, H. Morita, On a universal antidictionary coding for stationary ergodic sources
with finite alphabet, in: ISITA 2014, 2014, pp. 294–298.
URL http://ieeexplore.ieee.org/document/6979851/

[18] G. Hampikian, T. L. Andersen, Absent sequences: Nullomers and primes, in: PSB 2007,
2007, pp. 355–366.

21

https://doi.org/10.1016/S0196-6774(03)00087-7
https://doi.org/10.1137/S0097539702402354
https://doi.org/10.1137/S0097539702402354
https://doi.org/10.1007/s00224-006-1198-x
https://www.techfak.uni-bielefeld.de/~stoye/dropbox/report00-04.pdf
https://www.techfak.uni-bielefeld.de/~stoye/dropbox/report00-04.pdf
https://doi.org/10.1007/3-540-48523-6_23
http://ieeexplore.ieee.org/document/6979851/
http://ieeexplore.ieee.org/document/6979851/
http://ieeexplore.ieee.org/document/6979851/

[19] J. Herold, S. Kurtz, R. Giegerich, Efficient computation of absent words in genomic
sequences, BMC Bioinformatics 9 (2008). doi:10.1186/1471-2105-9-167.
URL https://doi.org/10.1186/1471-2105-9-167

[20] Z. Wu, T. Jiang, W. Su, Efficient computation of shortest absent words in a genomic
sequence, Inf. Process. Lett. 110 (14-15) (2010) 596–601. doi:10.1016/j.ipl.2010.05.
008.
URL https://doi.org/10.1016/j.ipl.2010.05.008

[21] R. M. Silva, D. Pratas, L. Castro, A. J. Pinho, P. J. S. G. Ferreira, Three minimal
sequences found in ebola virus genomes and absent from human DNA, Bioinformatics
31 (15) (2015) 2421–2425. doi:10.1093/bioinformatics/btv189.
URL https://doi.org/10.1093/bioinformatics/btv189

[22] P. Charalampopoulos, M. Crochemore, G. Fici, R. Mercas, S. P. Pissis, Alignment-
free sequence comparison using absent words, Inf. Comput. 262 (2018) 57–68. doi:

10.1016/j.ic.2018.06.002.

[23] Y. Almirantis, P. Charalampopoulos, J. Gao, C. S. Iliopoulos, M. Mohamed, S. P.
Pissis, D. Polychronopoulos, On avoided words, absent words, and their application to
biological sequence analysis, Algorithms for Molecular Biology 12 (1) (2017) 5:1–5:12.
doi:10.1186/s13015-017-0094-z.
URL https://doi.org/10.1186/s13015-017-0094-z

[24] A. Héliou, S. P. Pissis, S. J. Puglisi, emMAW: computing minimal absent words in external
memory, Bioinformatics 33 (17) (2017) 2746–2749. doi:10.1093/bioinformatics/

btx209.
URL https://doi.org/10.1093/bioinformatics/btx209

[25] M. Crochemore, F. Mignosi, A. Restivo, Automata and forbidden words, Information
Processing Letters 67 (3) (1998) 111–117.

[26] F. Mignosi, A. Restivo, M. Sciortino, Words and forbidden factors, Theor. Comput. Sci.
273 (1-2) (2002) 99–117.

[27] C. Barton, A. Héliou, L. Mouchard, S. P. Pissis, Linear-time computation of minimal
absent words using suffix array, BMC Bioinformatics 15 (2014) 388. doi:10.1186/

s12859-014-0388-9.

[28] C. Barton, A. Héliou, L. Mouchard, S. P. Pissis, Parallelising the computation of minimal
absent words, in: PPAM 2015, 2015, pp. 243–253. doi:10.1007/978-3-319-32152-3\
_23.

[29] D. Belazzougui, F. Cunial, J. Kärkkäinen, V. Mäkinen, Versatile succinct representations
of the bidirectional Burrows-Wheeler transform, in: Proc. ESA 2013, 2013, pp. 133–144.

[30] D. Belazzougui, F. Cunial, Fully-functional bidirectional Burrows-Wheeler indexes and
infinite-order de Bruijn graphs, in: CPM 2019, 2019, pp. 10:1–10:15.

[31] P. Charalampopoulos, M. Crochemore, S. P. Pissis, On extended special factors of a word,
in: SPIRE 2018, 2018, pp. 131–138.

22

https://doi.org/10.1186/1471-2105-9-167
https://doi.org/10.1186/1471-2105-9-167
https://doi.org/10.1186/1471-2105-9-167
https://doi.org/10.1186/1471-2105-9-167
https://doi.org/10.1016/j.ipl.2010.05.008
https://doi.org/10.1016/j.ipl.2010.05.008
https://doi.org/10.1016/j.ipl.2010.05.008
https://doi.org/10.1016/j.ipl.2010.05.008
https://doi.org/10.1016/j.ipl.2010.05.008
https://doi.org/10.1093/bioinformatics/btv189
https://doi.org/10.1093/bioinformatics/btv189
https://doi.org/10.1093/bioinformatics/btv189
https://doi.org/10.1093/bioinformatics/btv189
https://doi.org/10.1016/j.ic.2018.06.002
https://doi.org/10.1016/j.ic.2018.06.002
https://doi.org/10.1186/s13015-017-0094-z
https://doi.org/10.1186/s13015-017-0094-z
https://doi.org/10.1186/s13015-017-0094-z
https://doi.org/10.1186/s13015-017-0094-z
https://doi.org/10.1093/bioinformatics/btx209
https://doi.org/10.1093/bioinformatics/btx209
https://doi.org/10.1093/bioinformatics/btx209
https://doi.org/10.1093/bioinformatics/btx209
https://doi.org/10.1093/bioinformatics/btx209
https://doi.org/10.1186/s12859-014-0388-9
https://doi.org/10.1186/s12859-014-0388-9
https://doi.org/10.1007/978-3-319-32152-3_23
https://doi.org/10.1007/978-3-319-32152-3_23

[32] G. Fici, P. Gawrychowski, Minimal absent words in rooted and unrooted trees, in:
SPIRE 2019, Vol. 11811 of Lecture Notes in Computer Science, 2019, pp. 152–161.
doi:10.1007/978-3-030-32686-9_11.

[33] S. Inenaga, Suffix trees, DAWGs and CDAWGs for forward and backward tries, in:
LATIN 2020, Vol. 12118 of Lecture Notes in Computer Science, 2020, pp. 194–206.
doi:10.1007/978-3-030-61792-9_16.

[34] S. Inenaga, Towards a complete perspective on labeled tree indexing: New size bounds,
efficient constructions, and beyond, J. Inf. Process. 29 (2021) 1–13. doi:10.2197/

ipsjjip.29.1.

[35] T. Akagi, K. Okabe, T. Mieno, Y. Nakashima, S. Inenaga, Minimal absent words on
run-length encoded strings, in: CPM 2022, Vol. 223 of LIPIcs, 2022, pp. 27:1–27:17.
doi:10.4230/LIPIcs.CPM.2022.27.

[36] Y. Fujishige, Y. Tsujimaru, S. Inenaga, H. Bannai, M. Takeda, Computing DAWGs and
minimal absent words in linear time for integer alphabets, in: MFCS 2016, 2016, pp.
38:1–38:14. doi:10.4230/LIPIcs.MFCS.2016.38.

[37] S. Inenaga, H. Hoshino, A. Shinohara, M. Takeda, S. Arikawa, G. Mauri, G. Pavesi, On-
line construction of compact directed acyclic word graphs, Discrete Applied Mathematics
146 (2) (2005) 156–179.

[38] J. Fischer, P. Gawrychowski, Alphabet-dependent string searching with wexponential
search trees, CoRR abs/1302.3347 (2013). arXiv:1302.3347.
URL http://arxiv.org/abs/1302.3347

[39] D. Breslauer, R. Hariharan, Optimal parallel construction of minimal suffix and
factor automata, Parallel Processing Letters 6 (1) (1996) 35–44. doi:10.1142/

S0129626496000054.

[40] D. Hendrian, T. Takagi, S. Inenaga, Online algorithms for constructing linear-size suffix
trie, in: CPM 2019, 2019, pp. 30:1–30:19.

[41] D. Hendrian, T. Takagi, S. Inenaga, K. Goto, M. Funakoshi, Linear time online algorithms
for constructing linear-size suffix trie, CoRR abs/2301.04295 (2023). arXiv:2301.04295,
doi:10.48550/arXiv.2301.04295.

23

https://doi.org/10.1007/978-3-030-32686-9_11
https://doi.org/10.1007/978-3-030-61792-9_16
https://doi.org/10.2197/ipsjjip.29.1
https://doi.org/10.2197/ipsjjip.29.1
https://doi.org/10.4230/LIPIcs.CPM.2022.27
https://doi.org/10.4230/LIPIcs.MFCS.2016.38
http://arxiv.org/abs/1302.3347
http://arxiv.org/abs/1302.3347
http://arxiv.org/abs/1302.3347
http://arxiv.org/abs/1302.3347
https://doi.org/10.1142/S0129626496000054
https://doi.org/10.1142/S0129626496000054
http://arxiv.org/abs/2301.04295
https://doi.org/10.48550/arXiv.2301.04295

	Introduction
	Constructing DAWGs for integer alphabets
	Our Contributions to Text Indexing Constructions

	Computing Minimal Absent Words for Integer Alphabets
	Other efficient algorithms for computing MAWs

	Preliminaries
	Strings
	Suffix trees and DAWGs
	Minimal Absent Words

	Folklore Algorithm to Construct DAWG() from STree(y) in O(n) Time for Integer Alphabet
	Constructing DAWG(y) from STree(y) in O(n) Time for Integer Alphabet
	Constructing Affix Trees in O(n) Time for Integer Alphabet
	Constructions of other text indexing structures
	DAWG for the reversed string
	Symmetric CDAWGs
	Linear-size suffix tries

	Computing Minimal Absent Words in O(n + |MAW(y)|) Time
	Conclusions

