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Abstract

By a well known theorem of Robbins, a graph G has a strongly connected orientation if and
only if G is 2-edge-connected and it is easy to find, in linear time, either a cut edge of G or a
strong orientation of G. A result of Durand de Gevigny shows that for every k ≥ 3 it is NP-hard
to decide if a given graph G has a k-strong orientation. Thomassen showed that one can check in
polynomial time whether a given graph has a 2-strong orientation. This implies that for a given
digraph D we can determine in polynomial time whether we can reorient (=reverse) some arcs of
D = (V,A) to obtain a 2-strong digraph D′ = (V,A′). This naturally leads to the question of
determining the minimum number of such arcs to reverse before the resulting graph is 2-strong. In
this paper we show that finding this number is NP-hard. If a 2-connected graph G has no 2-strong
orientation, we may ask how many of its edges we may orient so that the resulting mixed graph is
still 2-strong. Similarly, we may ask for a 2-edge-connected graph G how many of its edges we can
orient such that the resulting mixed graph remains 2-arc-strong. We prove that when restricted to
graphs satisfying suitable connectivity conditions, both of these problems are equivalent to finding
the minimum number of edges we must double in a 2-edge-connected graph in order to obtain a
4-edge-connected graph. Using this, we show that all these three problems are NP-hard.

Finally, we consider the operation of deorienting an arc uv of a digraph D meaning replacing
it by an undirected edge between the same vertices. In terms of connectivity properties, this is
equivalent to adding the opposite arc vu to D. We prove that for every ` ≥ 3 it is NP-hard to find
the minimum number of arcs to deorient in a digraph D in order to obtain an `-strong digraph
D′.

Keywords: Arc-reversal, orientation, deorientation, vertex-connectivity, arc-connectivity

1 Introduction

In this paper graphs, digraphs and mixed graphs may have multiple edges and arcs but loops are not
allowed. Note that a mixed graph can have both edges and arcs. Here we also allow an arc and an
edge to join the same pair of vertices. We use the notation M = (V,E,A) to denote a mixed graph M
with edge set E(M) = E and arc set A(M) = A. We generally follow the notation of [2]. For some
positive integer k, a digraph D = (V,A) is k-strong if it has more than k vertices and for any set X
of less than k vertices, the digraph D −X obtained by its removal is strongly connected. A digraph
D is k-arc-strong if every subdigraph obtained by deleting at most k − 1 arcs from D is strongly
connected.

Let ak(D) denote the minimum number of new arcs one must add to a digraph D = (V,A) in order
to obtain a directed supergraph D′ = (V,A ∪ F ) which is k-strong. As the complete digraph on k + 1
vertices is k-strong we have ak(D) <∞ for every digraph on at least k+ 1 vertices. Frank and Jordán
[10] found a characterization for ak(D) in terms of so-called one-way pairs as well as a polynomial
algorithm for finding a minimum cardinality set F of ak(D) new arcs whose addition to D results in a
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k-strong digraph. The algorithm is exponential in k, a polynomial algorithm was given by Végh and
Benczúr in [26].

Similarly we let γk(D) denote the minimum number of new arcs we need to add to D = (V,A) so
that the resulting digraph D′ = (V,A∪F ) is k-arc-strong. Frank [8] gave a characterization for γk(D)
in terms of subpartitions of V (D) and showed how to find a set of γk(D) new arcs whose addition to
D results in a k-arc-strong digraph.

The following result, due to Nash-Williams, characterizes graphs that have a k-arc-strong orienta-
tion.

Theorem 1.1. [22] A graph G = (V,E) has a k-arc-strong orientation if and only if G is 2k-edge-
connected.

Denote the underlying undirected graph of a digraph D by UG(D). By Theorem 1.1, it is possible
to reorient some arcs of a digraph D so that the resulting digraph is k-arc-strong if and only if
UG(D) is 2k-edge-connected. Edmonds and Giles [7] showed how to use submodular flows to check
in polynomial time whether a given graph has a k-arc-strong orientation and find such an orientation
when it exists. There is also a simple recursive algorithm based on the constructive proof of Theorem
1.1 using Lovász’s splitting theorem [19, Exercise 6.53]. Using an algorithm or finding a minimum cost
feasible submodular flow [7, 12] we can also determine the minimum number of arcs whose reversal in
D leads to a k-arc-strong reorientation.

Given the results above it is natural to ask for the complexity of determining the minimum number
of arcs of a digraph D that we need to reverse to obtain a k-strong digraph. Clearly D has a set of arcs
whose reversal makes the new digraph k-strong if and only if its underlying undirected graph UG(D)
has a k-strong orientation, so we first consider the status of that problem.

As every k-strong digraph is also k-arc-strong, it follows from Theorem 1.1 that the following
condition is necessary for a graph G = (V,E) to have a k-strong orientation:

∀ X ⊂ V with |X| < k the graph G−X is 2(k − |X|)-edge-connected. (1)

For every fixed k we can check whether a given graph G satisfies (1) by applying a polynomial
number of applications of a polynomial algorithm for finding the edge-connectivity of a graph. There
are many such algorithms, see e.g. [21]. Frank [9] conjectured that (1) would also be sufficent. This
was confirmed for k = 2 by Thomassen [25].

Theorem 1.2. [25] A graph G = (V,E) has a 2-strong orientation if and only if it is 4-edge-connected
and G− v is 2-edge-connected for all v ∈ V .

Surprisingly k = 1, 2 are the only values of k for which (1) is sufficient. In fact Durand de Gevigney
[14] proved the following.

Theorem 1.3. [14] For every k ≥ 3 it is NP-hard to decide whether a given input graph has a k-strong
orientation.

By Theorem 1.3, for k ≥ 3 it is already NP-hard to decide whether there is any set of arcs
whose reversal makes a given digraph k-strong and hence a polynomial time algorithm for finding the
minimum number of arcs to reverse in order to get a k-strong reorientation of a given D is out of
reach. The only remaining case is k = 2. By Thomassen’s result and the fact that we can find the
edge-connectivity of any graph in polynomial time, we can check in polynomial time whether a given
digraph D has a set of arcs whose reversal makes the resulting digraph 2-strong.

Based on these observations, the first author asked at the conference ICGT 2022 in Montpellier
whether one could determine, for a given digraph D = (V,A), the minimum number of arcs whose
reversal results in a 2-strong digraph. In Section 2 we answer this question by proving that it is
NP-hard to determine the minimum number of arcs whose reversal results in a 2-strong digraph.

If a graph G = (V,E) is 2-connected but does not satisfy (1) for k = 2, then it is natural to ask
how many of its arcs we can orient so that the resulting mixed graph M = (V,E′, A) is still 2-strong.
Here A is the set of oriented edges (arcs) and E′ ⊆ E is the set of remaining edges that we did not
orient. Similarly we can ask for a 2-edge-connected graph G that is not 4-edge-connected and hence
does not have a 2-arc-strong orientation by Theorem 1.1, how many of its arcs we can orient so that the
resulting mixed graph M = (V,E′, A) is still 2-arc-strong. In Section 3, we prove that for 2-connected
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graphs both of these problems are equivalent to the problem of finding the minimum number of edges
in a 2-edge-connected graph one needs to double (add a copy of) in order to obtain a 4-edge-connected
graph. We then prove that all of these problems are in fact NP-hard.

In Section 4 we consider another operation for increasing the (arc)-connectivity of a digraph, namely
that is deorienting arcs. By deorienting an arc uv we mean the operation of replacing the arc by an
undirected edge between u and v. Note that the effect of this operation on the connectivity properties
of the digraph is the same as when adding a (copy of) the opposite arc vu. Deorienting a subset
of the arcs of a digraph can increase its (arc)-connectivity and it corresponds to a variation of the
(arc)-connectivity augmentation problems that we discussed in the beginning of the paper. We prove
that for every k ≥ 3 it is NP-hard to find the minimum number of arcs one needs to deorient in a
given digraph D in order to obtain a k-strong mixed graph. This partially answers a question raised
in [2]. The complexity of the analogous problem to find the minimum number of arcs one needs to
deorient in a given digraph D in order to obtain a k-arc-strong mixed graph is unknown. We point
out that there is a 2-approximation algorithm for the problem and show that the problem is NP-hard
if we wish to achieve given local arc-connectivities.

2 Arc reversals

Given a digraph D = (V,A), by reversing (reorienting) an arc a ∈ A, we mean the operation of
exchanging the head and the tail of a. We wish to understand how many arcs we need to reorient in
a given digraph in order to obtain a digraph that satisfies some prescribed connectivity condition. As
mentioned in the introduction, using algorithms for minimum cost submodular flows, we can determine
in polynomial time for every positive integer k and digraph D whose underlying graph is 2k-edge-
connected, the minimum number of arcs we need to reorient in a given digraph to obtain a k-arc-
connected digraph.

For vertex-connectivity, the following is an immediate consequence of Theorem 1.3.

Theorem 2.1. For every integer k ≥ 3, it is NP-hard to compute the minimum number of arcs we
need to reorient in a given digraph to obtain a k-strong digraph.

As a digraph is strong if and only if it is 1-arc-strong, it follows from our remarks in the introduction
that we can determine the minimum number of arcs whose reversal results in a strong digraph in
polynomial time. We deal with the remaining open case, namely 2-strong digraphs. Formally, we
consider the following problem:

Minimum 2-Strong Arc Reversal (M2SAR):

Input: A digraph D, an integer k.

Question: Is there a 2-strong digraph D′ which can be obtained from D by reversing at
most k arcs?

The following theorem completes the picture in the above discussion.

Theorem 2.2. It is NP-hard to compute the minimum number of arcs we need to reorient in a given
digraph to obtain a 2-strong digraph.

The rest of this section is concerned with proving Theorem 2.2. In Section 2.1, we describe a gadget
that will prove useful. In Section 2.2, we give the main reduction proving Theorem 2.2.

2.1 The Gadget

We now describe a gadget we need in our reduction. For four distinct vertices x0, y0, z0, v
∗ and a positive

integer k, an (x0, y0, z0, v
∗, k)-out-rocket is a digraphR with V (R) = {x0, . . . , xk, y0, . . . , yk, z0, . . . , zk, u, v

∗}
and that contains the following arcs:

• the arcs xiyi, yizi and zixi for i = 1, . . . , k,

• the arcs xixi+1, yiyi+1 and zi+1zi for i = 0, . . . , k − 1,
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Figure 1: A (x0, y0, z0, v
∗, 4)-out-rocket

• the arcs xku, yku, uzk and uv∗.

An illustration can be found in Figure 1.
We call uv∗ the tip arc of R. An (x0, y0, z0, v

∗, k)-in-rocket is obtained from R by reversing all
arcs. We call x0, y0, z0 and v∗ the exterior vertices and the remaining vertices of V (R) the interior
vertices of R. The following two observations on the connectivity properties of rockets in which R is an
(x0, y0, z0, v

∗, k)-in-rocket or an (x0, y0, z0, v
∗, k)-out-rocket are easy to verify and hence given without

proof.

Proposition 2.3. Let R′ be obtained from R by deleting an exterior vertex and identifying the three
remaining exterior vertices. Then R′ is strongly connected.

Proposition 2.4. Let R′ be obtained from R by identifying the four exterior exterior vertices. Then
R′ − x is strongly connected for all interior vertices x ∈ V (R).

In the following, we say that a digraphD contains an (x0, y0, z0, v
∗, k)-out-rocketR or an (x0, y0, z0, v

∗, k)-
in-rocket R if D contains R as a subgraph and δ+

D(v) = δ+
R(v) and δ−D(v) = δ−R(v) hold for all interior

vertices v ∈ V (R).
The following is the crucial property of rockets.

Lemma 2.5. Let D1, D2 be digraphs with UG(D1) = UG(D2) such that D1 contains a (x0, y0, z0, v
∗, k)-

out-rocket R or a (x0, y0, z0, v
∗, k)-in-rocket R for some x0, y0, z0, v

∗ ∈ V (D1) and some positive integer
k, D2 is 2-strong and the tip arc of R is reversed in D2. Then the number of arcs in A(D1) that are
reversed in D2 is at least k + 1.

Proof. By symmetry, we may suppose that R is a (x0, y0, z0, v
∗, k)-out-rocket. Denote the ver-

tices of R by x0, . . . , xk, y0, . . . , yk, z0, . . . , zk, u, v
∗ like in the definition of a rocket. By assump-

tion, the tip arc of R is reversed in D2. It hence suffices to prove that for every i = 0, . . . , k − 1,
one of the arcs xixi+1 and yiyi+1 is reversed in D2. Fix some i ∈ {0, . . . , k − 1} and let Z =
{xi+1, . . . , xk, yi+1, . . . , yk, zi+1, . . . , zk, u}. Observe that dUG(D2)(Z) = 4 and hence, as D2 is 2-strong,

we obtain d−D2
(Z) = 2. As v∗u enters Z in D2, at most one of the arcs xixi+1 and yiyi+1 can enter Z

in D2. This finishes the proof.

2.2 The reduction

We here give the main reduction proving Theorem 2.2. For our reduction, we need the following
problem where an orientation of a mixed graph M = (V,E,A) is any digraph the can be obtained
from M by assigning an orientation to each edge of M .
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Independent 2-strong orientation of mixed graphs (I2VCOMG):

Input: A mixed graph M , a set T ⊆ V (M) that is independent in UG(M).

Question: Is there a 2-arc-strong orientation ~M of M such that ~M−v is strongly connected
for all v ∈ T?

The following is implicitely proven in [16].

Theorem 2.6. I2VCOMG is NP-hard.

For a mixed graph M = (V,E,A) and X ⊆ V , we use δM (X), δ+
M (X), δ−M (X) to denote respectively,

the set of edges of E with one end vertex in X, the set of arcs of A with leaving X and the set of arcs
of A entering X. Further we use dM(X) = |δM (X)|,d+

M(X) = |δ+
M (X)| and d−M(X) = |δ−M (X)|. We

are now ready to prove Theorem 2.2 through a reduction from I2VCOMG.

Proof. (of Theorem 2.2) Let (M,T ) be an instance of I2VCOMG. For every arc a ∈ A(M), we choose
one vertex va ∈ {head(a), tail(a)}−T . Observe that such a vertex always exists as T is an independent
set in UG(M).

We now create a digraph D. First, we let V (D) contain T . Further, for every v ∈ V (M) − T , we
let V (D) contain a set Xv that contains

• a vertex xv,e for every edge e ∈ δM (v),

• a vertex xv,a for every arc a ∈ δ+
M (v) ∪ δ−M (v) with va 6= v,

• three vertices xv,a0 , yv,a0 , zv,a0 for every a ∈ δ+
M (v) ∪ δ−M (v) with va = v.

For every t ∈ T and a ∈ δM (t) ∪ δ+
M (t) ∪ δ−M (t), for convenience, we also refer to t by xt,a. For

every v ∈ V (M) − T , we let D[Xv] be a biclique. Next, for every e = uv ∈ E(M), we add an arc in
an arbitrary direction linking xu,e and xv,e. For every a = uv ∈ A(M) with va = u, we let D contain
a (xu,a0 , yu,a0 , zu,a0 , xv,a, |E(M)|)-out-rocket Ra and for every a = uv ∈ A(M) with va = v, we let D
contain a (xv,a0 , yv,a0 , zv,a0 , xu,a, |E(M)|)-in-rocket Ra. This finishes the description of D. For every
v ∈ V (M)− T , we let Yv = Xv ∪

⋃
a∈δ+M (v)∪δ−M (v)

va=v

V (Ra)−
⋃

w∈V (M)−T−v
Xw − T . For an illustration, see

Figure 2.

u v

t

H

t

Xv

Yu

Xu

D

Figure 2: An example illustrating the construction. The instance consists of the mixed graph M and
T = {t} and we choose va = u for the arc a = uv. The arcs of the biclique in D[Xu] have been omitted.

We now show that (D, |E(M)|) is a positive instance of M2SAR if and only if (M,T ) is a positive
instance of I2VCOMG.
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First suppose that (D, |E(M)|) is a positive instance of M2SAR, so there is a 2-strong digraph D1

that is obtained from D by at most |E(M)| arc reversals. We now create an orientation ~M of M . For
every e = uv ∈ E(M), we orient e from u to v if and only if D1 contains an arc from xe,u to xe,v.

In order to see that ~M is 2-arc-connected, consider some Z ⊆ V (M) and let Z ′ =
⋃
z∈Z−T Yz∪(Z∩

T ). Let a ∈ δ+
D1

(Z ′). If a is of the form xu,exv,e for some e ∈ E(M), then uv ∈ δ+
~M

(Z) by construction.
Otherwise, the arc corresponding to a in D is the tip arc of a rocket Ra′ in D. It follows from Lemma
2.5 that a also exists in D and hence a′ ∈ δ+

~M
(Z) by construction. As D1 is 2-strong, it follows that

d+
~M

(Z) ≥ d+
D1

(Z ′) ≥ 2, so ~M is 2-arc-connected.

Now consider ~M − t for some t ∈ T . Let Z ⊆ V (M − t) and Z ′ =
⋃
z∈Z Yz. As D1 − t is strongly

connected, a similar argument as before shows that d+
~M−t

(Z) ≥ d+
D1−t(Z

′) ≥ 1, so ~M − t is strongly

connected.

Now suppose that (M,T ) is a positive instance of I2VCOMG, so there is a 2-arc-connected orien-

tation ~M of M such that ~M − t is strongly connected for all t ∈ T . We now obtain D1 from D by
reversing all the arcs of the form xu,exv,e for some e ∈ E(M) for which the edge e is oriented from v

to u in ~M . Observe that D1 is obtained from D by reversing at most |E(M)| arcs.
We still need to show that D1 − x is strongly connected for all x ∈ V (D1). We distinguish three

cases.

Case 2.6.1. x ∈ T .

By Proposition 2.3 and as G[Xv] is a biclique, D1[Yv] is strongly connected for all v ∈ V (D1)− T .
It hence suffices to prove that the graph obtained from D1 by contracting Yv into a single vertex for all
v ∈ V (D1)−T is strongly connected. This graph is isomorphic to ~M−x and hence strongly connected
by assumption.

Case 2.6.2. x ∈ V (Ra)− T for some a ∈ A(M).

In this case, there is a unique v0 ∈ V (M) − T such that x ∈ Yv0 . As ~M is 2-arc-connected, we

obtain that ~M − a is strongly connected. Further, by Proposition 2.3 and as D1[Xv] is a biclique for
all v ∈ V , we obtain that D1[Yv] is strongly connected for all v ∈ V (M)−T − v0 and D1[Yv0 −V (Ra)]
is strongly connected. We obtain that D1 − V (Ra) is strongly connected. As Xv is a biclique for all
v ∈ V (M) − T , all the exterior vertices of Ra which are distinct from x are in the same connected
component of D1−x as V (D1)−V (Ra). We obtain that D1−x is strongly connected by Propositions
2.3 and 2.4.

Case 2.6.3. x = xu0,e for some e = u0v0 ∈ E(M).

By Proposition 2.3 and as D1[Xv] is a biclique for all v ∈ V , the subdigraph D1[Yv] is strongly

connected for all v ∈ V (M) − T − u0 and D1[Yu0
− x] is strongly connected. As ~M is 2-arc-strong,

~M − ~e is strongly connected. Now it follows from the way we constructed D from M that D1 − x is
strongly connected.

We wish to remark that a slight modification of this reduction shows that the minimization problem
associated to M2SAR does not admit an α-approximation algorithm for any constant α. Further,
similar results can be obtained when restricting the input graphs to being acyclic.

3 Partial orientations

We say that a mixed graph M = (V,E,A) is k-arc-strong if d+
A(X)+dE(X) ≥ k for every non-empty

proper subset X of V . Here d+
A(X) denotes the number of arcs leaving X in the subdigraph D of M

induced by the arcs in A and dE(X) denotes the number of edges with exactly one end in X in the
subgraph G of M induced by the edges in E. Similarly, a mixed graph M = (V,E,A) is k-strong if
it has more than k vertices and deleting any set of less than k vertices from M leaves a 1-arc-strong
(strong) mixed graph. The next two observations are easy to prove.

Proposition 3.1. Let M1,M2 be mixed graphs such that M2 is obtained from M1 by replacing a
digon by an undirected edge between the same two vertices and let k be a positive integer. Then M2 is
k-arc-strong if and only if M1 is k-arc-strong.
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Proposition 3.2. Let M1,M2 be mixed graphs such that M2 is obtained from M1 by replacing a digon
by an undirected edge between the same two vertices and let k be a positive integer. Then M2 is k-strong
if and only if M1 is k-strong.

A partial orientation of an undirected graph is a mixed graph that is obtained from orienting
some of the edges in the graph. The following is the central question of this section: Given a graph
G = (V,E) and an integer k, can we find a set F ⊆ E with |F | ≥ k and an orientation ~F of F such

that the mixed graph M = (V,E − F, ~F ) satisfies a certain prescribed connectivity property?

The case of strong connectivity is solvable in polynomial time due to the following easy consequence
of the restriction of Theorem 1.1 to k = 1 which was proved earlier by Robbins [23].

Theorem 3.3. [23] Let G = (V,E) be a graph and k a positive integer. Then there exists a strongly
connected partial orientation of G in which k arcs are oriented if and only if G is connected and
k ≤ |E| − b(G) where b(G) denotes the number of bridges of G.

The following is an immediate consequence of Theorem 1.3.

Theorem 3.4. For any ` ≥ 3, it is NP-hard to decide whether there exists an `-strong partial orien-
tation of a given graph G in which at least k edges are oriented where k is part of the input.

By these two results, the only remaining case for vertex-connectivity is ` = 2. We are going to
show that this case is NP-hard and that the same holds for 2-arc-connectivity.

The following results describe a close relationship between the above mentioned problem on partial
orientations and the problem of making a graph satisfy certain connectivity properties by doubling
some edges. We need the following result which is a direct consequence of Corollary 2 in [17].

Proposition 3.5. Let G be a graph that has a k-arc-connected orientation for some positive integer k
and let (e1, f1), . . . , (et, ft) be a collection of pairwise disjoint pairs of parallel edges in G. Then G has
a k-arc-connected orientation in which ei and fi are oriented in opposite directions for i = 1, . . . , t.

Lemma 3.6. Let G be a 2-edge-connected graph and k a positive integer. Then G can be made 4-
edge-connected by doubling at most k edges if and only if G has a 2-arc-strong partial orientation in
which at most k edges remain unoriented.

Proof. First suppose that a 4-edge-connected graph G′ = (V,E′) can be obtained from G by doubling

a set F of at most k edges. By Theorem 1.1, there is a 2-arc-connected orientation ~G′ of G′. Further,
by Proposition 3.5, we may assume that for every e ∈ F , the two edges in E′ corresponding to e are
oriented in opposite directions in ~G′. Now let M be the mixed graph in which each of these pairs is
replaced by a single undirected edge. By Proposition 3.1, we obtain that M is 2-arc-strong. Further,
M is a partial orientation of G in which only the edges of F , hence at most k edges, remain unoriented.

Now suppose that there is a 2-arc-strong partial orientation M of G in which the set F of undirected
edges is of size at most k. Let ~G′ be obtained from M by replacing every undirected edge by a digon.
By Proposition 3.1, we obtain that ~G′ is 2-arc-strong. Let G′ be the underlying graph of ~G′. By
Theorem 1.1, we obtain that G′ is 4-edge-connected. Further, G′ is obtained from G by doubling the
edges in F , hence at most k edges.

Lemma 3.7. Let G = (V,E) be a 2-vertex-connected graph and k a positive integer. Then there is a
4-edge-connected graph G′ that can be obtained from G by doubling at most k edges for which G′− v is
2-edge-connected for every v ∈ V if and only if G has a 2-strong partial orientation in which at most
k edges remain unoriented.

Proof. First suppose that by doubling a set F of at most k edges of G we can obtain a 4-edge-connected
graph G′ = (V,E′) for which G′ − v is 2-edge-connected for every v ∈ V . By Theorem 1.2, there is

a 2-strong orientation ~G′ of G′. Further, we may clearly assume that for every e ∈ F , the two edges
in E′ corresponding to e are oriented in opposite directions. Now let M be the mixed graph in which
each of these pairs is replaced by a single undirected edge. By Proposition 3.2, we obtain that M is
2-strong. Further, M is a partial orientation of G in which only the edges of F , hence at most k edges,
remain unoriented.

7



Now suppose that there is a 2-strong partial orientation M of G in which the set F of undirected
edges is of size at most k. Let ~G′ be obtained from M by replacing every undirected edge by a digon.
By Proposition 3.2, we obtain that ~G′ is 2-strong. Let G′ be the underlying graph of ~G′. By Theorem
1.1, we obtain that G′ is 4-edge-connected and since ~G′ − v is strong for all v ∈ V , we get that G′ − v
is 2-edge-connected. Further, G′ is obtained from G by doubling the edges in F , hence at most k
edges.

The rest of this section is structured as follows: In Section 3.1, we prove that the problem of
doubling the minimum number of edges of a graph to obtain a 4-edge-connected graph is NP-hard.
As this result also holds for the graph classes considered in Lemmas 3.6 and 3.7, we obtain hardness
results for the corresponding partial orientation problems. In Section 3.2, as a second application
of Lemmas 3.6 and 3.7, we obtain approximation algorithms for the partial orientation problems in
consideration, relying on a result of Cecchetto, Traub and Zenklusen [5]. Motivated by the result in
Section 3.1, we study the problem of making a graph 3-edge-connected by doubling edges in Section
3.3 and show that this problem can be solved in polynomial time.

3.1 4-edge-connectivity augmentation by doubling edges

Formally, we consider the following problem where the choice of properties of the input graph H is
motivated by Lemmas 3.6 and 3.7:

4 Edge-Doubling Augmentation (4EDA)

Input: A graph H such that H − v is 2-edge-connected for all v ∈ V (H) and an integer k.

Question: Can H be made 4-edge-connected by doubling at most k edges?

The following is the main result of this section.

Theorem 3.8. 4EDA is NP-hard.

Together with Lemmas 3.6 and 3.7, Theorem 3.8 immediately implies the following results for
partial orientations.

Corollary 3.9. Given a graph G and a positive integer k, it is NP-hard to decide whether there is a
2-arc-strong partial orientation of G in which at least k arcs are oriented.

Corollary 3.10. Given a graph G and a positive integer k, it is NP-hard to decide whether there is a
2-strong partial orientation of G in which at least k arcs are oriented.

The rest of Section 3.1 is concerned with proving Theorem 3.8 by a reduction from a variation of
vertex cover. In Section 3.1.1, we introduce this variation of vertex cover and show that it remains
hard indeed. In Section 3.1.2, we describe our construction and prove some of its important properties.
In Section 3.1.3, we show that the reduction works indeed.

3.1.1 Preliminaries on vertex cover

The vertex cover problem can be described as follows:

Vertex Cover (VC)

Input: A graph G, an integer k.

Question: Is there a set S ⊆ V (G) with |S| ≤ k such that S contains at least one endvertex
of e for all e ∈ E(G)?

The following result is well-known.

Theorem 3.11. [13] VC is NP-hard for cubic 2-vertex-connected graphs.

Let G be the class of graphs that arise from a cubic 2-vertex-connected graph by subdividing every
edge twice.
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Proposition 3.12. VC is NP-hard for graphs in G.

Proof. Let G be a 2-connected, cubic graph, k a positive integer and G′ the graph which arises from
G by subdividing every edge twice. By definition, we have G′ ∈ G. We now show that (G′, k+ |E(G)|)
is a positive instance of VC if and only if (G, k) is a positive instance of VC.

First suppose that (G, k) is a positive instance of VC, so there is a vertex cover S ⊆ V (G) with
|S| ≤ k. By definition, for every e = uv ∈ E(G), at least one of u and v is in S. Hence at most one
of the two subdivision vertices of e does not have a neighbor in S in G′. We create S′ by adding this
vertex to S, choosing an arbitrary one of the two subdivision vertices if both u and v are contained in
S. It is easy to see that S′ is a vertex cover of G′ and satisfies |S′| = |E(G)|+ |S| ≤ |E(G)|+ k.

Now suppose that (G′, k+|E(G)|) is a positive instance of VC, so there is a vertex cover S′ ⊆ V (G′)
with |S′| ≤ k+ |E(G)|. We may suppose that S′ is chosen so that the number of edges e ∈ E(G) such
that S′ contains both subdivision vertices of e is minimized. Suppose that S′ contains both subdivision
vertices of some edge e = uv ∈ E(G). Let S′′ be obtained from S′ by deleting the subdivision vertex
of e which is a neighbor of u and adding u if it is not yet contained. Then S′′ is a vertex cover of G′ of
at most the same size as S′, a contradiction to the choice of S′. Hence for every e ∈ E(G), S′ contains
at most one of the subdivision vertices of e. Now let S = S′∩V (G). It is easy to see that S is a vertex
cover of G that satisfies |S| = |S′| − |E(G)| ≤ k. This finishes the proof by Theorem 3.11.

For a graph G ∈ G, a legal path decomposition of G is a set of subpaths P = P1 ∪ P2 of G with
the following properties:

• {E(P ) : P ∈ P} is a partition of E(G),

• every P ∈ Pi contains exactly i edges for i = 1, 2,

• every v ∈ V (G) is contained in exactly two paths of P.

Proposition 3.13. Every G ∈ G has a legal path decomposition.

Proof. For every vertex v of G of degree 3, choose two arbitrary edges of G which are incident with v
and add the corresponding path to P2. For all remaining edges of G, add the path that contains only
this edge to P1. It is easy to see that P1 ∪ P2 has the desired properties.

Proposition 3.14. Let G ∈ G and let P = P1 ∪ P2 be a legal path decomposition of G. Then
|P1| = 5

8 |V (G)|, |P2| = 1
4 |V (G)| and every vertex is contained in at most one path of P2.

Proof. Let G′ be the graph from which G is obtained by subdividing every edge twice. Then, by
the last property of legal decompositions, we obtain that every v ∈ V (G′) is the middle vertex of
exactly one path in P2 and no vertex in V (G) − V (G′) is the middle vertex of a path in P2. We
obtain |P2| = |V (G′)| = 1

4 |V (G)|. We further have |P1| = |E(G)| − 2|P2| = 3|E(G′)| − 2|P2| =
9
2 |V (G′)| − 2|V (G′)| = 5

2 |V (G′)| = 5
8 |V (G)|. The fact that the middle vertex of every path in P2 is in

V (G′) implies the second property.

3.1.2 The construction and the main lemma

This section contains the first part of the proof of Theorem 3.8. Based on Proposition 3.12, we proceed
by a reduction from VC with the additional assumption that the input graph is in G. Let (G, k) be
an instance of VC with G ∈ G. Clearly, we may suppose that |V (G)| ≥ 5. By Proposition 3.13, there
is a legal path decomposition P = P1 ∪ P2 of G which can easily be computed in polynomial time.
We now create a graph H. First, for every P ∈ P1, we let V (H) contain a vertex xP . For every
P = uvw ∈ P2, we let H contain a path gadget with vertex set XP = {xuP , xvP , xwP , x1

P , . . . , x
8
P } and

edges xuPx
2
P , x

u
Px

3
P , x

u
Px

4
P , x

u
Px

5
P , x

v
Px

1
P , x

v
Px

8
P , x

w
Px

7
P , x

w
Px

8
P , x

1
Px

2
P , x

1
Px

8
P , x

2
Px

3
P , x

3
Px

4
P , x

4
Px

5
P , x

5
Px

6
P ,

x6
Px

7
P , x

6
Px

8
P , x

7
Px

8
P . Observe that the roles of u and w could be exchanged in this construction.

However, this ambiguity will be of no effect. An illustration can be found in Figure 3.
Next, we add a vertex y and an edge linking y and xP for all P ∈ P1. Finally, for every v ∈ V (G)

that is contained in two paths P, P ′ ∈ P1, we add an edge ev linking xP and xP ′ and for every v ∈ V (G)
that is contained in a path P ∈ P1 and a path P ′ ∈ P2, we add an edge ev linking xP and xvP ′ . Observe
that, as P is legal and by Proposition 3.14, this operation is well-defined and we have added exactly
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xw
P

xu
P

x8
P

xv
P

x1
P x7

P

x6
P

x2
P x3

P x4
P x5

P

Figure 3: An example for a gadget for a path P in P2.

one edge ev for every v ∈ V (G). This finishes the description of H. An illustration can be found in
Figure 4.

t

u1

u2

u3

v1

v2

v3

w

et

eu1

eu2

eu3

ev2

ev3

ev1

ew

y

G

H

Figure 4: An example for the construction of H. The colors mark the legal decomposition P.

The following result shows that H is indeed contained in the desired input domain.

Lemma 3.15. H − a is 2-edge-connected for all a ∈ V (H).

Proof. Suppose otherwise, so there is a vertex a ∈ V (H) and a set S ⊆ V (H)−a such that dH−a(S) ≤ 1.
First suppose that a 6= y. By symmetry, we may suppose that y ∈ S. First consider some P0 ∈ P1

with xP0
6= a. If there is some P1 ∈ P1 with V (P0)∩ V (P1) 6= ∅ and xP1

6= a, then H − a contains the
xP0y-paths xP0y and xP0xP1y, so xP0 ∈ S. Otherwise, there is some P2 ∈ P2 with V (P0) ∩ V (P2) 6= ∅
and a /∈ XP2 . Further, as P is legal, there is some P3 ∈ P1 with V (P2) ∩ V (P3) 6= ∅ and xP3 6= a.
Hence H−a contains the xP0

y-path xP0
y and an xP0

y-path passing through XP2
and xP3

. This yields
xP0
∈ S. We obtain

⋃
P∈P1

xP − a ⊆ S.
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Now consider some P0 ∈ P2 with a /∈ XP0 . Observe that H[XP0 ] is 2-edge-connected, hence we
either have XP0 ⊆ S or XP0 ∩S = ∅. As P is legal, there are paths P1, P2 ∈ P1 with V (P0)∩V (P1) 6=
∅, V (P0) ∩ V (P2) 6= ∅ and a /∈ {xP1

, xP2
}. Hence H − a contains an edge from XP0

to xPi
for i = 1, 2,

so XP0
⊆ S.

We obtain that V (H) − S ⊆ XP for some P ∈ P2 with a ∈ XP . Let H ′ be the graph that is
obtained from H by contracting V (H) − XP into a single vertex. It is easy to see that H ′ − z is
2-edge-connected for all z ∈ V (H ′). This yields dH−a(S) = dH′−a(S) ≥ 2, a contradiction.

Now suppose that a = y. Observe that for every P ∈ P2, we have that H[XP ] is 2-edge-connected,
hence we either have XP ⊆ S or XP ∩ S = ∅. Let PS = {P ∈ P1 : xP ∈ S} ∪ {P ∈ P2 : XP ⊆ S} and
P−S = P−PS . Further, let V S =

⋃
P∈PS V (P ) and V −S =

⋃
P∈P−S V (P ). Observe that V S∪V −S =

V (G) and since S, V (H)− S − y 6= ∅ and by the construction, we have min{|V S |, |V −S |} ≥ 2. If one
of V S − V −S and V −S − V S is empty, we have |V S ∩ V −S | = min{|V S |, |V −S |} ≥ 2. Otherwise,
observe that G does not contain an edge linking V S−V −S and V −S−V S , so V S ∩V −S is a separator
of G. As G is 2-vertex-connected, again, we obtain |V S ∩ V −S | ≥ 2. Finally, observe that for every
w ∈ V S ∩ V −S , we have ew ∈ δH−y(S). This yields dH−y(S) ≥ |V S ∩ V −S | ≥ 2, a contradiction. This
finishes the proof.

The following lemma is the key for the reduction in Section 3.1.3. Its proof has some similarities
with the one of Lemma 3.15, but we give it separately for the sake of readability.

Lemma 3.16. H is 3-edge-connected and the 3-edge-cuts of H are the following:

(i) δH(xP ) for every P ∈ P1,

(ii) δH(XP ) for every P ∈ P2,

(iii) δH(xiP ) for every P ∈ P2 and i ∈ {v, w, 1 . . . , 7},

(iv) δH({xuP , x2
P , . . . , x

5
P }) for every P ∈ P2.

Proof. It is easy to see that all the given cuts are 3-edge-cuts indeed. It hence suffices to prove that
all cuts of size at most 3 are 3-edge-cuts of this form. Let ∅ 6= S ( V (H) with dH(S) ≤ 3. By
symmetry, we may suppose that y ∈ V (H)− S. Observe that for every P ∈ P2, we have that H[XP ]
is 2-edge-connected. If there are distinct P1, P2 ∈ P2 such that S ∩ XPi

and S − XPi
are nonempty

for i = 1, 2, we obtain dH(S) ≥
∑2
i=1 dH[XPi

](S ∩XPi) ≥ 2 + 2 = 4, a contradiction. Hence there is at
most one such path. For the rest of the proof, we distinguish the two cases whether this path exists
or not.

Case 3.16.1. There exists a path P ∗ ∈ P2 such that S ∩XP∗ and S −XP∗ are nonempty.

Claim 3.16.1. For all P ∈ P1, we have xP ∈ V (H)− S.

Proof. Suppose otherwise. If there are two paths P1, P2 ∈ P1 with xPi
∈ S for i = 1, 2, we obtain

dH(S) ≥ dH[XP∗ ](S∩XP∗)+
∑2
i=1 dH(xPi

, y) ≥ 2+1+1 = 4, a contradiction. We may hence suppose
that there is a unique path P1 ∈ P1 with xP1 ∈ S. As G ∈ G and P is legal, there is a vertex v ∈ V (G)
and a path P2 ∈ P − {P ∗, P1} such that v ∈ V (P1) ∩ V (P2). If the endvertex of ev which is distinct
from xP1

is in V (H)− S, we obtain dH(S) ≥ dH[XP∗ ](S ∩XP∗) + dH(xP1
, y) + |{ev}| = 2 + 1 + 1 = 4,

a contradiction. We obtain that this vertex is in S. By the choice of P1, we obtain that P2 ∈ P2.
Further, by the choice of P ∗, we obtain that XP2

⊆ S. As G ∈ G and P is legal, we obtain that there
is a path P3 ∈ P1 − P1 such that V (P2) ∩ V (P3) contains a vertex w. By the choice of P1, we obtain
xP3 ∈ V (H)− S. This yields dH(S) ≥ dH[XP∗ ](S ∩XP∗) + dH(xP1 , y) + dH(xwP2

, xP3) = 2 + 1 + 1 = 4,
a contradiction.

Claim 3.16.2. For all P ∈ P2 − P ∗, we have XP ⊆ V (H)− S.

Proof. Suppose otherwise, so by the choice of P ∗, there is some P1 ∈ P2 − P ∗ with XP1 ⊆ S. As
G ∈ G and P is legal, there are distinct paths P2, P3, P4 ∈ P1 and v2, v3, v4 ∈ V (G) such that
vi ∈ V (Pi) ∩ V (P1). By Claim 3.16.1, we have {xP2

, xP3
, xP4
} ⊆ V (H)− S. This yields that dH(S) ≥

dH[XP∗ ](S ∩XP∗) +
∑4
i=2 dH(xviP1

, xPi
) ≥ 2 + 1 + 1 + 1 = 5, a contradiction.

By Claims 3.16.1 and 3.16.2, we obtain that S ( XP∗ . By construction, we obtain that one of the
cases (iii) and (iv) of Lemma 3.16 occurs. This finishes the case.

11



Case 3.16.2. For all P ∈ P2, we have either XP ⊆ S or XP ∩ S = ∅.

Let PS1 be the sets of paths P ∈ P1 for which xP ∈ S holds and let PS2 be the sets of paths
P ∈ P2 for which XP ⊆ S holds. Next, let P−S1 = P1 − PS1 and P−S2 = P2 − PS2 . Finally, let
V S =

⋃
P∈PS

1 ∪PS
2
V (P ) and V −S =

⋃
P∈P−S

1 ∪P−S
2

V (P ). Observe that V S , V −S ⊆ V (G).

Claim 3.16.3. dH(S) ≥ |PS1 |+ |V S ∩ V −S |.

Proof. For every P ∈ PS1 , the edge xP y is contained in δH(S) and for every v ∈ V S ∩ V −S , the edge
ev is contained in δH(S). As all of these edges are distinct, the statement follows.

We now distinguish several cases depending on the size of PS1 .

Subcase 3.16.1. PS1 = ∅.

As G ∈ G, P is legal and PS1 = ∅, we obtain
⋃
P∈PS

2
V (P ) ⊆ V S ∩ V −S . If PS2 contains at least

two paths P1, P2, we obtain |V S ∩ V −S | ≥ |V (P1)| + ‖V (P2)| ≥ 6, a contradiction to Claim 3.16.3.
If |PS2 | = 1, by construction, case (ii) of Lemma 3.16 occurs. If |PS2 | = 0, we obtain S = ∅, a
contradiction.

Subcase 3.16.2. PS1 6= ∅.

By Proposition 3.14 and |V (G)| ≥ 5, we have |P1| ≥ 4. Hence if P−S1 = ∅, we obtain by Proposition
3.16.3 that dH(S) ≥ |PS1 | = |P1| − |P−S1 | ≥ 4− 0 = 4, a contradiction, so P−S1 6= ∅. As every path in
P−S1 contains two vertices, we obtain |V −S | ≥ 2. Similarly, the fact that PS1 6= ∅ yields |V S | ≥ 2. If one
of V S−V −S and V −S−V S is empty, we have |V S∩V −S | = min{|V S |, |V −S |} ≥ 2. Observe that every
edge of E(G) incident to a vertex in V S − V −S is contained in a path of PS and every edge of E(G)
incident to a vertex in V −S − V S is contained in a path of P−S . Hence, G does not contain an edge
linking V S−V −S and V −S−V S , so V S ∩V −S is a separator of G. As G is 2-vertex-connected, again,
we obtain |V S ∩ V −S | ≥ 2. By Claim 3.16.3, we obtain 3 ≥ dH(S) ≥ |PS1 |+ |V S ∩ V −S | ≥ 1 + 2 = 3.
Hence equality holds throughout yielding that PS1 contains a single path P and |V S ∩ V −S | = 2. As
G ∈ G and P is legal, we obtain S = {xP }, so case (i) of Lemma 3.16 occurs.

3.1.3 The main proof

In this section, we show that our reduction works indeed. More formally, we prove the following
statement.

Lemma 3.17. (H, k + |V (G)|) is a positive instance of 34EDA if and only if (G, k) is a positive
instance of VC.

Proof. First suppose that (G, k) is a positive instance of VC, so there is a vertex cover S ⊆ V (G) with
|S| ≤ k. We now define a set F ⊆ E(H). First, for all v ∈ S, we let F contain the edge ev. Further,
for every P = uvw ∈ P2 with v ∈ S, we let F contain the edges x1

Px
2
P , x

3
Px

4
P , x

5
Px

6
P and xwPx

7
P and

for every P = uvw ∈ P2 with v /∈ S, we let F contain the edges xvPx
1
P , x

2
Px

3
P , x

4
Px

5
P and x6

Px
7
P . This

finishes the description of F . Observe that, by Proposition 3.14, we have |F | = |S|+4|P2| ≤ k+|V (G)|.
In order to prove that the graph obtained from H by doubling all edges in F is 4-edge-connected, it
suffices to prove that F contains at least one edge of every 3-edge-cut of H which are listed in Lemma
3.16.

First consider some P = uv ∈ P1. As S is a vertex cover and uv ∈ E(G), we obtain that S contains
one of u and v. This yields that F contains one of eu and ev, hence at least one edge of δH(xP ).

Now consider some P = uvw ∈ P2.
As S is a vertex cover and uv ∈ E(G), we obtain that S contains one of u and v. This yields that

F contains one of eu and ev, hence at least one edge of δH(XP ).
Next observe that by construction F contains an edge in δH(xiP ) for all i ∈ {1, . . . , 7}.
We now distinguish two cases.

Case 3.17.1. v ∈ S
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By construction, we have ev ∈ F , so F contains an edge in δH(xvP ). Next, by construction, we have
xwPx

7
P ∈ F , so F contains an edge in δH(xwP ). Finally, F contains the edge x1

Px
2
P , so F contains an

edge in δH({xuP , x2
P , . . . , x

5
P }).

Case 3.17.2. v /∈ S

As S is a vertex cover and uv, vw ∈ E(G), we obtain that u,w ∈ S, so eu, ew ∈ F . In particular, F
contains an edge in δH(xwP ) and an edge in δH({xuP , x2

P , . . . , x
5
P }). Finally, F contains the edge xvPx

1
P ,

so F contains an edge in δH(xvP ).

Hence, by Lemma 3.16, we obtain that the graph obtained from H by doubling the edges of F is
4-edge-connected, so (H, k + |V (G)|) is a positive instance of 34EDA.

Now suppose that (H, k+ |V (G)|) is a positive instance of 34EDA, so there is a set F ⊆ E(H) with
|F | ≤ k + |V (G)| such that the graph obtained from doubling every edge of F is 4-edge-connected.

We say that a path P = uv ∈ P1 is nice with respect to F if F contains at least one of eu and ev
and that a path P = uvw ∈ P2 is nice with respect to F if F contains either ev or both eu and ew and
|F ∩E(H[XP ])| ≥ 4. We may suppose that F is chosen among all feasible solutions to the instance of
34EDA so that the number of paths in P which are not nice with respect to F is minimized.

Claim 3.17.1. All paths in P1 are nice with respect to F .

Proof. Suppose otherwise, so there is some P = uv ∈ P1 such that P is not nice with respect to F .
As F contains an edge in δH(xP ), we obtain that xP y ∈ F . Let F ′ = F − xP y ∪ eu. Clearly, we have
|F ′| = |F | ≤ k + |V (G)|. Further, it follows from Lemma 3.16 that the graph obtained from H by
doubling all edges of F ′ is 4-edge-connected. This contradicts the choice of F .

Claim 3.17.2. All paths in P2 are nice with respect to F .

Proof. Let P = uvw ∈ P2. We first prove that |F∩E(H[XP ])| ≥ 4. Observe thatH[XP ]−{xuP , xvP , xwP }
contains 7 vertices of degree 3 in H and these vertices are only incident to edges of E(H[XP ]) in
H. As the graph obtained from H by doubling the edges of F is 4-edge-connected, we obtain that
|F ∩ E(H[XP ])| ≥ 4. Hence, if ev ∈ F or {eu, ew} ⊆ F , there is nothing to prove. Further, as F
contains an edge in δH(XP ), we obtain that F contains at least one edge of {eu, ev, ew}. Suppose for
the sake of a contradiction that F does not contain ev and contains exactly one of eu and ew.

Subclaim 3.17.1. |F ∩ E(H[XP ])| ≥ 5.

Proof. First suppose that F contains the edge eu. Observe that H[XP ]− {xuP } contains 9 vertices of
degree 3 in H and these vertices are only incident to edges of E(H[XP ]) in H − {ev, ew}. As F does
not contain ev and ew and the graph obtained from H by doubling the edges of F is 4-edge-connected,
we obtain that |F ∩ E(H[XP ])| ≥ 5.

Now suppose that H contains the edge ew. Observe that H[XP ] − {xwP } contains 8 vertices of
degree 3 in H and these vertices are only incident to edges of E(H[XP ]) in H − {eu, ev}. Further,
the only set of 4 edges in E(H[XP ]) containing at least one edge of all corresponding 3-edge cuts
is {xvPx1

P , x
2
Px

3
P , x

4
Px

5
P , x

6
Px

7
P }. However if F ∩ E(H[XP ]) = {xvPx1

P , x
2
Px

3
P , x

4
Px

5
P , x

6
Px

7
P }, then as

eu /∈ F , F does not contain any edge of the 3-edge cut δH({xuP , x2
P , . . . , x

5
P }), a contradiction. We

hence obtain |F ∩ E(H[XP ])| ≥ 5.

Let F ′ = F − E(H[XP ]) ∪ {eu, xvPx1
P , x

2
Px

3
P , x

4
Px

5
P , x

6
Px

7
P }. By Subclaim 3.17.1, we have |F ′| ≤

|F | ≤ k + |V (G)|. Further, it follows from Lemma 3.16 that the graph obtained from H by doubling
all edges of F ′ is 4-edge-connected. This contradicts the minimality of F .

We are now ready to define a vertex cover S ⊆ V (G) of G. Namely, we let S include a vertex
v if ev ∈ F . Observe that by Claim 3.17.2 and Proposition 3.14, we have |S| ≤ |F | − 4|P2| ≤
(k + |V (G)|)− |V (G)| = k. Now consider some uv ∈ E(G). As P is legal, we obtain that uv ∈ E(P )
for some P ∈ P. As P is nice with respect to F and by definition of S, we obtain that S contains at
least one of u and v. Hence S is a vertex cover of G. This finishes the proof.

We wish to remark that the same proof technique can be used to prove that the problem of
minimizing the arcs that are doubled is APX-hard, relying on a corresponding result for Cubic Vertex
Cover by Alimonti and Kann [1]. Similar results follow for the partial orientation problems.
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3.2 Approximation algorithms

In this section, we give another application of the connections established in Lemmas 3.6 and 3.7.
Namely, we give an approximation algorithm for the problem of making a graph 4-edge-connected
by doubling a minimum number of edges and conclude the existence of approximation algorithms for
partial orientation problems from this. We consider the following minimization problem which is a
natural generalization of 4EDA:

Minimum 4-Edge Doubling Augmentation M4EDA

Input: A 2-edge-connected graph G.

Question: What is the minimum cardinality OPT (G) of a set F of edges in E(G) such
that the graph obtained from G by doubling the edges in F is 4-edge-connected?

Observe that the condition that the input graph is 2-edge-connected is necessary for a feasible
solution to exist. In order to obtain an approximation result for M4EDA, we heavily rely on some
previous work of Cecchetto, Traub and Zenklusen [5]. They consider an optimization problem which
contains the following problem as a special case:

Restricted 3-4 Edge-Connectivity Augmentation R34ECA

Input: A 3-edge-connected graph G and a graph H with V (H) = V (G) such that
(V (G), E(G) ∪ E(H)) is 4-edge-connected.

Question: What is the minimum cardinality OPT ′(G,H) of a set F of edges in E(H) such
that the graph obtained from G by adding the edges in F is 4-edge-connected?

The following result follows from a result in [5].

Theorem 3.18. There is an algorithm A0 whose input is an instance (G,H) of R34ECA and that
outputs a set F ⊆ E(H) such that the graph obtained from G by adding the edges of F is 4-edge-
connected and |F | ≤ αOPT ′(G,H) holds where α = 1.393 . . . is a constant.

Using this, we obtain the following result:

Theorem 3.19. There is an algorithm A whose input is an instance G of M4EDA and that outputs
a set F ⊆ E(G) such that the graph obtained from G by doubling the edges of F is 4-edge-connected
and |F | ≤ αOPT (G,H) holds where α = 1.393 . . . is the same constant as in Theorem 3.18.

Proof. We first outline the algorithm. Let G be an instance of M4EDA and let F1 be the set if edges
in E(G) that are contained in a 2-edge-cut of G. Let G′ be the graph obtained from G by doubling
the edges in F1. We further let H be the graph with V (H) = V (G) that contains a copy e′ of every
e ∈ E(G)−F1. Observe that (V (G), E(G′)∪E(H)) can be obtained from G by doubling all edges and
is hence 4-edge-connected. We may hence apply the algorithm A0 to the instance (G′, H) of R34ECA.
Let F ′2 be the set of edges returned by A0 and let F2 be the set of corresponding edges in E(G). We
now let A return F = F1 ∪ F2.

Using the fact that A0 is polynomial, it is easy to see that A is also polynomial. Further, as F ′2
is a feasible solution for the instance (G,H) of R34ECA, we obtain that the graph obtained from G′

by doubling the edges in F2 is 4-edge-connected and hence F is a feasible solution for the instance G
of M4EDA. Now let F ∗ be an optimal solution for the instance G of M4EDA. As every edge in F1 is
contained in a 2-edge-cut of G, we obtain that F1 ⊆ F ∗. Let F ′′ be the set of edges in E(H) that
correspond to the edges in F ∗−F1. As the graph obtained from G′ by doubling the edges in F ∗−F1 is
4-edge-connected, we obtain F ′′ is a feasible solution for the instance (G,H) of R34ECA. This yields
|F | = |F1|+ |F2| ≤ |F1|+ αOPT ′(G,H) ≤ |F1|+ α|F ′′| = |F1|+ α(|F ∗| − |F1|) ≤ α|F ∗| = αOPT (G).
Hence A has all the desired properties. This finishes the proof.

Combining Theorem 3.19 with Lemmas 3.6 and 3.7, respectively, we obtain the following conclusions
for partial orientations. While the first one is an immediate application of Theorem 3.19, for the second
one an argument similar to the one in the proof of Theorem 3.19 can be used. We leave the details to
the interested reader.
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Corollary 3.20. There is an algorithm whose input is a 2-edge-connected graph G and that computes
a 2-arc-strong partial orientation M of G such that the number of undirected edges in M is at most α
times bigger than in any other 2-arc-strong partial orientation of G.

Corollary 3.21. There is an algorithm whose input is a 2-vertex-connected graph G and that computes
a 2-strong partial orientation M of G such that the number of undirected edges in M is at most α
times bigger than in any other 2-strong partial orientation of G.

3.3 2 to 3-edge-connectivity augmentation by doubling edges is polynomial

The NP-hardness of 34EDA raises the question whether this problem becomes better tractable when
weaker connectivity conditions are seeked for. For making a connected graph 2-edge-connected, this is
easily seen to be the case as the set of all bridges forms an optimal solution. In this section, we show
that a positive algorithmic result is also available for 3-edge-connectivity, even in the more general
weighted setting. We consider the following problem:

Weighted 2-3 Edge Doubling Augmentation W23EDA

Input: A 2-edge-connected graph G, a weight function w : E(G)→ R≥0, an integer k.

Question: Can H be made 3-edge-connected by doubling at set F of edges with w(F ) < k?

We prove the following:

Theorem 3.22. W23EDA can be solved in polynomial time. Moreover, for positive instances, an
optimal solution can be found in polynomial time.

Let G be a 2-edge-connected graph and u, v ∈ V (G). We say that u ∼ v if λG(u, v) ≥ 3. Observe
that ∼ is an equivalence relation on V (G). We let QG be the graph that contains a vertex v for each
eqiuvalence class Bv of ∼ and that contains an edge uv for every edge of G linking the eqiuvalence
classes Bu and Bv. A cactus is an undirected graph G that satisfies λG(u, v) = 2 for all distinct
u, v ∈ V (G).

Lemma 3.23. Let G be a 2-edge-connected graph. Then QG is a cactus.

Proof. Let u, v ∈ V (QG) with u 6= v and consider some X ⊆ V (QG) with u ∈ X and v ∈ V (QG)−X.
Let X̄ =

⋃
x∈X Bx. Then dQG

(X) = dG(X̄) ≥ 2, so λQG
(u, v) ≥ 2.

Now consider some u′ ∈ Bu and v′ ∈ Bv 6= Bu. As λG(u′, v′) = 2, there is some X̄ ⊆ V (G) with
u′ ∈ X̄, v′ ∈ V (G)− X̄ and dG(X̄) = 2. By definition of QG, we have Bw ∩ X̄ = ∅ or Bw ⊆ X̄ for all
w ∈ V (QG). Let X = {w ∈ V (QG) : Bw ⊆ X̄}. Observe that u ∈ X and v ∈ V (QG)−X. This yields
λQG

(u, v) ≤ dQG
(X) = dG(X̄) = 2.

Hence λQG
(u, v) = 2 and so the statement follows.

Let G be a 2-edge-connected graph and w̄ : E(G) → R≥0 a weight function. Then w : E(QG) →
R≥0 denotes the weight function in which w(e) = w̄(ē) holds for every e ∈ E(QG) where ē is the edge
in E(G) that corresponds to e.

Lemma 3.24. Let G be a 2-edge-connected graph, w̄ : E(G) → R≥0 a weight function and k a
constant. Then (G, w̄, k) is a positive instance of W23EDA if and only if (QG, w, k) is a positive
instance of W23EDA. Further, an optimal solution for (G, w̄) can be obtained from an optimal solution
of (QG, w).

Proof. First suppose that (QG, w, k) is a positive instance of W23EDA, so there is an edge set F ⊆
E(QG) with w(F ) ≤ k such that the graph Q′G obtained from QG by doubling all the edges of F is
3-edge-connected. Let F̄ ⊆ E(G) be the set of edges corresponding to F and let G′ be the graph
obtained from G by doubling the edges of F̄ . Clearly, F̄ can be constructed from F in polynomial
time and we have w̄(F̄ ) = w(F ). Now consider some X̄ ⊆ V (G). If there is some v ∈ V (QG) such that
X ∩Bv 6= ∅ and X −Bv 6= ∅, we obtain dG′(X̄) ≥ dG(X̄) ≥ 3 by the definition of QG. Otherwise, let
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X = {w ∈ V (QG) : Bw ⊆ X̄}. We obtain dG′(X̄) = dQ′G(X) ≥ 3. Hence G′ is 3-edge-connected and
(G, w̄, k) is a positive instance of W23EDA.

Now suppose that (G, w̄, k) is a positive instance of W23EDA, so there is an edge set F̄ ⊆ E(G)
with w̄(F̄ ) ≤ k such that the graph G′ obtained from doubling the edges of F̄ is 3-edge-connected.
Let F ⊆ E(QG) be the set of edges corresponding to F and let Q′G be the graph obtained from QG by
doubling the edges of F . Clearly, we have w(F ) = w̄(F̄ ). For some X ⊆ V (QG), let X̄ =

⋃
x∈X Bx.

We obtain dQ′G(X) = dG′(X̄) ≥ 3. Hence Q′G is 3-edge-connected and (QG, w, k) is a positive instance
of W23EDA.

For the next lemma, we need the following well-known property of cactuses.

Proposition 3.25. Every cactus contains a vertex of degree 2.

Lemma 3.26. Let G be a cactus and F ⊆ E(G). Then the graph G′ obtained from G by doubling the
edges of G is 3-edge-connected if and only if (V (G), F ) is connected.

Proof. First suppose that (V (G), F ) is connected and letX ⊆ V (G). Then dG′(X) ≥ dG(X)+dF (X) ≥
2 + 1 = 3, so G′ is 3-edge-connected.

Now suppose that G′ is 3-edge-connected and for the sake of a contradiction that (V (G), F ) is not
connected. Further suppose that the size of G is minimal among all graphs admitting an edge set
with that property. By Proposition 3.25, there is some v ∈ V (G) with dG(v) = 2. Clearly, F contains
an edge e ∈ δG(v). Observe that G/e is a cactus and the graph obtained from G/e by doubling the
edges in F − e is 3-edge-connected. Further (V (G/e), F − e) is not connected, a contradiction to the
minimality of G.

Proof. (of Theorem 3.22)
By Lemmas 3.23 and 3.24, it suffices to prove the statement for cactuses. By Lemma 3.26, this can

be done by finding a minimum spanning tree of the cactus with respect to the given weight function.
This can be done in polynomial time, for example using the algorithm of Kruskal, see [18].

4 Deorientations

In a digraph D, the operation of replacing an arc a ∈ A(D) by an undirected edge linking the same
two vertices is called deorienting the arc. Given a digraph D and an integer k, we wish to know
whether we can deorient at most k of the arcs of D so that the obtained mixed graph satisfies certain
connectivity properties. Let deork(D), respectively deorarck (D) denote the minimum number of arcs
one needs to deorient in D to obtain a mixed graph which is k-strong, respectively k-arc-strong. Clearly
deor1(D) = deorarc1 (D). The following result, which shows that deor1(D) can be found in polynomial
time, is a consequence of the theorem of Lucchesi and Younger [20], see also [2, Section 13.1].

Theorem 4.1. Let D = (V,A) be a digraph and k a positive integer. Then we can decide in polynomial
time whether there exists a strongly connected deorientation of D with at most k edges.

In [2] (Problem 14.6.6), the first author and Gutin raised the question whether Theorem 4.1 can
be generalized for stronger connectivity properties. The main result of this section is that there is
no hope to do so as soon as the resulting mixed graph is required to be k-strong for some k ≥ 3.
More concretely, we show that computing the minimum number of arcs we need to deorient in a given
digraph to obtain a 3-strong digraph is NP-hard. The following two problems are left for further
research. The second one is already mentioned in [3].

Problem 4.2. Determine the complexity of deciding for a given digraph D and an integer k; whether
D has a deorientation with at most k edges that is 2-strong.

Problem 4.3. For some integer ` ≥ 2, determine the complexity of deciding for a given digraph D
and an integer k; whether D has a deorientation with at most k edges that is `-arc-connected.

The rest of this section is structured as follows: In Section 4.1, we prove our main hardness result
mentioned above. The remaining parts contain some smaller results on deorientation problems. In
Section 4.2, we show that we can find in polynomial time a minimum set of arcs whose deorientation
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makes the arising mixed graph satisfy certain degree conditions. In Section 4.3, we show that the
problem of finding a minimum number of arcs whose deorientation makes a given digraph satisfy some
local arc-connectivity requirements is NP-hard. In Section 4.4, we give an approximation algorithm
for making a given digraph satisfy a global arc-connectivity requirement.

4.1 Deorienting to get a 3-strong mixed graph is NP-hard

This section is concerned with proving that the problem of deciding whether a 3-strong mixed graph
can be obtained from a given digraph by deorienting a given number of arcs is NP-hard. We need
some preliminaries for our reduction: For a mixed graph M and some S ⊆ V (M), we say that M is
k-strong in S if there are k vertex-disjoint paths from s1 to s2 in M for any s1, s2 ∈ S.

The following is easy to prove (see Exercise 14.8 in [2] for a related result).

Proposition 4.4. Let M be a mixed graph which is k-strong in S and let v ∈ V (M) − S. Further,
suppose that there are k vsi-paths P1, . . . , Pk in M with si ∈ S for i = 1, . . . , k and V (Pi)∩V (Pj) = v
for all i, j ∈ {1, . . . , k} with i 6= j and that there are k s′iv-paths P ′1, . . . , P

′
k in M with s′i ∈ S for

i = 1, . . . , k and V (P ′i ) ∩ V (P ′j) = v for all i, j ∈ {1, . . . , k} with i 6= j. Then M is k-strong in S ∪ v.

For our reduction, we need the following problem:

3-Bounded MAX 2-SAT (3BMAX2SAT)

Input: A set of variables X, a set of clauses C each containing exactly two literals such that
every variable of X appears exactly 3 times in C, at least once in positive and at least once
in negated form, and an integer `.

Question: Is there an assignment Φ : X → {TRUE,FALSE} such that at least ` clauses
of C are satisfied?

We use the following result that is implicitely proven by Berman and Karpinski in [4].

Proposition 4.5. 3BMAX2SAT is NP-hard.

In order to simplify our reduction, we need the following slight adaption of this problem:

Special 3-Bounded MAX 2-SAT (S3BMAX2SAT)

Input: A set of variables X, a set of clauses C each containing exactly two literals such that
every variable appears exactly twice in positive and exactly once in negated form in C and
an integer `.

Question: Is there an assignment Φ : X → {TRUE,FALSE} such that at least ` clauses
of C are satisfied?

Proposition 4.6. S3BMAX2SAT is NP-hard.

Proof. Let (X, C, `) be an instance 3BMAX2SAT. Let X− be the set of variables in X that appear
once in positive and twice in negated form. Let C′ be the set of clauses which is obtained from C by
negating the literals associated to the variables in X−. Then (X, C′, `) is an instance of S3BMAX2SAT
and it is easy to see that (X, C′, `) is a positive instance of S3BMAX2SAT if and only if (X, C, `) is a
positive instance of 3BMAX2SAT.

Formally, we consider the following problem:

3-Strong DeOrientation (3SDO)

Input: A digraph D, an integer k.

Question: Can D be made 3-strong by deorienting at most k arcs?
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The following is our main result on deorientations.

Theorem 4.7. For every ` ≥ 3, it is NP-hard to decide whether a given digraph has a deorientation
with at most k edges that is `-strong where k is part of the input.

Proof. Observe that for a given integer ` ≥ 4, an instance (D, k) of 3SDO is positive if and only if
the graph obtained from adding ` − 3 new vertices and linking them by digons to all vertices of D
and to each other can be made `-strong by deorienting at most k arcs. Hence, it suffices to prove the
statement for 3SDO. We show this by describing a polynomial reduction from S3BMAX2SAT.

Let (X, C, `) be an instance of S3BMAX2SAT. We now create an instance (D = (V,A), k) of 3SDO.
For x ∈ X and C ∈ C, we say that (x,C) is an incident pair if x ∈ C or x̄ ∈ C and we let Γ denote
the set of incident pairs.

For every incident pair (x,C), we let D contain 3 vertices p(x,C), q(x,C), and s(x,C) and a digon
linking every pair of these vertices.

Now, for every x ∈ X, we let D contain 10 more vertices px, qx, s
1
x, s

2
x, s

3
x, s

4
x, w

1
x, w

2
x, w

3
x, and w4

x.
We add a digon between any pair of vertices in {px, qx, s3

x} . Next, for every C ∈ C, we let D contain
two more vertices vC and sC and we add an arc from sC to vC .

Now, for every x ∈ X, let C1, . . . , C3 be an ordering of the clauses containing x or x̄ such that
x ∈ C1, C3 and x̄ ∈ C2.
Let Vx = {p(x,C1), q(x,C1), p(x,C2), q(x,C2), p(x,C3), q(x,C3), px, qx, w

1
x, w

2
x, w

3
x, w

4
x}. We add a digon be-

tween wix and sjx for i = 1, . . . , 4 and j = 1, 2.
Further, we add the following arcs: q(x,C1)w

1
x, p(x,C2)w

1
x, q(x,C2)w

2
x, p(x,C3)w

2
x, q(x,C3)w

3
x, pxw

3
x, qxw

4
x, p(x,C1)w

4
x,

p(x,C1)vC1
, vC1

q(x,C1), q(x,C2)vC2
, vC2

p(x,C2), p(x,C3)vC3
, vC3

q(x,C3), qxs
4
x, s

4
xpx.

Further, we set S =
⋃
x∈X{s1

x, . . . , s
4
x} ∪

⋃
(x,C)∈Γ s(x,C) ∪

⋃
C∈C sC and we let D contain a digon

between any pair of vertices of S. Finally, we set k = 6|X| + |C| − `. An illustration for the part of
the graph associated to some fixed x ∈ X can be found in Figure 5.

s1x

w1
x

q(x,C1)

w2
xw3

x

w4
x

vC1

vC2

vC3

s4x

s(x,C1)

s(x,C2)

sx,C3

s3x

p(x,C2)

q(x,C2)

p(x,C3)q(x,C3)

px

qx

p(x,C1)

s2x

Figure 5: An example for D[Vx ∪ {sx1 , . . . , sx4 , vC1
, . . . , vC3

}] for some x ∈ X. The thick red edges
indicate digons. The digons linking pairs of vertices in S have been omitted due to space restrictions.

This finishes the description of (D = (V,A), k). An illustration for a small instance of S3BMAX2SAT
can be found in Figure 6.
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s1x

w1
x

w3
x

w4
x

s4x s3x

px

qx

sC

sC′

sC′′

vC

vC′

vC′′

p(x,C)

q(x,C)

s(x,C)

p(x,C′′)

q(x,C′′)

s(x,C′′)

w2
x

p(x,C′)

s(x,C′)

q(x,C′) p(y,C′′)

s(y,C′′)
q(y,C′′)

p(y,C′)

s(y,C′)

q(y,C′)

p(y,C)
s(y,C)

q(y,C)

py

qy

s3y s4y
s1y

w4
y

w3
y

w1
y

w2
y

s2x s2y

Figure 6: An example for the construction of D where X = {x, y} and C = {C = {x, y}, C ′ =
{x, ȳ}, C ′′ = {x̄, y}}. In the construction the ordering C,C ′′, C ′ of the clauses containing x or x̄ and
the ordering C ′′, C ′, C of the clauses containing y or ȳ are used. Again, the thick red edges indicate
digons and the digons linking pairs of vertices in S have been omitted due to space restrictions.

We show in the following that (D, k) is a positive instance of 3SDO if and only if (X, C, `) is a
positive instance of S3BMAX2SAT.

First suppose that (X, C, `) is a positive instance of S3BMAX2SAT, so there is an assignment
φ : X → {TRUE,FALSE} that satisfies at least ` clauses of C. Let C′ be the set of clauses in C which
are satisfied by φ and C′′ = C − C′. Let F1 ⊆ A be the set containing the following arcs:

• the arcs q(x,C1)w
1
x, q(x,C2)w

2
x, q(x,C3)w

3
x, qxw

4
x, p(x,C1)vC1

and p(x,C3)vC3
for all x ∈ X with φ(x) =

TRUE and

• the arcs p(x,C1)w
4
x, p(x,C2)w

1
x, p(x,C3)w

2
x, pxw

3
x, q(x,C2)vC2

and qxs
4
x for all x ∈ X with φ(x) =

FALSE.

An illustration can be found in Figure 7.
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s1x

w1
x

q(x,C1)

w2
xw3

x

w4
x

vC1

vC2

vC3

s4x

s(x,C1)

s(x,C2)

sx,C3

s3x

p(x,C2)

q(x,C2)

p(x,C3)q(x,C3)

px

qx

p(x,C1)

s2x s1x

w1
x

q(x,C1)

w2
xw3

x

w4
x

vC1

vC2

vC3

s4x

s(x,C1)

s(x,C2)

sx,C3

s3x

p(x,C2)

q(x,C2)

p(x,C3)q(x,C3)

px

qx

p(x,C1)

s2x

Figure 7: An illustration of the definition of F1. The arcs contained in F1 if φ(x) = TRUE are depicted
in green in the left drawing and the arcs contained in F1 if φ(x) = FALSE are depicted in green in
the right drawing. Again, the thick red edges indicate digons and the digons linking pairs of vertices
in S have been omitted due to space restrictions.

Observe that |F1| = 6|X| and that for some C ∈ C, we have that F1 contains an arc entering vC
if and only if C ∈ C′. Now we create a set F2 ⊆ A that contains the arc sCvC for every C ∈ C′′. Let
F = F1 ∪ F2 and observe that |F | = |F1|+ |F2| = 6|X|+ |C′′| = 6|X|+ |C| − |C′| ≤ 6|X|+ |C| − ` = k.
Let M be the mixed graph obtained from D by deorienting the arcs in F . We show in the following
that M is 3-strong.

Observe that M is clearly 3-strong in S. Now consider some x ∈ X. Observe that M contains the
paths sjxw

1
x for j = 1, 2 and the path s(x,C1)q(x,C1)w

1
x. Next, M contains the paths w1

xs
j
x for j = 1, 2.

Finally, if φ(x) = TRUE, then M contains the path w1
xq(x,C1)s(x,C1) and if φ(x) = FALSE, then M

contains the path w1
xp(x,C2)s(x,C2). We obtain by Proposition 4.4 that M is 3-strong in S∪w1

x. Similar
arguments show that M is 3-strong in S′ = S ∪ {w1

x, . . . , w
4
x}.

Next observe that M contains the paths p(x,C1)s(x,C1), p(x,C1)w
4
x and p(x,C1)q(x,C1)w

1
x. Next, M

contains the path s(x,C1)p(x,C1). Further, if φ(x) = TRUE, then M contains the paths sC1vC1p(x,C1)

and w1
xq(x,C1)p(x,C1) and if φ(x) = FALSE, then M contains the paths w4

xp(x,C1) and vC1
q(x,C1)p(x,C1).

We obtain by Proposition 4.4 that M is 3-strong in S ∪ p(x,C1). Similar arguments show that M is
3-strong in S ∪ Vx. As x was chosen arbitrarily, we obtain that M is 3-strong in S′′ = S ∪

⋃
x∈X Vx.

Now consider some C ∈ C and let x, x′ be the variables such that (x,C) and (x′, C) are incident
pairs. We show that M is 3-strong in S′′∪vC . First observe that M contains the path sCvC and paths
of length 1 from Vx and Vx′ to vC . Next, observe that M contains arcs ax, ax′ from vC to Vx and Vx′ ,
respectively. Further, if C ∈ C′′, then M contains the edge vCsC . Otherwise, we have C ∈ C′, so C
is satisfied by one of x and x′, say x. Then M contains an edge linking Vx and vC and the second
endvertex of this edge in Vx is distinct from the head of ax. We obtain by Proposition 4.4 that M is
3-strong.

As M is obtained from D by deorienting at most k arcs, we obtain that (D, k) is a positive instance
of 3SDO.

Now suppose that (D, k) is a positive instance of 3SDO, so there is a set F ⊆ A with |F | ≤ k such
that the mixed graph M that is obtained from D by deorienting the arcs in F is 3-strong.

Claim 4.7.1. Let x ∈ X and let C1, C2, C3 be the clauses containing x or x̄ in the ordering used in
the construction. Then either p(x,C1)w

4
x ∈ F or {q(x,C1)w

1
x, p(x,C1)vC1

} ⊆ F .

Proof. As M is 3-strong, there is an edge entering {p(x,C1), q(x,C1)} in M−{s(x,C1), vC1
}, so F contains
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one of the arcs p(x,C1)w
4
x and q(x,C1)w

1
x. As M is 3-strong, there is an edge entering p(x,C1) in M −

{s(x,C1), q(x,C1)}, so F contains one of the arcs p(x,C1)w
4
x and p(x,C1)vC1 .

Similarly, we can prove the following claims:

Claim 4.7.2. Let x ∈ X and let C1, C2, C3 be the clauses containing x or x̄ in the ordering used in
the construction. Then either q(x,C2)w

2
x ∈ F or {p(x,C2)w

1
x, q(x,C2)vC2

} ⊆ F .

Claim 4.7.3. Let x ∈ X and let C1, C2, C3 be the clauses containing x or x̄ in the ordering used in
the construction. Then either p(x,C3)w

2
x ∈ F or {q(x,C3)w

3
x, p(x,C3)vC3

} ⊆ F .

Claim 4.7.4. Let x ∈ X and let C1, C2, C3 be the clauses containing x or x̄ in the ordering used in
the construction. Then either qxw

4
x ∈ F or {pxw3

x, qxs
4
x} ⊆ F .

We further need the following simple observation.

Claim 4.7.5. Let x ∈ X and let C1, C2, C3 be the clauses containing x or x̄ in the ordering used
in the construction. Then at least one of the arcs q(x,C1)w

1
x and p(x,C2)w

1
x, at least one of the arcs

q(x,C2)w
2
x and p(x,C3)w

2
x, at least one of the arcs q(x,C3)w

3
x and pxw

3
x and at least one of the arcs qxw

4
x

and p(x,C1)w
4
x is contained in F .

Proof. As M is 3-strong, for i = 1, . . . , 4, there is an edge leaving wix in M − {s1
x, s

2
x}.

The following intermediate result is crucial for defining a truth assignment.

Claim 4.7.6. For every x ∈ X, there is a set Fx ⊆ F ∩ (A(D[Vx]) ∪ δ+
D(Vx)) with |Fx| = 6 such that

either q(x,C2)vC2
/∈ Fx or {p(x,C1)vC1

, p(x,C3)vC3
} ∩ F = ∅.

Proof. Let Bx be the set of arcs in F which are incident to wix for some i ∈ {1, . . . , 4}. By Claim 4.7.5,
we obtain that |Bx| ≥ 4. If |Bx| ≥ 6, the statement trivially follows.

If |Bx| = 5, observe that by Claim 4.7.5, F contains an arc incident to wix for i ∈ {1, . . . , 4}.
Hence at least one of the following arcs is not contained in Bx : p(x,C1)w

4
x, qxw

4
x, p(x,C3)w

2
x, q(x,C2)w

2
x.

If p(x,C1)w
4
x /∈ Bx, then Claim 4.7.1 yields p(x,C1)vC1

∈ F , hence Fx = Bx ∪ p(x,C1)vC1
has the desired

properties. If qxw
4
x /∈ Bx, then Claim 4.7.4 yields qxs

4
x ∈ F , hence Fx = Bx ∪ qxs4

x has the desired
properties. If p(x,C3)w

2
x /∈ Bx, then Claim 4.7.3 yields p(x,C3)vC3 ∈ F , hence Fx = Bx ∪ p(x,C3)vC3

has the desired properties. If q(x,C2)w
2
x /∈ Bx, then Claim 4.7.2 yields q(x,C2)vC2 ∈ F , hence Fx =

Bx ∪ q(x,C2)vC2
has the desired properties.

Now suppose that |Bx| = 4. By Claims 4.7.1 to 4.7.5, we obtain that either we have Bx =
{p(x,C1)w

4
x, p(x,C2)w

1
x, p(x,C3)w

2
x, pxw

3
x} or Bx = {q(x,C1)w

1
x, q(x,C2)w

2
x, q(x,C3)w

3
x, qxw

4
x}.

If Bx = {p(x,C1)w
4
x, p(x,C2)w

1
x, p(x,C3)w

2
x, pxw

3
x}, then it follows from Claims 4.7.2 and 4.7.4 that

{q(x,C2)vC2
, qxs

2
x} ⊆ F . Hence Fx = Bx ∪ {q(x,C2)vC2

, qxs
2
x} has the desired properties. If Bx =

{q(x,C1)w
1
x, q(x,C2)w

2
x, q(x,C3)w

3
x, qxw

4
x}, then Claims 4.7.1 and 4.7.3 yield {p(x,C1)vC1

, p(x,C3)vC3
} ⊆ F .

Hence Fx = Bx ∪ {p(x,C1)vC1 , p(x,C3)vC3} has the desired properties.

Observe that the sets Fx which exist by Claim 4.7.6 are not necessarily unique, however this
ambiguity will not have any effect. Let F1 =

⋃
x∈X Fx and F2 = F − F1. As the sets Fx are pairwise

disjoint, we have |F1| = 6|X|.
We now define a truth assignment φ : X → {TRUE,FALSE} in the following way: We set

φ(x) = TRUE if q(x,C2)vC2
/∈ F and φ(x) = FALSE otherwise. We let C′ be the sets of clauses in C

such that an arc of F1 enters vC and let C′′ = C − C′. Observe that by construction, we have that C
is satisfied by φ for all C ∈ C′. Further, observe that, as M is 3-strong, for every C ∈ C′′, F contains
an arc aC entering vC . By definition of C′′, we have aC ∈ F2. This yields |C′′| ≤ |F2|. We obtain
|C′| = |C| − |C′′| ≥ |C| − |F2| = |C| − |F |+ |F1| ≥ |C| − k + 6|X| = |C| − (6|X|+ |C| − `) + 6|X| = `. As
φ satisfies all clauses in C′, we obtain that (X, C, `) is a positive instance of S3BMAX2SAT.

This finishes the proof.

Observe that there are two canonical optimization problems associated to 3SDO. Firstly, we can
minimize the number of arcs we deorient and secondly, we can maximize the number of arcs we do not
deorient. We wish to remark that APX-hardness results for both these optimization problems can be
obtained by combining the reduction proving Theorem 4.7 with the corresponding result in [4].

21



4.2 Deorienting to increase in- and out-degrees

We here prove a result on deorienting arcs to satisfy certain degree conditions. I deleted the above
definition as the same notation was used for two different things.

Proposition 4.8. There exists a polynomial algorithm for the following problem: given a digraph
D = (V,A) and a natural number k; find a minimum subset of arcs in A whose deorientation leads to
a mixed graph M in which min{d+

M (v) + dM (v), d−M (v) + dM (v)} ≥ k holds for all v ∈ V .

Proof. Let D = (V,A) and k be given.
Form a flow network N (D) with vertex set V1 ∪ V2 ∪ {s, t}, where for i = 1, 2, Vi contains a copy

vi of every v ∈ V , and arc-set {sv1|v1 ∈ V1} ∪ {v2t|v2 ∈ V2} ∪ A1 ∪ A2, where A1 = {u1v2|uv ∈ A}
and A2 = {v1u2|uv ∈ A}. For i = 1, 2, let all arcs of A1 ∪ A2 have capacity 1, lower bound 0
and cost i − 1. Finally let all arcs starting in s or ending in t have lower bound k, capacity k|V |
and cost zero. Now it is easy to check that a feasible integer valued (s, t)-flow of cost C in N (D)
corresponds to a set of C arcs from A2 whose deorientation results in a mixed graph M satisfying
min{d+

M (v)+dM (v), d−M (v)+dM (v)} ≥ k for all v ∈ V , and conversely. Hence we can find a set of arcs
with the desired property of minimum size by finding a minimum cost feasible integer valued (s, t)-flow
in N (D) which is well-known to be possible in polynomial time, see e.g. [2, Chapter 4].

4.3 Deorienting to obtain specified local arc-connectivities

In this section, we deal with a problem concerning deorientation for local arc connectivities. The
reduction establishes an interesting connection between deorientations and orientations. We need to
consider the following orientation problem:

Local Connectivity Orientation (LCO)

Input: A graph G, a requirement function r : V (G)× V (G)→ Z≥0.

Question: Is there an orientation ~G ofG that satisfies λ~G(x, y) ≥ r(x, y) for all x, y ∈ V (G)?

We use the following result of Frank, Király and Király [11], see also [15]:

Proposition 4.9. [11] LCO is NP-hard.

Actually, we need the following slight strengthening of Proposition 4.9.

Proposition 4.10. LCO is NP-hard even for instances (G, r) with r(x, y) ≥ 1 for all all x, y ∈ V (G).

Proof. We prove this by a reduction from LCO. Let (G, r) be an instance of LCO. We now create a
graph G′ from G by adding two vertices a and b, an edge ab and edges ax and bx for all x ∈ V (G).
Further, we define r′ : V (G′) × V (G′) → Z≥0 by r′(ab) = |V (G)|, r′(b, a) = 1, r′(x, a) = r′(a, x) =
r′(x, b) = r′(b, x) = 1 for all x ∈ V (G) and r′(x, y) = r(x, y) + 1 for all x, y ∈ V (G).

Observe that r′(x, y) ≥ 1 for all x, y ∈ V (G′). We now show that (G′, r′) is a positive instance of
LCO if and only if (G, r) is a positive instance of LCO.

First suppose that (G′, r′) is a positive instance of LCO, so there is an orientation ~G′ of G′ for which
λ ~G′(x, y) ≥ r′(x, y) holds for all x, y ∈ V (G′). As λ ~G′(a, b) ≥ r′(a, b) ≥ 1 and λ ~G′(b, a) ≥ r′(b, a) ≥ 1,

we obtain that ~G′ contains a directed cycle which contains the arc corresponding to the edge ab.
Possibly reversing the orientation of all arcs of this cycle, we may suppose that the edge ab is oriented
as ba in ~G′. As λ ~G′(a, b) ≥ r

′(a, b) = |V (G)|, we obtain that for all x ∈ V (G), the edge xa is oriented

as ax and the edge xb is oriented as xb in ~G′. Let ~G = ~G′[V (G)]. Observe that ~G is an orientation of
G. Further, for all x, y ∈ V (G), we have λ~G(x, y) = λ ~G′(x, y)− 1 ≥ r′(x, y)− 1 = r(x, y). Hence (G, r)
is a positive instance of LCO.

Now suppose that (G, r) is a positive instance of LCO, so there is an orientation ~G of G with

λ~G(x, y) ≥ r(x, y) for all x, y ∈ V (G). Let an orientation ~G′ of G′ be obtained by orienting the edge
ab as ba, orienting the edge xa as ax and orienting the edge xb as xb for all x ∈ V (G) and giving all

other edges the orientation they have in ~G. Clearly, we have λ ~G′(a, b) = |V (G)| = r′(a, b), λ ~G′(b, a) =
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1 = r′(b, a) and λ ~G′(a, x) ≥ 1 = r′(a, x), λ ~G′(x, a) ≥ 1 = r′(x, a), λ ~G′(b, x) ≥ 1 = r′(b, x) and
λ ~G′(x, b) ≥ 1 = r′(x, b) for all x ∈ V (G). Further, for all x, y ∈ V (G), we have λ ~G′(x, y) = λ~G(x, y) +
1 ≥ r(x, y) + 1 = r′(x, y). Hence (G′, r′) is a positive instance of LCO.

For the main result of this section, we formally consider the following deorientation problem:

Local Connectivity DeOrientation (LCDO)

Input: A digraph D, a requirement function r : V (D)× V (D)→ Z≥0, an integer k.

Question: Is there a mixed graph M that can be obtained from D by deorienting at most
k arcs and which satisfies λM (x, y) ≥ r(x, y) for all x, y ∈ V (D)?

We prove the following:

Theorem 4.11. LCDO is NP-hard.

Proof. We prove this by a reduction from the restriction of LCO described in Proposition 4.10. Let
(G, r) be an instance of LCO with r(u, v) ≥ 1 for all u, v ∈ V (G). We now obtain a digraph D by
replacing every e = uv ∈ E(G) by a new vertex we and the arcs uwe and vwe. We further define
r′ : V (D)× V (D) by

r′(x, y) =


r(x, y), if x, y ∈ V (G)

1, if x ∈ V (D)− V (G) and y ∈ V (G)

0, otherwise.

Finally, we let k = |E(G)|. We show in the following that (D, r′, k) is a positive instance of LCDO
if and only if (G, r) is a positive instance of LCO.

First suppose that (G, r) is a positive instance of LCO, so there is an orientation ~G of G that satisfies
λ~G(x, y) ≥ r(x, y) for all x, y ∈ V (G). We now obtain the mixed graph M from D by deorienting

the arc vwe for all e = uv ∈ E(G) which are oriented as uv in ~G. It is easy to see that λM (x, y) =
λ~G(x, y) ≥ r(x, y) = r′(x, y) holds for all x, y ∈ V (G). Now let x ∈ V (G) and e = uv ∈ E(G) such that

e is oriented to uv in ~G. Then we have λM (we, x) ≥ min{λM (we, v), λM (v, x)} ≥ min{1, r(v, y)} ≥ 1.
As M is obtained from D deorienting k arcs, we obtain that (D, r′, k) is a positive instance of LCDO.

Now suppose that (D, r′, k) is a positive instance of LCDO, so there is a set F ⊆ A(D) of at most
k arcs such that the mixed graph M obtained from D by deorienting these edges satisfies λM (x, y) ≥
r′(x, y) for all x, y ∈ V (D). For every e = uv ∈ E(G), as λM (we, u) ≥ r′(we, u) = 1, we obtain that
at least one of the edges uwe and vwe is contained in F . As k = |E(G)|, exactly one of these edges is

contained in F . Now let an orientation ~G of G be obtained by orienting every edge e = uv ∈ E(G) as
uv when vwe ∈ F . We then have λ~G(x, y) = λM (x, y) ≥ r′(x, y) = r(x, y) for all x, y ∈ V (G), so (G, r)
is a positive instance of LCO.

4.4 Approximating deorarc
k (D)

As mentioned earlier the number deorarck (D) can be found in polynomial time for k = 1. For all other
values of k the complexity status is open, see Problem 4.3.

On the other hand, the number deorarck (D) can be found in polynomial time for every k when D
is a tournament (that is, an orientation of a complete graph) as proven by the first author and Yeo in
[3]. We show below how to obtain a 2-approximation for all k and every digraph D.

An out-branching (in-branching) rooted at the vertex s in a digraph D, denoted B+
s (B−s ), is

a connected spanning subdigraph of D in which the in-degree (out-degree) of every vertex except s is
1 and s has in-degree (out-degree) 0.

Theorem 4.12 (Edmonds). [6] A digraph D has k arc-disjoint out-branchings rooted at the vertex
s ∈ V if and only if

d+
D(X) ≥ k for all X ( V (D) with s ∈ X (2)
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We further need the following result, due to Edmonds, which is based on matroidal methods, see
e.g. [24, Corollary 53.10a].

Proposition 4.13. Let D = (V,A) be a digraph, s ∈ V , k a positive integer and w : A → R≥0 a
nonnegative weight function. Then a packing B of k out-branchings (in-branchings) rooted at s in D
that minimizes w(A(B)) can be found in polynomial time if such a packing exists.

We are now ready to prove the following theorem which is the main result of this section:

Theorem 4.14. There is an algorithm whose input is a digraph D and an integer k and that returns
an arc set F ⊆ A(D) whose deorientation results in a k-arc-strong mixed graph and is at most twice
as big as a smallest set with this property.

Proof. Let the digraph D′ be obtained by adding an arc a′ = vu for every arc a = uv ∈ A(D). We
further define a weight function w : A(D′) → R≥0 by w(a) = 0 and w(a′) = 1 for all a ∈ A(D).
We further fix some arbitary vertex s ∈ V (D). By Proposition 4.13, we can now calculate a packing
B1 of k out-branchings rooted at s that minimizes w(A(B1)) and a packing B2 of k in-branchings
rooted at s that minimizes w(A(B2)) in polynomial time. Let F be the set of arcs a ∈ A(D) such
that a′ ∈ A(B1) ∪ A(B2) and let the algorithm output F . It follows from Theorem 4.12 that F is a
feasible solution for the deorientation problem. Now let F ∗ be an optimal solution to the deorientation
problem. It follows from Theorem 4.12 that A(D) ∪ {a′ : a ∈ F ∗} contains a set of k arc-disjoint
out-branchings rooted at s and a set of k arc-disjoint in-branchings rooted at s. This yields |F | =
w(A(B1) ∪A(B2)) ≤ w(A(B1)) + w(A(B2)) ≤ 2|F ∗|, hence F has the desired properties.
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