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Abstract
Various forms of sorting problems have been studied over the years. Recently, two kinds of sorting
puzzle apps are popularized. In these puzzles, we are given a set of bins filled with colored units,
balls or water, and some empty bins. These puzzles allow us to move colored units from a bin
to another when the colors involved match in some way or the target bin is empty. The goal of
these puzzles is to sort all the color units in order. We investigate computational complexities of
these puzzles. We first show that these two puzzles are essentially the same from the viewpoint of
solvability. That is, an instance is sortable by ball-moves if and only if it is sortable by water-moves.
We also show that every yes-instance has a solution of polynomial length, which implies that these
puzzles belong to NP. We then show that these puzzles are NP-complete. For some special cases,
we give polynomial-time algorithms. We finally consider the number of empty bins sufficient for
making all instances solvable and give non-trivial upper and lower bounds in terms of the number of
filled bins and the capacity of bins.
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Figure 1 An example of the ball sort puzzle.
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Figure 2 Rules of the water sort puzzle. From the initial configuration (0), we obtain configuration
(1) by moving two units of water of label 1 from a to f, configuration (2) by moving two units of
water of label 1 from a to b, and configuration (3) by moving one unit of water of label 2 from c to e.

1 Introduction

The ball sort puzzle and the water sort puzzle are popularized recently via smartphone apps.1
Both puzzles involve bins filled with some colored units (balls or water), and the goal is to
somehow sort them. The most significant feature of these puzzles is that each bin works as a
stack. That is, the items in a bin have to follow the “last-in first-out” (LIFO) rule.

In the ball sort puzzle, we are given hn colored balls in n bins of capacity h and k

additional empty bins. For a given (unsorted) initial configuration, the goal of this puzzle is
to arrange the balls in order; that is, to make each bin either empty or full with balls of the
same color. (The ordering of bins does not matter in this puzzle.) The rule of this puzzle is
simple: (0) Each bin works like a stack, that is, we can pick up the top ball in the bin. (1)
We can move the top ball of a bin to the top of another bin if the second bin is empty or
it is not full and its top ball before the move and the moved ball have the same color. An
example with h = 3, n = 4, and k = 1 is given in Figure 1.

The water sort puzzle is similar to the ball sort puzzle. Each ball is replaced by colored
water of a unit volume in the water sort puzzle. In the water sort puzzle, the rules (0) and
(1) are the same as the ball sort puzzle except one liquid property: Colored water units are
merged when they have the same color and they are consecutive in a bin. When we pick up a
source bin and move the top water unit(s) to a target bin, the quantity of the colored water
on the top of the bin to be moved varies according to the following conditions (Figure 2). If
the target bin has enough margin, all the water of the same color moves to the target bin.
On the other hand, a part of the water of the same color moves up to the limit of the target
bin if the target bin does not have enough margin.

1 These sort puzzles are released by several different developers. As far as the authors checked, it seems
that the first one is released by IEC Global Pty Ltd in January, 2020.
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In this paper, we investigate computational complexities of the ball and water sort puzzles.
We are given n + k bins of capacity h. In an initial configuration, n bins are full (i.e., filled
with h units) and k bins are empty, where each unit has a color in the color set C. Our
task is to fill n bins monochromatically, that is, we need to fill each of them with h units
of the same color. We define BSP and WSP as the problems of deciding whether a given
initial configuration can be reconfigured to a sorted configuration by a sequence of ball moves
and water moves, respectively. We assume that instances are encoded in a reasonable way,
which takes Θ(nh log |C| + log k) bits. Without loss of generality, we assume that each color
c ∈ C occurs exactly hj times for some positive integer j in any instance since otherwise the
instance is a trivial no-instance. (This implies that |C| is at most n.)

1.1 Our results
We first prove that the problems BSP and WSP are actually equivalent. By their definitions,
a yes-instance of WSP is a yes-instance of BSP as well. Thus our technical contribution
here is to prove the opposite direction. As a byproduct, we show that a yes-instance of the
problems admits a reconfiguration sequence of length polynomial in n + h as a yes-certificate.
This implies that the problems belong to NP. We also show that BSP and WSP are solvable
in time O(hn).

We next show that BSP and WSP are indeed NP-complete. By slightly modifying this
proof, we also show that even for some kind of trivial yes-instances of WSP, it is NP-complete
to find a shortest reconfiguration to a sorted configuration.

We show that if the capacity h is 2 and the number of colors is n, then BSP and WSP
are polynomial-time solvable. In this case, we present an algorithm that finds shortest
reconfiguration sequences for yes-instances.

We also consider the following question: how many empty bins do we need to ensure
that all initial configurations can reach a sorted configuration? Observe that BSP and WSP
are trivial if k ≥ hn. It is not difficult to see that k ≥ n is also sufficient by using an idea
based on bucket sort. By improving this idea, we show that k ≥ ⌈ h−1

h n⌉ is sufficient for all
instances. We also show that some instances need k ≥ ⌊ 19

64 min{n, h}⌋ empty bins.

1.2 Related studies
Various forms of sorting problems have been studied over the years. For example, sorting
by reversals is well investigated in the contexts of sorting network [6, Sect. 5.2.2], pancake
sort [2], and ladder lotteries [8]. There is another extension of sorting problem from the
viewpoint of recreational mathematics defined as follows. For each i ∈ {1, . . . , n}, there are
h balls labeled i. These hn balls are given in n bins in which each bin is of capacity h. In
one step, we are allowed to swap any pair of balls. Then how many swaps do we need to
sort the balls? This sorting problem was first posed by Peter Winker for the case h = 2 in
2004 [7], and an almost optimal algorithm for that case was given by Ito et al. in 2012 [4].

The ball/water sorting puzzles are interesting also from the viewpoints of not only just
puzzles but also combinatorial reconfiguration. Recently, reconfiguration problems attracted
attention in theoretical computer science (see, e.g., [5]). These problems arise when we need
to find a step-by-step transformation between two feasible solutions of a problem such that
all intermediate results are also feasible and each step abides by a fixed reconfiguration
rule, that is, an adjacency relation defined on feasible solutions of the original problem.
In this sense, the ball/water sort puzzles can be seen as typical implementations of the
framework of reconfiguration problems, while their reconfiguration rules are non-standard.

FUN 2022
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In most reconfiguration problems, representative reconfiguration rules are reversible; that is,
if a feasible solution A can be reconfigured to another feasible solution B, then B can be
reconfigured to A as well (see e.g., the puzzles in [3]). In the ball sort puzzle, we can reverse
the last move if we have two or more balls of the same color at the top of the source bin, or
there is only one ball in the source bin. Otherwise, we cannot reverse the last move. That is,
some moves are reversible while some moves are one-way in these puzzles. (In Figure 1, only
the last move is reversible.) In the water sort puzzle, basically, we cannot separate units
of water of the same color once we merge them, however, there are some exceptional cases.
An example is given in Figure 2; the move from configuration (2) to configuration (3) is
reversible, but the other moves are not.

2 Equivalence of balls and water

This section presents fundamental properties of BSP and WSP, from which we will conclude
that

a configuration is a yes-instance of BSP if and only if it is a yes-instance of WSP, and
BSP and WSP both belong to NP.

2.1 Notation used in this section
Let B and C be finite sets of bins and colors, respectively. The set of sequences of colors of
length at most h is denoted by C≤h. A sequence of c ∈ C of length l is called monochrome
and denoted by cl. The empty sequence is denoted as ε, which is, in our terminology, also
called monochrome. A configuration is a map S : B → C≤h. An instance of BSP and WSP
is a configuration S such that |S(b)| ∈ {h, 0} for all b ∈ B. A bin b is sorted under S if
S(b) ∈ {ε, ch} for some c ∈ C. A configuration S is sorted or goal if all bins are sorted under
S. Sometimes we identify b ∈ B with S(b) when S is clear from the context.

The ith element of a sequence α is denoted by α[i] for 1 ≤ i ≤ |α|. The top color of a
color sequence α is TC(α) = α[|α|] if α is not empty. In case α is empty, TC(α) is defined to
be ε. A border in α is a non-negative integer i such that either 1 ≤ i < |α| and α[i] ̸= α[i + 1]
or i = 0, and the set of borders of α is denoted by D(α). We count non-trivial borders under
S as D(S) =

∑
b∈B |D(S(b)) \ {0}|. For example, in Figure 2, the values of D are 4, 3, 3, 3 in

(0), (1), (2), (3), respectively.
We now turn to define a move of the sort puzzles with the terminologies introduced above.

Intuitively, we pick up two bins b1 and b2 from B, and pour the top item(s) from b1 to b2 if
b2 is empty or the top item of b2 has the same color. The quantity of the items are different
in the cases of balls and water. In the ball case, a unit is moved if possible. On the other
hand, two or more units of water of the same color move at once until all units are moved or
b2 becomes full. We define the move more precisely below.

A ball-move can modify a configuration S into S′, denoted as S → S′, if there are
b1, b2 ∈ B and c ∈ C such that

S(b1) = S′(b1) · c, TC(S(b2)) ∈ {c, ε}, S′(b2) = S(b2) · c, and
S(b) = S′(b) for all b ∈ B \ {b1, b2}.

A water-move can modify S into S′, denoted as S ⇒ S′, if there are m ≥ 1, b1, b2 ∈ B

and c ∈ C such that
S(b1) = S′(b1) · cm, TC(S(b2)) ∈ {c, ε}, and S′(b2) = S(b2) · cm,
either TC(S′(b1)) ̸= c or |S′(b2)| = h, and
S(b) = S′(b) for all b ∈ B \ {b1, b2}.
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S0 S S′

Figure 3 The configuration S can be obtained from the initial configuration S0 and can be
modified into the tight one S′. The top-borders TBS of S are shown with thick lines. This figure
does not care the units below those borders. All of S0, S, and S′ have Fred(TBS) = 9 red units,
Fgreen(TBS) = 7 green units, and Fblue(TBS) = 3 blue units above the borders in total. The colors
red, green, and blue require Mred(TBS) = 0, Mgreen(TBS) = 1, and Mblue(TBS) = 1 monochrome
bins, respectively, which coincide with the number of the monochrome bins of respective colors in S′.

The reflexive and transitive closures of → and ⇒ are denoted as →∗ and ⇒∗, respectively.
Clearly any single water-move can be simulated by some number of ball-moves. Thus we
have ⇒∗ ⊆ →∗.

2.2 Fundamental Theorems of BSP and WSP
Hereafter we fix an arbitrary initial configuration S0. Some notions introduced below are
relative to S0, though it may not be explicit. The top-border table of a configuration S is a
map TBS : B → {0, 1, . . . , h − 1} defined as TBS(b) = max D(S(b)).

The main object of this section is to observe that top-border tables play an essential
role in analyzing the solvability of an instance. Note that TBS(b) = 0 if and only if b is
monochrome. Once we have reached a configuration with TBS(b) = 0 for all b ∈ B, we can
achieve a goal configuration by trivial moves. Figure 3 illustrates some notions introduced in
this section.

By the definition of moves, one can easily observe the following properties.

▶ Observation 1. If S →∗ T , the following holds for all bins b ∈ B:
1. Moves monotonically remove borders from top to bottom:

D(T (b)) = { i ∈ D(S(b)) | i ≤ TBT (b) } ;

2. The contents below the top borders of T do not change:

T (b)[i] = S(b)[i] for all i ≤ TBT (b) ;

3. If b is not monochrome in T , the colors of all the units above the border in T are the
color of the unit just above that border in S:

TC(T (b)) = S(b)[TBT (b) + 1] if TBT (b) ̸= 0.

We first give a necessary condition for S0 →∗ S.
Recall that throughout the game play, the total number of units of each color does not

change, i.e., if S0 →∗ S, it holds for every color c ∈ C,∑
b∈B

|{ i | 1 ≤ i ≤ h and S0(b)[i] = c }| =
∑
b∈B

|{ i | 1 ≤ i ≤ |S(b)| and S(b)[i] = c }| .

FUN 2022



16:6 Sorting Balls and Water: Equivalence and Computational Complexity

Since the units under the top border of each bin have not been moved (Observation 1-2), the
total numbers of units of each color c above the borders of TBS coincide in S0 and S. We
count those units of color c as

Fc(TBS) =
∑
b∈B

|{ i | TBS(b) < i ≤ h and S0(b)[i] = c }| .

Those units may have been moved, but units of color c can go only to empty bins or bins
whose top color is c in S. Let us partition the bins into |C| + 1 groups with respect to S,
where

Bε(TBS) = { b ∈ B | TBS(b) = 0 }: monochrome bins,
Bc(TBS) = { b ∈ B \ Bε | S0(b)[TBS(b) + 1] = c }: non-monochrome bins with the top
color c.

Note that if b /∈ Bε(TBS), the top color of b in S is TC(S(b)) = S(b)[TBS(b) + 1] =
S0(b)[TBS(b) + 1]. Since each bin b ∈ Bc may have at most h − TBS(b) units of color c above
the border TBS(b), there are

Gc(TBS) =
∑

b∈Bc

(h − TBS(b))

units of color c can be on the top layer of non-monochrome bins. Thus, we must have at least

Mc(TBS) = max
{

0,

⌈
Fc(TBS) − Gc(TBS)

h

⌉}
monochrome bins in Bε which have some units of color c. Therefore, it is necessary that∑

c∈C

Mc(TBS) ≤ |Bε(TBS)| . (1)

We remark that the values of the functions introduced above, namely Fc, Bc, Mc, are all
determined by the top-border table TBS . Those values coincide for S and S′ if TBS = TBS′ .
Let us say that S is consistent with S0 if and only if TBS satisfies Eq. (1). Moreover, S is
tight if S has exactly Mc(TBS) monochrome bins with at least one unit of every color c ∈ C.

▶ Lemma 2. Suppose S is consistent with S0. There is a tight configuration S′ such that
TBS = TBS′ and S ⇒∗ S′.

Proof. Recall that it is necessary that S has at least Mc(TBS) monochrome bins of each
color c. If S has more than that, one can move all the units of any of the monochrome bins
of color c to other non-empty bins. The definition of Mc guarantees that we can repeat this
until we have just Mc(TBS) monochrome bins of color c. ◀

Of course TBS being consistent with S0 does not imply S0 →∗ S. Suppose S0 →∗ S → S′

with TBS ≠ TBS′ , where S′ has one less border than S by moving a unit above the top
border of some bin b to some other bins. Note that S(b) is not monochrome. During the
move, the bin b can keep units below its top border only. Therefore, the number of necessary
monochrome bins of each color c for this move is

Mb
c(TBS) = max

{
0,

⌈
Fc(TBS) − (Gc(TBS) − (h − TBS(b)))

h

⌉}
and it is necessary that∑

c∈C

Mb
c(TBS) ≤ |Bε(TBS)| .
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b1 b2 b3 b4

S1

b1 b2 b3 b4

S2

b1 b2 b3 b4

S3

Figure 4 All configurations S1, S2 and S3 are tight and have the same top-border table τ =
TBS1 = TBS2 = TBS3 , where τ(b1) = 7, τ(b2) = 5, and τ(b3) = 4. In those configurations, one can
move the units above the top border of any of b1 or b2, but it is impossible for b3. This solely depends
on the top-border table τ and the total number Fred(τ) = 16 of red units above the top borders. It
is independent of how those red units are distributed over the bins in the current configuration.

Those conditions depend on top-border configuration of S. For two top-border tables τ and
τ ′ and a bin b ∈ B, we write τ

b
⇛ τ ′ if

τ(a) = τ ′(a) for all a ∈ B \ {b},
τ(b) > 0 and τ ′(b) = max{ i ∈ D(S0(b)) | 0 ≤ i < τ(b) },∑

c∈C Mb
c(τ) ≤ |Bε(τ)|.

We write τ ⇛ τ ′ if τ
b
⇛ τ ′ for some b ∈ B. Figure 4 may help intuitive understanding the

above argument.

▶ Theorem 3. Suppose a configuration S is consistent with S0. Then, there is a configuration
T such that S ⇒∗ T if and only if TBS ⇛

∗
TBT , where ⇛

∗
is the reflexive and transitive

closure of ⇛.

Proof. Suppose S ⇒ T and TBS ̸= TBT . Then TBS and TBT must satisfy the condition
for TBS ⇛ TBT .

Suppose TBS ⇛ TBT . We assume without loss of generality that S is tight by Lemma 2.
The condition

∑
c∈C Mb

c(τ) ≤ |Bε(τ)| implies that units of color c = S0(b)[TBS(b) + 1] in
concern can be distributed to bins other than b. If Mb

c(TBS) = Mc(TBS), one can move
the units in b above TBT (b) to other bins whose top color is c. If Mb

c(TBS) > Mc(TBS),
one can move those units to an empty bin, which must be available in S, since S is tight. ◀

▶ Corollary 4. An initial configuration S0 is a yes-instance of BSP if and only if it is a
yes-instance of WSP.

Proof. Since any water-move can be simulated by some ball-moves, it is enough to show the
converse. We claim that, for any configurations S and S′ such that TBS = TBS′ , if S → T ,
then there is T ′ such that S′ ⇒∗ T ′ and TBT = TBT ′ .

By Theorem 3, either TBS = TBT or TBS ⇛ TBT . If TBS = TBT , then T ′ = S′ proves
the claim. Otherwise, the claim immediately follows from Theorem 3. Thus, if S0 →∗ T and
T is a goal configuration, then one can have S0 ⇒∗ T ′ for some T ′ with TBT = TBT ′ . By
modifying T ′ tight by Lemma 2, we get a goal configuration. ◀

FUN 2022
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If τ
b
⇛ τ ′, from the values Fc(τ) and Gc(τ), one can compute Fc(τ ′) and Gc(τ ′) in constant

time, by preprocessing S0, using the following equations:

Fc(τ ′) =
{

Fc(τ) + (τ(b) − τ ′(b)) if S0(b)[τ ′(b) + 1] = c,
Fc(τ) otherwise,

Gc(τ ′) =


Gc(τ) − (h − τ(b)) if S0(b)[τ(b) + 1] = c,
Gc(τ) + (h − τ ′(b)) if S0(b)[τ ′(b) + 1] = c and τ ′(b) > 0,
Gc(τ) otherwise.

▶ Corollary 5. BSP and WSP belong to NP.

Proof. By Theorem 3, S0 is a yes-instance if and only if there is a bin sequence (b1, . . . , bm)
with m = D(S0) (=

∑
b∈B |D(S0(b)) \ {0}|) that admits a top-border table sequence

(τ0, . . . , τm) such that τ0 = TBS0 and τi−1
bi

⇛ τi for all i. Each τi is uniquely determ-

ined by τi−1 and bi and one can verify τi−1
bi

⇛ τi in constant time, by maintaining the values
of Fc and Gc (or just Fc − Gc). ◀

A solution for an instance is essentially an order of borders of the instance to remove.

▶ Corollary 6. BSP and WSP can be solved in O(hn) time.

Proof. There are at most
∏

b∈B |D(S0(b))| ≤ hn distinct top-border tables. ◀

▶ Corollary 7. For every yes-instance of BSP, there exists a sequence of ball-moves to a goal
configuration of length at most (2h − 1)hn.

Proof. In BSP, h − 1 ball-moves are enough to eliminate a border from a tight configuration,
if there is a way to eliminate the border. To make the obtained configuration tight takes
at most h moves, since the obtained configuration may have at most one monochrome bin
to empty when the previous configuration is tight. Since there can be at most (h − 1)n
borders to eliminate, every yes-instance has a solution consisting of at most (2h − 1)hn

ball-moves. ◀

▶ Corollary 8. For every yes-instance of WSP, there exists a sequence of water-moves to a
goal configuration of length at most 2(h − 1)nl where l = min{h, n}.

Proof. In WSP, l = min{h, n} water-moves are enough to eliminate a border from a tight
configuration, if there is a way to eliminate the border. To make the obtained configuration
tight, it takes again l moves. To see this, observe that the obtained configuration may have
at most one monochrome bin to empty as in the ball case. If one water-move does not empty
the source monochrome bin, it must make the target bin full. Since one cannot make more
than n full bins, to empty a monochrome bin takes at most l water-moves. Therefore, every
yes-instance has a solution consisting of at most 2(h − 1)nl water-moves. ◀

3 NP-completeness

In this section, we show that BSP and WSP are NP-complete even with two colors. By
Corollaries 4 and 5, it suffices to show that WSP with two colors is NP-hard. By slightly
modifying the proof, we also show that given a trivial yes-instance of WSP, it is NP-complete
to find a shortest sequence of water-moves to a sorted configuration, where an instance is
trivial in the sense that it contains many (say hn) empty bins.
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▶ Theorem 9. BSP and WSP are NP-complete even with two colors.

Proof. As mentioned above, it suffices to show that WSP with two colors is NP-hard. We
prove it by a reduction from the following problem 3-Partition, which is known to be
NP-complete even if B is bounded from above by some polynomial in m [1].

3-Partition
Input: Positive integers a1, a2, a3, . . . , a3m such that

∑3m
i=1 ai = mB for some positive

integer B and B/4 < ai < B/2 for 1 ≤ i ≤ 3m.
Question: Is there a partition of {1, 2, . . . , 3m} into m subsets A1, A2, . . . , Am such that∑

i∈Aj
ai = B for 1 ≤ j ≤ m?

In the reduction, we use two colors red and blue. A non-empty bin is red (blue) if it
contains red (blue, resp.) units only. A non-empty bin is red-blue if its top units are red
and the other units are blue. From an instance ⟨a1, . . . , a3m⟩ of 3-Partition, we define an
instance S of WSP as follows (see Figure 5):

the capacity of each bin is B;
for each i ∈ [3m], it contains a full red-blue bin bi with ai red units and B − ai blue units;
it contains one empty bin.

We show that S is a yes-instance of WSP if and only if ⟨a1, . . . , a3m⟩ is a yes-instance of
3-Partition.

· · ·B

a2a1 a3m ajai ak

aj

ai

ak

5 moves

Figure 5 The reduction from 3-Partition to WSP.

To show the if direction, assume that ⟨a1, . . . , a3m⟩ is a yes-instance of 3-Partition. We
can construct a sequence of water-moves from S to a sorted configuration as follows. Let
A1, . . . , Am be a partition of {1, . . . , 3m} such that

∑
i∈Aj

ai = B for 1 ≤ j ≤ m. Using one
empty bin, we can sort bj1 , bj2 , bj3 with Aj = {j1, j2, j3} as follows (see Figure 5). We first
move all red units to the empty bin. Since the number of red units is aj1 +aj2 +aj3 = B, the bin
becomes full. Now bj1 , bj2 , and bj3 are blue bins containing (B −aj1)+(B −aj2)+(B −aj3) =
2B blue units in total. We move the units in bj3 to bj1 and bj2 . After that, bj1 and bj2

become full and bj3 is empty. Using this new empty bin, we can continue and sort all bins.
To show the only-if direction, we prove the following slightly modified statement. (What

we need is the case of ρ = β = 0.)

Let ρ and β be non-negative integers, and S0 be the instance of WSP obtained from
S by adding ρ full red bins and β full blue bins. If S0 is a yes-instance of the decision
problem, then ⟨a1, . . . , a3m⟩ is a yes-instance of 3-Partition.

Assume that there is a sorting sequence S0, . . . , Sℓ, where Sℓ is a sorted configuration.
We use induction on m. (We need the dummy bins for the induction step.) The case of
m = 1 is trivial since all instances of 3-Partition with m = 1 are yes-instances. Assume
that m ≥ 2 and that the statement holds for strictly smaller instances of 3-Partition.

Observe that S0 contains 3m + ρ + β + 1 bins and (3m + ρ + β)B units of water ((m + ρ)B
red units and (2m + β)B blue units). Since the capacity of bins is B, every Si contains at
most one empty bin, and if there is one, then the other bins are full. Observe also that each
bin in each Si is either red, blue, red-blue, or empty.
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We say that a move opens a bin bi if the move makes bi red units free for the first
time. Observe that each red unit in b1, . . . , b3m has to move at least once since otherwise
non-monochromatic bins will remain. Thus, all b1, . . . , b3m will eventually be opened. Let bp,
bq, and br be the first three bins opened in the sorting sequence in this order.

Assume that br is opened by the move from Sj−1 to Sj . Let α = ap + aq + ar.

▷ Claim 10. Sj satisfies the following conditions.
1. There are ρ + 1 red bins, and they contain at least ρB + α units.
2. There are β + 3 blue bins, and they contain (β + 3)B − α units.
3. There are 3m − 3 red-blue bins, and they contain (2m − 3)B + α blue units and at most

mB − α red units.
4. There is no empty bin. (This follows for free from the other conditions.)

Proof. Observe that we cannot create a new red-blue bin by any sequence of moves. Thus
the number of red-blue bins is 3m − 3. Since each red-blue bin bi contains exactly B − ai

blue units and at most ai red units, the red-blue bins contain exactly (2m − 3)B + α blue
units and at most mB − α red units in total.

The blue bins contain exactly (β + 3)B − α units. Since br contains exactly B − ar units,
the other blue bins contain (β + 2)B − (ap + aq) units, and thus the number of blue bins is
at least ⌈((β + 2)B − (ap + aq))/B⌉ + 1 ≥ β + 3, where the inequality holds as ap + aq < B.

Since the red bins contain at least ρB + α units, the number of red bins is at least
ρ + ⌈α/B⌉ ≥ ρ + 1. Recall that the total number of bins is 3m + ρ + β + 1. Thus, the number
of red bins is exactly ρ + 1 and the number of blue bins is exactly β + 3. ◁

▷ Claim 11. α = B.

Proof. In Sj , the ρ + 1 red bins contain at least ρB + α units. This implies that α ≤ B.
Suppose to the contrary that α < B. We show that under this assumption, the conditions in
Claim 10 cannot be violated by any sequence of moves. This contradicts that the final state
Sℓ does not contain any red-blue bin.

Let T be a configuration satisfying the conditions in Claim 10 and T ′ be a configuration
obtained from T by one move. It suffices to show that T ′ still satisfies the conditions in
Claim 10. Assume that the move is from a bin b to another bin b′.

First consider the case where we moved blue units. In this case, b and b′ have to be blue
bins. Hence, to show that all properties are satisfied, it suffices to show that b is not empty
after the move. Indeed, if b becomes empty after the move, then β + 2 blue bins contain
(β + 3)B − α > (β + 2)B units in total. This contradicts the capacity of bins.

Next consider the case where we moved red units. The bins b and b′ are red or red-blue.
If b becomes empty (when it was red) or blue (when it was red-blue), then the total number
of red bins and red-blue bins becomes 3m + ρ − 3 but they still contain (3m + ρ − 3)B + α

units ((m + ρ)B red and (2m − 3)B + α blue). This contradicts the capacity of bins. Thus,
we know that the type of b does not change by the move. If the move is either from red to
red, from red-blue to red-blue, or from red-blue to red, then the all conditions are satisfied.
Assume that the move is from red to red-blue and that the red-blue bins contain more
than mB − α red units after the move. Now the 3m − 3 red-blue bins contain more than
(2m − 3)B + α + mB − α = (3m − 3)B units. This again contradicts the capacity of bins.

◁

By the claims above and the capacity of bins, Sj satisfies the following conditions.
1. There are ρ + 1 full red bins.
2. There are β + 3 blue bins, and they contain (β + 2)B units.



T. Ito et al. 16:11

3. There are 3m − 3 full red-blue bins, and they contain (2m − 2)B blue units and (m − 1)B
red units.

4. There is no empty bin.
Observe that each red-blue bin bi in Sj is not opened so far, and thus contains B − ai blue
units (and ai red units as it is full).

Let us take a look at the sorting sequence from Sj to Sℓ. Since there is no empty bin
and all bins containing red units are full in Sj , we need to move blue units in blue bins
first. Unless we make an empty bin, the situation does not change. Let Sh be the first
configuration after Sj that contains an empty bin. By the capacity of bins and the discussion
so far, Sh satisfies the following conditions.
1. There are ρ + 1 full red bins.
2. There are β + 2 full blue bins.
3. For each i ∈ {1, . . . , 3m} \ {p, q, r}, the bin bi is a full red-blue bin that contains ai red

units and B − ai blue units.
4. There is one empty bin.

Without loss of generality, assume that {p, q, r} = {3m − 2, 3m − 1, 3m}. Let S′ be
the instance of WSP obtained from a1, . . . , a3(m−1) by the reduction above, and S′

0 be the
one obtained from S′ by adding ρ + 1 full red bins and β + 2 full blue bins. Observe that
S′

0 can be obtained from Sh by renaming the bins. Thus the sorting sequence from Sh

to Sℓ can be applied to S′
0 by appropriately renaming the bins. Therefore, we can apply

the induction hypothesis to S′
0 and thus a1, . . . , a3(m−1) is a yes-instance of 3-Partition.

Since α = a3m−2 + a3m−1 + a3m = B, the instance a1, . . . , a3m is also a yes-instance of
3-Partition. ◀

Corollaries 7 and 8 and Theorem 9 imply that given an integer t and a configuration S, it
is NP-complete to decide whether there is a sequence of length at most t from S to a sorted
configuration under both settings in BSP and WSP. We observe a slightly stronger result for
WSP.

▶ Corollary 12. Given an integer t and an instance S of WSP, it is NP-complete to decide
whether there is a sorting sequence for S with length at most t even if S is guaranteed to be
a yes-instance.

Proof. From an instance ⟨a1, . . . , a3m⟩ of 3-Partition, we first construct an instance of
WSP as described in the proof of Theorem 9, and then add a sufficient number of empty
bins to guarantee that the resultant instance is a yes-instance. This is always possible with
a polynomial number of empty bins as we see in Section 5.2 Let S denote the constructed
instance. We set t = 5m

The proof of Theorem 9 implies that if ⟨a1, . . . , a3m⟩ is a yes-instance, then S admits a
sorting sequence of length 5m. (See Figure 5.)

Conversely, assume that S admits a sorting sequence of length 5m. Recall that each
of the 3m red-blue bins in S contains ai red units at the top and B − ai blue units at the
bottom for some i. Since each full blue bin in the final configuration contains units from at
least two original bins, we need at least one move for it. Thus we need at least 2m moves to
make 2m full blue bins. This implies that we have at most 3m moves that involve red units.
Actually, the number of such moves is exactly 3m since each red unit has to move at least

2 It is not difficult to show that this instance only needs a constant number of bins. In fact, two empty
bins are enough to perform a greedy algorithm for sorting.
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Figure 6 Configuration S and its graph representation G⃗(S).

once. Since B/4 < ai < B/2 for all i, each of the m full red bins in the final configuration
contains units from at least three original bins, and thus it needs at least three moves. If
some red bin contains units from more than three original bins, then it needs at least four
moves. This contradicts the assumption that we have at most 3m moves for red units. Thus
we can conclude that each red bin in the final configuration contains units from exactly three
original bins. This gives a solution to the instance of 3-Partition as the capacity of the
bins is B. ◀

4 Polynomial-time algorithms when h = 2 and |C| = n

In this section, we focus on the special case of h = 2 and |C| = n. In popular apps, it is often
the case that h is a small constant and |C| = n. The case h = 2 is the first nontrivial case in
this setting. Under this setting, every ball-move is a water-move and vice versa, except for
moving (a) unit(s) from a bin with two units of the same color to an empty bin, which is a
vacuous move. Therefore, in this section we do not distinguish water-moves and ball-moves
and simply call them moves. We prove that in this setting, all instances with k ≥ 2 are
yes-instances. We also show that we can find a shortest sorting sequence in O(n) time (if
any exists).

We say that a bin of capacity 2 is a full bin if it contains two units, and a half bin if it
contains one unit.

▶ Theorem 13. If h = 2, |C| = n, and k ≥ 2, then all instances of WSP are yes-instances.
Moreover, a shortest sorting sequence can be found in O(n) time.

Proof. For the first claim of the theorem, it is enough to consider the case k = 2. Under a
configuration S, we say a color c ∈ C is sorted if the two units of color c are in the same
bin. For a configuration S, we define a directed multigraph G⃗(S) = (V, A) as follows (see
Figure 6). The vertex set V is the color set C. We add one directed edge from c to c′ for
each full bin that contains a unit of color c at the bottom and a unit of color c′ at the
top. That is, A consists of S(b) for all full bins b. (We may add self-loops here.) For the
directed multigraph G⃗(S), we denote its underlying multigraph by G(S) = (V, E), where E

is a multiset obtained from A by ignoring the directions. Since |C| = n, each color appears
twice in S. When S consists of full bins, G(S) is a 2-regular graph with n edges, which
means that G(S) is a set of cycles. We call a self-loop a trivial cycle. If S also contains half
bins, then G(S) is a disjoint union of cycles and paths.

Let pS denote the number of nontrivial directed cycles in G⃗(S) = (V, A), qS the number
of vertices of indegree 2 in G⃗(S) = (V, A), and rS the number of vertices with no self-loop,
i.e., the number of unsorted colors. We prove that if S has either two empty bins or one
empty and two half bins, then a shortest sorting sequence has length pS + qS + rS . Clearly
the initial configuration, which has two empty bins, satisfies the condition.
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We first prove that there exists a sorting sequence of length pS + qS + rS . We use an
induction on pS + qS + rS . When pS + qS + rS = 0, all colors are sorted and thus S is a goal.
Now we turn to the inductive step, which consists of four cases.
(Case 1) Suppose S has no half bins and qS = 0. Note that when S has no half bins, it has

two empty bins. Then one can move the top unit of an arbitrary bin to an empty bin.
This eliminates a directed cycle in the graph. Then we have one empty and two half bins.
The claim follows from the induction hypothesis.

(Case 2) Suppose S has no half bins and there is a vertex c whose indegree is 2. By moving
the two units of c to an empty bin, we use two moves, while decreasing both qS and
rS . Then we have one empty and two half bins. The claim follows from the induction
hypothesis.

(Case 3) Suppose S has two half bins one of which has a color of outdegree 0. Then, the
other unit of that color is not below another unit in some bin. By moving that unit on
top of the half bin, we can sort the color by one move. This decreases rS by one, and
does not change qS . After this move, still we have two half bins. The claim follows from
the induction hypothesis.

(Case 4) Otherwise, S has two half bins b and b′ and both colors in the half bins have
outdegree 1. Let c0 be the color in b and (c0, c1, . . . , cm) the sequence of vertices such
that (ci−1, ci) ∈ A for all i where cm has outdegree 0. By the assumption, cm is not the
color of the unit of b′. Therefore, cm has indegree 2, i.e., both units of cm appear as the
top units of full bins. We sort the color cm using the empty bin. It takes two moves and
decreases both rS and qS by one. We then sort cm−1, . . . , c0 in this order by m moves,
which decreases rS by m, where we require no additional empty bins and finally the
bin b will be empty. We have one empty and two half bins. The claim follows from the
induction hypothesis.

We next prove that there exists no sorting sequence of length less than pS + qS + rS with
regardless of the number k of empty bins. Note that if all colors are sorted, pS + qS + rS = 0.
We show that any move decreases the potential by at most one.
(Case 1) If the color of the moved unit belongs to a directed cycle, this reduces pS by one

but not qS . The other unit of the same color has a unit of another color on its top.
Therefore this cannot reduce rS .

(Case 2) If the color of the moved unit has indegree 2, this reduces qS by one but none of
pS or rS .

(Case 3) Otherwise, any other kind of moves cannot reduce pS or qS . Clearly one move
cannot reduce rS by two.

Since pS + qS + rS = O(n), we can sort any instance in O(n) moves. Each feasible move can
be found in O(1) time, which completes the proof. ◀

▶ Theorem 14. If h = 2, |C| = n, and k = 1, then WSP can be solved in O(n) time. For a
yes-instance, a shortest sorting sequence can be found in O(n) time.

Proof. For a configuration S, we again use the directed multigraph G⃗(S) = (V, A) and its
underlying multigraph by G(S) = (V, E) defined in the proof of Theorem 13. Let S0 be a
given instance of WSP with h = 2, k = 1, and |C| = n. To simplify, we assume that S0 has
no full bin that contains two units of the same color without loss of generality. (Hereafter,
when we have a full bin that contains two units of the same color, we remove it from the
configuration and never touch. In terms of G⃗(S), G⃗(S) has no self-loop, and once G⃗(S)
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Figure 7 Refinement of the naive bucket sort.

produces a vertex with a self-loop, we remove it from G⃗.) Observe that if a configuration S

consists of n′ full bins and one empty bin, then G(S) is a 2-regular multigraph with n′ edges.
That is, G(S) is a set of cycles of size at least 2 since we remove vertices with self-loops.

Now we focus on a cycle C ′ in G. When C ′ is a directed cycle in G⃗ (as C3 in Figure 6),
it is easy to remove the vertices in C ′ from G by using one empty bin. When C ′ contains
exactly one vertex v of outdegree 2 in G⃗, C ′ contains another vertex u of indegree 2. In this
case, we first move two units of color u to the empty bin, and we can sort the other bins
using two half bins. Lastly, we can get two units of color v together, and obtain an empty
bin again. Now we consider the case that C ′ contains (at least) two vertices v and v′ of
outdegree 2 in G⃗ (as C5 in Figure 6). In this case, we can observe that we eventually get
stuck with two half bins of colors v and v′. That is, S is a no-instance if and only if G⃗(S)
contains at least one cycle C ′ that has at least two vertices of outdegree 2 in G⃗(S).

In summary, we can conclude that the original instance S0 can be sorted if and only if
every cycle in G(S0) contains at most one vertex of outdegree 2 in G⃗(S0). The construction
of G⃗(S0) and G(S0) can be done in O(n) time, and this condition can be checked in O(n)
time. Moreover, it is easy to observe that sorting items in each cycle of length n′ in G(S0)
requires n′ + 1 moves, and n′ + 1 moves are sufficient. Therefore, the optimal sorting requires
n + ℓ moves, where ℓ is the number of cycles in G(S0), which can be computed in O(n)
time. ◀

By the proofs of Theorems 13 and 14, we have the following corollary:

▶ Corollary 15. If h = 2 and |C| = n, any yes-instance of WSP has a solution of length
O(n).

5 The number of sufficient bins

In this section, we consider the minimum number k(n, h) for n and h such that all instances
of WSP with n full bins of capacity h with k(n, h) empty bins are yes-instances. We can
easily see that such a number exists and that k(n, h) ≤ n as follows. Let S be an instance
with n full and k empty bins of capacity h such that k ≥ n. For each color c used in S, let
jc be the positive integer such that S contains jc · h units of color c. We assign jc empty
bins to each color c. Since

∑
c jc = n, we can easily “bucket sort” S by moving water units

in the n bins to empty bins following the assignment of the empty bins to the colors. On the
other hand, as shown in Theorem 14, we have no-instances when k = 1 even if h = 2 (see
Section 6 for a larger no-instance).

In the following, we improve the upper bound of k(n, h) and show a lower bound.

▶ Theorem 16. k(n, h) ≤ ⌈ h−1
h n⌉.
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Figure 8 When the first unit of color 1 has been moved, where n = 640 and k = 190.

Proof. It suffices to show the lemma for the case where n = |C|. We refine the bucket-sort
base algorithm described above. See Figure 7. Suppose that we have at least k = ⌈ h−1

h n⌉
empty bins. Then, using those empty bins, one can make j = ⌊ n

h ⌋ other bins monochrome,
since k ≥ (h − 1)j. Now we have k + j = n monochrome bins. When some of those bins have
the same color, we merge them. Then we can dedicate different n bins to pairwise different
colors, and we can use them to sort the remaining bins by the bucket sort. ◀

We note that ⌈ h−1
h n⌉ = n when h > n, which coincides with the naive bucket sort algorithm.

▶ Theorem 17. k(n, h) ≥ ⌈ 19
64 min{n, h}⌉.

Proof. We show a configuration of h = n bins where every bin has the same contents
(1, . . . , n). In the case where n > h, one can add n − h extra bins whose contents are already
sorted. In the case where n < h, one can arbitrarily pad the non-empty bins of the above
configuration with h − n extra units of each color at the bottom.

Suppose that it is solvable with k empty bins. We consider the very first moment when a
unit of color 1 has been moved. Figure 8 shows an example configuration with n = 640 and
k = 190. Note that any initially empty bin will always be monochrome. Let U be the set of
colors c such that at least one unit of the color c occupies a bin which was initially empty,
where |U | ≤ k, and rc be the number of units of color c which have been removed from the
initial location. Particularly r1 = 1. Then we have rc+1 ≥ rc for all colors c ≥ 1, since a
unit of color c can be removed only after all the units above have been removed. Moreover,
if c /∈ U , units of color c which can be put only on units of the same color. That is, from
both the source and target bins involved in the move, the unit of color c + 1 must have been
removed. Each of the target bins accepts at most (n − c) units of water color c on top of the
unit initially located there. Therefore, for c /∈ U , rc ≤ (rc+1 − rc)(n − c) (see Figure 9), i.e.,

rc+1 − rc ≥
⌈

rc

n − c

⌉
. (2)
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Figure 9 If c /∈ U , rc ≤ (rc+1 − rc)(n − c).
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Figure 10 No-instances for (a) h = 3, k = 2, n = 9 and (b) h = 4, k = 3, n = 12.

We will give a lower bound of the size of U that admits a sequence of integers (r1, . . . , rn)
with 1 ≤ r1 ≤ · · · ≤ rn ≤ n that satisfies Eq. (2) for c /∈ U . Suppose that (r1, . . . , rn) satisfies
the condition with c ∈ U and cc+1 /∈ U . Then, one can easily see that U ′ = U \ {c} ∪ {c + 1}
admits a sequence (r1, . . . , rc−1, r′

c, rc+1, rn) with r′
c = rc+1 that satisfies Eq. (2). Therefore,

we may and will assume that U = {n − k + 1, . . . , n}.
For c ≤ n − k, r1 = 1 and rc+1 − rc ≥ 1 implies rc ≥ c. Hence, for n/2 < c ≤ n − k,

rc+1 − rc ≥
⌈

rc

n − c

⌉
>

n/2
n − n/2 = 1

implies rc ≥ 2c − n/2. Hence, for (5/8)n < c ≤ n − k,

rc+1 − rc ≥
⌈

rc

n − c

⌉
>

(5/4)n − n/2
n − (5/8)n = 2

implies rc ≥ 3c − (9/8)n. Hence, for (11/16)n < c ≤ n − k,

rc+1 − rc ≥
⌈

rc

n − c

⌉
>

(33/16)n − (9/8)n
n − (11/16)n = 3

implies rc ≥ 4c − (29/16)n. On the other hand, rc ≤ n. That is, c ≤ n − k implies
c ≤ (45/64)n, i.e., k ≥ (19/64)n. ◀

6 Concluding remarks

In this paper, we investigate the problems of solvability of ball and water sort puzzles. We
show that both problems are equivalent and NP-complete. We also show that even for trivial
instances of the water sort puzzle, it is NP-complete to find a shortest sorting sequence.
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As discussed in Section 5, any instance can be sorted when k is large enough. Especially,
as discussed in Section 4, k = 2 is enough for h = 2, while we have a no-instance for k = 1
and h = 2. On the other hand, there exist no-instances with k = 2 for h = 3 and k = 3 for
h = 4 (Figure 10). We constructed them by hand and verified that they are no-instances by
using a computer program. It is interesting to give the boundary of k for a given h, especially,
h = 3, that allows us to sort any input. Does k depend on both h and n, or is it independent
from n?

Recently, a Japanese puzzle maker produces a commercial product of the ball sort puzzle.3
They extend the ball sort puzzle by introducing three different aspects as follows. (1) It
contains three different capacities of bins. That is, it allows to use different size of bins. (2)
The balls are not only colored, but also numbered. In some problems, the puzzle asks us to
not only arrange the balls of the same color into a bin, but also they should be in order in
each bin. In some other problems, the puzzle asks us to arrange the balls so that the sums
of the numbers in every non-empty bins are equal. (3) It contains transparent balls. That
is, these transparent balls are just used for arranging balls, and their final positions do not
matter in the final state. Those extensions seems to be reasonable future work.
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