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Abstract

Starting from the local structures to study hierarchical trees is a common research method. However, the cumbersome
analysis and description make the naive method challenging to adapt to the increasingly complex hierarchical tree
problems. To improve the efficiency of hierarchical tree research, we propose an embeddable matrix representation
for hierarchical trees, called Generation Matrix. It can transform the abstract hierarchical tree into a concrete matrix
representation and then take the hierarchical tree as a whole to study, which dramatically reduces the complexity of
research. Mathematical analysis shows that Generation Matrix can simulate various recursive algorithms without ac-
cessing local structures and provides a variety of interpretable matrix operations to support the research of hierarchical
trees. Applying Generation Matrix to differential privacy hierarchical tree release, we propose a Generation Matrix-
based optimally consistent release algorithm (GMC). It provides an exceptionally concise process description so that
we can describe its core steps as a simple matrix expression rather than multiple complicated recursive processes like
existing algorithms. Our experiments show that GMC takes only a few seconds to complete a release for large-scale
datasets with more than 10 million nodes. The calculation efficiency is increased by up to 100 times compared with
the state-of-the-art schemes.
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1. Introduction

As a fundamental data structure, hierarchical trees are widely used in different areas, including file systems [1],
census [2], evolution [3], etc. For example, in the U.S. Census Bureau’s plan to apply differential privacy to protect
privacy[2], designing a novel hierarchical tree releasing algorithm is one of the important challenges[4]. The scale of
the census data is so large that we can organize them into a hierarchical tree with more than 10 million nodes. Hence,
the hierarchical tree release algorithms must be specially designed and highly efficient to ensure the timely release of
such large-scale data. However, the design of efficient algorithms usually requires a large amount of hierarchical tree
research as a theoretical basis.

Most hierarchical tree research works naturally regard the hierarchical tree as a collection of nodes and relation-
ships. Starting from the perspective of individual nodes and local relationships to study hierarchical trees is a common
research method, called Naive Research Method. Empirically, Naive Research Method often leads to overly cumber-
some analysis and abstract algorithm descriptions, mainly reflected in two aspects. On the one hand, hierarchical
trees contain rich relationships, such as father, son, ancestor, descendant, sibling, or cousin, but these relationships
usually lack a concrete enough description. When multiple node relationships occur in an algorithm simultaneously,
the intricate node relationships will make the algorithm challenging to understand. On the other hand, Naive Research
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Method focuses on the local structure of hierarchical trees rather than the overall structure. The local structure is part
of the overall structure, but the studies falling into local structures may prevent researchers from solving problems
from a macro perspective. Worse, the additional auxiliary symbols or indexes for describing relationships and local
structures pose a significant challenge to the researchers’ data analysis capabilities. Imagine a researcher facing a
half-page expression with various randomly labeled symbols and subscripts; how should the next step go? Therefore,
Naive Research Method is too cumbersome to solve the increasingly complex hierarchical tree problems effectively.

Considering the complexity of Naive Research Method, we adopted a Matrixing Research Method for hierarchical
tree problems. Its core idea is to transform the hierarchical tree into a specific matrix representation and then embed it
into the research works or algorithm designs, making the initially abstract and indescribable hierarchical tree concrete
and analyzable. As a more advanced research method, similar ideas widely exist in many fields such as graph theory
[5, 6, 7, 8], group theory [9], and deep learning[10, 11]. Unlike Naive Research Method, the research object of
Matrixing Research Method is the hierarchical tree itself rather than the local structure. It emphasizes avoiding
visiting individual nodes as much as possible but implementing operations of the hierarchical tree by the matrix
representation. Therefore, the matrix representation design is critical and directly determines whether the research
can proceed smoothly. The challenges of matrix representation design are as follows.

1) A non-negligible problem is the universality of recursion in hierarchical tree algorithms, while the access of
individual nodes and the description of local relationships are almost inevitable in recursion. It violates the core
idea of the Matrixing Research Method. Some matrix representations [5, 6, 7, 8] have been used in the spectral
theory of trees, but there is no achievement to show that the existing matrix representations can implement
recursion without accessing local structures. So that whether supporting recursion is critical to the matrix
representation.

2) We hope that the matrix representation can directly serve algorithm designs, not just a theoretical analysis tool.
Therefore, the matrix representation should be succinct to ensure the efficiency of algorithms. Specifically, the
space overhead of each hierarchical tree node should be constant rather than the dense matrices like Distance
Matrix [7] or Ancestral Matrix [8].

1.1. Our contributions

Considering the challenges above, we propose an embeddable matrix representation called Generation Matrix.
Generation Matrix is a lower triangular matrix containing only 2n − 1 non-zero elements (i.e., the weights of nodes
and edges). Applying sparse storage technologies[12], we only need to store non-zero elements, satisfying the suc-
cinctness. Compared with others [5, 6, 7, 8], Generation Matrix emphasizes the application in the hierarchical tree
algorithms. Our analysis of properties shows that many calculations on Generation Matrix have specific mathematical
meanings. We can explain them and combine them to design complex hierarchical tree algorithms. More importantly,
we demonstrate that the inverse of the Generation Matrix contains the inherent logic of recursion. Therefore, we can
use Generation Matrix to simulate the top-down and bottom-up recursions without accessing the local structures. Be-
sides, we study the relationship between Generation Matrix and some existing matrix representations and find it can
be easily converted to others. It implies that Generation Matrix can be combined with the theories from other matrix
representations to solve hierarchical tree problems.

To demonstrate the practicability of Generation Matrix, we introduce an application on the differentially private
hierarchical tree release above. Considering the consistency problem[13, 14], we design a Generation Matrix-based
optimally consistent release algorithm (GMC) for differentially private hierarchical trees. To our knowledge, GMC
is the first solution to the problem by using matrix theory. It has an exceptionally concise process description so
that just a simple matrix expression can summarize the core process. GMC embodies the advantages of Generation
Matrix in solving problems in cross-domain. Therefore, Generation Matrix has positive significance for promoting
the development of hierarchical tree-related research and applying matrix theories to solve hierarchical tree problems.

1.2. Organization of paper

The rest of the paper is organized as follows. Section 2 reviews the related works of existing hierarchical tree
representations and differentially private hierarchical tree release. Section 3 introduces the preliminaries of hierarchi-
cal trees and the optimally consistent release of differentially private hierarchical trees. Section 4 defines Generation
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Matrix, then analyzes its mathematical properties and the conversion relationship with other matrix representations.
In Section 5, we show the application of Generation Matrix on differentially private hierarchical tree release and de-
sign GMC. Finally, Section 6 compares GMC with the existing technology through experiments and demonstrates its
efficiency.

2. Related Works

The research on the hierarchical tree representations mainly concentrates on data structure and graph theory fields.
In the data structure field, researchers have achieved better performance in storage [15], query [16], or structure
updating [17]. However, these representations are mainly for storage in computers but do not support mathematical
analysis. We can not symbolize them and use them as tools for hierarchical tree researches. In the graph theory
field, many works adopt matrix representations to represent trees, including Adjacency Matrix [5], Laplacian Matrix
[3, 6], Distance Matrix [7], etc. Among them, Adjacency Matrix only describes the edge information, so that it is
challenging to undertake the complex model analysis. Laplacian matrix and Distance matrix are two meaningful
matrix representations widely used in spectral graph theory. However, they are for undirected graphs or trees but
not suitable for representing rooted hierarchical trees. To summarize, none of the three matrix representations is the
best choice for representing hierarchical trees. Subsequently, Eric et al. [8] proposed a new matrix representation
for rooted trees (i.e., hierarchical trees), named Ancestor Matrix. It represents the structure of a hierarchical tree by
describing the number of overlapping edges on the path from any two leaves to the root. Studying Ancestral Matrix,
Eric et al. [8] obtained many essential conclusions, such as the maximum spectrum radius and the determinants of the
characteristic polynomial. However, it is also not the best choice for the calculations of hierarchical trees. First, the
dense Ancestral Matrix is not succinct enough. Secondly, Ancestral Matrix is a kind of matrix with a high degree of
feature summary. Although it can deterministically express the structure of a hierarchical tree only by describing the
leaves, it is very unintuitive and cannot simulate the operations of hierarchical trees. Therefore, the existing matrix
representations are not suitable for the analysis and calculation of hierarchical tree models. Significantly, the broad
application of the Laplacian matrix in deep learning[10, 11] in recent years implies that matrix representation has
essential value for solving complex scientific problems. It motivates us to design a new matrix representation to solve
hierarchical tree problems and design algorithms.

Differentially private hierarchical tree release is a data releasing technology that organizes the data into a hierar-
chical tree and applies differential privacy (DP) [18] to protect individual privacy. It is widely used in many scenarios,
such as histogram publishing [13, 19], location privacy release based on spatial partitioning [20], trajectory data
publishing [21], frequent term discovery [14]. By adding random noise to the data, DP provides a provable and quan-
tifiable guarantee of individual privacy. However, the random noise will destroy the consistency that the hierarchical
tree should satisfy, i.e., “the sum of the children’s values equals the value at the parent”[13]. Therefore, ensuring that
the released results meet consistency and obtain a higher accuracy is one of the leading research goals. Hay et al. [13]
first applied a hierarchical tree to improve the accuracy of range query and designed Boosting for the consistency of
histogram release. However, Boosting can only support complete k−ary trees, which significantly limits its applica-
tion. Moreover, Hay et al.’s error analysis [13] of the released results is rough, and only qualitative error results are
obtained. Subsequently, Wahlbeh et al. analyzed the error of Boosting and designed an algorithm to calculate the
error. However, it also can only support complete k−ary trees. In the differentially private frequent term discovery
problem studied by Ning et al. [14], the hierarchical tree is arbitrary. Therefore, it is impossible to apply Boosting.
For this reason, Ning et al. designed an optimally consistent release algorithm for arbitrary hierarchical trees in their
proposed algorithms PrivTrie [14]. Its implementation is based on multiple complex recursions, which is not easy
to understand and a large number of function calls result in significant additional computational overhead. Applying
the idea of maximum likelihood estimation, Lee et al. [22] proposed a general solution for differentially private opti-
mally consistent release. It solves the optimally consistent release by establishing a quadratic programming equation
and has a closed-form matrix expression. Theoretically, it can apply to arbitrary optimally consistent release, but the
computational overhead is so significant that it can only be processed for small-scale releases. However, Lee et al.’s
research work [22] is inspiring. It motivates us to try to analyze the issues of differentially private hierarchical tree
release from matrix analysis.

Under the representation of Generation Matrix, we can introduce many matrix analysis methods to solve hierar-
chical tree problems. One of them is QR decomposition [23]. In QR decomposition, we can transform any matrix into
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a triangular matrix by orthogonal transformation. Compared with the original form, the triangular matrix is simpler,
has many exciting properties [24]. The orthogonal transformation methods commonly used for QR decomposition
include Householder transformation [25], Gram-Schmidt orthogonalization [26], Givens rotation [27], etc. Among
them, Householder transformation is the simplest and more suitable for sparse matrices.

3. Preliminaries

In this section, we describe some preliminaries of our work. Before formally describing, we first introduce some
of the main notation definitions shown in Tab 1.

Table 1: Notations Descriptions in Our Work

Notations Descriptions

T Hierarchical tree with arbitrary structure
T (k) k−order subtree of T
fi, Ci Parent of node i; the set of children of node i
n, nk The number of nodes of the hierarchical tree; the k−order subtree
h, hi The height of the hierarchy tree; The height of node i

m The number of unit counts

G
(
wnode ,wedge

)
T

∈ Rn×m The Generation Matrix defined by a T with the node weights wnode and the edge weights wedge

GT ∈ Rn×n The structure matrix of T
MT ∈ Rn×m The consistency constraint matrix of T

GT (1)←T ∈ Rn1×n1 The Generation Matrix inner-product equivalent to MT
AT ,LT ,DT ∈ Rn×n,

CT ∈ Rm×m The Adjacency Matrix, Laplacian Matrix, Distance Matrix and Ancestral Matrix of T

x ∈ Rm×1 The vector composed of unit counts xi

v ∈ Rn×1 The vector composed of the values of nodes of the hierarchical tree arranged in order
ṽ ∈ Rn×1, x̃ ∈ Rm×1 The noisy v and x satisfying DP
v ∈ Rn×1, x ∈ Rm×1 Optimally consistent release after post-processing and the vector restored from v

H~ ∈ {0, 1}m×n The mapping matrix representing the mapping relationship between xi and vi

3.1. Hierarchical Tree
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Figure 1: Hierarchical Tree and Its k−Order Subtree

We first recall the definition of the hierarchical tree.

Definition 1 (Hierarchical Tree[28]). The hierarchical tree T is a collection of nodes numbered 1, 2, . . . , n, which
satisfies
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1) T contains a specially designated node called the root.

2) The remaining nodes are divided into several non-empty collections called the subtrees of the root.

In the hierarchical tree, we denote the relationships between the nodes as i→ j, indicating node j is the parent of
node i. Fig. 1 shows a weighted hierarchical tree with 10 nodes. The node weights and edge weights are denoted as wi

and wi→ j, respectively. By the height of each node, we can obtain a good quasi-ranking, which is defined as follows.

Definition 2 (Node Height). The node height of a hierarchical tree refers to the height of the subtree rooted at the
current node. Let the height of node i be denoted as hi, then hi can be calculated by the following recursive expression.

hi =

 1 , node i is leaf
max
j∈Ci

h j + 1 , otherwise . (1)

By the height of the nodes, we define a kind of induced subtree of hierarchical trees, called k−Order Subtree.

Definition 3 (k−Order Subtree). For a hierarchical tree T under the descending order of height, the k−Order Subtree
T (k) is defined as an induced subtree retained after T deletes all leaves k times. T (k) satisfies

T
(k) = {i |i ∈ T ∧ hi > k } . (2)

As a bottom-up induced subtree, T (k) satisfies transitive, i.e., T (a)(b) = T (a+b). It can help us determine whether
the subtrees obtained in different ways are equivalent. In subsequent applications, we use the concept of k−Order
Subtree to simplify the description of the tree structure. In Fig. 1, we use dotted circles to mark the subtrees of T
from 0 to 2 orders. It can be seen that the 0−Order Subtree is T itself actually; T (1) is a subtree composed of non-leaf
nodes of T . Let nk denote the number of nodes contained in T (k), then there are n0 ≡ n and n1 equal to the number of
non-leaf nodes of T .

3.2. Optimally Consistent Release of Differentially Private Hierarchical Tree

Before describing the optimally consistent releasing of the differentially private hierarchical tree, we first recall
the hierarchical tree releasing model. Consider a set of unit counts xi : D → N(1 ≤ i ≤ m) for private dataset D,
where xi indicates the number of records in D that satisfies the mutually exclusive unit condition ϕi. The unit count
xi satisfies

xi = |{t ∈ D |ϕi (t) = True }| . (3)

Since ϕi is mutually exclusive, any t ∈ D satisfies and only satisfies one ϕi. Therefore, organizing xi into the form
of a vector, we will get x = [x1, x2, . . . , xm]T .
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Figure 2: The Process of Hierarchical Tree Release
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As shown in Fig. 2, each leaf corresponds to a xi. The non-leaf node’s value equals the sum of the leaves’ value
of the subtree rooted at that node. Therefore, the results of the hierarchical tree meet the consistency, i.e., “the sum of
the values of the child nodes is equal to the value of the parent node”. In Fig. 2, we denote the value of the i-th node
as vi. Then, organizing vi into the form of v = [v1, v2, . . . , vn]T in turn, we can get the to-be-released data v.

However, several works[13, 19, 20, 21, 14] have demonstrated that releasing an unprotected hierarchical tree will
result in privacy disclosure. To protect individual privacy, DWork et al. [18] proposed differential privacy, defined as
follows.

Definition 4 (ε−Differential Privacy[18]). If a random algorithmM satisfies ε−difference privacy, then for any two
neighboring datasetsD andD′, all outputs O ∈ Range (M) satisfies

Pr (M (D) = O) ≤ eε Pr
(
M

(
D′

)
= O

)
. (4)

Under differential privacy, the process of hierarchical tree releasing can be described as

ṽ = v + ξ, (5)

where ṽ is the v after noise addition, which satisfies differential privacy. ξ is the random vector for the noise addition.
Each element ξi is i.i.d and satisfies ξi ∼ Lap (∆/ε ), where Lap represents a Laplacian distribution and ∆ is data
sensitivity. In hierarchical tree releasing, ∆ equals the height of T [13].

To keep the consistency of the hierarchical tree after adding noise, we can get the optimally consistent release v by
following the optimization equation according to maximum likelihood post-processing proposed by Lee et al. [22].

min
v

∥∥∥v − ṽ
∥∥∥

s.t. MT
T v = 0

, (6)

where MT is the consistency constraint matrix of a hierarchical tree, defined as follows.

Definition 5 (Consistency Constraint Matrix of Hierarchical Tree). Given a hierarchical tree T containing n nodes.
Let n1 denote the number of non-leaf nodes in T . The value mi j in row i and column j of the consistency constraint
matrix MT ∈ Rn×n1 is defined as follows:

mi j =


1 , i = j
−1 , j = fi
0 , otherwise

, (7)

where fi is the parent of node i.

The optimization equation (6) has the following closed-form expression:

v = ṽ −MT

(
MT

T MT

)−1
MT

T ṽ. (8)

Since Formula (8) involves the inner product and inverse operations of the matrix, the time complexity of the direct
solution is as high as O

(
n3

)
. The amount of calculation is too large to obtain an efficient enough algorithm directly by

the expressions. On the surface, Formula (8) is not a good choice for solving optimally consistent releases, but under
the theories of Generation Matrix, we can convert it into another form and apply the properties of Generation Matrix
to obtain an efficient algorithm.

4. Generation Matrix Model for Hierarchical Tree

4.1. Generation Matrix

Before defining Generation Matrix, we number the nodes of T by descending order of height firstly.
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Figure 3: Generation Matrix and Its k−Order Submatrix

Definition 6 (Descending Order of Height). Let hi denote the height of node i defined by Def. 2. If any two nodes i
and j in T satisfy

i < j⇒ li ≥ l j, (9)

we say that T satisfies Descending Order of Height.

Under the descending order of height, we define Generation Matrix for T .

Definition 7 (Generation Matrix). Considering a non-zero weighted hierarchical tree T under descending order of
height, let wi and wi→ fi

(
wi,wi→ fi , 0

)
denote the weight values of the node i and the edge i → fi. Organizing them

into a vector, denoted as wnode and wedge, the generation matrix is denoted as G(wnode,wedge)
T

∈ Rn×n, whose element gi, j

in row i and column j is defined as follows,

gi, j =


wi , i = j
−wi→ fi , i→ fi
0 , otherwise

. (10)

As shown in Fig. 3, since T satisfies Descending Order of Height, the number of any non-root node i in T is
always bigger than its parent. It ensures Generation Matrix is always a lower triangular matrix. According to Def.

7, there is a one-to-one mapping between arbitrary non-zero weighted hierarchical tree and G(wnode,wedge)
T

∈ Rn×n, i.e.,
the matrix representation of the non-zero weighted hierarchical tree is unique. When we only need to describe the
structure of the hierarchical tree, we can use a Generation Matrix with all weights of 1 to represent it, i.e., G(1,1)

T
.

We call G(1,1)
T

Structure Matrix, which is abbreviated as GT . If two hierarchical trees have the same structure and
arrangement, the positions of non-zero elements in their Generation Matrices are always the same, which we call
Similar Generation Matrices.

Definition 8 (Similar Generation Matrices). If G1 and G2 are two Generation Matrices defined by the hierarchical
trees with the same structure and arrangement (or the same tree), we call them similar Generation Matrices, which
are denoted as G1 ∼ G2.

Every Generation Matrix from the same hierarchical tree is always similar. We can use G ∼ GT as sufficient to
judge whether the hierarchical tree represented by G has the same structure as T .

According to Def. 3, T (k) is an induced subtree composed of nodes i with hi ≥ k in T . Under Descending Order
of Height, these nodes are always ranked first. In Fig. 3, k−Order Submatrix that represents the k−Order Subtree

is denoted as G(wnode,wedge)
T (k) . We can obtain it by taking the nk−order leading principal minor of G(wnode,wedge)

T
(i.e., the

elements in rows and columns from 1 to nk). In particular, G(wnode,wedge)
T (1) represents the sub-tree composed of non-leaf

nodes of T .
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Considering a specific application, one problem we may encounter is that the nodes of the hierarchical tree are
numbered but not in Descending Order of Height. Under the matrix representation, the problem is elementary to
solve. We can adopt a sparse mapping matrix to convert the original number into Descending Order of Height.

Definition 9 (Mapping Matrix). Given an ordered set S = 〈s1, s2, . . . , sm〉 represents the mapping relationship be-
tween integers, satisfying si ∈ N+ ∧ si ≤ n, the mapping matrix defined by S is denoted as HS ∈ {0, 1}m×n. The value
hi, j in row i and column j of HS satisfies

hi, j =

{
1 , si = j
0 , otherwise . (11)

By the definition of the mapping matrix, S always represents an injection and satisfies HSHST = I. If S represents
a bijection, HS will be a permutation matrix. When the basis vector ei acts on HS, the following equations holds.

HST ei = esi , (12)

HSei =

{
es−1

i
, i ∈ S

0 , i < S
, (13)

where s−1
i represents the inverse mapping of si, which satisfies s−1

si
= i.

To describe the mapping relationship between the nodes before and after sorting by Descending Order of Height,
we only need to define the ordered set S = 〈s1, s2, . . . , sn〉, where si represents the sorted number of the node initially
numbered i. Then, we can use HSv to get the vector before sorting from v after sorting.

In addition, the mapping matrix can be used to represent other mapping relationships, such as the mapping of vi

to xi. For example, in Fig. 1, if we use an ordered set H = 〈~1, ~2, . . . , ~m〉 to represent the mapping relationship
between vi and xi, then ~i = i + 5, and we have the mapping matrix H~ to represent their mapping relationship.

4.2. Properties of Generation Matrix

Our research shows that Generation Matrix has many mathematical properties that deserve attention. These prop-
erties can help us solve various problems about the analysis and calculation of hierarchical trees. According to Def.
7, it is not difficult to find that Generation Matrix satisfies sparsity.

Property 1 (Sparsity). Considering a hierarchical tree T consists of n nodes, G(wnode,wedge)
T

is has and only has 2n − 1
non-zero elements. Its first row has only 1 non-zero element, and the remaining n− 1 rows have 2 non-zero elements.

Due to the sparsity of Generation Matrix, we can apply various sparse matrix technologies such as COO (Coor-
dinate Format) and CSR (Compressed Sparse Row) to calculate hierarchical tree models efficiently. Under the sparse
representations, the storage and calculation of Generation Matrix are both only O (n). Therefore, the application based
on Generation Matrix does not cause more computational overhead. Currently, the computing technologies of sparse
matrices are very mature and widely used in various high-performance platforms [29, 30, 31].

One of the fundamental properties of Generation Matrices is invertibility. By solving the equations G(wnode,wedge)
T

T
z =

v and G(wnode,wedge)
T

z = v about z, we find two interesting and important mathematical properties of Generation Matri-
ces. We collectively call them the propagation of Generation Matrix.

Property 2 (Upward Propagation). Let gi, j denotes the element in row i and column j of G(wnode,wedge)
T

, and vi is the

value of node i of T . Organize vi into vector v = [v1, v2, . . . , vn]T , then z = G(wnode,wedge)
T

−T
v is an upward propagation

on v. The value zi of z satisfies

zi =


vi/gi,i , node i is leaf(
vi −

∑
j∈Ci

g j,iz j

)
/gi,i , otherwise . (14)
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Property 3 (Downward Propagation). If G(wnode,wedge)
T

and v have the exact definition as Prop. 2, then z = G(wnode,wedge)
T

−1
v

is a downward propagation on v. The value zi of z satisfies

zi =

{
vi/gi,i , node i is root(
vi − gi, fi z fi

)
/gi,i , otherwise

. (15)

Prop. 2 and Prop. 3 show that Generation Matrix can simulate multiple recursive operations of hierarchical trees.
According them, Cor. 1 analyzes the elements affected by the propagations of Generation Matrix.

Corollary 1. For the upward propagation, affected z j by vi satisfies j = i, or j is the ancestor of i in T ; for the
downward propagation, affected z j by vi satisfies j = i, or j is a descendant of i in T .

Combining the propagations, we further study a variety of matrix operations of Generation Matrices. They have
strong interpretability and provide crucial theoretical support for the research of hierarchical trees.

Property 4. Let the vector z =
(
I −GT T

)
1, then the i-th element zi of z represents the number of children of the node

i, i.e., zi = |Ci|.

Property 5. If the vector z = GT −T 1, the i-th element zi of z represents the number of nodes contained in the subtree
rooted at node i.

Property 6. Let the vector z = GT −11, then the i-th element zi of z represents the depth of node i, where the depth of
the root is 1.

The properties above indicate that Generation Matrix is an effective and easy-to-use tool for various hierarchical
tree analyses. In addition to the conclusions about vectors discussed above, there are some conclusions about matrices
as follows. Compared with conclusions about vectors, they focus on describing the characteristics between nodes.

Property 7. Let g(−1)
i j denote the element in row i and column j of GT −1, then g(−1)

i j satisfies

g(−1)
i j =

{
1 , i = j ∨ j is an ancestor of i
0 , otherwise . (16)

Proof. See Appendix A.1.

Prop. 7 shows that GT −1 is a matrix indicating the relationship between ancestors and descendants. Although
GT −1 is denser than GT , in most cases, GT −1 is still sparse.

Property 8. Let M = GTGT T and mi, j denote the element in row i and column j of M. Except for m11 = 1, other
elements satisfy “mi j = 1⇔ i and j are sibling nodes”.

Property 9. Let M =
(
GT T GT

)−1
and mi j is the element in row i and column j of M, then the value of mi j represents

the number of common ancestors of the node pair i and j, and mii represents the depth of i.

Proof. See Appendix A.2.

Similar to Prop. 7, Prop. 8 can also be used as an indicator matrix to describe the relationship between nodes. Prop.
9 is an important property, which describes an effective method of calculating common ancestors. As an essential
feature to describe the correlation between nodes, the number of common ancestors has an important application
value for hierarchical tree analyses[8].

In the study of spectral graph theory, feature analysis is usually indispensable. Our research shows that the
eigenvalues and eigenvectors of a Generation Matrix satisfy the following properties.
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Property 10 (Eigenvalues and Eigenvectors). Let λ = [λ1, λ2, . . . , λn]T denote the eigenvalues of G(wnode,wedge)
T

, then
the i-th eigenvalueλi is wi.

Let the left eigenvector and the right eigenvector corresponding to the i-th eigenvalue denote as ui and vi, respec-
tively. The premise of the existence of ui is that each ancestor j of i satisfies wi , w j, and the premise of the existence
of vi is that each descendant j of i satisfies wi , w j.

Let the j-th element of ui and vi denote as u(i)
j and v(i)

j , respectively. If ui exists, then u(i)
j = 0 for any j > i. Let

u(i)
i = 1. The remaining elements u(i)

j ( j < i) can be obtained by

u(i)
j =


∑

k∈C j wk→ ju
(i)
k

w j−wi
, j is a ancestor of i

0 , otherwise
. (17)

If vi exists, then v(i)
j = 0 for any j < i. Let v(i)

i = 1. The remaining elements v(i)
j ( j > i) can be obtained by

v(i)
j =


w j→ f j v

(k)
f j

w j−wi
, j is a descendant of i

0 , otherwise
. (18)

Prop. 10 shows that the eigenvalues and eigenvectors of the Generation Matrix have many interesting properties.
For example, the eigenvalue of Generation Matrix is the weights of the nodes, which is much easier to solve than other
matrix representations; the eigenvectors also satisfy some propagation properties similar to Prop. 2 and 3. Notably,
the eigenvectors are conditional, which means that Generation Matrix is not always diagonalizable. Some Generation
Matrices, especially the eigenvectors of GT , still have many problems waiting to be studied. Although feature analysis
is not the main focus in this paper, Prop. 10 still provides some valuable references for the subsequent research works.

Considering the relationship between G(wnode,wedge)
T

and corresponding GT , we find that G(wnode,wedge)
T

satisfies a
particular decomposition form, which we call the diagonal decomposition of Generation Matrix.

Property 11 (Diagonal Decomposition). Given arbitrary G(wnode,wedge)
T

, there is always a pair of vectors α,β ∈ Rn,

making the following decomposition hold for G(wnode,wedge)
T

and the structure matrix GT .

G(wnode,wedge)
T

= diag (β) GT diag (α) (19)

Let αi and βi denote the i-th element of them, respectively. Then a pair of legal α and β can be obtained byα = exp
(
GT −1

(
ln (wnode) − ln

(
wedge

)))
β = wnode � α

. (20)

Where “�” denote the element-wise division of vectors. Note, since the root numbered 1 has no parent, we set
w1→∅ = 1 as the first element of wedge, and wi→ fi is the i-th element of wedge in the remaining elements.

Proof. See Appendix A.3.

By the diagonal decomposition of Generation Matrix, we can express arbitrary G(wnode,wedge)
T

as an expression with

GT . Using Prop. 11, we can extend some mathematical properties of GT to G(wnode,wedge)
T

to solve more problems
effectively.

4.3. The Conversion between Generation Matrix and Other Matrix Representations
Our research shows that Generation Matrix is not an isolated matrix representation from others. Through proper

operations, we can convert Generation Matrix into other matrix representations. Fig. 4 shows the four matrix repre-
sentations that can be transformed by the Generation Matrix constructed by the hierarchical tree in Fig. 1, including
Adjacency Matrix, Laplacian Matrix, Distance Matrix, and Ancestor Matrix.
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Figure 4: Conversion Relationships from Generation Matrix to Other Matrix Representations

Theorem 1. Let AT be Adjacency Matrix of T , then AT can be obtained by the following expression of GT :

AT = I −GT . (21)

Theorem 2. Let LT be Laplacian Matrix of T , then LT can be obtained by the following expression of GT :

LT = GT T GT − e1e1
T . (22)

Theorem 3. Let DT be Distance Matrix of T , then DT can be obtained by the following expression of GT :

DT = GT −1IIT + IIT GT −T − 2
(
GT T GT

)−1
. (23)

Theorem 4. Let CT be Ancestral Matrix[8] of T , then CT can be obtained by the following expression of GT :

CT = HH
(
GT T GT

)−1
HHT − 1. (24)

Proof. The proofs of Thm. 2-4 in Appendix A.4 to A.6.

It can be seen from the theorems above that we can convert Generation Matrix into other matrix representations
by simple matrix expressions. However, the reverse is not easy. Except for Adjacency Matrix, other matrix rep-
resentations cannot be directly converted back to Generation Matrix. Therefore, we can use Generation Matrix to
construct other matrix representations. Besides, it also implies that the theories of Generation Matrix have a particular
internal connection with the matrix represented. We can combine the theories of Generation Matrix and other matrix
representations to solve more problems about hierarchical trees.

5. The Application on Differentially Private Hierarchical Tree Release

5.1. Hierarchical Tree Release Based on Generation Matrix
In this section, we introduce how to apply Generation Matrix to efficiently and concisely achieve an optimally

consistent release on differentially private hierarchical tree release. Since each leaf of T corresponds to a xi, we use
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the mapping matrix HH to represent the mapping relationship between leaf nodes and hierarchical tree nodes. Using
Prop. 2, the hierarchical tree building process BuildTreeT can be described as

v = BuildTreeT (x) = GT −T HHT x. (25)

At the same time, we also define the inverse tree-building process BuildTreeT −1 as the following expression,
which is taking the leaves of T and restoring them to x.

x = BuildTreeT −1 (v) = HHv. (26)

Although most works[13, 19, 20, 21, 14] do not take matrix analysis as the theoretical basis for optimally consistent
release, there are many advantages to applying matrix analysis. One of them is error analysis. Using matrix analysis,
we can quickly calculate the overall mean square error of the “Node Query” after the post-processing for optimally
consistent release.

Theorem 5. Given the privacy budget ε and the to-be-released hierarchical tree T containing n nodes and m leaves,
whose height is h, the overall mean square error before and after post-processing mse

(̃
v
)

and mse
(
v
)

satisfy

mse
(̃
v
)

=
∑n

i=1
E

(
(̃vi − vi)

2
)

= 2nh2/ε2 , (27)

mse
(
v
)

=
∑n

i=1
E

(
(vi − vi)2

)
= 2mh2/ε2 . (28)

Proof. See Appendix A.7.

According to Thm. 5, the overall mean square error depends on the number of leaves after post-processing.
Generally, n is much less than the number of leaves m, so post-processing will significantly reduce the error. As the
proof shown in Appendix A.7, We applied the property of the trace of the matrix to obtain a concrete and concise
demonstration, which embodies matrix analysis’s great potential for solving problems.

Next, we will introduce how to apply Generation Matrix to achieve an efficient enough algorithm.

5.2. “LO”−QR Decomposition on MT

To obtain an efficient release algorithm, we apply QR decomposition to analyze Formula (8). Unfortunately, the
traditional QR decomposition[23] cannot meet our analysis requirements, so we propose another QR decomposition
form, namely the “LO”−QR decomposition.

Definition 10 (“LO”−QR Decomposition). For matrix M ∈ Rn×m (n ≥ m), QR decomposition looks for an orthogonal
matrix Q, which converts M into a form composed of lower triangular matrix L and zero matrix. i.e.,

M = Q
[
L
O

]
. (29)

Correspondingly, we call the traditional QR decomposition the “UO”−QR decomposition, which decomposes
a matrix into an upper triangular matrix. Although the two have different forms, they both achieve decomposition
through a series of basic orthogonal transformations. Householder transformation is the most widely used among
various orthogonal transformation techniques because of its high efficiency, easy implementation, and applicability to
sparse matrices. Completing QR decomposition once requires m householder transformations. To describe the QR
decomposition process in more detail, we define (S, j)−Householder transformation to describe each transformation.

Definition 11 ((S, j)−Householder Transformation). For matrix M, given an ordered set S = 〈s1, s2, . . . , sr〉 and col-
umn number j, (S, j)−Householder Transformation selects the rows s1, s2, . . . , sr and column j of M as the reference
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for householder transformation, Y = QM. The transformation result will make Y satisfy ys1, j =
√∑

s∈Sms, j
2 and

ysi, j = 0, 2 ≤ i ≤ r, where Q satisfies the following expression:
m = HSMe j

ω = m − ‖m‖ e1

Q = I − 2HST ωω
T

ωTω
HS

. (30)

For M, we denote (S, j)−Householder transformation as Y = HouseS, j (M). The QR decomposition based on the
Householder transformation can be expressed as

R = Houseςm � · · · � Houseς2 � Houseς1 (M) , (31)

where R is the result of QR decomposition and “�” represents the operation of function composition such as f2 �
f1 (x) = f2 ( f1 (x)). For “UO”−QR decomposition, the parameter ςi = (〈i, · · · , n〉 , i); for “LO”−QR decomposition,
the parameter ςi = (〈m − i + 1, 1, · · · ,m − i,m + 1, · · · , n〉 ,m − i + 1).

Next, we apply the “LO”−QR decomposition on MT . To understand how “LO”−QR decomposition affects MT ,
we divide MT into the following forms,

MT ≡

[
M↑

M↓

]
. (32)

The upper half M↑ ∈ Rn1×n1 of MT consists of the first n1 rows; The second half M↓ ∈ Rm×n1 consists of the remaining
m rows. According to Def. 5, we have M↑ = GT (1) and M↓ = −HS( f ) , where the i-th element of ordered set S( f )

satisfies s( f )
i = fi+n1 . Considering the effects of Householder transformation on MT , we denote the matrix obtained

after the k-th Householder transformation as M(k)
T

(0 ≤ k ≤ n1), whose upper half and second half are denoted as
M(k)
↑

and M(k)
↓

. M(0)
T

is the form before Householder transformation, satisfying M(0)
T

= MT ; M(n1)
T

is the result after

“LO”−QR decomposition. Thm. 6 demonstrates that, in the process of Householder transformation, M(k)
T

satisfies
some invariant properties.
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Figure 5: Householder Transformations in “LO”−QR Decomposition on MT

Theorem 6. For the “LO”−QR decomposition on MT , after k (0 ≤ k ≤ n1 − 1) times of Householder transformation,
M(k)
T

always keeps the following three properties unchanged:

a) M(k)
↑
∼ GT (1) ;

b) Each line of M(k)
↓

has one and only one non-zero value;

c) The last k columns of M(k)
↓

(i.e., the columns from n1 − k + 1 to n1) are all 0.

13



Proof. See Appendix A.8.

As shown in Fig. 5, with the Householder transformation proceeds, the non-zero elements in M(k)
↓

shift from right

to left, and the position of the non-zero elements of M(k)
↑

remains unchanged. Specifically, in the k-th Householder

transformation, all non-zero elements in the (n1 − k + 1)-th column of M(k)
↓

are transferred to the fn1−k+1-th column.

Combining Thm. 6, we can infer the specific form of M(n1−1)
T

after n1 − 1 times of Householder transformation. After
the last householder transformation, the result satisfies the following theorem.

Theorem 7. After “LO”−QR decomposition, there is a G(wnode,wedge)
T (1) and an orthogonal matrix Q, which let MT

satisfies:

MT = Q
G(wnode,wedge)
T (1)

O

 . (33)

Proof. See Appendix A.9.

Thm. 7 implies that the calculation
(
MT

T MT

)−1
about MT in expression (8) can be replaced by T (1). Since it is

related to T and T (1) simultaneously, we denote it as GT (1)←T . Thm. 8 shows that GT (1)←T and MT are inner-product-
equivalent.

Theorem 8. For arbitrary MT , there is a GT (1)←T inner-product-equivalent to it, which satisfies

MT
T MT = GT (1)←T

T GT (1)←T , (34)

where GT (1)←T is the upper half M(n1)
↓

of MT after “LO”−QR decomposition.

Proof. See Appendix A.10.

5.3. Generation Matrix-based Optimally Consistent Release Algorithm
The property of inner product equivalence provides us with a vital optimization idea for an optimal release, as

shown in Cor. 2. Using matrix analysis, we convert the expression (8) into an expression about GT (1)←T and then use
the mathematical properties of Generation Matrix to improve the efficiency of optimal release.

Corollary 2. The expression y =
(
MT

T MT

)−1
x can be obtained by performing an upward propagation and a down-

ward propagation successively about GT (1)←T . That is

y =
(
MT

T MT

)−1
x = GT (1)←T

−1
(
GT (1)←T

−T x
)
. (35)

Proof. See Appendix A.11.

According to Cor. 2, we get another optimal release form as follows.

v = ṽ −MT

(
GT (1)←T

−1
(
GT (1)←T

−T
(
MT

T ṽ
)))

. (36)

We illustrate with parentheses that Formula (36) is calculated from right to left, ensuring that all multiplication and
solution equations are for matrices and vectors. According to the sparsity of MT , the time complexity of MT -related
multiplication calculation in Formula (36) is O (n). Besides, according to Prop. 2 and Prop. 3, the time complexity
of solving the linear equation of Generation Matrix is also O (n1). Therefore, the overall time complexity of Formula
(36) is O (n). Formula (36) has completely summarized the core process of optimally consistent release. So long as
we execute the formula directly after constructing GT (1)←T , we can efficiently obtain the optimal consistent release.
The algorithm description with Generation Matrices is very concise and easy to implement.

However, only ensuring that the calculation of GT (1)←T is also highly efficient, the whole process is efficient. So,
we further proposed Thm. 9 to calculate it.
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Theorem 9. Let wi(1 ≤ i ≤ n1) and wi→ fi (2 ≤ i ≤ n1) as the weights of the nodes and edges in GT (1)←T , respectively.
They satisfy wi =

√
1 + θi

wi→ fi = wi
−1

, (37)

where θi (1 ≤ i ≤ n1) satisfies
θi = |Ci| −

∑
j∈Ci∧ j≤n1

(
1 + θ j

)−1
. (38)

Proof. See Appendix A.12.

Thm. 9 shows that wi and wi→ fi can be directly calculated by only requiring θi, and the calculation of θi only
needs to traverse from n1 to 1 once. Since this process involves the calculation of |Ci|, the overall time complexity of
constructing GT (1)←T is O (n). The specific construction process is shown in Alg. 1.

Algorithm 1 Construct GT (1)←T from MT

Input: Consistency Constraint Matrix MT
Output: the inner-product-equivalent GT (1)←T
1: Initialize θ ∈ Rn1×1, satisfying θi = |Ci |.
2: for i = n1 to 2 do θ fi ← θ fi − (1 + θi)−1;
3: for i = 1 to n1 do Let wi =

√
1 + θi;

4: for i = 2 to n1 do Let wi→ fi = wi
−1;

5: Construct GT (1)←T by wi and wi→ fi ;
6: return GT (1)←T ;

In summary, we propose a Generation Matrix-based optimally consistent release algorithm (GMC) for differen-
tially private hierarchical trees, described as Alg. 2. Note that Step 1 to Step 3 in Alg. 2 are the normal hierarchical
tree release process, and Step 4 is the call of Alg. 1. Only step 5 is the core step, which uses formula (36) to achieve
optimally consistent release. In the previous, the time complexity of formula (36) has been proved as O (n). Therefore,
the overall time complexity of GMC is also O (n). Besides, it can be seen that GMC is a two-stage algorithm, i.e., the
construction of GT (1)←T and post-processing. If the same hierarchical tree is used for multiple releases, we only need
to construct GT (1)←T once.

Algorithm 2 Generation Matrix-based Optimally Consistent Release Algorithm
Input: hierarchical tree T , datasetD, privacy parameters ε
Output: the optimally consistent release v
1: Construct a vector x fromD, which satisfies xi = φi (D).
2: Build a hierarchical tree with v = GT −T HH T x;
3: Calculate the height of T , then get ṽ by adding noise to v, where ṽi = vi + ξi, ξi ∼ Lap (h/ε ).
4: Construct MT , then substitute it into Alg. 1 to obtain GT (1)←T ;
5: Calculate v = ṽ −MT

(
GT (1)←T

−1
(
GT (1)←T

−T
(
MT T ṽ

)))
;

6: return v;

In addition, we can further optimize the algorithm. Considering that the construction of GT (1)←T involves square
root extraction, which may cause more calculation overhead, we propose an improved version of Alg. 2 to avoid any
square root. The main idea is shown as follows.

v = ṽ −MT

(
G(θ′,1)
T (1)

−1
(
θ′ ∗

(
G(θ′,1)
T (1)

−T (
MT

T ṽ
))))

. (39)

Where the vector θ′ =
[
θ1, θ2, . . . , θn1

]T
+ 1, and “∗” is Hadamard product [32]. The new version without square root

extraction can slightly improve the calculation efficiency, which shows that the algorithm under the matrix description
has high scalability. The improvement of the algorithm only needs to make some slight modifications on Formula
(36). Furthermore, we can directly extend the existing model to solve other hierarchical tree problems, such as the
hierarchical tree release with the non-uniform privacy budget.
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6. Experiment

We conducted experiments to verify the performance of GMC our proposed for differentially private hierarchical
tree release. All our experiments are run on a computer with Dual 4 Core 3.9 GHz AMD Ryzen CPUs, 32GB RAM,
and MATLAB’s development software. To improve the reliability of our experimental results, we repeatedly run the
same experimental setup 100 times and then take the average of multiple experimental results as the final results. In
addition, we denote the output of our algorithm by v(out) or x(out), v(out)

i , and their i-th outputs are denoted as v(out)
i and

x(out)
i , respectively.

6.1. Datasets and Comparison Algorithms

Our experiments run on 3 large datasets with more than 10 million nodes. They are Census2010, NYCTaxi, and
SynData, with the following details.

Census2010[33]: Due to the plan that the U.S. Census Bureau announced using differential privacy[2], we adopt
the 2010 U.S. Census dataset as our first dataset, which contains demographic information of all Americans. The
statistical results are divided into 8 levels by the geographic components, i.e., “United States - State - County - County
Subdivision - Place/Remainder - Census Tract - Block Group - Block”. The dataset contains 312, 471, 327 individuals,
which construct a hierarchical tree containing 11, 802, 162 nodes. One of its typical applications is to provide users
with queries on the population of the area of interest, called “Node Query”. For example, a user submits a query
request “What is the population of Albany County in New York, USA?”. The system will return the value at the
node “USA - New York - Albany County”. After verification, we ensured that the data before adding noise satisfies
consistency.

NYCTaxi[34]: This data set comes from car ride records in New York City in 2013. In order to ensure the
uniqueness of the data, we selected the data provided by Creative Mobile Technologies. According to the start time
of the taxi, we constructed a statistical histogram of the frequency of people taking a taxi in seconds and provided a
range query. The process of building a hierarchical tree is random, which ensures that our algorithm can handle any
hierarchical tree structure. The data contains 86, 687, 775 individuals. Since we count the ride frequency by seconds,
the number of histograms (leaf nodes) totals 31, 536, 000. The fan-out of nodes is random. In our experiments, we set
the proportion of nodes with fan-outs of 2, 3, 4 and 5 to {40%, 30%, 20%, 10%}. In this way, the hierarchical tree we
build contains approximately 45 to 50 million nodes.

SynData: To test the hierarchical tree with special structures, we adopt a randomly synthesized dataset for our
experiments. In synthetic data, the hierarchical tree structure is a complete binary, and the number of nodes n is
controlled by the tree height h, where n = 2h − 1. We generate xi by Poisson distribution, i.e., xi ∼ Poi (λ). In our
experiments, we set λ = 100 and take h = 24 as the complete dataset, containing 16, 777, 215 nodes. Like NYCTaxi,
we focus on the “Range Query” on SynData.

Table 2: Description of the Algorithms

Name Description
Processless No processing after adding noise.

Boosting Boosting[13], the classic post-processing of only for the complete trees. For arbitrary
structure, we take the fan-out of root as the fan-out of the algorithm.

PrivTrie The post-processing in PrivTrie[14], which has been proven to achieve the optimally
consistent release for arbitrary hierarchical tree.

GMC Our post-processing for arbitrary hierarchical tree, which achieve the optimally consistent
release based on Generation Matrix.

Our experiments compare 4 different algorithm settings. Their details are shown in Tab. 2. Because our experiment
is for large-scale hierarchical trees with more than 10 million nodes, the time complexity of the selected algorithm
settings is both O (n).
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6.2. Verifying the Effectiveness for GMC
In the first experiment, we verify the effectiveness of GMC with two main aspects, i.e., error and consistency.
The error is measured by the root mean square error (rmse), whose calculation methods are different for “Node

Query” and “Range Query”. We denote the rmse of “Node Query” (For Census2010) by rmseNQ, and its formula is

rmseNQ =

√
1
n

∑n

i=1

(
v(out)

i − vi

)2
. (40)

And the rmse of “Range Query” (For NYCTaxi and SynData) is denoted as rmseRQ, calculated by

rmseRQ =

√
1
q

∑q

i=1

(∑bi

j=ai
x(out)

i −
∑bi

j=ai
x j

)2
. (41)

Where q is the number of range queries selected randomly and without repetition, and the range of the i-th query is
recorded as [ai, bi]. The main reason for random sampling is that all range queries are up to C2

m so that we cannot test
all range queries. In our experiment, we take q = 105.

The consistency of the outputs is measured by consistency bias. Let ∆ = MT v(out), and ∆i as the i-th element of ∆,
then bias satisfies

bias =

√∑n1

i=1
∆i

2/n1 . (42)

Besides, we adopt the complete datasets in the experiment and take ε = 1.

Table 3: Experimental Results on Multiple Algorithm Settings and Large-scale Datasets
Census2010 NYCTaxi SynData

rmse bias rmse bias rmse bias
Processless 11.32 49.61 138.42 48.38 166.37 61.24
Boosting 11.30 159.01 120.75 22.42 74.94 0.00
PrivTrie 11.00 0.00 68.69 0.00 74.94 0.00

GMC 11.00 0.00 68.69 0.00 74.94 0.00

Since the optimally consistent release problem of the differentially private hierarchical tree is a convex optimiza-
tion problem, its solution is unique. If the outputs of GMC also satisfy optimally consistent, they should be the same
as PrivTrie. The results in Tab. 3 confirm this point. They show that GMC is effective and correct. However, it does
not mean that PrivTrie and GMC are entirely equivalent. Their implementations are entirely different, so we need
further to analyze the algorithms’ performance in the subsequent experiments.

In addition, the results also show the major drawback of Boosting. i.e., it can only guarantee the consistency of
complete trees. If the fan-outs of nodes are different, Boosting cannot guarantee that the results are consistent. Espe-
cially for Census2010, where the fan-out of nodes is highly different, Boosting results in more significant consistency
bias after post-processing.

6.3. Performance Testing
In this section, we focus on the algorithms’ performance and test the running time of the algorithms above from

small-scale data to large-scale data. To construct hierarchical trees with different scales, we adopted the following
different methods according to the characteristics of each dataset. For Census2010, we obtain a smaller hierarchical
tree by k−order subtree. For example, in its 4−order subtree, the leaves represent the “County Subdivision” level.
For NYC taxi, we divide the data of 2013 into 12 months. The data of the first k months as the k-th subset. For
SynData, we control the data scale by directly setting the tree height. In the experiment, we used the six different tree
heights {8, 12, 16, 20, 24} to generate hierarchical trees with different scales. Since Processless does not perform any
processing for consistency, we omit it in the experiment.

In Fig. 6, the experimental results show that all three algorithms can complete the post-processing within some
time, but their running times are quite different. Boosting and PrivTrie need more than 200 seconds to process the
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Figure 6: The Comparison of Running Time for Various Different Data Scales

hierarchical trees with tens of millions of nodes, while GMC only needs about 2 seconds to process the same data
(See Fig. 6a). Their performance gap is up to 100 times. It shows that even if Boosting and PrivTrie have reached
the lowest time complexity with O (n), they still have much space for performance improvement. In addition to the
relatively inefficient recursive algorithms, another important reason is that GMC uses standard matrix operations to
complete the post-processing after establishing the matrix model. These standard matrix operations introduce many
optimization techniques in the underlying design, which can make full use of computer resources and significantly
improve computing efficiency. Although the results above do not deny that Boosting and PrivTrie can handle large-
scale hierarchical trees, applying them to some scenarios, such as real-time data updates or more complex models,
may cause considerable challenges in computational efficiency.
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Figure 7: Running Time for Two Stages of GMC with Complete Datasets

Finally, we test the running time for the two stages of GMC, i.e., the Generation Matrix construction (Stage 1) and
the post-processing (Stage 2). In Fig. 7, we can see that the time overhead in Stage 1 is much more significant than
in Stage 2. The reason is the Generation Matrix construction includes the sorting by Descending Order of Height,
counting the number of children, and some high-cost operations such as division, square root (in the process of
calculating θi). It is worth noting that the Generation Matrix construction is independent of the data to be released and
does not involve individual privacy. When the same hierarchical tree structure is reused in multiple releases, we only
need to perform the construction process once, further reducing the overall running time of the optimally consistent
releases.

7. Conclusions and Future Work

In the previous, we successfully defined Generation Matrix and demonstrated many of its critical mathematical
properties. Using Generation Matrix, we can implement various hierarchical tree operations without accessing the
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local structure, which provides crucial theoretical support for the Matrixing Research Method of hierarchical trees.
The application on the differentially private hierarchical tree release reflects the Generation Matrix’s practicability.
The proposed GMC based on Generation Matrix provides a concise algorithm for optimally consistent release. Our
experiments show that GMC has achieved a significant performance improvement of up to 100 times compared with
the state-of-the-art schemes.

The scientific problem that we solve in this paper is not very complicated, but it is classic and is suitable as an
example to show the practicability of the Generation Matrix. However, the hierarchical tree problems that Generation
Matrix can solve are far more than the application. We can use it to explore more complex hierarchical tree release
problems and even the problems that have not been solved so far. For example, the issue of non-negative consistent
release of hierarchical trees currently does not exist any closed-form solution with time complexity of O (n), which
makes it very difficult to solve the optimal release satisfying both consistency and non-negativity for large-scale data.
Nonetheless, Generation Matrix provides us with a critical analysis tool to challenge the problem.

Appendix A. Partial Proofs

Appendix A.1. Proof of Property 7

Proof. According to the basic properties of the lower triangular matrix[24], the inverse GT −1 of the lower triangular
matrix GT is also a lower triangular matrix.

Considering GT −1’s j-th column vector g(−1)
j = GT −1e j, whose i-th element is denoted as g(−1)

i j , we have g(−1)
i j =

0, i < j. Since only the j-th element of e j is 1, but the rest are all 0, g(−1)
i j , for i ≥ j, satisfies

g(−1)
i j =

 1 , i = j
g(−1)

f j, j
, i > j . (A.1)

Therefore, g(−1)
j j = 1. Next, we adopt the contradiction method to prove. Suppose j is the ancestor of i, but

g(−1)
i j , 1.

Let t(i)
0 , t

(i)
1 , . . . , t

(i)
p denote the node i and its p ancestors respectively.

Since j is an ancestor of i, there is a q such that j = it(i)
q . Therefore, we have g(−1)

j j = g(−1)
t(i)
q j

= · · · = g(−1)
t(i)
1 j

= g(−1)
i j , 1

according to the recurrence formula (A.1).
The conclusion contradicts g(−1)

j j = 1. Therefore, when j is an ancestor of i, g(−1)
i j = 1.

If j is not an ancestor of i, obviously j is not the root, i.e., j > 1. According to the formula (A.1), we have
g(−1)

1, j = g(−1)
t(i)
p j

= · · · = g(−1)
t(i)
1 j

= g(−1)
i j . Since g(−1)

1, j , j > 1 has been proved to be 0, thus g(−1)
i j = 0.

Appendix A.2. Proof of Property 9

Proof. Considering the i-th row of GT −1, we denote Ui =
{
k
∣∣∣g(−1)

ik , 0
}

as the set formed by the column subscripts of

the non-zero elements in the i-th row. According to M =
(
GT T GT

)−1
= GT −1GT −T , we have mi j satisfied

mi j =
∑n

k=1
g(−1)

ik g(−1)
jk =

∑
k∈Ui∩U j

g(−1)
ik g(−1)

jk =
∣∣∣Ui ∩ U j

∣∣∣ (A.2)

According to Prop. 7, Ui = {k |k is an ancestor of i }. Therefore, Ui ∩U j is the common ancestor of i and j and mi j

records the number of their common ancestors.
Specifically, if i = j, mii = |Ui|, i.e., the number of ancestors of i plus 1 (itself). Let the depth of the root be 1, mii

is the depth of i.
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Appendix A.3. Proof of Property 11
Proof. Let α = [α1, α2, . . . , αn]T , β =

[
β1, β2, . . . , βn

]T . According to Equation (19), we have wi = αiβi, wi→ fi = α fiβi.
That is, ln wi = lnαi + ln βi, ln wi→ fi = α fi + βi. Therefore, we have the following matrix equation holds.[

I I
I −G I

] [
lnα
lnβ

]
=

[
ln wnode

ln wedge

]
. (A.3)

According to the property of Block Matrix Inversion, we have[
I I

I −G I

]−1

=

[
G−1 −G−1

I −G−1 G−1

]
. (A.4)

And then, [
lnα
lnβ

]
=

 GT −1
(
ln wnode − ln wedge

)
ln wnode + GT −1

(
ln wedge − ln wnode

) =

[
lnα

ln wnode − lnα

]
. (A.5)

Performing the exponential operations exp (∗) on both sides of the equation (A.5) at the same time, we have
formula (20) holds.

Appendix A.4. Proof of Theorem 2
Proof. Let li j denote the element in row i and column j of LT . According to the definition of Laplacian Matrix[6], we
have the diagonal elements lii representing the number of adjacent nodes of i; and if j is the adjacent node of i, i.e.,
j = fi or i = f j, we have li j = −1; otherwise, li j = 0.

According to the expression (22), we have

li j =


(∑

k∈U1
gk1gk1

)
− 1 , i = j = 1∑

k∈Ui∩U j
gkigk j , otherwise

(A.6)

where U j =
{
k
∣∣∣gk j , 0

}
= { j} ∪ C j denotes the set formed by the row subscripts of non-zero elements in the j-th

column of GT .
Next, we discuss the following situations:
For i = j = 1, under the definition of Laplacian Matrix, l11 should be equal to the number of children of the root,

i.e., l11 = |C1|. According to the expression (22), there is k ∈ {1} ∪ C1 and l11 = |{1} ∪ C1| − 1 = |C1|. It conforms to
the definition of Laplacian Matrix.

For i = j > 1, under the definition of Laplacian Matrix, lii should be equal to the number of i’s children and parent,
i.e., lii = |Ci ∪ fi| = |Ci| + 1. According to the expression (22), lii =

∑
k∈Ui

gkigki = |{i} ∪ Ci| = |Ci| + 1. It conforms to
the definition of Laplacian Matrix.

For i , j but i ∈ C j, under the definition of Laplacian Matrix, li j = −1. According to the expression (22),
k ∈ Ui ∩ U j= ({i} ∪ Ci) ∩

(
{ j} ∪ C j

)
= {i} ∩ C j = {i}, we have li j = giigi j = −1. Again, It conforms to the definition of

Laplacian Matrix. Similarly, if i , j and j ∈ Ci, li j = −1. Finally, when i , j and j and i do not contain a parent-child
relationship, Ui ∩ U j = ∅ , Li j = 0, which also conforms to the definition of Laplacian Matrix.

Therefore, in any case, the expression(22) always conforms to the definition of the Laplacian Matrix.

Appendix A.5. Proof of Theorem 3
Proof. Let di j denote the element in row i and column j of DT .

According to the definition of distance matrix[7], di j is the distance from node i to j. As shown in Fig. A.8, c (red
node) is the nearest common ancestor of nodes i and j. dc denotes the depth of node c (i.e., the distance from node C
to the root (orange node) plus 1); d1 denotes the distance from c to i; d2 denotes the distance from c to j. Obviously,
the distance di j = d1 + d2.

Considering expression (23), let M1 = GT −1IIT , M2 = IIT GT −T , M2 = IIT GT −T and m(k)
i j denotes the element in

the row i and column j of Mk. According to Prop. 6, m(1)
i j = m(2)

ji is the depth of the node i, i.e., m(3)
i j = dc. According

to Prop. 9, m(3)
i j is the number of common ancestors of i and j (the depth of c), i.e., m(3)

i j = dc.
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Figure A.8: The Distance of Node i, j and Their Nearest Common Ancestor

Substituting them into expression (23), we have

di j = m(1)
i j + m(2)

i j − 2m(3)
i j = (d1 + dc) + (d2 + dc) − 2dc = d1 + d2 (A.7)

The expression (A.7) is consistent with the definition, so DT can be calculated by expression (23).

Appendix A.6. Proof of Theorem 4

Proof. Let ci j denote the element in row i and column j of CT .
According to the definition of Ancestral Matrix[8], ci j represents the distance from the nearest common ancestor

of leaves i and j to the root.
Note, Prop. 9 has been proved that the element of

(
GT T GT

)−1
is the number of the common nodes, i.e., the

distance from the nearest common ancestor to the root node plus 1.
Therefore, we can get CT by taking the sub-matrix corresponding to the leaves in

(
GT T GT

)−1
and then subtracting

1.

Appendix A.7. Proof of Theorem 5

Proof. According to formula (5), the noise we add to each element in ṽ is i.i.d, and satisfies Lap (h/ε ). Since the
variance of Lap (b) is 2b2, the covariance matrix of ṽ is D

(̃
v
)

= 2
(
h2/ε2

)
I.

According to the mean square error analysis of differential privacy, we have

mse
(̃
v
)

= trace
(
D

(̃
v
))

= 2
(
h2/ε2

)
trace (I) = 2nh2/ε2 (A.8)

In addition, according to formula (8),

D
(
v
)

= D
((

I −MT

(
MT

T MT

)−1
MT

T
)

ṽ
)

= 2
(
h2/ε2

) (
I −MT

(
MT

T MT

)−1
MT

T
)

(A.9)

Then,
mse

(
v
)

= trace
(
D

(
v
))

= 2
(
h2/ε2

)
trace

(
I −MT

(
MT

T MT

)−1
MT

T
)

=2
(
h2/ε2

) (
n − trace

(
MT

T MT

(
MT

T MT

)−1
)) . (A.10)

Since MT ∈ Rn×n1 , we have
trace

(
MT

T MT

(
MT

T MT

)−1
)

= trace (I) = n1. (A.11)

Substituting it into (A.10), we have

mse
(
v
)

= 2
(
h2/ε2

)
(n − n1) = 2mh2/ε2 (A.12)
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Appendix A.8. Proof of Theorem 6
Proof. By Def. 10, it is obvious that the process of Householder transformation satisfies property c). Because the
process of “LO”−QR decomposition is the process of setting 0 column by column from the last column to the first
column.

According to Def. 5, M(0)
T

satisfies both properties a),b) and c).
Assume that M satisfies both properties a), b) and c). By the formula (31), the expression of the k-th Householder

transformation is as follows:
M(k)
T

= HouseSk ,tk

(
M(k−1)
T

)
, (A.13)

where tk = n1 − k + 1. Considering that M(k−1)
T

satisfies the property a) and is a lower triangular matrix, the values of
Sk can be simplified, taking Sk = 〈tk, n1 + 1, . . . , n〉.

According to Def. 11 , during the transformation process, mk and ωk satisfymk =
[
m(k−1)

tk ,tk ,m
(k−1)
n1+1,tk

,m(k−1)
n1+2,tk

, . . . ,m(k−1)
n,tk

]T

ωk =
[
m(k−1)

tk ,tk − ρ,m
(k−1)
n1+1,tk

,m(k−1)
n1+2,tk

, . . . ,m(k−1)
n,tk

]T , (A.14)

where ρk = ‖mk‖ =

√ ∑
s∈Sk

m(k)
s,tk

2
. By calculating ωk

T mk, we have

ωk
T mk =

(
m(k−1)

tk ,tk − ρk

)
m(k−1)

tk , j
+

n∑
s=n1+1

m(k−1)
s,tk m(k−1)

s, j . (A.15)

Due to M(k−1)
T

satisfies the property b), for the same row s > n1, at most only one of m(k−1)
s,tk and m(k−1)

s, j in M(k−1)
T

is
non-zero. Therefore,

ωk
T mk =

(
m(k−1)

tk ,tk − ρk

)
m(k−1)

tk , j
. (A.16)

Simplifying according to formula (30), we can get M(k)
T

after k-th Householder transformation, whose element
m(k)

i, j in in row i and column j satisfies

m(k)
i, j =



ρk , i = tk, j = tk
0 , n1 + 1 ≤ i ≤ n, j = tk
m(k−1)

tk , j
m(k−1)

tk ,tk /ρk , i = tk, j , tk
m(k−1)

i, j + m(k−1)
i,tk

m(k−1)
tk , j

/ρk , n1 + 1 ≤ i ≤ n, j , tk
m(k−1)

i, j , otherwise

(A.17)

According to the recursive expression (A.17), consider the properties of M(k)
T

. First, consider the property a). Since
M(k−1)
↑

∼ GT (1) , and only the row tk = n1 − k + 1 in the first n1 rows of M(k−1)
T

is affected, according to the sparsity of

GM, it can be known that the tk-th row of M(k−1)
T

satisfies m(k−1)
tk , j
, 0 if and only if j ∈

{
tk, ftk

}
.

Since m(k−1)
tk ,tk /ρk , 0, according to m(k)

tk , j
= m(k−1)

tk , j
m(k−1)

tk ,tk /ρk for j , tk, we have m(k)
tk , j
, 0⇔ m(k−1)

tk , j
, 0.

Therefore, there is no mutual conversion between non-zero elements and zero elements in the only affected tk-th
row. M(k)

T
satisfies property a).

Next consider property b). For the rows n1 + 1 ∼ n, according to the property c), all the values of the tk-th column
of M(k)

↓
are 0. Consider the j-th column ( j , tk) of M(k)

↓
, we have

m(k)
i, j = m(k−1)

i, j + m(k−1)
i,tk

m(k−1)
tk , j

/ρk . (A.18)

If j , ftk , there is m(k−1)
tk , j

= 0, i.e., m(k)
i, j = m(k−1)

i, j ; If j = ftk , there is m(k−1)
tk , j
, 0, i.e., m(k)

i, j , 0⇔ m(k−1)
i, j , 0∨m(k−1)

i,tk
,

0.
Therefore, the k-th Householder transformation is equivalent to transferring non-zero elements from the tk-th

column of M(k−1)
↓

to the ftk -th column of M(k−1)
↓

. The process keeps the property b) holds.

In summary, M(k)
T

also satisfies the properties a), b) and c). Since M(0)
T

satisfies the properties a), b) and c), all
M(k)
T

(0 ≤ k ≤ n1 − 1) satisfy the properties a), b) and c).
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Appendix A.9. Proof of Theorem 7
Proof. By Thm. 6, after n1 − 1 Householder transformations, M(n1−1)

T
satisfies both the properties a), b), and c).

Consider M(n1)
T

= HouseSn1 ,1

(
M(n1−1)
T

)
for the n1-th Householder transformation. Due to M(n1−1)

↑
∼ GT (1) and only

m(n1−1)
1,1 in the first row of M(n1−1)

↑
is non-zero, which is the only element of M(n1−1)

↑
affected by the last transformation.

The transformed m(n1)
1,1 satisfies

m(n1)
1,1 =

√√
m(n1−1)

1,1
2

+

n∑
s=n1+1

m(n1−1)
s,1

2
. (A.19)

Therefore, there is still M(n1)
↑
∼ GT (1) after the last transformation, i.e., there is a G(wnode,wedge)

T (1) satisfying G(wnode,wedge)
T (1) =

M(n1)
↑

. Besides, according to Def. 11 and property c), it can be known that M(n1)
↓

= O after the last transformation.

Appendix A.10. Proof of Theorem 8
Proof. Let GT (1)←T be the upper half of MT after the “LO”−QR decomposition. According to Thm. 7, we have

MT = Q
[
GT (1)←T

O

]
. (A.20)

Substituting it into the expression MT
T MT , we have

MT
T MT =

[
GT (1)←T

T O
]

QT Q
[
GT (1)←T

O

]
=

[
GT (1)←T

T O
] [GT (1)←T

O

]
= GT (1)←T

T GT (1)←T . (A.21)

Appendix A.11. Proof of Corollary 2

Proof. Since GT (1)←T is reversible, according to Thm. 8, substituting formula (34) into y =
(
MT

T MT

)−1
x, we have

y =
(
MT

T MT

)−1
x = GT (1)←T

−1
(
GT (1)←T

−T x
)
. (A.22)

Appendix A.12. Proof of Theorem 9
Proof. Define a sequence θi (1 ≤ i ≤ n1) satisfies

θi =

n∑
s=n1+1

m(ti)
s,i

2
, (A.23)

where ti = n1 − i. The (ti + 1)-th Householder transformation is the Householder transformation on the i-th column.
And let j denote the child of i, i.e., ( j ∈ Ci).

By recursive expression (A.17), in the first ti Householder transformations, only the Householder transforma-
tion on the j-th column (i.e., the

(
t j + 1

)
-th transformation) will cause the value of ms,i(n1 + 1 ≤ s ≤ n) to change.

Therefore, m(ti)
s,i satisfies

m(ti)
s,i = m(0)

s,i +
∑

j∈Ci∧ j≤n1

(
m(t j)

s, j m(t j)
j,i /m

(t j+1)
j, j

)
. (A.24)

For a non-leaf node i, since the values of m(t j)
j,i and m(t j)

j, j haven’t changed in the first t j Householder transformations,

there are m(t j)
j, j = 1 and m(t j)

j,i = −1. Therefore, m(t j+1)
j, j satisfies

m(t j+1)
j, j =

√√
m(t j)

j, j

2
+

n∑
s=n1+1

m(t j)
s, j

2
=

√
1 + θ j. (A.25)
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Therefore, for n1 + 1 ≤ s ≤ n, we have

m(ti)
s,i = m(0)

s,i −
∑

j∈Ci∧ j≤n1

m(t j)
s, j /

√
1 + θ j . (A.26)

According to formula (A.23), θi satisfies

θi =

n∑
s=n1+1

m(ti)
s,i

2
=

n∑
s=n1+1

m(0)
s,i −

∑
j∈Ci∧ j≤n1

m(t j)
s, j /

√
1 + θ j

2

. (A.27)

According to Thm. 6, the process of “LO”−QR decomposition always satisfies the property b), so at most only

one item in m(0)
s,i −

∑
j∈Ci∧ j≤n1

m(t j)
s, j /

√
1 + θ j is non-zero, and we have

θi =

m(0)
s,i −

∑
j∈Ci∧ j≤n1

m(t j)
s, j /

√
1 + θ j

2

= m(0)
s,i

2
+

∑
j∈Ci∧ j≤n1

m(t j)
s, j

2
/
(
1 + θ j

)
. (A.28)

Therefore,

θi =

n∑
s=n1+1

m(0)
s,i −

∑
j∈Ci∧ j≤n1

m(t j)
s, j /

√
1 + θ j

2

=

n∑
s=n1+1

m(0)
s,i

2
+

∑
j∈Ci∧ j≤n1

 n∑
s=n1+1

m(t j)
s, j

2
/
(
1 + θ j

) 
=

n∑
s=n1+1

m(0)
s,i

2
+

∑
j∈Ci∧ j≤n1

θ j/
(
1 + θ j

)
=

n∑
s=n1+1

m(0)
s,i

2
+

∑
j∈Ci∧ j≤n1

(
1 −

(
1 + θ j

)−1
)
.

(A.29)

According to the definition of M↓, for n1 + 1 ≤ s ≤ n, if s ∈ Ci, then m(0)
s,i = −1, otherwise m(0)

s,i = 0. Finally, θi is
reduced to

θi =
∑

j∈Ci∧ j>n1

1 +
∑

j∈Ci∧ j≤n1

1 −
∑

j∈Ci∧ j≤n1

1/
(
1 + θ j

)
=

∑
j∈Ci

1 −
∑

j∈Ci∧ j≤n1

1/
(
1 + θ j

)
= |Ci| −

∑
j∈Ci∧ j≤n1

1/
(
1 + θ j

)
. (A.30)

According to formula (A.25), we have
wi = m(ti+1)

i,i =
√

1 + θi. (A.31)

Then, according to formula (A.17), we have

wi→ fi = −m(ti+1)
fi,i

= −m(ti)
i, fi

m(ti)
i,i /m

(ti+1)
i,i = −m(0)

i, fi
m(0)

i,i /m
(ti+1)
i,i = −(−1 × 1)/wi = wi

−1. (A.32)

References

[1] S. Niazi, M. Ismail, S. Grohsschmiedt, M. Ronstrm, S. Haridi, J. Dowling, Hopsfs: Scaling hierarchical file system metadata using newsql
databases.

[2] J. Abowd, The u.s. census bureau adopts differential privacy, 2018, pp. 2867–2867. doi:10.1145/3219819.3226070.
[3] T. Lima, M. de Aguiar, Laplacian matrices for extremely balanced and unbalanced phylogenetic trees (08 2020).
[4] S. Garfinkel, J. Abowd, S. Powazek, Issues encountered deploying differential privacy (09 2018). doi:10.1145/3267323.3268949.
[5] X. Li, Z. Wang, Trees with extremal spectral radius of weighted adjacency matrices among trees weighted by degree-based indices, Linear

Algebra and its Applications 620. doi:10.1016/j.laa.2021.02.023.
[6] S. Ganesh, S. Mohanty, Trees with matrix weights: Laplacian matrix and characteristic-like vertices (09 2020).
[7] R. Bapat, S. Sivasubramanian, Squared distance matrix of a tree: Inverse and inertia, Linear Algebra and its Applications 491. doi:

10.1016/j.laa.2015.09.008.
[8] E. Andriantiana, K. Dadedzi, S. Wagner, The ancestral matrix of a rooted tree, Linear Algebra and Its Applications 575 (2019) 35–65.

doi:10.1016/j.laa.2019.04.004.
[9] W. Fulton, J. Harris, Graduate texts in mathematics, Representation Theory. A First Course, Readings in Mathematics 129.

24

http://dx.doi.org/10.1145/3219819.3226070
http://dx.doi.org/10.1145/3267323.3268949
http://dx.doi.org/10.1016/j.laa.2021.02.023
http://dx.doi.org/10.1016/j.laa.2015.09.008
http://dx.doi.org/10.1016/j.laa.2015.09.008
http://dx.doi.org/10.1016/j.laa.2019.04.004


[10] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, M. Sun, Graph neural networks: A review of methods and applications,
AI Open 1 (2020) 57–81. doi:10.1016/j.aiopen.2021.01.001.

[11] X. A. Chen, Understanding spectral graph neural network.
[12] M. Deveci, C. Trott, S. Rajamanickam, Multi-threaded sparse matrix-matrix multiplication for many-core and gpu architectures, Parallel

Computing 78. doi:10.1016/j.parco.2018.06.009.
[13] M. Hay, V. Rastogi, G. Miklau, D. Suciu, Boosting the accuracy of differentially-private histograms through consistency, Proceedings of the

VLDB Endowment 3. doi:10.14778/1920841.1920970.
[14] N. Wang, X. Xiao, Y. Yang, T. Hoang, H. Shin, J. Shin, G. Yu, Privtrie: Effective frequent term discovery under local differential privacy,

2018, pp. 821–832. doi:10.1109/ICDE.2018.00079.
[15] J. Jansson, K. Sadakane, W.-K. Sung, Ultra-succinct representation of ordered trees with applications, J. Comput. Syst. Sci. 78 (2012) 619–

631. doi:10.1016/j.jcss.2011.09.002.
[16] D. Tsur, Succinct representation of labeled trees, Theoretical Computer Science 562. doi:10.1016/j.tcs.2014.10.006.
[17] A. Farzan, J. Munro, Succinct representation of dynamic trees, Theor. Comput. Sci. 412 (2011) 2668–2678. doi:10.1016/j.tcs.2010.

10.030.
[18] C. Dwork, F. McSherry, K. Nissim, A. Smith, Calibrating noise to sensitivity in private data analysis, Journal of Privacy and Confidentiality

7 (2017) 17–51. doi:10.29012/jpc.v7i3.405.
[19] W. Qardaji, W. Yang, N. Li, Understanding hierarchical methods for differentially private histograms, Proceedings of the VLDB Endowment

6 (2013) 1954–1965. doi:10.14778/2556549.2556576.
[20] G. Cormode, M. Procopiuc, E. Shen, D. Srivastava, T. Yu, Differentially private spatial decompositions, Computing Research Repository -

CORRdoi:10.1109/ICDE.2012.16.
[21] S. Yuan, D. Pi, X. Zhao, M. Xu, Differential privacy trajectory data protection scheme based on r-tree, Expert Systems with Applications 182

(2021) 115215. doi:10.1016/j.eswa.2021.115215.
[22] J. Lee, Y. Wang, D. Kifer, Maximum likelihood postprocessing for differential privacy under consistency constraints, 2015, pp. 635–644.

doi:10.1145/2783258.2783366.
[23] G. Strang, Linear algebra and learning from data, Wellesley-Cambridge Press Cambridge, 2019.
[24] G. Birkenmeier, H. Heatherly, J. Kim, J. Park, Triangular matrix representations, Journal of Algebra 230 (2000) 558–595. doi:10.1006/

jabr.2000.8328.
[25] L. Minah, A. Fox, G. Sanders, Rounding error analysis of mixed precision block householder qr algorithms, SIAM Journal on Scientific

Computing 43 (2021) A1723–A1753. doi:10.1137/19M1296367.
[26] P. Desai, S. Aslan, J. Saniie, Fpga implementation of gram-schmidt qr decomposition using high level synthesis, 2017, pp. 482–487. doi:

10.1109/EIT.2017.8053410.
[27] W. Fam, A. Alimohammad, Givens rotation-based qr decomposition for mimo systems, IET Communications 11. doi:10.1049/iet-com.

2016.0789.
[28] R. Stanley, Enumerative combinatorics — volume 1.
[29] M. C. M. incorporates LAPACK, Increasing the speed and capabilities of matrix computation, [Online] (2000).
[30] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfel-

low, A. Harp, G. Irving, M. Isard, Y. Jia, L. Kaiser, M. Kudlur, J. Levenberg, X. Zheng, Tensorflow : Large-scale machine learning on
heterogeneous distributed systems (01 2015).

[31] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, T. Darrell, Caffe: Convolutional architecture for fast
feature embedding, MM 2014 - Proceedings of the 2014 ACM Conference on Multimediadoi:10.1145/2647868.2654889.

[32] J. Magnus, Matrix differential calculus with applications in statistics and econometricsdoi:10.1002/9781119541219.
[33] U. C. Bureau, 2010 census summary file 1, https://www.census.gov/prod/cen2010/doc/sf1.pdf (2012).
[34] New york city taxi data, http://www.nyc.gov/html/tlc/html/about/trip/record/data.shtml.

25

http://dx.doi.org/10.1016/j.aiopen.2021.01.001
http://dx.doi.org/10.1016/j.parco.2018.06.009
http://dx.doi.org/10.14778/1920841.1920970
http://dx.doi.org/10.1109/ICDE.2018.00079
http://dx.doi.org/10.1016/j.jcss.2011.09.002
http://dx.doi.org/10.1016/j.tcs.2014.10.006
http://dx.doi.org/10.1016/j.tcs.2010.10.030
http://dx.doi.org/10.1016/j.tcs.2010.10.030
http://dx.doi.org/10.29012/jpc.v7i3.405
http://dx.doi.org/10.14778/2556549.2556576
http://dx.doi.org/10.1109/ICDE.2012.16
http://dx.doi.org/10.1016/j.eswa.2021.115215
http://dx.doi.org/10.1145/2783258.2783366
http://dx.doi.org/10.1006/jabr.2000.8328
http://dx.doi.org/10.1006/jabr.2000.8328
http://dx.doi.org/10.1137/19M1296367
http://dx.doi.org/10.1109/EIT.2017.8053410
http://dx.doi.org/10.1109/EIT.2017.8053410
http://dx.doi.org/10.1049/iet-com.2016.0789
http://dx.doi.org/10.1049/iet-com.2016.0789
http://dx.doi.org/10.1145/2647868.2654889
http://dx.doi.org/10.1002/9781119541219
https://www.census.gov/prod/cen2010/doc/sf1.pdf
http://www.nyc.gov/html/tlc/html/about/trip/record/data.shtml

	1 Introduction
	1.1 Our contributions
	1.2 Organization of paper

	2 Related Works
	3 Preliminaries
	3.1 Hierarchical Tree
	3.2 Optimally Consistent Release of Differentially Private Hierarchical Tree

	4 Generation Matrix Model for Hierarchical Tree
	4.1 Generation Matrix
	4.2 Properties of Generation Matrix
	4.3 The Conversion between Generation Matrix and Other Matrix Representations

	5 The Application on Differentially Private Hierarchical Tree Release
	5.1 Hierarchical Tree Release Based on Generation Matrix
	5.2 ``LO''-QR Decomposition on MT
	5.3 Generation Matrix-based Optimally Consistent Release Algorithm

	6 Experiment
	6.1 Datasets and Comparison Algorithms
	6.2 Verifying the Effectiveness for GMC
	6.3 Performance Testing

	7 Conclusions and Future Work
	Appendix  A Partial Proofs
	Appendix  A.1 Proof of Property 7
	Appendix  A.2 Proof of Property 9
	Appendix  A.3 Proof of Property 11
	Appendix  A.4 Proof of Theorem 2
	Appendix  A.5 Proof of Theorem 3
	Appendix  A.6 Proof of Theorem 4
	Appendix  A.7 Proof of Theorem 5
	Appendix  A.8 Proof of Theorem 6
	Appendix  A.9 Proof of Theorem 7
	Appendix  A.10 Proof of Theorem 8
	Appendix  A.11 Proof of Corollary 2
	Appendix  A.12 Proof of Theorem 9


