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Abstract

The problem considered is the splittable bin packing with cardinality constraint. It is a variant
of the bin packing problem where items are allowed to be split into parts but the number of parts in
each bin is at most a given upper bound. Two versions of the splittable bin packing with cardinality
constraint have been studied in the literature. Among these variants we consider the dual one where
the objective is to minimize the maximum bin size while packing (may be fractional) the items to a
given set of bins. We exhibit an EPTAS for the dual problem when the cardinality upper bound is
part of the input. This result answers an open question raised by Epstein, Levin, and van Stee [16].

1 Introduction

The splittable bin packing with cardinality constraint problem was suggested as a compromise between
memory allocation and parallelism. In that setting, the problem allows memory sharing while limiting
the number of ports i.e., the processors that can access the shared memory. In this problem we have a
set of items T . Each item t is associated with its size St ≥ 0. The item sizes are not bounded (from
above).

A fractional packing of items to bins is a packing wherein the items are allowed to be split into parts
(without any restriction on the sizes or the number of parts) and the parts can be packed to any bin
without restriction except for the bins size. An optimal solution to bin packing, when fractional packing
is allowed, can be obtained in polynomial time as follows. Pack items sequentially (in an arbitrary order)
to bins and split items when the total size of parts in the current bin is about to exceed the bin size. In
this optimal solution there is at most one partially filled bin. Enforcing constraints can make the problem
hard. There are many constraints considered in literature. Limiting the number of parts generated from
an item, limiting the part sizes, and item conflicts are some constraints considered in the literature. We
consider the cardinality constraint which defines an upper bound k on the number of parts of different
items in each bin. Enforcing this constraint makes the problem NP-hard. Two versions of the splittable
bin packing with cardinality constraint have been studied in the literature.

The primal problem, denoted as PSBP, is defined as follows. Given a bin size Z > 0, a feasible
solution is a packing of all items to bins (fractional packing is allowed) such that the total size of parts
of items in each bin is at most Z and the number of parts of different items in each bin is at most k.
The goal function is to minimize the total number of used bins.

The dual problem, named the Dual Splittable Bin Packing with cardinality constraint

is denoted as DSBP. It is defined as follows. Given a set of bins B, a feasible solution is a packing of all
items (fractional packing is allowed) to the bins in B such that the number of parts of different items
in each bin is at most k. The goal function is to minimize the maximum bin size. Observe that in this
DSBP the input consists of the set of items T , each of which associated with a size, the set of bins B,
and the value of k.

In order to present the known results for these problems, we recall the definitions of approximation
schemes both in the absolute sense and in the asymptotic sense. Our problems are minimization problems
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so the objective function is referred to as cost. For an algorithm A, we denote its cost by A as well. The
cost of an optimal algorithm is denoted by OPT. We define the asymptotic approximation ratio of an
algorithm A as the infimum R ≥ 1 such that for any input, A ≤ R · OPT + c, where c is independent of
the input. If we enforce c = 0, R is called the absolute approximation ratio. An asymptotic polynomial
time approximation scheme is a family of approximation algorithms such that for every ε ≥ 0, the family
contains a polynomial time algorithm with an asymptotic approximation ratio of 1 + ε. We abbreviate
asymptotic polynomial time approximation scheme by APTAS (also called an asymptotic PTAS). An
asymptotic fully polynomial time approximation scheme (AFPTAS) is an APTAS whose time complexity
is polynomial not only in the input size but also in 1/ε. If the scheme satisfies the definition above
with c = 0, stronger results are obtained, namely, polynomial time approximation schemes and fully
polynomial time approximation schemes, which are abbreviated as PTASs and FPTASs, respectively.
An efficient polynomial time approximation scheme (EPTAS) is a PTAS whose time complexity is upper
bounded by the form f(1/ε) · poly(n) where f is some computable (not necessarily polynomial) function
and poly(n) is a polynomial of the length of the (binary) encoding of the input. The notion of EPTAS
is a modern one, motivated in the fixed parameterized tractable (FPT) community (see e.g. [8]).

Literature review. PSBP was first considered in [10] with k = 2. They show that the problem is
NP-hard in the strong sense and also gave a 3/2 approximation algorithm for this case. [17] further
generalized the primal problem for fixed values of k ≥ 3. The authors show that the problem is NP-hard
for every fixed value of k and provide a (7/5 + ε)-approximation algorithm for k = 2 and for any ε ≥ 0.
In [16] special cases of the primal problem are solved in polynomial time (polynomial in both |T | and
the binary encoding length of the input). For the general case when the problem becomes NP-hard,
they present an EPTAS. Furthermore, the problem is strongly NP-hard so this is the best achievable
scheme since an FPTAS would imply P=NP. Next, we note that the existence of an AFPTAS for the
primal problem would also imply P=NP. The case when the problem becomes NP-hard is when the
cost of the optimal solution is very large. In such cases the asymptotic approximation ratio and the
absolute approximation ratio becomes the same up to an additive ε in the value of approximation ratio.
Therefore, an AFPTAS would result in an FPTAS which is impossible unless P=NP. Thus, an AFPTAS
is not achievable for the primal problem.

Most relevant to our work, [16] also presents a PTAS for DSBP with constant values of k. The authors
leave the existence of an EPTAS for the dual problem as an open problem. The assumption that k is a
constant means that in their scheme the time complexity is exponential in k. Our result is an EPTAS
for DSBP that need not assume that k is a constant. Namely, we both generalize the cases for which
there exist an approximation scheme for DSBP, and improve the time complexity of the scheme for the
cases in which there was a previous PTAS.

Related problems. Many variations of the splittable bin packing with cardinality constraint have
been studied. See [6, 7, 13] for some examples of exact (exponential time) algorithms and heuristics for
such variants. Here, we would like to mention the bin packing with item fragmentation problem. It is
another variant of the bin packing problem wherein the items to be packed can be split. See [4, 6, 13]
for studies of problems with item fragmentation. The main difference between bin packing with item
fragmentation and our problem is that bin packing with item fragmentation usually restricts the number
of parts (of an item or total) while our problem restricts the number of parts of items that can be packed
into a bin without any restriction on the number of splits of an item.

Cardinality constrained scheduling is the problem of machine scheduling on identical machines wherein
there is an upper bound on the number of jobs that can be assigned to a machine and the goal is to
minimize the makespan. This problem is in fact a special case of DSBP as we can assume that |T | = k ·|B|
by adding items of size 0, and then it is impossible to split an item. This problem admits an EPTAS [9].
For more on this problem please see [9, 11, 12, 14, 19].

By removing the cardinality constraint in the above cardinality constrained scheduling problem, we
obtain the setting of makespan minimization on identical parallel machines. We refer to [1,20,21] for an
EPTAS for this setting. [22] improved the time complexity of these schemes.

Bin packing with cardinality constraint (without splitting the items) was studied in [2, 3, 5, 15, 23,
26–28]. Bin packing is the problem without cardinality constraint (without splitting the items), see
e.g. [18, 25].
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Notation. Given a positive integer N , we let [N ] = {1, 2, . . . , N} be the set of natural numbers up to
N . We let R+ denote the set of non-negative reals and R++ the set of strictly positive reals. We use
similar notation of Z+ and Z++ for integers. Let ε ∈ R++ such that 1/ε ∈ Z : 1/ε ≥ 10. The total size
of all items is denoted by W , that is, W =

∑

t∈T St.

Paper outline. For the remainder of the paper we are dealing with DSBP. Recall that the number of
bins determined in the input is denoted by |B|. This problem can be interpreted as fractional scheduling
on parallel identical machines with the goal of minimizing the makespan but the problem is non-trivial
as we have an upper bound of k on the number of parts of different jobs that can be placed on a machine.

Our scheme starts by imposing a structure on the input (Section 2). We use a guessing step, to
guess approximated information on the optimal solution. For each value of the guess, we perform the
following. We identify a near optimal solution with a particular structure we detail in Section 3. This
structure is exploited to generate partial information on the solution. This partial information is used
in a formulation of a mixed integer linear program (MILP) (see Section 4) directing our algorithm. The
next step of the scheme is to obtain an optimal solution of the MILP. The best solution among all the
optimal solutions to all possible values of the guess is converted to a feasible packing for DSBP whose
cost is approximately the cost of the corresponding optimal solution to the MILP (Section 5).

2 Structuring the input

Our scheme starts by guessing the optimal maximum bin size and assume that this bin size is 1, then
we perform a rounding step, and then we classify the items into small and large. All these steps can be
considered as part of structuring the input and these are the steps we consider in this section. Later, we
provide the remaining steps of the algorithm.

2.1 Guessing the optimal bin size

The optimal bin size is in the interval ∈ [W/|B|, W ]. We guess the approximated upper bound on bin
size as an integer power of 1 + ε. We guess a value g that is an integer power of 1 + ε and that the
maximum bin size of an optimal solution to the problem is in the interval (g/(1 + ε), g]. We conclude
the following lemma.

Lemma 1. The number of possible values for the guess is at most log(1+ε) |B| + 2.

If the guess is g, we scale down the item sizes of all items in the original instance by dividing the
sizes of all items by g and initialize the approximated upper bound on the size of bins to 1. This scaled
down instance is denoted by I.

2.2 Rounding step

We next convert the scaled down instance I into a new instance I ′ for which the following two properties
hold.

1. The maximum size of an item in I ′ is at most 1/ε2.

2. For every item whose size in I ′ is at least ε, the size of the item is an integer multiple of ε2.

Property 1 is obtained by splitting items of size strictly greater than 1/ε2. Every item x of size
X strictly greater than 1/ε2, is replaced with ⌊ε2X⌋ items of size 1/ε2 and one additional item of size
X − ⌊ε2X⌋ · (1/ε2). Property 2 is achieved by rounding up sizes of items at least ε to integer multiples
of ε2. We denote by I ′ the instance obtained after the preceding transformations.

Lemma 2. A packing of I can be converted to a packing of I ′ by increasing the size of bin by at most
3ε. A packing of I ′ can be converted to a packing of I in polynomial time without increasing the size of
bins.
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Proof. Consider a packing of instance I. Modify each item x of size X > 1/ε2 as follows. First increase
the size of parts of x in each bin by a multiplicative factor of 1 + ε, adding empty space as necessary.
Arbitrarily order the bins in which parts of x are packed and denote the ordered list of those bins by
Bx. Let Sb, ∀b ∈ Bx be the total size of parts of x in bins up to b. For each i = 1, 2, . . . , ⌊ε2X⌋ identify
the bin bi ∈ Bx such that Sbi−1 < i/ε2 and Sbi

≥ i/ε2. Cut the part of x in bin bi into two parts of
size i/ε2 − Sbi−1 and Sbi

− i/ε2, thus increasing the number of parts in bi. Notice that the empty space
added in bins b(i−1), . . . , bi − 1 is ε · 1/ε2 = 1/ε. Move the first part of x in bi to the bins between b(i−1)

and bi − 1 arbitrarily. There is enough empty space available to do this since the size of the part is at
most 1 < 1/ε. The increase in the size of a bin b after performing the above conversion to all items of
size strictly larger than 1/ε2 is at most εSb ≤ ε, where Sb is the total size of parts of items larger than
1/ε2 packed into bin b in the packing of I. Let this intermediate instance, after the above conversion, be
I.

Next, perform the following conversion for each item y of I of size Y ≥ ε. Let By be the set of the
bins in which parts of y are packed. Increase the size of all parts of y by a multiplicative factor of 1 + ε,
adding empty space as necessary. Then, we add a part of y of size Y ′ such that Y ′ = ε2⌈Y/ε2⌉ − Y < ε2.
This part is added arbitrarily to the bins in By by increasing the sizes of the parts of y in the bins
accordingly. The number of parts of items in each bin is not increased. This is a feasible packing since
the empty space created is of size at least ε2 using Y ≥ ε. This increases the space of a bin b by at most
ε(1 + ε) ≤ 2ε. This gives the required packing of instance I ′.

For the other direction consider a packing of instance I ′. Decrease the size of items of size strictly
greater than ε2 to the original size as in I in an arbitrary way. This does not increase the maximum
size of a bin or the number of parts in each bin. Now we have a packing of instance I. Any packing
of instance I is a packing of instance I since the items of I can be split arbitrarily and this does not
increase the number of parts in each bin with respect to the packing of I. Thus, we get a packing of I
without increasing the maximum bin size.

After the above rounding we have that the approximated upper bound on the bin sizes is denoted
as G′ and we initialize its value to be G′ = 1 + 3ε. Based on the guessing step, we are guaranteed there
exists a feasible solution to the instance I ′ whose maximum bin size is at most G′.

2.3 Classification of items

The items are classified into two categories. An item is called small if the size of the item is strictly
smaller than ε, else it is large. The size of a large item is in the interval [ε, 1/ε2] and is an integer multiple
of ε2 (as a result of the rounding step). Let L denote the set of distinct sizes of large items in I ′. We
have, |L| ≤ 1/ε4 − 1/ε + 1 ≤ 1/ε4 and the upper bound is a constant when ε is fixed. Let L denote the
set of all large items, Lℓ the set of large items of size ℓ ∈ L, and S the set of small items.

3 Nice packing

We next show that every feasible packing can be converted to another packing where items of size at least
ε are only cut at integer multiples of ε2 when packed. To prove this we use Lemma 3 quoted below that
appears in [29, Theorem 2.1] (see also [31]). We will use this property to assist our scheme in obtaining
a near optimal solution.

In order to present the settings of [29, 31] consider the scenario where we have n items and m (non-
identical) bins. The size of item i in bin j is denoted by sij , Gj is a given upper bound on the size of
bin j, and g ∈ R+. The meaning of the decision variables is that if item i is assigned completely to bin
j, then xij = 1. Define the following feasibility linear program denoted as LP(g) which gives a fractional
packing of items to bins.
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m
∑

j=1

xij = 1, i = 1, 2, . . . , n, (LP(g))

n
∑

i=1

sijxij ≤ Gj , j = 1, 2, . . . , m

xij ≥ 0, i = 1, 2, . . . , n, j = 1, 2, . . . , m

xij = 0 if sij > g, i = 1, 2, . . . , n , j = 1, 2, . . . , m.

Lemma 3. [29, 31] If LP(g) has a feasible solution x, then there exists a feasible integer packing x
′

where the size of bin j is at most Gj + g, j = 1, 2, . . . , m. Furthermore, in x
′ if an item i is packed in a

bin j, then xij > 0.

In our scenario, the second part of the lemma will imply that the number of parts of items in each
bin is not increased in x′ compared to x.

Lemma 4. Every feasible packing can be converted to another feasible packing with maximum bin size
at most 1 + 4ε where every part of every large item has a size that is an integer multiple of ε2.

Proof. Consider a feasible packing P of instance I ′ in which items are split arbitrarily. We use Lemma
3 to transform P to a packing that has the required property. Let the size of bin j in P be Zj for all
j ∈ B.

We split the large items as follows. For each ℓ ∈ L, each large item of size ℓ is replaced by ℓ/ε2

items of size ε2. Items thus created are called auxiliary items. Each large item can create at most 1/ε4

auxiliary items. Let this intermediate instance be I ′′ and the set of all auxiliary items in I ′′ be I. Notice
that P is a packing of I ′′ by replacing the large item by the corresponding auxiliary items it generates,
even though it may be infeasible for DSBP for I ′′ (as the number of parts in a bin may increase). The
packing of small items in each bin is left as in P . We modify the packing of the auxiliary items generated
to get the structure we need. Thus, the effective space available for auxiliary items in a bin j is now
Gj = Zj − Sj where Sj is the total size of parts of small items in j.

Next, we generate x values for all i ∈ I and j ∈ B as follows. If a portion of size τε2, τ ∈ [0, 1] of
i ∈ I is assigned to bin j, then xij = τ . We modify the item sizes in preparation to apply Lemma 3.
The size of part i ∈ I in bin j is denoted by sij . If xij > 0, then sij = ε2, and otherwise sij = +∞. The
x values now satisfy LP(g) with g = ε2. Using Lemma 3 we convert x to an integral packing of auxiliary
items, denoted by x′′. The total size of auxiliary items in bin j with respect to x′′ is at most Gj + ε2.
Considering the preexisting small items in bin j, the size of j is at most Gj + ε2 + Sj = Zj + ε2 ≤
G′ + ε2 ≤ (1 + 3ε) + ε = 1 + 4ε.

Next, we modify the x′′ values for auxiliary items in I ′′ to x′ for only large items of I. The x′
ij value

of a large item i in bin j is
∑

i′∈Ii
x′′

i′j where Ii is the set of auxiliary items generated from large item
i. This is done for each large item and bin to get x′. That is, if there is a bin with multiple auxiliary
items from a single large item, we consider those auxiliary items as one part of that item. The size of
a part of a large item i in a bin j is x′

ijε2. Since x′′ was integer, x′
ij =

∑

i′∈Ii
x′′

i′j ∈ Z. Thus, the size

of all parts of all large items in every bin is an integer multiple of ε2. Furthermore, in x′ the number of
parts of different items in I ′ in each bin is not more than that in x and thus x′ is a feasible packing to
DSBP.

A packing that satisfies Lemma 4 is called a nice packing. Next, we redefine G′ = 1 + 4ε and note
that it is an integer multiple of ε2. By the above steps we conclude that there exists a nice packing of I ′

with maximum bin size at most G′, and in order to establish an EPTAS it suffices to construct a feasible
solution with maximum bin size at most (1 + 2ε)G′ in the required time complexity.

4 MILP

Patterns and configurations define partial information on the solution and are used in the MILP. The
MILP finds the patterns by which the large items are split. The MILP also finds the configurations
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according to which the parts generated from large items (based on the patterns) are packed in bins. In
addition to these tasks, the MILP also provides a fractional packing of small items to the configurations.
The optimal solution to the MILP is found in polynomial time using [24,30] since the number of integer
variables is a constant. The MILP solution can be transformed to a feasible packing with a similar cost
as we demonstrate in the proof of Theorem 2.

4.1 Pattern

A pattern is a vector of length G′/ε2 + 1 and each large item is assigned to a pattern which represents
how the item is split. The components of a pattern p are as follows.

• The first component (denoted by αp ∈ Z+) stores the size of the large item as an integer multiple
of ε2 to which this pattern is assigned. That is, αpε2 is the size of the large item to which p is
assigned.

• The next r ∈ [G′/ε2] components (denoted by βpr ∈ Z+) determine how many parts of size rε2 (for
all r) are cut from a large item assigned pattern p.

We say that a pattern p is a feasible pattern if

αp =
∑

r∈[G′/ε2]

βprr. (1)

Let P be the set of feasible patterns.

Lemma 5. The number of feasible patterns is at most
(

1/ε4 + 1
)(2/ε2)

.

Proof. The αp value of a feasible pattern is well-defined given the βpr for all r. Each of the βpr components
can have at most

(

1/ε4 + 1
)

values (by (1)) since αp ≤ 1/ε4. The claim follow from G′/ε2 < 2/ε2 − 1
since 1/ε ≥ 10.

4.2 Configuration

Every bin is assigned a configuration and this configuration represents the packing of the bin. The
components of a configuration c are as follows.

• The first component (denoted by γc ∈ Z+) represents the total size of parts of small items assigned
to a bin (assigned this configuration) rounded down to an integer multiple of ε2 such that the size
of the small items in such a bin is in the interval [γcε2, (γc + 1)ε2).

• The next r ∈ [G′/ε2] components (denoted by δcr ∈ Z+) store the number of different parts of a
particular size (as an integer multiple of ε2) cut from large items packed to a bin assigned this
configuration. For each r ∈ [G′/ε2], δcr states the number of different parts of size rε2 (cut from
large items) packed to a bin assigned configuration c.

4.2.1 Creating a partial packing

To create a partial packing of a bin from a configuration c do the following. First assign a single virtual
item of size γcε2. A virtual item is not an item of instance I ′ and it is used as a placeholder for parts of
small items. Next, assign δcr parts of size rε2 (generated from large items) in some order of r ∈ [G′/ε2]
to the bin. A configuration c is a feasible configuration if the size of the bin in the partial packing created
from c is at most G′. Let C be the set of all feasible configurations.

Lemma 6. The number of feasible configurations is at most (2/ε2)(2/ε2).

Proof. The possible values for the first component of the configuration is at most G′/ε2 + 1. Each of the
next G′/ε2 components can have at most G′/ε2 + 1 values since the maximum number of parts (each of
which is of size ε2) that can be assigned to a bin of size G′ is at most G′/ε2. The upper bound follows
from G′/ε2 + 1 ≤ 2/ε2 since 1/ε ≥ 10.
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4.3 The families of decision variables

Assignment variables for small items to configurations. We have an assignment variable xic for
small item i and configuration c. If small item i is assigned completely to bins with configuration c, then
xic = 1. There are at most n · |C| such variables. These variables are allowed to be fractional.

Configuration counters. There is a configuration counter for every feasible configuration. For a
configuration c ∈ C, the variable yc denotes the number of bins to which configuration c is assigned.
There are at most |C| variables and these variables are forced to be integral.

Pattern counter. There is a pattern counter for every feasible pattern. For a pattern p ∈ P , the
variable zp denotes the number of large items to which pattern p is assigned. There are |P| such
variables and these variables are forced to be integral.

Parts counter. For every distinct size of parts, as an integer multiple of ε2, we have a counter. For
r ∈ [G′/ε2], vr states the number of different parts (cut from large items) of size rε2 available for packing.
These variables are allowed to be fractional.

4.4 The constraints

Next, we present the constraints of the MILP with their intuitive meaning. This intuition is not used to
prove our claims but it is presented to ease the reading of the constraints.

Each bin should be assigned a configuration and since one configuration can be assigned to multiple
bins, we have

∑

c∈C

yc = |B|. (2)

Each small item i should be packed completely. Since such a small item can be split between config-
urations, we have

∑

c∈C

xic = 1, ∀i ∈ S. (3)

All the parts that are generated from large items should be packed.

vr =
∑

p∈P

βprzp, ∀r ∈ [G′/ε2]. (4)

vr =
∑

c∈C

δcryc, ∀r ∈ [G′/ε2]. (5)

The former constraint calculates the number of parts of each size generated from large items based on
the patterns. Observe that by this constraint and the fact that z values are forced to be integral, we
conclude that in every feasible solution the v values are also integers. The constraint (5) chooses the
configurations such that there are enough positions to pack these parts.

Each large item should be assigned a pattern and since some large items can be assigned to a common
pattern, we have

∑

p∈P:αp=ℓ/ε2

zp = |Lℓ|, ∀ℓ ∈ L. (6)

Each configuration should satisfy the cardinality constraint since each configuration represents a bin.
The total number of parts of large items that can be assigned to a configuration is determined by the
configuration and the number of copies of this configuration. Thus, the average number of parts of small
items that can be assigned to one copy of a configuration is at most the difference between k and the
total number of parts of large items allowed by the configuration. We get,

∑

i∈S

xic ≤ yc



k −
∑

r∈[G′/ε2]

δcr



 , ∀c ∈ C. (7)
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The total size of parts of small items assigned to a configuration should be at most the size allowed
by each configuration. Since the total size of parts of small items allowed was rounded down in each
configuration, we increase the space for each copy of the configuration by ε2. That is,

∑

i∈S

xicSi ≤ yc(γc + 1)ε2, ∀c ∈ C. (8)

Lastly, we have the non-negativity of all variables and integrality constraints of some of the variables.

vr ∈ R+, ∀r ∈ [G′/ε2]. (9)

xic ∈ R+, ∀c ∈ C, ∀i ∈ S. (10)

yc ∈ Z+, ∀c ∈ C. (11)

zp ∈ Z+, ∀p ∈ P . (12)

This concludes the presentation of the MILP. Next, we turn our attention to the analysis of this
MILP.

Theorem 1. If there exists a feasible nice packing of the instance I ′ with maximum bin size G′, then
the MILP has a feasible solution.

Proof. Consider a nice packing P ′ for the instance I ′ with maximum bin size G′ along with the set of
feasible configurations and set of feasible patterns denoted by C and P , respectively. We now generate a
MILP solution from P ′.

Do the following operation for each bin b ∈ B in the packing P ′. We define a configuration c(b)
corresponding to b. Identify the total size of parts of small items assigned to b, round it down to the
next integer multiple of ε2, and store the integer multiple as γc of c(b). Now the remaining parts in b
are from large items. For each r ∈ [G′/ε2], identify the number of different parts (split from large items)
of size rε2 assigned to bin b and store it as δcr corresponding to component r + 1 in c(b). Let C′ be
the multi-set of configurations generated from all the bins. Since the total size of small items in each
bin was rounded down, the size of any configuration is not more than the total size of the items in the
corresponding bin in P ′, i.e., at most G′.

Next, we generate the patterns. For each large item i ∈ L, we generate a pattern p(i) corresponding
to i. If the size of i is αε2, store the value of α as αp for the pattern p(i) corresponding to i. For each
r ∈ [G′/ε2], identify the number of parts of size rε2 of i created when we consider the splitting of i
(among all bins). This value is stored as the βpr corresponding to component r +1 in p(i). Let P ′ be the
multi-set of patterns generated from all the large items. By definition, every such pattern is a feasible
pattern.

Next, we generate the MILP solution. The variable yc, ∀c ∈ C is set to the number of copies of c in
C′. zp, ∀p ∈ P is the number of copies of p in P ′. From the packing, we know which parts of small items
are assigned to which bins. If a portion of size τSi, τ ∈ [0, 1] of i ∈ S is assigned to a bin, consequently
a configuration c, then by summing the τ values over all bins with configuration c, we get the xic value
as this sum. Now, we have x. The values of v are defined using the z values based on constraint (4)
of the MILP. Thus, we have the MILP solution (v, x, y, z). We still need to prove that it satisfies the
constraints of the MILP.

Lastly we check the feasibility of the generated MILP solution. From the definition of y Constraint
(2) is satisfied. Constraint (3) is satisfied since all the small items are packed completely in P ′ (some
are packed fractionally since items can be split) and by definition of x. Note that vr =

∑

p∈P
βprzp

by the assignment of values of the variables v. Thus, Constraint (4) is satisfied. Furthermore, since all
the large items were packed (fractionally), all the parts cut from large items were packed among all the
bins. That is, vr =

∑

c∈C
δcryc. Thus, Constraint (5) is satisfied from the definition of configurations.

Since all the large items were assigned a pattern, we have that the number of patterns chosen with
first coordinate equal to ℓ/ε2 is equal to the number of large items of size ℓ, and thus Constraint (6) is
satisfied. Because of the fact that P ′ was a feasible nice packing and the number of parts of different
items assigned to a bin is at most k, we have

∑

i∈S
xic + yc

∑

r∈[G′/ε2] δcr ≤ yck for all configurations

c ∈ C. Thus, Constraint (7) is satisfied. The total size of parts of small item in the collection of bins
Bc whose corresponding configuration is c is

∑

i∈S
xicSi. Since each bin in Bc has a total size of small

items in the interval [γcε2, (γc + 1)ε2), so over the yc bins in Bc we have a total size of small items that
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is not larger than yc(γc + 1)ε2, and Constraint (8) is satisfied. Constraint (9), (10), (11), and (12) are
satisfied trivially based on the definition of the v, x, y, and z.

5 Converting the MILP solution into the output of the scheme

In order to present our rounding method of taking a solution to the MILP and returning a feasible
solution to I ′, we need a method to handle the assignment of the small items. We will apply a method
established in [9] originally for the cardinality constraint scheduling problem. Specifically the analysis
of a procedure referred to as Best-Fit. Next, we state the lemma analyzing the Best-Fit solution for
packing the small items satisfying cardinality constraint [9, Lemma 2]. We apply this lemma in the proof
of the following theorem.

Lemma 7. If there is a feasible fractional solution to the following feasibility linear program in the
variables x

∑

i∈S

Sixib ≤ tb, b ∈ B

∑

i∈S

xib ≤ cb, b ∈ B

∑

b∈B

xib = 1, i ∈ S

0 ≤ xib ≤ 1, i ∈ S, b ∈ B

then an integer solution satisfying:

∑

i∈S

Sixib ≤ tb + Smax, b ∈ B

∑

i∈S

xib ≤ cb, b ∈ B

∑

b∈B

xib = 1, i ∈ S

0 ≤ xib ≤ 1, i ∈ S, b ∈ B

could be obtained in O(n log n) time, where Smax = maxi∈S{Si} ≤ ε.

Theorem 2. If there exists a solution to the MILP for the rounded instance I ′ with the given guessed
value G′, then there exists a feasible packing to instance I ′ of cost at most (1 + 2ε)G′ that can be found
in polynomial time.

Proof. Let the MILP solution be (v, x, y, z), C the set of feasible configurations, and P the set of feasible
patterns. We convert the MILP solution to a feasible packing.

For every p ∈ P , assign zp large items, of size αpε2, to pattern p. By Constraint (6), we have enough
patterns for all large items. Now we need to assign the parts given by v and small items to bins. To
do this for every c ∈ C, we assign configuration c to yc bins. Thus, all bins are assigned a configuration
since Constraint (2) is satisfied.

Now we have information on how many parts of each size from large items we need to assign to each
bin and a fractional assignment of small items to configurations. This information is used in the following
way. Assign δcr different parts of size rε2 to each bin assigned configuration c for r ∈ [G′/ε2] in some
order of r. All parts of size rε2, r ∈ [G′/ε2] are indeed packed in this way since Constraint (5) is satisfied.
Next we increase the bin size by ε2 to pack the small items and this increase is needed since the total
size of small items were rounded down in the configuration. From Constraint (8) this is enough space to
pack all the small items fractionally as per x as follows. For each i ∈ S and c ∈ C, pack xic/yc fraction
of small item i to every bin b assigned configuration c. Let xib, ∀i ∈ S, ∀b ∈ B be the fractional packing
of small items to bins. All the small items are packed since x satisfies Constraint (3). This fractional
packing may not be a feasible packing for DSBP due to the cardinality constraint.

9



Next, we modify this fractional packing of small items to an integral packing to get a feasible pack-
ing leaving the packing of the parts of large items unaltered. From Constraint (7), we have that
∑

i∈S
xic/yc ≤ k −

∑

r∈[G′/ε2] δcr. Thus, the number of small items that can be assigned integrally

to a bin is at most cb = k −
∑

r∈[G′/ε2] δcr where c is the configuration assigned to bin b. From Constraint

(8), we have that the total size of small items that can be assigned to bin b is at most tb = (γc + 1)ε2

where c is the configuration assigned to bin b. Smax is the maximum size of a small item, i.e., at most
ε. We apply Lemma 7 to get the integral packing of small items denoted by x′ where x is a feasible
solution to the first feasibility linear program. From Lemma 7,

∑

i∈S
x′

ib ≤ cb = k −
∑

r∈[G′/ε2] δcr where

c is the configuration assigned to bin b. Thus, we get
∑

i∈S
x′

ib +
∑

r∈[G′/ε2] δcr ≤ k where c is the

configuration assigned to bin b. Thus, x′ along with the packing of parts of large items (as before) satisfy
the cardinality constraint in each bin. The use of Lemma 7 increases the bin size by Smax ≤ ε. Thus,
the final bin size is at most G′ + ε2 + ε ≤ (1 + 2ε)G′.

We conclude that the following theorem is established.

Theorem 3. Problem DSBP admits an EPTAS.
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