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Abstract. By Menger’s theorem, the maximum number of arc-disjoint
paths from a vertex s to a vertex t in a directed graph equals the mini-
mum number of arcs needed to disconnect s and t, i.e., the minimum size
of an s-t-cut. The max-flow problem in a network with unit capacities
is equivalent to the arc-disjoint paths problem. Moreover, the max-flow
and min-cut problems form a strongly dual pair. We relax the disjoint-
edness requirement on the paths, allowing them to be almost disjoint,
meaning they may share up to one arc. The resulting almost disjoint
paths problem (ADP) asks for k s-t-paths such that any two of them are
almost disjoint. The separating by forbidden pairs problem (SFP) is the
corresponding dual problem and calls for a set of k arc pairs such that
every s-t-path contains both arcs of at least one such pair.
In this paper, we explore these two problems, showing that they have
an unbounded duality gap in general and analyzing their complexity.
We prove that ADP is NP-complete when k is part of the input and
that SFP is Σ2P-complete, even for acyclic graphs. Furthermore, we
efficiently solve ADP when k ≤ 2 is fixed and present a polynomial time
algorithm based on dynamic programming for ADP when k is constant
and the considered graphs are acyclic.

Keywords: Directed Acyclic Graphs · Almost Disjoint Paths · Path
Avoiding Forbidden Pairs · Complexity · Graph Algorithms · Dynamic
Programming.

1 Introduction

In many applications, customers receive various offers from which they can select
one or between which they can switch. Usually, these offers should be as diverse
as possible to provide the customer with many different options. A common use
case is the construction of alternative routes in transportation or road networks.
These make sense in this context, for example to avoid route closures, heavy
traffic, or tolls. Another example where alternative routes are of use is to dis-
tribute risk. For example, if dangerous goods need to be transported regularly,
alternative routes that affect different people allow for an equal risk distribu-
tion amongst the people exposed. Several practical algorithms for computing
alternative routes have been developed, see, for example, [1,3,5,12,22].

http://arxiv.org/abs/2202.10090v2
https://orcid.org/0000-0001-7942-0750
https://orcid.org/0000-0002-7899-6835
https://orcid.org/0000-0002-8726-9963


2 O. Bachtler, T. Bergner, and S. O. Krumke

On the graph-theoretic side, the (arc- or vertex-) disjoint paths problem is
well-studied. Determining a maximum number of disjoint s-t-paths can easily
be done using maximum flow techniques [2]. By Menger’s theorem [29,13] this
number is equal to the minimum number of arcs needed to separate s from t.
This result follows from the max-flow min-cut theorem [11], which shows that
these two problems form a strongly dual pair.

The following extension of the disjoint paths problem is also well-understood:
given k pairs of terminals (s1, t1), . . . , (sk, tk), the objective is to find disjoint si-
ti-paths. For undirected graphs it is solvable in polynomial time if k is constant
(see [31] for a cubic and [23] for a quadratic algorithm) and NP-complete in
general [15]. In the case of directed graphs, a single path is easy and two paths
are already NP-complete [16]. The problem remains NP-complete for few paths
even on very restricted graph classes like acyclic, Eulerian, or planar graphs [33].

Another possible extension is to ask for k disjoint s-t-paths that are short,
which again makes sense for routing purposes. Suurballe [32] describes an algo-
rithm for this problem that is based on shortest path labelings. It is possible to
combine both extensions and ask for shortest paths between different terminals.
Eilam-Tzoreff [14] shows that these problems in all configurations (for directed
and undirected graphs with vertex- or arc-disjoint paths) are NP-complete and
also provides a polynomial algorithm for two paths in an undirected graph with
positive edge-weights. Bérczi and Kobayashi [6] present a polynomial algorithm
for the directed version, also with two paths and positive arc-lengths.

In contrast, the same problem where the paths need not be completely dis-
joint has not garnered as much attention in the literature. There are several
natural relaxations of the disjointedness condition: a first option allows arcs to
be part of more than one path, say each arc may be used by two. This problem
can be solved in the same way as the disjoint paths problem, by a maximum
flow computation in the graph with arcs of capacity 2. An alternative is to allow
some arcs, say one, to be part of an arbitrary number of paths. This, too, can
be solved by maximum flow techniques, but requires one flow computation for
each arc. These flows are computed in the graphs where one arc’s capacity is set
to infinity (and the rest remain at capacity 1). The choice we cover in this paper
allows paths to have at most one arc in common and leads to the almost disjoint
paths problem (ADP). More precisely, we wish to find k paths in a directed
graph that are almost disjoint, meaning that any two of them share at most one
arc. This could be generalized to allow for some fixed number of common arcs.

Most of the literature on nearly disjoint paths is of a very practical nature as
is evidenced by the initial examples we presented. We now discuss some of the
(rarer) theoretical results that exist for problems similar to ADP. Liu et al. [28]
introduce the k shortest paths with diversity problem, in which the goal is to find
a set of sufficiently dissimilar paths of maximum size (bounded by k). Of such
sets, the one that minimizes the total path length is optimal. For this problem,
an (incorrect) NP-hardness proof as well as a greedy framework is presented.
Chondrogiannis et al. [9] fix said NP-hardness proof, showing that the problem
is indeed strongly NP-hard, and develop an exact algorithm for it as well as
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heuristics. Moreover, Chondrogiannis et al. [10] consider the problem of finding
k shortest paths with limited overlap. They prove that this variant is weakly
NP-hard and develop two exact algorithms for it. The problems here are similar
to ADP in the sense that they look for paths that are sufficiently dissimilar,
though the measures used always result in similarity values between 0 and 1
because they compare the number of arcs in common with some function based
on the lengths of the two paths. Additionally, they want to minimize the total
length of the paths found.

Inspired by the strong duality of max-flow and min-cut, we make analogous
considerations for our almost disjoint paths problem. By dualizing the linear
relaxation of an integer programming formulation, we obtain a dual problem
which we call separating by forbidden pairs (SFP). Its goal is to select as few arc
pairs as possible such that every s-t-path in G contains both arcs of at least one
chosen pair. While the linear programming relaxations of these problems form a
dual pair and thus have the same objective value [18], the corresponding integer
versions are only weakly dual. Note that in the min-cut problem we select an
arc on every s-t-path whereas in SFP we select a pair of arcs on every s-t-path.

Apart from being dual to ADP, SFP adds another level on top of the well-
known path avoiding forbidden pairs problem (PAFP). In the latter problem
one is given a set of arc pairs A and has to identify whether some s-t-path
avoids all pairs in A (meaning SFP asks for a set that makes the corresponding
PAFP instance unsolvable). Originating from the field of automated software
testing [27], PAFP also has applications in aircraft routing [7] and biology, for
example in peptide sequencing [8] or predicting gene structures [26]. The PAFP is
NP-complete [17] and various restrictions on the set of forbidden pairs have been
considered. The problem becomes solvable if the pairs satisfy certain symmetry
properties [34] or if they have a hierarchical structure [24] while it remains NP-
hard even if the pairs have a halving structure [24] or no two pairs are nested [25].
The structure of the PAFP polytope has been analyzed [7] and Hajiaghayi et
al. [21] show that determining a path that uses a minimal number of forbidden
pairs cannot have a sublinear approximation algorithm.

Note that some of the referenced papers consider forbidden pairs of vertices
instead of pairs of arcs. However, these two variants can be converted into one
another by standard constructions. Moreover, as this problem is usually regarded
on acyclic graphs, we also specifically regard ADP and SFP under this restriction.

Contributions. We analyze the complexity of the weakly dual problems ADP and
SFP. In Section 2 we define these problems in addition to introducing notation
and stating general assumptions. We also investigate their duality, showing that,
unlike for the max-flow and min-cut problems, the duality gap here can be
arbitrarily large (even for acyclic graphs). However, for graphs that have an s-
t-cut of capacity 1, they are actually strongly dual, that is, the duality gap is 0.
Section 3 then covers ADP, starting Section 3.1 with the case that k ≤ 2 which
can be solved efficiently using flow techniques. By restricting to acyclic graphs,
the case where k is constant also becomes tractable. We then use the resulting
algorithm to solve the problem for general graphs.
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Theorem 1.1. For constant k, ADP is polynomial time solvable.

The case where k is part of the input is discussed in Section 3.2, resulting in
a proof of the next theorem.

Theorem 1.2. ADP is NP-complete, even on acyclic graphs.

We also note that this result remains true when paths are allowed to have a
fixed number of arcs in common, instead of just one. Finally, in Section 4, we
consider SFP and prove Σ2P-completeness.

Theorem 1.3. SFP is Σ2P-complete, even on acyclic graphs.

2 Preliminaries

We begin this section by introducing our basic notation. Next, we define the
problems we consider, that is, the almost disjoint paths problem (ADP) and the
separating by forbidden pairs problem (SFP). In this context, we also establish a
connection to the path avoiding forbidden pairs problem (PAFP). Afterwards, we
investigate the duality of ADP and SFP, showing that they are only weakly dual
with an arbitrarily large duality gap in general, but we also present a special
case where they are strongly dual. We complete this section by making some
non-restrictive assumptions on the graphs we consider.

2.1 Basic Notation

Throughout this paper, directed graphs will be denoted by G = (V,A) and have
a designated source s ∈ V and target t ∈ V . When a graph is fixed, the set of
all its s-t-paths is denoted by P , and we denote the start-vertex of an arc a ∈ A
by α(a) and its end-vertex by ω(a). By deginG(v) and degoutG (v) we denote in-
and outdegree of a vertex v in the graph G, and δinG (v) and δoutG (v) denote its
incoming and outgoing arcs, respectively. For the subgraph induced by a subset
U ⊆ V we write G[U ]. Given a set S and a natural number k ∈ N we denote the
set of all k-element subsets of S by

(

S
k

)

.

2.2 Problems

Let us now define the two problems we are interested in, starting with the almost
disjoint paths problem, in which paths are allowed to share up to one arc, in
contrast to the strict disjoint paths problem, in which they may not.

Definition 2.1. A set of paths in a (directed) graph is called almost disjoint if
every two paths of this set have at most one arc in common.

Problem 2.2. The Almost Disjoint Paths problem (ADP) is given by a directed
graph G = (V,A) together with two designated vertices s, t ∈ V and a natural
number k ∈ N. The question is whether k almost disjoint s-t-paths exist.
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Its weak dual (as we will see in the next subsection) is the separating by
forbidden pairs problem:

Problem 2.3. The Separating by Forbidden Pairs problem (SFP) is given by a
directed graph G = (V,A), two designated vertices s, t ∈ V , and a natural
number k ∈ N. The question is whether there exist k (unordered) pairs of arcs,
that is, A ⊆

(

A
2

)

with |A| = k, that separate (s and t in) G, meaning that every
s-t-path contains both arcs of at least one pair q ∈ A.

We note that SFP contains the path avoiding forbidden pairs problem (PAFP)
as a subproblem. In PAFP, a directed graph G and a set of arc pairs A is given.
The goal is to find an s-t-path in G that does not contain both arcs of a pair
in A. In this light, SFP asks for a set A such that there is no solution to the
corresponding PAFP instance.

2.3 Duality

The problems ADP and SFP form a pair of weakly dual problems as the following
integer programming formulations for their optimization variants demonstrate.

max
∑

P∈P

yP min
∑

q∈
(

A
2

)

xq

s.t.
∑

P∈P
q⊆A(P )

yP ≤ 1 f.a. q ∈
(

A
2

)

s.t.
∑

q∈
(

A(P )
2

)

xq ≥ 1 f.a. P ∈ P

yP ∈ {0, 1} f.a. P ∈ P xq ∈ {0, 1} f.a. q ∈
(

A
2

)

More precisely, the LP-relaxations of these formulations that we obtain by re-
placing yP ∈ {0, 1} and xq ∈ {0, 1} by yP ≥ 0 and xq ≥ 0 form a dual pair. In
contrast to Menger’s theorem [29,13], almost disjoint paths have an unbounded
duality gap as the following lemma shows:

Lemma 2.4. The duality gap between ADP and SFP is unbounded.

Proof. Let P k
ℓ denote an s-t-path of length ℓ whose ℓ arcs are all replaced by

bunches of k parallel arcs. Assume k ≥ 2 and ℓ ≥ k + 1 + k(k − 1)/2. We prove
that we need k2 pairs to separate s and t in P k

ℓ but that we can find at most k
almost disjoint s-t-paths therein.

We start by proving that we need k2 forbidden pairs to separate s and t
in P k

ℓ . The graph P k
ℓ has kℓ different s-t-paths. For a fixed pair q ∈

(

A
2

)

we
either have 0 or kℓ−2 s-t-paths using this pair (depending on whether both arcs
are contained in the same bunch or not). Therefore, y ≡ 1/(kℓ−2) is feasible for
ADP’s LP-relaxation and has an objective value of k2. That we need k2 pairs
to separate s and t in P k

ℓ now follows from the strong duality theorem of linear
programming [18].

To show that P k
ℓ admits only k almost disjoint paths let Q be a maximum

set of almost disjoint s-t-paths and enumerate them arbitrarily. Since the graph
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has k disjoint s-t-paths, we have |Q| ≥ k. The second path has at most one arc
in common with the first path and, if this is the case, we can assume without
loss of generality that it is contained in the first bunch. More general, the i-th
path has at most one arc in common with any of the first i − 1 paths and we
can assume (again without loss of generality) that these arcs are contained in

the first
∑i−1

j=1 j bunches.
Hence, if two of the first k paths in Q have an arc in common, we can

assume that it is in the first
∑k−1

j=1 j = k(k − 1)/2 bunches. Our assumption
ℓ ≥ k + 1 + k(k − 1)/2 thus implies that each arc from the last k + 1 bunches
is contained in at most one of the first k paths. Each bunch consists of k arcs.
Thus, each arc of the last k+1 bunches is contained in exactly one of the first k
paths. Another path now has to use one arc from each of the k+1 last bunches.
However, this means that it has at least two arcs in common with one of the
first k paths. Hence, there is no further path and it follows |Q| = k. ⊓⊔

However, the duality gap is not always unbounded. For example, if we restrict
ourselves to graphs that have an s-t-cut with a single outgoing arc, the duality
gap disappears.

Lemma 2.5. Let G be a directed graph and s, t ∈ V . If G has an s-t-cut (S, T )
with a single outgoing arc δout(S) = {uv}, the duality gap is zero and we can
solve ADP and SFP in polynomial time.

Proof. Note that every s-t-path in G must use the arc uv, so the paths in a
set of almost disjoint s-t-paths must be disjoint aside from uv. We can compute
maximum sets Ps and Pt of disjoint s-u- and v-t-paths, respectively. Combining
k = min{|Ps|, |Pt|} paths from each of these sets results in k almost disjoint s-t-
paths. In addition, one of the subgraphs G[S] or G[T ] has a cut with k outgoing
arcs. Bundling uv with each of these arcs results in k forbidden pairs separating
s and t. ⊓⊔

2.4 Assumptions

If the direct arc st is contained in the graph, this arc itself forms an s-t-path. With
respect to ADP this path is disjoint from every other s-t-path and can always be
added to a set of almost disjoint paths. Regarding SFP this is a path that never
contains a forbidden pair as it only has length 1. Thus, every instance containing
the direct arc st cannot be separated. This justifies the following assumption.

Assumption 2.6. The direct arc st /∈ A is not contained in the graph.

For both problems, ADP as well as SFP, every arc and every vertex that
is not contained in any s-t-path is irrelevant and can be removed. Hence, we
assume such arcs and vertices do not exist.

Assumption 2.7. Every arc and every vertex of the graph is contained in an
s-t-path.
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3 Almost Disjoint Paths

In this section, we inspect the almost disjoint paths problem. We first show how
to solve it for k ≤ 2 before presenting a dynamic program that deals with any
constant k. Lastly, we prove that the problem is NP-complete when k is part of
the input, even if the graph is acyclic.

3.1 Constantly Many Paths

For k = 1, ADP reduces to reachability, which can be solved in linear time. We
can check whether two almost disjoint paths exist by computing one maximum
flow per arc. For a ∈ A we can define arc capacities ca with ca(a) = 2 and
ca(a

′) = 1 for a′ ∈ A \ {a}. An s-t-flow with respect to ca of value ℓ corresponds
to ℓ many s-t-paths that have at most the arc a in common. Therefore, two
almost disjoint paths exist if and only if an s-t-flow of value at least 2 exists
with respect to arc capacities ca for some arc a. Hence, we can solve the problem
for k = 2 by computing a maximum s-t-flow with respect to ca for each a ∈ A and
checking whether one of them has value at least 2. In fact, instead of computing
a maximum flow for each capacity ca we can check whether a flow of value at
least 2 exists by simply making (at most) two flow augmentations, which only
require linear time.

Lemma 3.1. For k = 2, ADP can be solved in O (|A|(|V |+ |A|)) time.

However, this technique does not generalize to k > 2 because in this case several
arcs might be contained in multiple paths and we cannot guarantee that two
paths only share a single arc. Instead, we use a dynamic program to find a
constant number k of almost disjoint s-t-paths in polynomial time. We first
derive the dynamic program for acyclic graphs and then adapt it to graphs that
might contain cycles.

Theorem 3.2. For constant k, ADP is polynomial time solvable on acyclic
graphs.

Proof. Let m = |A| be the number of arcs of a graph G and assume k to be
fixed within this subsection. By assumption, G is acyclic and therefore admits a
topological ordering ν : V → N of its vertices. Assumption 2.7 implies that the
source s (the target t) always has the smallest (largest) value of ν.

States. The dynamic program is based on states. A state ((a1, . . . , ak), I) con-

sists of k (not necessarily disjoint) arcs and an intersection pattern I ⊆
(

{1,...,k}
2

)

.
We associate a state with a Boolean value x((a1, . . . , ak), I) that is true if and
only if k almost disjoint paths P1, . . . , Pk with the following properties exist:

– For every i ∈ {1, . . . , k} the path Pi is an s-ω(ai)-path whose last arc is ai.
– For i 6= j the paths Pi and Pj have an arc in common if and only if {i, j} ∈ I.
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There are mk different possibilities to choose k out of m arcs (with replace-

ment). Additionally, we have O(2k
2

) different intersection patterns, yielding

O(mk2k
2

) states in total. Note that this number is polynomial since we assume
k to be constant.

Comparing States. To enable the computation of the truth values of all states
with a dynamic program we have to order them appropriately. For this purpose
we introduce the relation ≺ on the states. Using the topological ordering ν we
define that ((a1, . . . , ak), I) ≺ ((a′1, . . . , a

′
k), I

′) applies if and only if

ν(α(ai)) ≤ ν(α(a′i)) for all i ∈ {1, . . . , k} and

ν(α(ai)) < ν(α(a′i)) for at least one i ∈ {1, . . . , k}.

That is, we ignore the intersection pattern and compare the values in the topolog-
ical ordering of the arc’s start-vertices for each of the k components separately.

Goal. If we know the truth values of all states, we can determine whether
k almost disjoint s-t-paths in G exist. We only have to check whether a state
with value true exists whose arcs all enter the target t. In fact, we can check this
during the dynamic program when computing the truth values of the appropriate
states.

Base. Similarly, we proceed at the start by determining the truth values of all
states whose arcs all leave the source s. For any k arcs a1, . . . , ak ∈ δout(s) and
an arbitrary intersection pattern I we have that the value x((a1, . . . , ak), I) is
true if and only if I = {{i, j} : ai = aj for i, j ∈ {1, . . . , k}, i 6= j}.

Recursion. The dynamic program is based on a recursion that allows the com-
putation of the truth value of a state based on the truth values of smaller states
(with respect to ≺). To derive this recursion let ((a1, . . . , ak), I) be a state. If
all arcs a1, . . . , ak start in s, we are in the base case, which is already handled
in the previous paragraph. Otherwise, an arc a ∈ {a1, . . . , ak} maximizing the
value ν(α(a)) satisfies α(a) 6= s. Without loss of generality, we assume a = a1.

If a1 = ai but {1, i} /∈ I for some i ∈ {2, . . . , k}, the state must have truth
value false as any paths P1 and Pi ending with the arc a1 = ai have this arc in
common. In the following, we therefore assume C = {{1, i} : a1 = ai, i 6= 1} ⊆ I
and define Ĩ = I \ C. We claim that the truth value of ((a1, . . . , ak), I) is the
disjunction

x((a1, . . . , ak), I) =
∨

{

x((ã, a2, . . . , ak), Ĩ) : ã ∈ δin(α(a1))
}

(1)

of truth values of smaller states. Note that all states in the disjunction are indeed
smaller as ν(α(ã)) < ν(ω(ã)) = ν(α(a1)) due to fact that ν is a topological
ordering. We now prove the correctness.
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First, suppose that x((a1, . . . , ak), I) is true. Thus, there exist almost disjoint
paths P1, . . . , Pk with intersection pattern I and last arcs a1, . . . , ak. The paths
remain almost disjoint when removing the last arc a1 from P1. This removal
changes the intersection pattern from I to Ĩ. This shows that x((ã, a2, . . . , ak), Ĩ)
is true for ã being the penultimate arc on the path P1. As ã ∈ δin(α(a1)), this
value is contained in the disjunction from Equation (1).

Now, suppose that x((ã, a2, . . . , ak), Ĩ) is true for an arc ã ∈ δin(α(a1)) and
let Ĩ be as defined above. Again, there are almost disjoint paths P1, P2, . . . , Pk

with last arcs ã, a2, . . . , ak and intersection pattern Ĩ. By the choice of the arc a1,
we obtain that a1 is the last arc of a path Pi whenever it is contained in Pi. To
see this, remember that a1 is among the arcs {a1, . . . , ak} one whose start-vertex
has the largest value ν(α(a1)) in the topological ordering. If a1 is contained in
a path Pi but not the last arc a1 6= ai, we have ν(α(ai)) > ν(α(a1)) which is a
contradiction.

Since Ĩ ∩ C = ∅, the path P1 shares no arc with another path that ends
with a1. And because a1 can only be the last arc of a path Pi, we can extend P1

by the arc a1 while maintaining that the paths are almost disjoint. Moreover,
the new intersection pattern is I as

I = Ĩ ∪ C = Ĩ ∪ {{1, i} : a1 = ai, i 6= 1} = Ĩ ∪ {{1, i} : a1 ∈ Pi, i 6= 1}.

This shows the correctness of the recursion from Equation (1). Hence, we can
compute the truth values of all states in polynomial time. ⊓⊔

Theorem 1.1. For constant k, ADP is polynomial time solvable.

Proof. We prove the claim by converting G = (V,A) into a directed acyclic
graph G′ and by adapting the dynamic program from the proof of Theorem 3.2
to the new situation. To this end, let n = |V |.

The vertex set of G′ consists of n copies v1, . . . , vn for every vertex v ∈ V ,
and we call the vertices {vi : v ∈ V } the i-th layer of G′. For every arc uv ∈ A
we add the n− 1 arcs ui−1vi for i ∈ {2, . . . , n} to G′, which we call copies of uv.
Since all arcs in G′ lead exactly one layer up, the graph G′ constructed so far
is acyclic. Furthermore, we add an additional vertex t′ to G′, which we connect
with arcs tit

′ for i ∈ {1, . . . , n}. Note that G′ remains acyclic. In order to ensure
Assumption 2.7 we restrict G′ to those vertices and arcs that are reachable
from s1 and from which we can reach t′.

The basic idea is now to find k almost disjoint s1-t
′-paths in G′ and translate

these back to s-t-paths in the original graph G. For this we ignore the last
vertex t′ and replace every other vertex vi on such a path by the corresponding
vertex v ∈ V . In this way, however, almost disjoint paths in G′ need not remain
almost disjoint in G. For this to be the case, we have to identify all copies of
an arc: for every two paths that we choose in G′ there must be at most one
arc uv ∈ A of which both paths contain a copy. If this is the case, we call the
paths almost copy-disjoint.

To achieve this, we have to slightly modify the dynamic program from the
proof of Theorem 3.2. More precisely, we update the definition of the Boolean
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value x((a1, . . . , ak), I). Instead of assuming the s-ω(ai)-paths Pi to be almost
disjoint, we now require that they are almost copy-disjoint. Accordingly, we have
to update the interpretation of the intersection pattern: we now have {i, j} ∈ I
if and only if the paths Pi and Pj both contain a copy of the same arc.

Consequently, we have to amend the recursion. A state must be false not
only if a1 = ai and {1, i} /∈ I, but even if a1 and ai are copies of the same arc
and {1, i} /∈ I. This also entails a slightly different definition of C:

C = {{1, i} : a1 and ai are copies of the same arc, i 6= 1}.

Overall, the size of G′ is polynomial in the size of G, it can be constructed
in polynomial time, and all modifications in the dynamic program induce only
polynomial overhead. ⊓⊔

3.2 NP-completeness

Although we can solve ADP for constant k in polynomial time, it isNP-complete
in general. This is stated in Theorem 1.2, which we prove in this section.

Theorem 1.2. ADP is NP-complete, even on acyclic graphs.

ADP is contained in NP since we can check in polynomial time whether
k paths are almost disjoint. To prove the hardness we reduce the NP-complete
independent set problem [19] to ADP. For this let an instance of the independent
set problem be given by an undirected graph H = (VH , EH). After constructing
a directed acyclic graph G = (V,A) we show that H has an independent set of
size k if and only if there are 2 · |EH |+ k almost disjoint s-t-paths in G.

Graph Construction

The basic component to construct an instance G = (V,A) of ADP from H is a
gadget gad(e) for every edge e ∈ EH . We first describe these gadgets and how
we combine them to obtain the graph G.

The Gadget. The main component of the ADP instance is the edge gadget
depicted in Figure 1. Such a gadget gad(uv) corresponds to an edge uv ∈ EH

and has four input vertices (drawn as arrows pointing into the gadget): two
labeled u and v corresponding to the end vertices of the edge and two auxiliary
inputs h1 and h2. Analogously, the gadget also has four output vertices (shown as
arrows pointing outward): u′ and v′ as well as h′

1 and h′
2. In addition, it contains

ten interior vertices, which we name and connect as drawn in Figure 1. When
using such gadgets to construct G, we use the schematic illustration depicted on
the right of Figure 2; note that the in- and output vertices are rearranged.
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u

v

h1

h2

xL
1

xL
2

yL
1

yL
2

zL zR yR
1

yR
2

xR
1

xR
2

u′

v′

h′

1

h′

2

Fig. 1. The gadget gad(uv) of an edge uv ∈ EH .

gad(e)

u

v

h1

h2

u′

v′

h′

1

h′

2

gad(e)

u

v

h1 h2

u′

v′

h′

1 h′

2

Fig. 2. The rearrangement of the in- and outputs of a gadget from Figure 1 in order
to simplify the drawing of the graph in Figure 3.

s
vV

v1

v2

...

vn

gad(e1)

gad(em)

vE

t

· · ·

· · ·

· · ·

· · ·

Fig. 3. The graph G = (V,A) for the hardness proof of ADP. The gadgets are those
from Figure 1 with rearranged in- and outputs as specified in Figure 2.
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The Graph. The graph G = (V,A) of the ADP instance corresponding to the
graph H = (VH , EH) is drawn in Figure 3. It consists of a gadget gad(e) for
every edge e ∈ EH and additional vertices VH ∪ {s, t, vV , vE}. The source s is
connected with vV and vE and the vertex vV has outgoing arcs to all v ∈ VH . To
every auxiliary input of a gadget we have an arc from vE . From every auxiliary
output of a gadget there is an arc to the target t.

Finally, we explain how the vertex inputs of the gadgets are connected. To this
end, sort the edges EH = {e1, . . . , em} arbitrarily. In the graph G, every vertex
u ∈ VH is connected to the target t by a path Pu that starts with (s, vV , u) and
passes through every gadget gad(e) corresponding to an incident edge e ∈ δH(u).
For ℓ = degH(u) we choose j1 < · · · < jℓ such that δH(u) = {ej1 , . . . , ejℓ}. We
connect u with the input of gad(ej1) that is labeled u. Its output u′ is connected
with the input u of gad(ej2) and so on. Finally, the output u′ of the last gadget
gad(ejℓ) has an arc to the target. If the vertex u ∈ VH has no incident edge, we
introduce the direct arc ut.

Definition 3.3. Every s-t-path in G either starts with the arc svV or with the
arc svE. Those starting with svV are vertex paths and those starting with svE
are auxiliary paths.

From an Independent Set to Almost Disjoint Paths

Lemma 3.4. Given an independent set U ⊆ VH in H of size |U | = k, there are
2m+ k almost disjoint s-t-paths in G.

Proof. We construct 2m + k almost disjoint s-t-paths, k of which are vertex
paths for the vertices in U and the remaining 2m are auxiliary paths.

The auxiliary paths are obtained by extending the h1-h
′
1- and h2-h

′
2-paths

visualized in Figure 4 of all gadgets gad(e), e ∈ EH . They have the first arc svE
in common and are disjoint afterwards.

For u ∈ U we choose the path Pu from the graph construction. It is the unique
s-t-path that starts with (s, vV , u) and uses all u-u′-paths through gadgets gad(e)
of incident edges e ∈ δH(u) as well as the arcs connecting these. Since U ⊆ VH is
an independent set in H and since the gadgets correspond to edges in H , there
is no gadget gad(uv) with {u, v} ⊆ U . Thus, for every gadget, we choose at most
one vertex path passing through it. This implies that also all chosen vertex paths
have the first arc svV in common and are disjoint afterwards.

A chosen vertex path Pu and a chosen auxiliary path have an arc in common
if and only if the auxiliary path passes through a gadget corresponding to an
edge incident to u. Hence, the 2m+ k chosen s-t-paths are almost disjoint. ⊓⊔

From Almost Disjoint Paths to an Independent Set

In the following, let Q be a set of 2m+ k almost disjoint s-t-paths in G among
which the number of auxiliary paths is maximized. We assume k ≥ 0 as we can
always choose 2m auxiliary paths as described in the proof of Lemma 3.4.
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u

v

h1

h2

u′

v′

h′

1

h′

2h1

h2 h′

1

h′

2

Fig. 4. A gadget as in Figure 1 with four paths through it: the unique u-u′-path (red),
the unique v-v′-path (blue), an h1-h

′

1-path (green), and an h2-h
′

2-path (orange).

Assumption 3.5. No set of 2m + k almost disjoint s-t-paths in G contains
more auxiliary paths than Q.

The following three lemmas provide structural results of the paths in Q. They
allow us to prove the counterpart of Lemma 3.4 in Lemma 3.9, which completes
the proof of Theorem 1.2.

Lemma 3.6. Without loss of generality we can assume that every auxiliary path
in Q leaves the first gadget it enters via an auxiliary output, which leads it directly
to t.

Proof. Let P ∈ Q be an auxiliary path, let gad(e) be the first gadget it enters,
and suppose that P leaves gad(e) via a vertex output u′. We assume that Q is
chosen such that it minimizes the number of such paths (among those sets Q
satisfying Assumption 3.5). By the construction of the graph, there is a single
arc leaving u′. This arc either points to the vertex input of another gadget or to
the target.

We first consider the case that the arc leaving u′ points to a vertex input ũ of
another gadget gad(ẽ). In this situation, the path P enters gad(ẽ) via ũ directly
after leaving gad(e) via u′. It is depicted in Figure 5. In this case, no auxiliary
path leaves gad(e) via h′

2 and no auxiliary path enters gad(ẽ) via h̃1. Otherwise,
such a path has not only the arc svE in common with P , but also either yR1 x

R
1

or x̃L
1 ỹ

L
1 . Thus, we can replace P in Q by two auxiliary paths: one that equals P

until vertex xR
1 but then continues along (xR

1 , h
′
2, t) and the other starting with

(s, vE , h̃
′
1, x̃

L
1 ) and following P from x̃L

1 on. To preserve the number of paths
in Q, we remove a vertex path from Q in return.

Note that the paths from Q remain almost disjoint after this modification,
except if there is a vertex path leaving gad(e) via h′

2. However, if this is the case
we can simple remove this vertex path. Also note that Q contains at least one
vertex path since k ≥ 0 and because Q contains at most 2m− 1 auxiliary paths:
degout(vE) = 2m and no auxiliary path uses the arc vE h̃1. Thus, the replacement
of P in Q contradicts Assumption 3.5 such that this case cannot occur.
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We now consider the remaining case, in which the arc leaving u′ directly
points to the target t. In this situation, P ends with (yR1 , x

R
1 , u

′, t) and we can
modify P by using (yR1 , x

R
1 , h

′
2, t) instead. As argued in the first case, another

path in Q leaving gad(e) via h′
2 has to be a vertex path. If it exists, we can

modify it by changing its end from (yR1 , x
R
1 , h

′
2, t) to (yR1 , x

R
1 , u

′, t).
Hence, these modifications reduce the number of auxiliary paths leaving a

gadget via a vertex output by one, which contradicts the assumption on Q we
made at the start of the proof. ⊓⊔

xL
1

xL
2

yL
1

yL
2

zL zR yR
1

yR
2

xR
1

xR
2

u′

v′

h′

1

h′

2

ũ

ṽ

h̃1

h̃2

x̃L
1

x̃L
2

ỹL
1

ỹL
2

z̃L z̃R ỹR
1

ỹR
2

x̃R
1

x̃R
2

Fig. 5. A path that leaves gad(e) via its vertex output u′ and enters gad(ẽ) via its
vertex input ũ uses at least the red marked arcs.

Lemma 3.7. Let gad(e) be a gadget that is passed through by exactly one vertex
path P from Q. If P enters gad(e) via a vertex input u, it leaves gad(e) via the
corresponding vertex output u′.

Proof. If P leaves gad(e) via an auxiliary output, Lemma 3.6 implies that Q
contains at most one auxiliary path passing through gad(e). In this case, we can
remove all paths passing through gad(e) from Q and replace them by the same
number of auxiliary paths passing through gad(e). This increases the number of
auxiliary paths in Q contradicting Assumption 3.5.

Next, suppose that P leaves gad(e) via the vertex output v′. In this case, it
must definitely use the arcs that are marked in red in Figure 6. The only chance
for an almost disjoint auxiliary path P ′ entering gad(e) via h1 is to use the h1-
h′
2-path whose arcs are green in Figure 6. However, every other auxiliary path

entering gad(e) must share an arc of gad(e) with P ′. Thus, they are not almost
disjoint and Q contains again at most one auxiliary path passing through gad(e).
As in the first case we can replace all paths through gad(e), thereby increasing
the number of auxiliary paths in Q, and again contradicting Assumption 3.5. ⊓⊔

Lemma 3.8. There is no gadget through which two vertex paths of Q pass.
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u

v

h1

h2

xL
1

xL
2

yL
1

yL
2

zL zR yR
1

yR
2

xR
1

xR
2

u′

v′

h′

1

h′

2h1

h2 h′

1

h′

2

Fig. 6. A vertex path entering a gadget gad(e) via a vertex input u and leaving it via
the “wrong” vertex output v′ has to use at least the red marked arcs. In this situation,
an auxiliary path entering gad(e) via h1 must follow the green arcs.

Proof. Suppose there is a gadget gad(e) that is passed through by two vertex
paths. Denote these paths by Pu and Pv. Since they already have the arc svV in
common, they are disjoint in gad(e). Hence, the path Pu entering gad(e) via u
has to use yR2 x

R
2 and the path Pv entering gad(e) via v has to use yR1 x

R
1 .

Furthermore, there is also an auxiliary path passing through gad(e) because
otherwise we could replace one of the two vertex paths by an auxiliary path
contradicting Assumption 3.5. Similarly to the proof of Lemma 3.7, this auxiliary
path has to be either an h1-h

′
2-path or an h2-h

′
1-path inside gad(e). By symmetry

we assume without loss of generality that it is an h1-h
′
2-path. Hence, the situation

is as depicted in Figure 7 (the path Pu can leave gad(e) either via v′ or via h′
1).

We now construct a new vertex path P that replaces Pu and Pv in Q. This
path first uses Pu until yL1 in gad(e). From thereon it uses (yL1 , z

L, zR, yR1 ) and
then continues like Pv. Since all vertex paths are disjoint after vV , the new
path P has only the arc svV in common with any of the remaining vertex paths.
Moreover, it has at most one arc in common with any auxiliary path outside
of gad(e) since this was already the case for Pu and Pv. We also replace the
auxiliary h1-h

′
2-path by an auxiliary h1-h

′
1-path and an auxiliary h2-h

′
2-path.

The resulting paths passing through gad(e) are visualized in Figure 8.
After these modifications, Q contains the same number of paths but the

number of auxiliary paths increases by one. This contradicts Assumption 3.5.
⊓⊔

Using Lemmas 3.6 to 3.8 we are now able to prove in Lemma 3.9 the claim
opposite to Lemma 3.4 and thus complete the proof that ADP is NP-complete.

Lemma 3.9. Given 2m+ k almost disjoint s-t-paths in G, there is an indepen-
dent set U ⊆ VH in H of size |U | = k.

Proof. We choose a set Q of 2m+ k almost disjoint s-t-paths in G that fulfills
Assumption 3.5. By Lemma 3.6 we also assume that every auxiliary path in Q
passes through exactly one gadget.
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Fig. 7. The two vertex paths Pu (marked red) and Pv (marked blue) and an auxiliary
path (drawn with green arcs) from Lemma 3.8 passing through a gadget.
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1
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h2 h′
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Fig. 8. The result of the modifications in Lemma 3.8. The two vertex paths and the
auxiliary path from Figure 7 are replaced by the vertex path marked red and the two
auxiliary paths drawn in green and orange.

We define U ⊆ VH to be the set of vertices that are contained in a vertex
path of Q. We first prove that U is an independent set in H .

Lemma 3.8 implies that for every gadget there is at most one vertex path
in Q that passes through this gadget. If this is the case, Lemma 3.7 states
that this vertex path enters the gadget via a vertex input u and leaves it via
the corresponding vertex output u′. Thus, a vertex path starting with (s, vV , u)
passes through a gadget gad(e) if and only if e ∈ δH(u). Because no two vertex
paths from Q pass through the same gadget, we obtain that U is indeed an
independent set.

We complete the proof by showing that U contains k elements. Every gadget
is used by at most one vertex path, see Lemma 3.8. Moreover, such a vertex
path leaves every gadget via the correct vertex output, see Lemma 3.7 again.
Thus, we can additionally choose two auxiliary paths passing through every
gadget. Furthermore, since Q fulfills Assumption 3.5, it contains 2m auxiliary
paths. And since there can only be at most 2m almost disjoint auxiliary paths,
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Q contains exactly k vertex paths. Because these are also almost disjoint, they
contain distinct vertices u ∈ VH showing |U | = k. ⊓⊔

Now that we have shown ADP to be NP-complete in general, we wish to
remark that allowing paths to have more edges in common does not make the
problem easier.

Remark 3.10. Let l ∈ N with l ≥ 1. Regard the following relaxation of ADP:
given a directed graph G = (V,A) together with two designated vertices s, t ∈ V
and a natural number k ∈ N. Are there k s-t-paths such that any two of them
have at most l arcs in common?

This problem is also NP-hard, which can be seen by reducing ADP to it. For
this, we augment the graph G of an ADP instance by adding vertices v1, . . . , vl−1

and arcs v1v2, . . . , vl−2vl−1 and vl−1s. In the resulting graph G′ any v1-t-path
first uses the l− 1 newly added arcs. Therefore, k almost disjoint s-t paths in G
correspond to k v1-t paths in G′ that have at most l arcs in common and vice
versa. This shows NP-hardness.

4 Separating by Forbidden Pairs

In this section, we prove SFP to be Σ2P-complete yielding our third theorem.

Theorem 1.3. SFP is Σ2P-complete, even on acyclic graphs.

SFP is contained in Σ2P = NPNP since it can be solved by a non-deter-
ministic Turing machine that has access to an oracle for the NP-complete [17]
path avoiding forbidden pairs problem (cf. [4, Remark 5.16]). In the remainder
of this section we reduce the Σ2P-complete problem Σ2SAT to SFP proving its
Σ2P-hardness.

The Problem Σ2SAT

An instance of Σ2SAT is given by a Boolean formula ϕ(x, y) depending on two
types of variables. The question is, whether an assignment of the x-variables ex-
ists such that ϕ(x, y) is true for every assignment of the y-variables. This prob-
lem, sometimes also denoted by QSAT2, is a standard Σ2P-complete problem,
see [30, Theorem 17.10] or [20, Section 2.2.1]. We first introduce some notation
that we use in order to deal with this problem.

Notation 4.1. The Boolean formula ϕ = ϕ(x, y) depends on nx many x-variables
X = {x1, . . . , xnx

} and on ny many y-variables Y = {y1, . . . , yny
} whose union

we denote by Z = X ∪ Y . A truth assignment T : Z → {0, 1} assigns a Boolean
value to every variable. If we are only interested in the assignments of x- or
y-variables, we write TX : X → {0, 1} as well as TY : Y → {0, 1} and identify T
with (TX , TY ), where TX = T |X and TY = T |Y .

We say that the instance ϕ is satisfiable if an x-variable assignment TX exists
such that ϕ evaluates to true for every y-variable assignment TY .
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Outline of the Σ2P-Hardness Proof

To prove the hardness of SFP, we construct a directed acyclic graph G for such
a Boolean formula ϕ. For carefully chosen k ∈ N we show that a source s and a
target t in G can be separated by a set A of k forbidden pairs if and only if the
Σ2SAT instance ϕ is satisfiable.

In this graph G, most separating pairs are predetermined. Those that are
not have essentially two options, which are used to encode assignments of the
x-variables. This means that an assignment TX of the x-variables corresponds
to a selection of forbidden pairs A and vice versa. An assignment TY of the
y-variables will correspond to s-t-paths in the graph that contain a pair from A
if and only if the assignment T = (TX , TY ) satisfies a clause. From this we
conclude that an assignment TX exists such that ϕ evaluates to true for all
assignments TY if and only if there exists a small set A such that every s-t-path
contains a pair from A. However, the construction of the graph also generates
s-t-paths that do not correspond to any y-variable assignment TY . To make the
argumentation work, we have to enforce that all these paths contain forbidden
pairs.

In the following, we start with non-restrictive assumptions about the Boolean
formula ϕ. Thereafter, we introduce the different gadgets and concepts required
for the final Σ2P-hardness proof.

Assumptions and Assignments

Without loss of generality we may assume that the Boolean formula ϕ is given
in 3-DNF, that is, in disjunctive normal form where each clause contains exactly
three literals, see [20, Section 2.2.1]. Hence, we can write ϕ = C1 ∨ · · · ∨ Cm as
a disjunction of m clauses where each clause is the conjunction of three literals.

Assumption 4.2. The Boolean formula ϕ is given in 3-DNF.

Let us consider a clause consisting entirely of x-variables. If it contains a
variable xi and its negation xi, the clause can never be fulfilled and we can
remove it. Otherwise, we can satisfy this clause (and with it the entire formula ϕ)
solely by an appropriate x-variable assignment. Hence, we might also assume that
every clause contains at least one y-variable.

Assumption 4.3. No clause of ϕ consists entirely of x-variables.

Our last assumption is that no variable is contained in a single clause only.
This can be guaranteed, for example, by duplicating all clauses.

Assumption 4.4. Every variable is contained in at least two clauses of ϕ.

Assumptions 4.2 and 4.3 directly imply the following lemma.

Lemma 4.5. Every clause contains either one, two, or three y-variables.



Almost Disjoint Paths and Separating by Forbidden Pairs 19

Before we describe the graph construction in detail, we introduce local as
well as global y-variable assignments and define inconsistencies.

Notation 4.6. The Boolean formula ϕ = C1∨· · ·∨Cm is given as a disjunction
of m clauses, where every clause Ci = ℓ1i ∧ℓ

2
i ∧ℓ

3
i is a conjunction of exactly three

literals ℓji ∈ {z, z : z ∈ Z}. By Y (C) ⊆ Y we denote the set of y-variables that
occur (negated or not) in a clause C. We call an assignment of these variables
a local (y-variable) assignment and denote it by TY (C) : Y (C) → {0, 1}. In the
same spirit, we call TY a global assignment.

Definition 4.7. Two local y-variable assignments L = TY (C) and L′ = TY (C′)

for distinct clauses C and C′ are consistent if they coincide on Y (C) ∩ Y (C′).
Otherwise, they are inconsistent and the (unordered) pair I = {L,L′} is an
inconsistency.

We are now ready to start with our graph construction, which requires the
introduction of several gadgets.

Graph Components

Inconsistency Gadgets. We start with the simplest gadget, the inconsistency
gadget. It corresponds to an inconsistency and its only purpose is to enforce that
a minimal separating set A contains a specific pair of arcs. We use this gadget to
ensure that paths not corresponding to a global y-variable assignment contain a
forbidden pair.

Every inconsistency gadget is a directed acyclic graph as depicted in Figure 9.
It consists of an sI -tI -path with five arcs where the first, third, and last arc is
replaced by two parallel arcs.

sI tI
vI1 vI2 vI3 vI4

Fig. 9. An inconsistency gadget corresponding to an inconsistency I .

Lemma 4.8. The unique optimal solution to separate sI and tI in an inconsis-
tency gadget by forbidden pairs is AI = {{vI1v

I
2 , v

I
3v

I
4}}.

Proof. The set AI separates sI and tI and every separating set needs at least one
pair. Thus, every optimal solution consists of a single forbidden pair. To prove
the uniqueness, suppose there is an optimal solution whose pair contains one of
two parallel arcs. In this case, a path using the other arc does not completely
contain this pair, which yields a contradiction. ⊓⊔
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Variable Gadgets. The variable gadgets correspond to the x-variables in ϕ.
Their purpose is to reflect a truth assignment TX of these variables. That is,
there should be exactly two optimal sets of forbidden pairs in such a gadget:
one corresponding to setting the variable to true and one for making it false.
An illustration of such a gadget is given in Figure 10. We now describe its
construction in more detail. Thereafter, we explain what the two separating sets
look like and prove that these are indeed the only two optimal solutions.

Basically, the variable gadget corresponding to a variable xi consists of two
vertices si and ti that are connected by several paths. Similar to the inconsistency
gadgets we double some arcs on these paths and we link them in a certain way.

The gadget contains an si-ti-path for every occurrence of xi in the formula ϕ.
More precisely, the j-th occurrence corresponds to a path (si, vij,1, . . . , v

i
j,7, t

i) on
which we replace the first, fourth, fifth, and last arc by two parallels. Addition-
ally, we add a path (si, vi0,1, v

i
0,2, v

i
0,3, v

i
0,5, v

i
0,6, v

i
0,7, t

i), which is not associated
with any occurrence. On this path we replace the first, fourth, and last arc by two
parallel arcs. Furthermore, we introduce the arcs vi0,3v

i
j,4 and vij,4v

i
0,5 between

these paths.

si ti

vi0,1

vi1,1

vi2,1

viq,1

...

vi0,2

vi1,2

vi2,2

viq,2

...

vi0,3

vi1,3

vi2,3

viq,3

...

vi1,4

vi2,4

viq,4

...

vi0,5

vi1,5

vi2,5

viq,5

...

vi0,6

vi1,6

vi2,6

viq,6

...

vi0,7

vi1,7

vi2,7

viq,7

...

Fig. 10. A variable gadget corresponding to variable xi. We use q = qi for the number
of occurrences of xi (including negated literals) in formula ϕ.

Let qi denote the number of occurrences of variable xi in the formula ϕ.
As there are, by construction, qi + 1 arc-disjoint si-ti-paths in this gadget, an
optimal set of forbidden pairs separating si and ti must contain at least qi + 1
pairs. Thus, the two separating sets Ai = {{vij,1v

i
j,2, v

i
j,2v

i
j,3} : j = 0, . . . , qi} and

Ai = {{vij,5v
i
j,6, v

i
j,6v

i
j,7} : j = 0, . . . , qi} are optimal. The following lemma shows

that these are, in fact, the only two optimal sets of forbidden pairs. We identify
choosing the separating set Ai with setting xi to true and choosing Ai with
setting xi to false.
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Lemma 4.9. The sets Ai and Ai are the only optimal sets of forbidden pairs
separating si and ti in the variable gadget corresponding to variable xi.

Proof. As argued above, an optimal separating set contains exactly qi +1 pairs,
thus Ai and Ai are optimal separating sets. It remains to prove their uniqueness.

Similarly to the proof of Lemma 4.8 we can show that no forbidden pair of
an optimal solution uses one of two parallel arcs: otherwise, there are still qi +1
disjoint si-ti-paths, none of which completely contains this pair. With the same
argumentation it follows that none of the arcs vi0,3v

i
j,4 and vij,4v

i
0,5 between these

paths is contained in a forbidden pair of an optimal solution.
Thus, all forbidden pairs are composed of arcs of the form vij,1v

i
j,2, v

i
j,2v

i
j,3,

vij,5v
i
j,6, and vij,6v

i
j,7. For j ∈ {1, . . . , qi} we consider the four different paths

(si, vi0,1, . . . , v
i
0,7, t

i), (si, vi0,1, v
i
0,2, v

i
0,3, v

i
j,4, . . . , v

i
j,7, t

i),

(si, vij,1, . . . , v
i
j,7, t

i), and (si, vij,1, . . . , v
i
j,4, v

i
0,5, v

i
0,6, v

i
0,7, t

i).

An optimal solution has to separate these four paths with only two forbidden
pairs as there are qi−1 disjoint paths in the remaining gadget. This, however, is
only possible if either the pairs {vi0,1v

i
0,2, v

i
0,2v

i
0,3} and {vij,1v

i
j,2, v

i
j,2v

i
j,3} or the

pairs {vi0,5v
i
0,6, v

i
0,6v

i
0,7} and {vij,5v

i
j,6, v

i
j,6v

i
j,7} are chosen. Since this holds for all

j ∈ {1, . . . , qi}, the claim follows. ⊓⊔

Formula Gadget. The formula gadget consists of clause assignment units,
which we describe later, that are ordered in a layered structure. For now it suffices
to know that they have one input vertex and one output vertex which we use to
connect them. By Lemma 4.5, every clause C of ϕ, contains ℓ ∈ {1, 2, 3} many
y-variables. For every of the 2ℓ possible local y-variable assignments L = TY (C)

for C we introduce one such clause assignment unit. We denote its input vertex
by sL and its output vertex by tL. This yields either two, four, or eight clause
assignment units for each clause.

The i-th layer of the formula gadget consists of all clause assignment units
corresponding to the i-th clause of ϕ. A source s0 is connected to the input sL of
every clause assignment unit corresponding to a local assignment L = TY (C1) of
the first clause. In addition, we connect the clause assignment units of successive
clauses in the formula gadget by complete bipartite graphs. Finally, we connect
every output tL of a unit corresponding to the last clause Cm with the target t0.
The structure of the formula gadget is visualized in Figure 11.

Most clause assignment units provide paths from their input to their output
vertex. Therefore, s0-t0-paths through the formula gadget pass through exactly
one clause assignment unit of every layer. This way, every such path selects a
local y-variable assignment for every clause. If these are consistent, that is, if
every y-variable is assigned the same truth value in each local assignment of a
clause that contains it, they can be combined to a global y-variable assignment.
The other way around, we can also associate an assignment TY with an s0-
t0-path which uses in every layer the clause assignment unit corresponding to
TY (C) = TY |Y (C) for the respective clause C.
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s0 t0

T 1
Y (C1)

T 2
Y (C1)

T 1
Y (C2)

T 2
Y (C2)

T 3
Y (C2)

T 4
Y (C2)

· · ·

T 1
Y (Cm)

T 2
Y (Cm)

Fig. 11. The formula gadget for the formula ϕ = C1 ∨ C2 ∨ · · · ∨ Cm in 3-DNF. To
distinguish the different possible local assignments of a clause C we enumerate them
T 1
Y (C), T

2
Y (C), and so on.

Thus, the paths through the formula gadget are linked with the global y-
variable assignments. Our goal is to ensure that any such path contains a for-
bidden pair if and only if the associated assignment satisfies the formula ϕ (in
conjunction with the x-variable assignment). For this, the variable gadgets will
play an important role. However, we also have to take those paths into consid-
eration that do not correspond to consistent y-variable assignments. In order to
ensure that these paths contain forbidden pairs as well, we will make use of the
inconsistency gadgets.

Typification. All the gadgets introduced until now need to be part of s-t-paths
in the final graph. Since it will be possible to travel between gadgets later, new
paths arise. In particular, we obtain “mixed” paths that start at the source of
one gadget and end at the terminal of another. In order to keep these mixed
paths in check when we finally put these pieces together we need the concept of
typification.

To explain the idea of typification, we start with a small example. Given are
two disjoint graphs G1 and G2. In each graph Gi we want to separate a source si

and a target ti by forbidden pairs. However, we want to combine these two graphs
to a single graph G without affecting the optimal choice of forbidden pairs, that
is, we still only want to select pairs in G1 and G2. Simply adding a source s, a
target t, and connecting these with arcs ss1, ss2, t1t, and t2t does not suffice
as the combined instance can always be separated by the two forbidden pairs
{ss1, t1t} and {ss2, t2t}. But if we know that p−1 pairs are sufficient to separate
Gi for i ∈ {1, 2}, we can replace each of the four additional arcs by a bunch of
p parallel arcs. In other words: if ki pairs are sufficient to separate Gi, we can
choose any p > max{k1, k2}. Therefore, an optimal solution in the combined
instance only uses arcs that are contained within the subgraphs G1 and G2.

If we also add p + 1 parallel arcs from s1 to t2 as well as from s2 to t1,
we have to choose forbidden pairs separating all paths (s, s1, t2, t) and all paths
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(s, s2, t1, t). These paths only consist of additional arcs not contained in the
original graphs G1 and G2. The unique optimal solution to separate these paths
is to choose the 2p2 forbidden pairs that combine an arc ss1 with an arc t2t
and an arc ss2 with an arc t1t. Thus, we can separate G1 by k1 forbidden pairs
and G2 by k2 forbidden pairs if and only if we can separate G by 2p2 + k1 + k2
forbidden pairs. This situation is visualized in Figure 12.

s t

G1

G2

s1 t1

s2 t2

Fig. 12. An exemplary typification construction. The bold arcs ss1, ss2, t1t, and t2t

represent bunches of p parallel arcs. The even thicker arcs s1t2 and s2t1 represent
bunches of p+ 1 parallel arcs.

The reason we introduce these additional arcs is because they help us weed
out mixed paths: if we allow arcs between G1 and G2 in G, then it becomes pos-
sible to obtain s-t-paths containing si and tj for i 6= j. By adding the additional
“diagonal” arcs s1t2 and s2t1 we enforce the choice of all 2p2 pairs {ssi, tjt} for
i 6= j and, thus, ensure that these mixed paths are already saturated with at
least one pair. This just leaves paths that start with ssi and end with tit for all
possible indices i. We only have to examine whether all paths of these two types
contain a forbidden pair or not. Note that this does include paths that are not
solely part of a subgraph Gi, as they can leave and return, but it does reduce
the potential paths without a forbidden pair immensely.

This construction can be generalized to more than only two types. For q sub-
graphs G1, . . . , Gq with sources si and targets ti, i ∈ {1, . . . , q}, we can add
p parallel arcs from s to every source si and from every target ti to t. Addition-
ally, we add p + 1 parallel arcs sitj for all i, j ∈ {1, . . . , q} with i 6= j. Every
optimal solution has to use the p2 forbidden pairs of arcs {ssi, tjt} of different
types i 6= j. Thus, every optimal solution has p2q(q − 1) forbidden pairs and,
additionally, the pairs required to separate all paths of the q different types (all
paths using ssi and tit for some i). We intend to use this to give all inconsistency
gadgets, all variable gadgets, as well as the formula gadget their own type.

Clause Assignment Units and Graph Construction. To construct the
graph corresponding to formula ϕ we use the formula gadget, a variable gadget
for every x-variable, and several inconsistency gadgets. More precisely, for every
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pair of clause assignment units (within the formula gadget) that corresponds to
incompatible assignments we introduce one such inconsistency gadget. All these
gadgets are combined into the graph G as explained in the typification section.

Let us describe the graph construction in detail. That is, we finally have to
specify what the clause assignment units look like and how these are connected to
the other gadgets. Recall that the formula gadget contains a clause assignment
unit for every clause C and every possible assignment L = TY (C) of Boolean
values to the y-variables contained in C. As already stated in the formula gadget
section, these are 2ℓ clause assignment units for a clause with ℓ many y-variables.

A clause assignment unit corresponding to a y-variable assignment L of a
clause C contains exactly three vertices: sL, vL, and tL. Note that we use sL

and tL in order to connect the clause assignment units in the formula gadget as
described above. The vertices vL and tL are connected by an arc vLtL if and only
if C contains at least one y-literal that evaluates to false with the y-variable
assignment L. Hence, this arc is present in all but one clause assignment unit
corresponding to a clause C since there is only exactly one assignment TY (C)

that satisfies all y-literals in C.

These are all components within a clause assignment unit. In particular, the
clause assignment units are not connected and, thus, neither is the formula gad-
get. The following modifications only add some arcs between different gadgets.
These are illustrated by dashed arcs in Figures 13 to 15.

In addition to the (potentially non-existing) arc vLtL, we add another path
from vL to tL for every x-literal contained in C. The path of a literal correspond-
ing to variable xi passes through the variable gadget of xi. If the occurrence of xi

in C is the j-th occurrence in ϕ in total, this path uses either the arcs vij,1v
i
j,2

and vij,2v
i
j,3 (if C contains the literal xi) or the arcs vij,5v

i
j,6 and vij,6v

i
j,7 (if C

contains the literal xi). In the former case we add the inter-gadget arcs vLvij,1
and vij,3t

L and in the latter case we add vLvij,5 as well as v
i
j,7t

L. These connecting
arcs are indicated by dashed orange arcs in Figures 13 and 14.

Additionally, we introduce arcs between different gadgets that provides paths
from sL to vL. For this, we introduce one inconsistency gadget for every inconsis-
tency and connect them as follows. A clause assignment unit corresponding to an
assignment L = TY (Ci) of clause Ci gets an sL-vL-path PL that passes through
every inconsistency gadget for an inconsistency I = {L, TY (Cj)} containing L.

In such a gadget, this path uses either the arc vI1v
I
2 (if j > i) or the arc vI3v

I
4

(if j < i). The path PL collects all these arcs in arbitrary order by introducing
further arcs between them. The connecting arcs are indicated by dashed green
arcs in Figures 13 and 15.

Magnitudes and Parameters. Recall that we denote the number of clauses
of ϕ = C1 ∨ · · · ∨Cm by m and the number of x- and y-variables by nx and ny,
respectively (compare Notations 4.1 and 4.6). Also as before, let qi denote the
number of occurrences of the i-th x-variable xi in the formula ϕ. Additionally,
we denote the number of inconsistencies by nI .
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sL · · ·
vL

tL

PL

Fig. 13. A clause assignment unit corresponding to a local y-variable assignment L for
clause C containing a single x-variable. The assignment L does not fulfill all y-literals
of C as the arc vLtL is present. The colored, solid arcs are contained in other gadgets
and the dashed arcs connect these, see also Figures 14 and 15.

si ti

vi0,1

vi1,1

vi2,1

viq,1

...

vi0,2

vi1,2

vi2,2

viq,2

...

vi0,3

vi1,3

vi2,3

viq,3

...

vi1,4

vi2,4

viq,4

...

vi0,5

vi1,5

vi2,5

viq,5

...

vi0,6

vi1,6

vi2,6

viq,6

...

vi0,7

vi1,7

vi2,7

viq,7

...

Fig. 14. A variable gadget (as in Figure 10) with the connections to clause assignment
units. The blue arcs and the dashed orange arcs correspond to these from Figure 13.
In this example, the first and last occurrence of the corresponding x-variable occurs
non-negated and the second occurrence is negated.

sI tI
vI1 vI2 vI3 vI4

Fig. 15. An inconsistency gadget (as in Figure 9) with the connections to clause as-
signment units or other inconsistency gadgets. The red arcs and the green dashed arcs
correspond to these from Figure 13.
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The graph of the corresponding SFP instance consists of one formula gadget,
nx variable gadgets, and nI inconsistency gadgets. The formula gadget consists
of at most eight clause assignment units per clause. Hence, we have O (m) clause
assignment units. Moreover, since we have at most one inconsistency gadget for
every pair of clause assignment units, it holds that nI ∈ O

(

m2
)

.
As shown in Lemmas 4.8 and 4.9 we need one forbidden pair to separate

sI and tI in the inconsistency gadget for I and qi + 1 forbidden pairs to sep-
arate si and ti in the variable gadget for xi. Since the formula gadget itself is
not connected, we do not need additional forbidden pairs for it. Thus, for the
typification framework, we choose

p = max
i=1,...,nx

qi + 2 (2)

and add p parallel arcs from a source s to all input vertices of variable and
inconsistency gadgets as well as to the formula gadget. That is, we add all
parallels of the form ssi, ssI , and ss0. Analogously, we add p parallel arcs from
every such output vertex to a target t resulting in parallels tit, tIt, and t0t.
Furthermore, we add p+1 parallel arcs from every input vertex of such a gadget
to the output vertices of all other gadgets. In total, we introduce

2p(nx + nI + 1) + (p+ 1)(nx + nI + 1)(nx + nI) ∈ O
(

m5
)

arcs for the typification, where the asymptotic complexity O
(

m5
)

follows since

nI ∈ O
(

m2
)

and since both, nx and p, are bounded by the number 3 · m of
literals in ϕ. As explained in the typification section we need

k0 = p2(nx + nI + 1)(nx + nI) (3)

pairs to separate s and t in the graph that only consists of arcs introduced for
typification. We show in the analysis section below that we can separate the
graph G by

k = k0 + nI +

nx
∑

i=1

(qi + 1) (4)

forbidden pairs if and only if the Boolean formula ϕ has an x-variable assignment
such that ϕ evaluates to true for every y-variable assignment.

Analysis

So far, given a Boolean formula ϕ, we have constructed an SFP instance G
with source s and target t and specified the number k of forbidden pairs. In the
following, we use this to give a proof for Theorem 1.3, divided into Lemmas 4.10
to 4.14.

Lemma 4.10. The graph G that is constructed as described above is acyclic.
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Proof. As a graph is acyclic if and only if it exists a topological ordering, we
prove the claim by specifying such a topological ordering for G. However, we
do not explicitly map every vertex to a natural number. Instead, we describe a
procedure how to obtain the order of the vertices. The reason is that we have to
insert some vertices in between others multiple times. This would make a formal
definition of this mapping quite technical.

In a first step, we enumerate all vertices in the formula gadget together with
the interior vertices from inconsistency gadgets. Here, the “interior vertices” of
an inconsistency gadget for an inconsistency I are the vertices vI1 , . . . , v

I
4 . Note

that each arc of the form vI1v
I
2 and vI3v

I
4 is contained in an sL-vL-path PL of some

clause assignment unit. We start to enumerate the vertices in clause assignment
units corresponding to the first clause C1. There, we first enumerate the paths PL

of assignments L for C1 followed by the output vertices tL of the corresponding
gadgets. Afterwards, we proceed in the same way with the subsequent clauses.
This procedure is visualized in Figure 16.

s0 t0· · · · · ·

Fig. 16. A schematic representation how to enumerate the vertices in a formula gadget
for a topological ordering. The sL-vL-paths within the clause assignment units are
drawn as wavy lines. The paths and lines that might connect vL and tL are only
indicated. This visualizes the first step in the proof of Lemma 4.10.

By enumerating the formula gadget that way, for i < j every vertex corre-
sponding to a clause Ci gets a lower number than every vertex corresponding to
clause Cj . This holds in particular for the vertices on the sL-vL-paths PL in the
clause assignment units. For every inconsistency I = {L = TY (Ci), L

′ = TY (Cj)}

with i < j, the path PL uses the arc vI1v
I
2 and the path PL′

uses the arc vI3v
I
4

within the corresponding inconsistency gadget. Thus, the partial topological or-
dering defined up to this point is not only consistent with all arcs of the formula
gadget and the arcs in between formula and inconsistency gadgets, but also
within all these inconsistency gadgets.

It remains to prove that we can extend this partial ordering to the variable
gadgets and the missing in- and output vertices. The latter are, however, no
problem as we can put all input vertices at the beginning and all output vertices



28 O. Bachtler, T. Bergner, and S. O. Krumke

at the end, directly after s or before t (except for the in- and outputs of clause
assignment units that already are assigned a number in the first step).

Thus, in a second step, we have to assign numbers to the vertices of the
variable gadgets. Such a variable gadget corresponding to a variable xi consists
of qi + 1 many si-ti-paths. With the exception of the additional path, every
path corresponds to one occurrence of this variable. Let us consider the j-th
occurrence and let C be the corresponding clause. Depending on whether xi

occurs negated or not, we have restrictions either for the values of vij,5 and vij,7
or for the values of vij,1 and vij,3, respectively (as those have arcs to vertices in
clause assignment units that are already assigned a number). In particular, we
only have restrictions on the “left half” or on the “right half” of the path but not
on both. In the case the j-th occurrence is not negated, we assign the vertices
vij,1, . . . , v

i
j,3 increasing values that we insert in between the highest number of

a vertex vL and the lowest number of a vertex tL in the topological ordering for
every assignment L of clause C. Note that we have enumerated these vertices
in the first phase, such that the highest number of a vertex vL is in fact smaller
than the lowest number of a vertex tL for all assignments L of clause C.

As all paths in the variable gadget are only connected to the additional
path (si, vi0,1, v

i
0,2, v

i
0,3, v

i
0,5, v

i
0,6, v

i
0,7, t

i), we can extend the partial topological

ordering within every variable gadget. Therefore, we can assign vi0,1, v
i
0,2, and

vi0,3 values that are smaller and vi0,5, v
i
0,6, and vi0,7 values that are larger than

any values of vertices within the variable gadget. Thereafter, we can insert the
“missing half” of paths accordingly. ⊓⊔

Lemma 4.11. The graph G corresponding to the formula ϕ is of polynomial
size and it can be constructed in polynomial time, both with respect to the size
of ϕ.

Proof. For a given instance ϕ(x, y) = C1 ∨ · · · ∨ Cm with nx many x-variables,
let G be the graph as described in this section. Its size is polynomial in the
size of ϕ(x, y) as it contains O (m) clause assignment units, nx variable gad-
gets, and O

(

m2
)

inconsistency gadgets. The size of the clause assignment and
inconsistency gadgets is constant and the size of a variable gadget is linear in
the number of occurrences of the corresponding x-variable. We add O

(

m5
)

arcs
for the typification and to see that also only polynomially many arcs connect
different gadgets we can associate these to at least one of the two corresponding
gadgets. Every inconsistency gadget is connected by exactly four inter-gadget
arcs and every clause assignment unit is connected by either two, four, or six
inter-gadget arcs. All the arcs connecting a variable gadget to other gadgets have
the other endpoint in a clause assignment unit and are thus already considered.
Hence, the number of inter-gadget arcs is polynomially bounded. Moreover, we
can also construct the graph G from the formula ϕ in polynomial time. ⊓⊔

Lemma 4.12. At least k forbidden pairs are required to separate s and t in G,
where k is defined as in Equation (4) on Page 26.
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Proof. This follows from the typification construction. Every set of forbidden
pairs A has to contain
– the k0 pairs to separate the graph that consists only of typification arcs,
– the nI pairs to separate all inconsistency gadgets (see Lemma 4.8), and
– for every xi either Ai or Ai (see Lemma 4.9). ⊓⊔

Lemma 4.13. If the Σ2SAT instance ϕ is satisfiable, we can separate s and t
in G by k forbidden pairs, where k is defined as in Equation (4) on Page 26.

Proof. If ϕ is satisfiable, there is an x-variable assignment TX such that ϕ eval-
uates to true no matter which values are assigned to the y-variables. We define
a set of forbidden pairs depending on TX as follows.

First, it contains the k0 forbidden pairs that separate the graph consisting of
typification arcs. Second, it contains the nI pairs that separate all inconsistency
gadgets, compare Lemma 4.8. And finally, we choose a separating set for every
x-variable xi. If TX(xi) = 1, we use the separating set Ai. Otherwise, we use Ai.
See Lemma 4.9 for more information on these two sets.

By Equation (4) and Lemmas 4.8 and 4.9 we have chosen k forbidden pairs.
Moreover, by the typification construction, all paths that do not use any gadget
and those whose first and last gadgets are not the same contain a forbidden pair.

It remains to prove that every path that enters a gadget via a direct arc
from s and leaves this gadget via a direct arc to t completely contains at least
one forbidden pair. We consider the different gadgets.

First, consider an inconsistency I and the corresponding inconsistency gad-
get. Every path entering this gadget via ssI must also use the arc vI1v

I
2 . Anal-

ogous, every path leaving this gadget via tIt must also use the arc vI3v
I
4 . Thus,

every path entering and leaving this gadget via input sI and output tI contains
the forbidden pair {vI1v

I
2 , v

I
3v

I
4} that we have chosen.

Next, consider the variable gadget for a variable xi. Similarly to the incon-
sistency gadget, a path entering the gadget via si can leave the gadget at the
earliest at some vertex vij,3 and, thus, it has to contain the pair {vij,1v

i
j,2, v

i
j,2v

i
j,3}.

Analogous, a path leaving the gadget via ti must enter the gadget at the latest
at some vertex vij′,5 and, thus, it has to contain the pair {vij′,5v

i
j′,6, v

i
j′,6v

i
j′,7}.

At least one of these two pairs is contained in the set of forbidden pairs we have
chosen.

Finally, let us consider the formula gadget and let P be a path that enters
the gadget via s0 and leaves it finally via t0. The path P passes through multiple
inconsistency gadgets. If it uses more than one arc from one of them, it directly
contains the forbidden pair chosen in this inconsistency gadget. Thus, we can
assume that P uses at most one arc from every inconsistency gadget.

If the path P leaves some clause assignment unit for a clause C via an
arc to a variable gadget, it has to leave this variable gadget via an arc to the
vertex tL of a clause assignment unit that also corresponds to clause C. Thus, for
every clause, this path enters exactly one clause assignment unit via its input sL

and uses the sL-vL-path PL therein. Consequently, if P passes through clause
assignment units corresponding to inconsistent assignments L and L′, it contains
the forbidden pair contained in the inconsistency gadget for I = {L,L′}.
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Therefore, we can assume that P enters only clause assignment units corre-
sponding to consistent assignments. This allows us to define a global y-variable
assignment TY by combining the local clause assignments related to the clause
assignment units that P enters via sL. As ϕ is satisfiable and TX is chosen ap-
propriately we have that ϕ evaluates to true with T = (TX , TY ). In particular,
there is at least one clause C that is fulfilled. Let us consider the clause assign-
ment unit associated to C that P enters via sL. As this clause is fulfilled, all
y-literals are true and, thus, the arc vLtL is not present. Hence, the path P
has to pass through an x-variable gadget. However, as also this x-literal in C is
true, by the construction of the graph and the choice of the forbidden pairs, P
has to use a forbidden pair in this variable gadget.

In all possible cases, the path P contains a forbidden pair. Thus, s and t can
be separated in G by k forbidden pairs. ⊓⊔

Lemma 4.14. If the Σ2SAT instance ϕ is not satisfiable, we cannot separate
s and t in G by k forbidden pairs, where k is defined as in Equation (4) on
Page 26.

Proof. Suppose for the sake of a contradiction that we can separate s and t in G
by k forbidden pairs.

By Lemma 4.12 we need at least k forbidden pairs. By the typification con-
struction and by Lemmas 4.8 and 4.9 we have to choose the forbidden pairs from
Ai or Ai in a variable gadget corresponding to variable xi.

We define an x-variable assignment TX based on this set of forbidden pairs.
A variable xi is set to true if we have chosen Ai to separate its variable gadget.
Otherwise, if we have chosen Ai, we set xi to false.

As ϕ is not satisfiable, there exists a y-variable assignment TY such that
ϕ evaluates to false with T = (TX , TY ). This y-variable assignment TY cor-
responds to exactly one clause assignment unit TY (C) = TY |Y (C) for every
clause C. We now construct an s-t-path in G that does not contain a forbidden
pair. This path starts with the arc ss0 and ends with t0t. For every clause C it
passes through the clause assignment unit corresponding to L = TY |Y (C) where

it first uses the sL-vL-path PL. If the clause contains a y-literal that is false,
the path continues along the arc vLtL that is present in this case. Otherwise,
there is an x-literal that is not fulfilled. In this case, there exist a vL-tL-path
through the corresponding variable gadget using two arcs that are not chosen as
a forbidden pair (as this literal is false).

The path constructed this way does not contain a forbidden pair from a
variable gadget. It does not contain a forbidden pair from an inconsistency gadget
either as it only uses at most one arc from every inconsistency gadget. This is
the case because it only uses consistent assignments for the clauses. And since
the path does not contain a forbidden pair used to separate the graph consisting
of only typification arcs, the path does not contain a forbidden pair at all. This
contradicts our initial assumption and finishes the proof. ⊓⊔
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5 Conclusion

Graph-theoretic problems based on paths are extensively studied. In particular,
this is the case for (arc- or vertex-) disjoint paths problems. If we relax this
slightly and look for almost disjoint paths, we obtain a problem that is often
required in applications but rarely researched from a theoretical point of view.
By allowing paths to have up to one arc in common, the almost disjoint paths
problem is perhaps the most natural relaxation of the disjoint paths problem.
We have shown that this problem is already hard on directed acyclic graphs.
However, our dynamic program allows us to compute constantly many almost
disjoint paths on this graph class in polynomial time. Many other facets of ADP’s
complexity are still open. For example, it is unclear how the problem behaves
for other graph classes (including undirected graphs), whether faster algorithms
for the case of constantly many paths are possible, or how the problem changes
when paths may have even more arcs in common.

Similarly, restricting SFP to special graph classes and seeing how this affects
its complexity is of interest. Moreover, we would like to determine classes of
graphs where ADP and SFP form a strongly dual pair, like for the class of
graphs that have a cut with a single outgoing arc. In such cases SFP and ADP
are equally hard and it suffices to analyze the complexity of either one.
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