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Abstract

The game influence is a scoring combinatorial game that has been introduced in 2020 by Duchene et
al [DGP+21]. It is a good representative of Milnor’s universe of scoring games, i.e. games where it is never
interesting for a player to miss his turn. New general results are first given for this universe, by transposing the
notions of mean and temperature derived from non-scoring combinatorial games. Such results are then applied
to influence to refine the case of unions of segments started in [DGP+21]. The computational complexity of
the score of the game is also solved and proved to be PSPACE-complete. We finally focus on some specific
cases of influence when the graph is bipartite, by giving explicit strategies and bounds on the optimal score
on structures like grids, hypercubes or torus.

1 Introduction

influence is a two player scoring combinatorial game introduced by Duchene et al in [DGP+21]. It is played on a
directed graph where each vertex is colored either black or white. Alternately, both players (called Left and Right)
take a vertex of their color: if it is Left’s turn, she takes a black vertex, remove it and all its successors. If it is
Right’s turn, he takes a white vertex, remove it and all its predecessors. The game ends when the graph is empty.
Each player scores the total number of vertices that he/she removed. Naturally, the objective of each player is to
maximize his/her score.

The work presented in [DGP+21] is the first study of a particular combinatorial game within the recent scoring
framework of Larsson et al. [LNdS17]. Indeed, if scoring combinatorial game theory has been introduced by Milnor
[Mil53] and Hanner [Han59] in the 50’s, their work was not followed up, partly because of the hardness of solving
such games. This is only since the last decade that new results appeared on the topic, in particular with the
introduction of general frameworks of resolution, for particular families (also called universes) of scoring games.

In [DGP+21], the authors show that influence belongs to the so-called Milnor’s universe of scoring games.
Roughly speaking, the major property that derived from this universe is that a player has never interest to miss
his/her turn. They also partially solve the game on particular classes of digraphs, called segments, that correspond
to alternated black and white oriented paths, with arcs from black to white vertices.

In this paper, we extend the case of segments to more general families of bipartite graphs having the same
properties. For that purpose, we consider a particular version of influence that is played on bipartite digraphs,
where each set of the bipartition corresponds to vertices of the same color. In addition, all the arcs are oriented from
black to white vertices. According to these constraints, this version amounts to playing the game on an undirected
bipartite graph (where black and white vertices form the two sets of the bipartition), and where each player takes
a vertex of his/her color, removes it and all its neighbours. To simplify the notation, this particular version of
influence will be called bipartite influence.

Bipartite Influence is somehow very natural to play with, as bipartite bicolored graphs are a model for
many 2-player abstract games. This is for example the case for checkerboard grids. Figure 1 illustrates the first two
moves of a bipartite influence game played on a 5× 5 checkerboard grid. After these first two moves, Left has
scored 5 points (first move in the center), and Right 4 points (second move with the white bottom left vertex ). As
discussed in [DGP+21], since isolated vertices can only be taken by the player who owns them, they are generally
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immediately removed from the graph and added to the score of the corresponding player.

Figure 1: First moves of Bipartite Influence on a 5× 5 grid

In addition, this version of the game can be considered as a scoring variation of the well-known combinatorial
game node-kayles (in its partisan version). Indeed, in node-kayles, each player removes a vertex and its neigh-
borhood. The goal of each player is to be the last player to move. The correlation between node-kayles and
Bipartite Influence is thus immediate.

For the rest of the paper, each instance of Bipartite Influence will be denoted by a bipartite graph
G = (B ∪ W,E), where B and W correspond respectively to the sets of black and white vertices, and every
edge of E is between a vertex of B and W .

The main issue when studying a combinatorial game is the computation of the highest score of each player, by
assuming both are playing optimally. This score is well defined as the game is finite and with no chance nor hidden
information. The main results of this paper are described below.

In Section 2, we provide the necessary material from scoring combinatorial theory that applies for the game. In
particular and for the first time, we provide a formal framework inspired from Milnor and Hanner, and also from
combinatorial (non-scoring) game theory [Sie13] for the concept of temperature and mean of a scoring game. In
Section 3, we give general basic or known results on Bipartite Influence. In Section 4, we prove that influence
and even bipartite influence are PSPACE-complete. The next section deals with bipartite influence on
graphs having some symmetry properties that induce a draw strategy. Section 6 is about a refinement of the results
of [DGP+21] on segments, in particular by using the concepts of mean and temperature. Finally, the game is
considered on grids with two and three rows, with an exact value or a bound for the score in almost all cases. A
conjecture is given for general grids.

2 Background for scoring combinatorial game theory

If scoring combinatorial game theory has been introduced in the 50’s, the results of Milnor and Hanner have mainly
been a bootstrap for combinatorial and economic game theory. A couple of recent studies (see [LNdS17] for a survey)
have settled general results for scoring game theory. For the reasons detailed in [LNdS17], the one of Larsson et
al. in [LNdS15] unifies the different previous frameworks. It has also more advantages, in particular because of its
proximity with classical Combinatorial Game Theory. Our results will be presented according to this framework.

2.1 Main definitions and notations

The definitions below are derived from [LNdS15].

A scoring game G is recursively defined as a couple 〈GL|GR〉 where GL (resp. GR) are two sets of scoring games.
GL (resp. GR) is called the set of Left (resp. Right) options. In terms of play, the Left (resp. Right) options of G
correspond to the games that can be reached by Left (resp. Right) in one move.

If G is a game with no Left option, then we write GL as ∅s (with s being a real number) to indicate that if it is
Left’s turn, the game is over and the score of the game is s. The same notation applies for Right. Final positions
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5 -5

5 -1 -1 -5

Figure 2: Example of a game tree from a position of Bipartite Influence

correspond to games of the form 〈∅s|∅t〉.

Note that in the rest of the paper, we will consider only short games, i.e. games 〈GL|GR〉 where the sets GL

and GR are finite sets of short games.

In many games having symmetric rules, there exist no position of the form 〈∅s|∅t〉 with s 6= t. In particular, this
is the case of influence. As they correspond to final positions, games of the form 〈∅s|∅s〉 are called numbers and
will be simply denoted by s.

In scoring combinatorial game theory, the so-called game tree is a nice way to represent a game and all the
possible moves. Given a game G, the set of nodes of its game tree are all the positions that can be reached when
playing from G. The root of the tree is the starting position of the game. Given a node, its left (resp. right) sons
are the Left (resp. Right) options. An example of game tree for Bipartite Influence is given in Figure 2. The
scores on the leaves correspond to the difference between the number of vertices removed by Left and Right during
the play.

If the notion of score is well defined when GL or GR is empty, Larsson et al. [LNdS15] extended it recursively
to any game G. Inspired by the notions of Left and Right stops in combinatorial game theory [Sie13], they defined
in a similar way the notions of Left and Right scores corresponding to the score of the game depending on whether
Left or Right starts the game.

Definition 1 (Larsson et al [LNdS15]). Let G = 〈GL|GR〉 be a scoring game. We call Left score and Right score
of G, respectively denoted by Ls(G) and Rs(G), the following functions :

Ls(〈∅s|GR〉) = Rs(〈GL|∅s〉) = s if s is a real number

Ls(〈GL|GR〉) = max
Gl∈GL

Rs(Gl) if GL 6= ∅s

Rs(〈GL|GR〉) = min
Gr∈GR

Ls(Gr) if GR 6= ∅s

These definitions yield a partial order on the games. The convention is that positive scores are in favor of Left,
whereas negative scores are for Right. Games with a score equal to zero are draws. On the example of Figure 2, if
G is the root, we have Ls(G) = 5 and Rs(G) = −5. This means that the player who starts wins the game.

The following definition concerns the length of a game.

Definition 2. Let G = 〈GL|GR〉 be a scoring game. We define the length of G, denoted by l(G) as the size of the
longest sequence of moves in G.
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Recursively, l(G) is thus defined as follows:

l(〈∅s|∅t〉) = 0 for any real numbers s and t

l(〈GL|GR〉) = 1 + max
G′∈GL∪GR

l(G′)

As for standard combinatorial games, the disjunctive sum operator + applied to scoring games is defined as
follows:

Definition 3 (Larsson et al. [LNdS15]). Given two games G1 and G2, their disjunctive sum , written G1 +G2 is
defined as the following game:

G1 +G2 =〈∅ℓ1+ℓ2 |∅r1+r2〉 if G1 = 〈∅ℓ1 |∅r1〉 and G2 = 〈∅ℓ2 |∅r2〉

=〈∅ℓ1+ℓ2 |GR
1 +G2, G1 +GR

2 〉 if G1 = 〈∅ℓ1 |GR
1 〉 and G2 = 〈∅ℓ2 |GR

2 〉 and at least GR
1 or GR

2 is not empty

=〈GL
1 +G2, G1 +GL

2 |∅
r1+r2〉 if G1 = 〈GL

1 |∅
r1〉 and G2 = 〈GL

2 |∅
r2〉 and at least GL

1 or GL
2 is not empty

=〈GL
1 +G2, G1 +GL

2 |G
R
1 +G2, G1 +GR

2 〉 otherwise

For the accuracy of this definition, note that GL
1 +G2 does not exist if GL

1 is empty.

In addition, the opposite (or negative) of a game G, denoted by −G, is defined as the game where the roles of
Left and Right are exchanged. In Bipartite Influence, it consists in exchanging the colors of the vertices. By
definition of the scores, we have ([DGP+21], after Corollary 15) that for all G,

Ls(−G) = −Rs(G).

Finally, the notion of equivalence has been defined in order to replace big games by smaller ones in disjunctive
sums, without changing the score:

Definition 4 (Milnor [Mil53]). Two games G1 and G2 are equivalent (write G1 = G2) if for any game G, we have
Ls(G+G1) = Ls(G+G2) and Rs(G+G1) = Rs(G+G2).

Note that this definition makes sense when G, G1 and G2 have similar properties (same universe - see next
paragraph - or same ruleset).

2.2 Milnor’s Universe

In scoring combinatorial game theory, a universe is generally defined as a set of games closed under disjunctive sum,
by taking options and negative [LNdS15]. Several universes of scoring games have been considered in the literature
(Stewart [Ste11], Ettinger [Ett96], Larsson [LNdS15]). In his paper, although it is not formulated in this way,
Milnor introduced the universe of dicotic and nonzugzwang games [Mil53]. Note that in [LNdS15], this universe is
also denoted PS. It is defined as follows:

Definition 5 (Milnor [Mil53]). A game G is dicotic if both players can move from every nonempty position in the
game tree of G.

Formally, it is equivalent to say that for all G = 〈GL|GR〉, GL = ∅ ⇔ GR = ∅.

Definition 6 (Milnor [Mil53]). A game is nonzugzwang , or with no zugzwang , if for each position G in its game
tree, we have Ls(G) ≥ Rs(G).

Roughly speaking, in a nonzugzwang game, a player never has interest in skipping his turn.

The disjunctive sum of games is natural for games that split into several small components during the play.
Although the score of a sum of games is in general not equal to the sum of the scores of each game, it can be
bounded according to the following theorem for the games that belong to Milnor’s universe:
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Theorem 7 (Milnor [Mil53]). Let G and H be two dicotic nonzugzwang games, we have

Rs(G) +Rs(H) ≤ Rs(G+H) ≤ Ls(G) +Rs(H) ≤ Ls(G+H) ≤ Ls(G) + Ls(H).

In particular, if H is a number s we have Ls(G+ s) = Ls(G) + s and Rs(G+ s) = Rs(G) + s.

Being in Milnor’s universe induces a couple of nice properties concerning the equivalence of games. The first
result below means that every game G of Milnor’s universe has an inverse (i.e. −G), leading to the fact that this
universe is an abelian group. This is not the case of the other universes studied in the literature. The second result
yields a simple test to show that two games are equivalent.

Lemma 8. For any games G and H that are dicotic nonzugzwang, we have:

• Ls(G−G) = Rs(G−G) = 0;

• Ls(G−H) = Rs(G−H) = 0 if and only if G and H are equivalent.

As for standard combinatorial games, a relation order can be set on general scoring games (not necessary from
Milnor’s universe) [Ett96]. In Milnor’s universe, this relation can be defined as follows:

Definition 9. Let G and H be two games that are dicotic and nonzugzwang. We says that G dominates H, and
denote it by G ≥ H, if Rs(G−H) ≥ 0.

If a game has dominated options, then it can be simplified by simply removing them:

Theorem 10. Let G = 〈GL|GR〉 be a dicotic nonzugzwang game. Assume that there exist two options G1 and G2

in GL such that Gl
2 ≥ Gl

1. Then G = 〈GL \Gl
1|G

R〉.
Similarly, if there exist Gr

1 ≥ Gr
2 in GR, then G = 〈GL|GR \Gr

1〉.

Proof. By symmetry, we just prove the first part of the theorem. Let G′ = 〈GL \Gl
1|G

R〉.
We first prove that G′ belongs to Milnor’s Universe. Since G is dicotic and G has at least two left options, G′

is still dicotic. All the positions of G′ are positions of G except G′ itself. Thus to prove that G′ is nonzugzwang,
we just need to prove that Ls(G′) ≥ Rs(G′). Since Gl

2 dominates Gl
1, we have in particular Rs(Gl

2) ≥ Rs(Gl
1).

Indeed, by Theorem 7, Rs(Gl
2) ≥ Rs(Gl

2 − Gl
1) + Rs(Gl

1) and Rs(Gl
2 − Gl

1) ≥ 0. Thus maxGl∈GL(Rs(Gl)) =
maxGl∈GL\Gl

1

(Rs(Gl)) and Ls(G) = Ls(G′). On the other side, Rs(G′) = Rs(G) since the Right options of G and

G′ are the same. Thus Ls(G′) ≥ Rs(G′) and G′ is dicotic nonzugzwang.
Therefore, to prove that G = G′, one need to prove that Ls(G−G′) = Rs(G−G′) = 0. Since G−G′ is dicotic

nonzugzwang, we already have Ls(G− G′) ≥ Rs(G −G′). Thus one just need to prove that Ls(G −G′) ≤ 0 and
that Rs(G−G′) ≥ 0.

Left can answer to any Right move in G−G′ by a move leading to a game H−H = 0 since all the Right options
in G−G′ have a symmetric Left option. Hence Left has a strategy to insure a score 0 when playing second, which
means that Rs(G−G′) ≥ 0.

Assume now that Left starts in the game G−G′. If Left does not play to Gl
1 −G′, then Right can answer to a

game H −H = 0 and insure a score of 0. If Left play to Gl
1 −G′, Right can answer to Gl

1 −Gl
2 and insure a non

positive score since Ls(Gl
1 −Gl

2) = −Rs(Gl
2 −Gl

1) ≤ 0. Thus Right has a strategy in second to insure non-positive
score, which means that Ls(G−G′) ≤ 0.

Application to Bipartite Influence

In [DGP+21], the authors proved that influence belongs to Milnor’s universe. It also naturally holds for
Bipartite Influence:

Theorem 11 ([DGP+21]). For any instance G of Bipartite Influence, we have that G is dicotic and nonzugzwang.

Consequently, all the properties of Milnor’s universe detailed above apply to Bipartite Influence. In addition,
Example 12 below illustrates equivalent games in Bipartite Influence, as well as dominated options.
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Example 12. Denote by S5 the path of length 5, with the two extremities and the middle vertex colored black, and
the two other vertices colored white. Denote also by S2 the path of length two with one black and one white vertex.
See Figure 3.

We will prove that 2S5 = 2 + S2. According to Lemma 8, it is sufficient to prove Ls(2S5 − (2 + S2)) =
Rs(2S5 − (2+ S2)) = 0. As S2 = −S2 and as numbers can be removed from a sum according to Theorem 7, we will
prove Ls(2S5 + S2) = Rs(2S5 + S2) = 2. As a first step, when considering the Left options from 2S5 + S2, playing
an extremity of a S5 (i.e. the vertex u in Figure 3) always leads to a position that is dominated by playing the
middle of S5 (i.e. the vertex v). Therefore, when computing Ls(2S5 + S2), one only take into account the option v
(that yields 5 points) and the move on S2 (that yields 2 points):

Ls(2S5 + S2) = max (5 +Rs(S5 + S2), 2 +Rs(2S5))

= max
(
5 + min

(
− 2 + Ls(S5),−3 + Ls(S2 + S2)

)
, 2− 3 + Ls(S5 + S2)

)

= max
(
5 + min

(
3,−3

)
,−1 + max

(
5 +Rs(S2), 2 +Rs(S5)

))

= max
(
2,−1 + max

(
3, 2− 3 + Ls(S2)

))

= max
(
2,−1 + max

(
3,−1 + 2

))

= 2.

Rs(2S5 + S2) = min (−3 + Ls(S5 + S2 + S2),−2 + Ls(2S5))

= min (−3 + Ls(S5),−2 + 5 +Rs(S5))

= min (2, 3− 3 + Ls(S2))

= min (2, 2)

= 2.

This proves that 2S5 = 2 + S2. Moreover, as S2 = −S2, we also have that 4S5 = 2 + S2 + 2 + S2 = 4.

u v

S5

+
S5

= 2 +
S2

Figure 3: In Bipartite Influence, the game S5 + S5 is equivalent to the game 2 + S2.

2.3 Mean and Temperature

In this section, we develop the so-called concepts of mean and temperature of a game. These two notions have been
introduced by Milnor and Hanner [Mil53, Han59] for scoring games, and then have been formalized in the context
of combinatorial game theory by Conway [Con76]. In his book, Siegel [Sie13] gives formal definitions and proofs
about them. In this section, we propose to do a similar work in the context of scoring combinatorial game theory.
Our results cover the results of Hanner and extend them by following the CGT formalism. In addition, some of
them will be used in Section 6 to yield results about Bipartite Influence on segments.

While playing on a (disjunctive) sum of games, general information can be deduced from the information on
each term of the sum. As said previously, the Left score of a sum of games is not generally the sum of the Left
scores. Nevertheless, Milnor and Hanner have introduced several tools to get some knowledge on sums of games.
The most intuitive one is the mean of a game, which is very useful if the same game is repeated many times in a
sum.

Definition 13 (Hanner [Han59]). The left (resp. right) mean of a game G, denoted mL (resp. mR), is the score
obtained in average by playing G a huge number of times if Left (resp. Right) starts, if it exists. More formally:
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mL(G) = lim
n→∞

Ls(nG)

n

mR(G) = lim
n→∞

Rs(nG)

n

where nG corresponds to the disjunctive sum G+ · · ·G with n terms.

In Milnor’s universe, both left and right means always exist:

Theorem 14 (Milnor [Mil53]). Let G be a dicotic nonzugzwang game. The values mL(G) and mR(G) exist and
are equal.

The proof derives from the fact that asymptotically, the first move is made on a game that cannot significantly
modify the rest of the sum. According to this result, in Milnor’s universe, the mean value is thus unique and will
be denoted m(G).

The mean of a game can be interpreted as what a player can expect from a game in a large sum. However,
it gives no clue about which game of the sum it is strategic to play in. In order to answer to this question,
Hanner [Han59] introduced the so-called parameter σ(G). The more σ(G) is high, the more the game is said hot ,
meaning a player will want to play in it in priority. This parameter is similar to the temperature notion known in
standard combinatorial games [Sie13]. Nevertheless, Hanner’s definition of σ requires the use of an algorithm and
is not very tractable. In what follows, we propose a formalization of this notion of temperature for scoring games,
by adapting the formalism used in combinatorial games. Many results from Hanner [Han59] about σ remain true
within this formalism.

Definition 15. Let G = 〈GL|GR〉 be a dicotic nonzugzwang game. Given a real number t ≥ 0, we define G cooled

by t, denoted by Gt, as follows. If G is a real number k, put Gt = k and t0 = 0. Otherwise, let G̃t = 〈GL
t −t|G

R
t +t〉,

t0 = min {t ≥ 0|Ls(G̃t) = Rs(G̃t)} and define

Gt =

{
G̃t if t ≤ t0
Ls(Gt0) otherwise

The value t0 is called the temperature of G and is denoted by σ(G).

If t is higher or equal to the temperature of G, the game Gt is said to be frozen as it behaves as a number. If t
is lower than the temperature of G, playing in Gt can be understood as ”playing in G but each move costs t to the
player”.

This definition of temperature matches with the usual definition of temperature in combinatorial games without
scores. In both cases, the temperature is defined as a minimum value, which may not exist.

Before proving that the temperature is well-defined, we give an example of the computation of the temperature.

Example 16. We compute in this example the temperature of the instance S5 of Bipartite Influence defined in
Example 12. The tree of S5 is given in Figure 4 where the dominated moves corresponding to the extremities have
been removed. We have S5 = 〈5|〈−1|5〉〉.

Let t ≥ 0. By definition of a cooled game, we have

(̃S5)t = 〈5t − t|〈−1,−5〉t + t〉.

Since numbers are already cooled, we have

(̃S5)t = 〈5 − t|〈−1,−5〉t + t〉.

The temperature of 〈−1| − 5〉 is 2. Hence, for t ≤ 2, we have that 〈−1| − 5〉t + t = 〈−1| − 5 + 2t〉, and (̃S5)t =
〈5 − t|〈−1| − 5 + 2t〉〉 which corresponds to the second case of Figure 4. For t ≥ 2, the game 〈−1| − 5〉t is frozen

and equals to −3. Thus (̃S5)t = 〈5 − t| − 3 + t〉 which corresponds to the rightmost case of Figure 4. When t = 4,

we have for the first time Ls((̃S5)t) = Rs((̃S5)t) and thus the temperature of (S5) equals 4. After t = 4, (S5)t is
frozen and equals to 1.
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5

-1 -5

Tree of S5

5− t

-1 −5 + 2t

Tree of S5 cooled
by t for t ∈ [0, 2]

5− t −3 + t

Tree of S5 cooled
by t for t ∈ [2, 4]

Figure 4: Tree of the game S5 and the same game cooled by t for different values of t.

Proof of validity of Definition 15. We prove by induction on the length of G that for any t ≥ 0, Gt exists and the
two maps t 7→ Rs(Gt) and t 7→ Ls(Gt) are continuous.

If G is a number, its temperature is 0 and is well defined. Hence Gt exists for all t ≥ 0 and the two score
functions are constant.

Otherwise, G = 〈GL|GR〉 with GL and GR non empty since the game is dicotic. By induction, the temperature
of all the games in GL and GR are well defined. Thus the games in GL

t and GR
t exist for all t ≥ 0 and the

corresponding score functions are continuous.
Therefore, the functions t 7→ Ls(G̃t) and t 7→ Rs(G̃t) exist and are continuous as maximum and minimum of (a

finite number of) continuous functions.

Consider now the function f : t 7→ Ls(G̃t) − Rs(G̃t) defined on R+. The function f is well defined, continuous
and

f(t) = max
Gl∈GL

(
Rs(Gl

t)
)
− min

Gr∈GR

(
Ls(Gr

t )
)
− 2t.

We have f(0) = Ls(G) − Rs(G) ≥ 0 as G is nonzugzwang. Furthermore, lim
t→∞

f(t) = −∞ since the functions

t 7→ Rs(Gl
t) and t 7→ Ls(Gr

t ) are in a finite number and, by definition, constant for t large enough. Since f is
continuous, there exists a minimum t0 such that f(t0) = 0 which guarantees the existence of the temperature and
the game Gt.

Moreover, for any 0 ≤ t ≤ t0, Ls(Gt) and Rs(Gt) are continuous as minimum and maximum of continuous
functions; for t ≥ t0, they are constant so continuous. Finally, Ls(Gt) and Rs(Gt) are continuous in t0 since
Ls(Gt0) = Rs(Gt0).

With a similar induction, one can prove the following corollary.

Corollary 17. Let G be dicotic nonzugzwang game. Then for any t ≥ 0, Gt is a dicotic nonzugzwang game. The
function t 7→ Ls(Gt) and t 7→ Ls(G̃t) are decreasing functions. Symmetrically, t 7→ Rs(Gt) and t 7→ Rs(G̃t) are
increasing functions.

In particular, if t ≥ σ(G), we have Ls(G̃t) ≤ Gσ(G) ≤ Rs(G̃t).

A natural question is about how a cooled game is far from the original game, in terms of Left and Right scores.
The following property yields an answer.

Proposition 18. Let G be a dicotic nonzugzwang game and let t ≥ 0. We have 0 ≤ Ls(G) − Ls(Gt) ≤ t and
0 ≥ Rs(G)−Rs(Gt) ≥ −t

Proof. By considering−G instead ofG, it suffices to prove the result for Ls since Rs(−G) = −Ls(G) and Rs(−Gt) =
−Ls(Gt). By Corollary 17, t 7→ Ls(Gt) is decreasing, which implies that Ls(G)− Ls(Gt) ≥ 0. It remains to prove
that Ls(G)− Ls(Gt) ≤ t

If G is a number, we have for any t ≥ 0, Gt = G, which implies the result.
Otherwise, consider the case 0 ≤ t ≤ σ(G). Let Gl be an optimal move for Left in G, we have Ls(G) = Rs(Gl).

Since Ls(Gt) = maxl′∈L(Rs(G
l′

t ) − t), we have in particular Ls(Gt) ≥ Rs(Gl
t) − t. Thus, Ls(G) − Ls(Gt) ≤

Rs(Gl)−Rs(Gl
t) + t. Since t 7→ Rs(Gl

t) is increasing, Rs(G
l)−Rs(Gl

t) ≤ 0 leading to Ls(G)− Ls(Gt) ≤ t.
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Consider now the case t > σ(G), we have Ls(G)− Ls(Gt) = Ls(G)− Ls(Gσ(G)). By the last inequality above,
we have t > σ(G) ≥ Ls(G)− Ls(Gt).

As said before, this definition of a cooled game can be understood as a game where moving has a cost. Hence,
the temperature is defined as the highest cost that can be set such that the game remains nonzugzwang. Since the
temperature has been defined to handle sums of games, we state preliminary results about the sum of two cooled
games, starting by the case where one the games is a number.

Lemma 19. Let G be a dicotic nonzugzwang game. Let s be a number. Then (G + s)t = Gt + s. In particular,
σ(G + s) = σ(G).

Proof. The result is prove by induction on the length of G. If G is a number, so is G+ s and we have (G + s)t =
G+ s = Gt + s.

Otherwise:

˜(G+ s)t = 〈(GL + s)t − t|(GR + s)t + t〉

= 〈GL
t + s− t|GR

t + s+ t〉 by induction

= 〈GL − t|GR + t〉+ s

= G̃t + s.

In particular, Ls( ˜(G+ s)t) = Ls(G̃t) + s and Rs( ˜(G+ s)t) = Rs(G̃t) + s. This implies that σ(G + s) = σ(G)
and that (G+ s)t = Gt + s.

Despite the above result, it is not clear in our opinion that the cooling function is a homomorphism for any two
scoring games. If this result is true in the CGT context, a direct adaptation in Milnor’s universe is not guaranteed,
as G̃t can be outside this universe. However, if the cooled games are not equivalent, the result below show that it
is true for the scores. In addition, as for CGT, we also show that the temperature is a submaximal function.

Theorem 20. Let G and H be two dicotic nonzugzwang games. We have Ls((G + H)t) = Ls(Gt + Ht) and
Rs((G+H)t) = Rs(Gt+Ht). Moreover, σ(G+H) ≤ max(σ(G), σ(H)) and if σ(H) < σ(G), then σ(G+H) = σ(G).
In particular, we have: (G+H)σ(G+H) = Gσ(G) +Hσ(H)

Proof. We prove the proposition by induction on the length of G+H .
If G or H is a number, the proposition is a direct consequence of Lemma 19.
From now on, we assume that both G and H are not numbers, and, without loss of generality, we assume that

σ(G) ≥ σ(H). We first prove that Ls( ˜(G+H)t) = Ls(Gt +Ht) for any t ≤ σ(G).
Let t ≥ 0.

Ls( ˜(G+H)t) = max
Gl∈GL,Hl∈HL

{Rs((Gl +H)t − t), Rs((G+H l)t − t)}

= max
Gl∈GL,Hl∈HL

{Rs((Gl +H)t), Rs((G+H l)t)} − t

= max
Gl∈GL,Hl∈HL

{Rs(Gl
t +Ht), Rs(Gt +H l

t)} − t by induction

= max
Gl∈GL,Hl∈HL

{Rs(Gl
t +Ht − t), Rs(Gt +H l

t − t)}.

Assume first that t ≤ σ(H), then

Gt +Ht = 〈GL
t − t|GR

t + t〉+ 〈HL
t − t|HR

t + t〉

Ls(Gt +Ht) = max
Gl∈GL,Hl∈HL

{Rs(Gl
t +Ht − t), Rs(Gt +H l

t − t)}

9



and Ls( ˜(G+H)t) = Ls(Gt +Ht).
Assume now that σ(H) ≤ t ≤ σ(G). In particular, Ht is a number equal to Hσ(H). We prove that there is

an option in GL
t +Ht − t that has a Right Score greater all the options in Gt +HL

t − t. Let Gl ∈ GL such that
Ls(Gt) = Rs(Gl

t − t) (Gl exists since Gt is not a number). Let any H l ∈ HL.

Since t ≥ σ(H) and since t 7→ Ls(H̃t) is, by Corollary 17, a decreasing function, we have Rs(H l
t− t) ≤ Ls(H̃t) ≤

Ls(H̃σ(H)) = Hσ(H).
Therefore, we have the following inequalities:

Rs(Gt +H l
t − t) ≤ Ls(Gt) +Rs(H l

t − t) since all the components are in Milnor’s universe (see 7

≤ Rs(Gl
t − t) +Hσ(H)

≤ Rs(Gl
t − t+Ht) since Ht = Hσ(H)

Thus, the Left score of ˜(G+H)t is computed only on the options GL +Ht − t and thus:

Ls( ˜(G+H)t) = max
Gl∈GL

{Rs(Gl
t +Ht − t}

= max
Gl∈GL

{Rs(Gl
t − t)}+Hσ(H)

= Ls(Gt) +Hσ(H) since t ≤ σ(G)

= Ls(Gt +Ht).

We have proved that if t ≤ σ(G), then Ls( ˜(G+H)t) = Ls(Gt + Ht). In a similar way, one can prove that

Rs( ˜(G+H)t) = Rs(Gt +Ht).

The two functions t 7→ Ls( ˜(G+H)t) and t 7→ Rs( ˜(G+H)t) are respectively decreasing and increasing functions.
They are both equal to Gσ(G) +Hσ(H) in t = σ(G). Thus the first time they are equal is before (or in) σ(G) which
means precisely that σ(G +H) ≤ σ(G). Furthermore, we have:

• for 0 ≤ t < σ(G +H), Ls((G +H)t) = Ls( ˜(G+H)t) = Ls(Gt +Ht) and Rs((G +H)t) = Rs( ˜(G+H)t) =
Rs(Gt +Ht);

• for σ(G+H) ≤ t ≤ σ(G), t 7→ Ls( ˜(G+H)t) and t 7→ Rs( ˜(G+H)t) are constant and both equal to the value
in σ(G+H) and σ(G). In particular,

Ls((G+H)t) = Ls( ˜(G+H)t) = Ls(Gt +Ht) = (G+H)σ(G)+σ(H) = Gσ(G) +Hσ(H),

Rs((G+H)t) = Rs( ˜(G+H)t) = Rs(Gt +Ht) = (G+H)σ(G)+σ(H) = Gσ(G) +Hσ(H).

If σ(H) < σ(G), then for any σ(H) < t < σ(G),

Ls( ˜(G+H)t) = Ls(Gt) +Hσ(H) > Rs(Gt) +Hσ(H) = Rs( ˜(G+H)t),

and therefore σ(G+H) = σ(G).
Finally, for t ≤ σ(G +H), Ls((G +H)t) = (G +H)σ(G)+σ(H) and Ls(Gt +Ht) = Gσ(G) +Hσ(H). From what

precedes, the two values are equal, which concludes the proof.

The score after having cooled a game is defined as the score obtained after having increased the cost of the
plays. At the temperature, one can also consider it as the score on which Left and Right agree to play the game
regardless who starts. In this sense, this definition is close to the mean of the game. As first announced in [Han59]
in another format, the following result formalizes the connection between the two notions.

Proposition 21. Let G be a nonzugzwang dicotic game. We have Gσ(G) = m(G).

10



Proof. We denote by x the number Gσ(G). We prove that m(G) = x By Theorem 20, σ(nG) ≤ σ(G) and
(nG)σ(nG) = nGσ(G) = nx. In particular, for t large enough, (nG)t = nx.

Therefore, from Proposition 18, we have Ls(nG)− t ≤ Ls((nG)t) = nx = Rs((nG)t) ≤ Rs(nG) + t
By dividing by n, we have

Ls(nG)

n
−
t

n
≤ x ≤

Rs(nG)

n
+
t

n
.

Finally, as lim
n→∞

Ls(nG)
n

= lim
n→∞

Rs(nG)
n

= m(G), and t
n

→
n→∞

0, we have x = m(G).

Next theorem expresses in which sense a small temperature means that playing first is not very important.

Theorem 22. Let G be a nonzugzwang dicotic game, we have m(G) − σ(G) ≤ Rs(G) ≤ m(G) ≤ Ls(G) ≤
m(G) + σ(G).

Proof. As G is supposed to be dicotic and nonzugzwang, by symmetry, it suffices to prove m(G) ≤ Ls(G) ≤
m(G) + σ(G). Indeed, by considering −G instead of G, we have:

m(−G) ≤ Ls(−G) ≤ m(−G) + σ(−G)

⇔ −m(G) ≤ −Rs(G) ≤ −m(G) + σ(G) as σ(G) = σ(−G) and m(G) = −m(G)

⇔ m(G) ≥ Rs(G) ≥ m(G)− σ(G)

By Corollary 17, the function t 7→ Ls(Gt) is decreasing. Since G0 = G and Ls(Gt) = m(G) for t large enough,
we have Ls(G) ≥ m(G).

By Proposition 18, Ls(G)− Ls(Gσ(G)) ≤ σ(G) which is equivalent to Ls(G) ≤ m(G) + σ(G).

Theorem 22 can be applied to sum of games to bound the overall score according to the mean and the temper-
ature of each term of the sum. The following corollary confirms Theorem 1 of [Han59] with our definition of the
temperature. We will use this result for Bipartite Influence on sum of segments in Section 6.

Corollary 23. Let G = G1 + · · · + Gn be a sum of dicotic nonzugzwang games. Let mi be the mean of Gi and
σ = max

1≤i≤n
σ(Gi). We have

n∑

i=0

mi − σ ≤ Rs(G) ≤
n∑

i=0

mi ≤ Ls(G) ≤
n∑

i=0

mi + σ.

Proof. This result is straightforward as we know thatm(G) =
n∑

i=1

m(Gi) (as a sum of limits) and σ(G) ≤ max
1≤i≤n

σ(Gi)

(from Theorem 20).

3 General results on Bipartite Influence

The current section gives general results about Bipartite Influence that will be useful in the rest of the paper.
We first recall a property introduced in [DGP+21] about the so-called relevant graphs. In the context of Bipartite

Influence, the vertices from a graph G that can be directly removed by playing a vertex v are v itself, its neighbors
and the isolated vertices that possibly appeared (with the same color as v). We denote by Rmv(G, v) this set of
removed vertices. Consequently, the score functions can also be expressed as follows:

Ls(G) = max
x∈B

{
|Rmv(G, x)| +Rs(G \ Rmv(G, x))

}
and Rs(G) = min

y∈W

{
−|Rmv(G, y)|+ Ls(G \ Rmv(G, y))

}
.
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3.1 Included moves

In Influence, it has been proved that a move included in another is dominated by it [DGP+21]. More formally,
we have the following theorem that is a restatement of Corollary 13 in [DGP+21].

Theorem 24 ([DGP+21]). Let G = (B ∪W,E) be a bipartite graph and u, v two vertices of the same colour such
that Rmv(G, u) ⊆ Rmv(G, v). Then, the option of playing v dominates the option of playins u. Otherwise said,
playing v is always at least as good as playing u.

3.2 Removing and adding vertices

A way to obtain bounds on the score is to consider that some vertices are automatically given to the opponent, in
order to simplify the structure of the graph without those vertices. The following result explains how the score may
vary when sets of vertices of the same color are removed.

Theorem 25. Let G = (B ∪W,E) be a bipartite graph. Let B0 ⊆ B and W0 ⊆W .
We have:

Ls(G) ≤ Ls(G\W0) + |W0| (1)

Rs(G) ≥ Rs(G\B0)− |B0| (2)

Ls(G) ≥ Ls(G\B0)− |B0| (3)

Rs(G) ≤ Rs(G\W0) + |W0|. (4)

Roughly speaking, it can be explained by the fact that removing a set of white vertices and giving them to Left
may prevent Right from doing some good moves but does not prevent Left to apply the same strategy.

Proof. By symmetry, it suffices to prove (1) and (4). We do this by induction on |V |. The result is trivially true
if W0 is empty, if |V | = 1, or if the first player has no move. Assume it is true for any graph with at most n ≥ 1
vertices and where the first player has a move.

Let G = (B ∪W,E) be a graph with n+1 vertices and let W0 ⊂W be a set of white vertices. The main idea of
the proof is that by applying the optimal strategy existing in G on the graph with the removed vertices, the player
scores at least the same number of points.

We first prove (1) : let v ∈ B be a vertex played by Left in an optimal move in G. Denote by W1 the white
vertices of W0 removed by playing v. Namely, we have W1 = W0 ∩ Rmv(G, v), and define W2 as the other white
vertices of W0, i.e. W2 =W0\W1.
Consider now a strategy for Left that starts by playing v in G\W0. By definition of Ls, we have :

Ls(G\W0) ≥ Rs
(
(G\W0)\Rmv(G\W0, v)

)
+
∣∣Rmv(G\W0, v)

∣∣

Since W1 = W0 ∩ Rmv(G, v) ⊂ Rmv(G, v), we have W0 ∪ Rmv(G, v) = W1 ∪W2 ∪ Rmv(G, v) = W2 ∪ Rmv(G, v).
Therefore, we have:

Ls(G\W0) + |W0| ≥ |Rmv(G\W0, v)|+Rs
(
(G\W2)\Rmv(G, v)

)
+ |W1|+ |W2|

Now, by induction we know that Rs(G\Rmv(G, v)) ≤ Rs((G\Rmv(G, v))\W2) + |W2|. Thus, by applying this
equality to the previous one, we get Ls(G\W0) + |W0| ≥ |Rmv(G\W0, v)|+ |W1|+Rs(G\Rmv(G, v).
Finally, by the triangular inequality |Rmv(G\W0, v)|+ |W1| ≤ |Rmv(G\W0, v)∪W1|, and as Rmv(G\W0, v)∪W1 =
Rmv(G, v), we obtain Ls(G\W0) + |W0| ≥ |Rmv(G, v)| + Rs(G\Rmv(G, v)). Finally, as the move v was supposed
optimal in G, recall that Ls(G) = |Rmv(G, v)| +Rs(G\Rmv(G, v)), yielding to the desired result.

Now, we prove (4) : Let v ∈ W be a vertex played by Right in an optimal move in G\W0. By definition, we
have

Rs(G\W0) = −|Rmv(G\W0, v)|+ Ls(G\W0\Rmv(G\W0, v))

Denote by W1 the white vertices of W0 taken by playing v, i.e. W1 =W0 ∩Rmv(G, v), and by W2 the other white
vertices of W0, i.e. W2 =W0\W1.

12



We have Ls(G\W0\Rmv(G\W0, v)) = Ls(G\W2\Rmv(G, v)).
Now, by induction hypothesis and by applying (1) to Ls(G\W2\Rmv(G, v)), we have

Ls(G\W2\Rmv(G, v)) ≥ Ls(G\Rmv(G, v))− |W2|

As Rmv(G\W0, v) ⊂ Rmv(G, v), we have −|Rmv(G\W0, v)| ≥ −|Rmv(G, v)|.
Putting together the previous inequalities we get Rs(G\W0) ≥ −|Rmv(G, v)|+ Ls(G\Rmv(G, v))− |W2|.
Since −|Rmv(G, v)|+Ls(G\Rmv(G, v)) is the score obtained by playing v in G, we have Rs(G\W0) ≥ Rs(G)−|W2|.
Finally, as W2 ⊂W0, we obtain Rs(G\W0) ≥ Rs(G)− |W0|.

Example 26. The graph G of Figure 5 is the sum of a graph and its negative with only two additional black vertices
(v′7 and v′8). To evaluate the score of this sum, Left can give these two vertices to Right, and know that on the
remaining graph, the score will be 0 (as being the sum of a graph with its negative). Therefore, by applying (2) and
(3) of the above theorem, we deduce that Ls(G) ≥ −2 and Rs(G) ≥ −2.

v1 v2

v3 v4

v5 v6

v′1
v′2

v′3 v′4

v′5 v′6

v′7

v′8

Figure 5: Left, by ”giving” the two black vertices v′7 and v′8, can ensure a score of −2 in this graph since the rest
of the graph has a (Left and Right) score of 0.

3.3 Twins

Two vertices are called twins if they have the same color and the same neighborhood. In Bipartite Influence,
twin vertices are necessarily removed together.

Lemma 27. In Bipartite Influence, if a move removes a vertex v of the graph, then this move also removes
all the vertices that are twins of v.

Proof. Let G = (B ∪ W,E) be a bipartite graph and let a and a′ be two twin vertices of G. Without loss of
generality, suppose that a and a′ are white. Consider a move that removes the vertex a.

If the move is played from a white vertex w, it takes a if and only if it takes all its neighborhood. Thus
N(a) ⊆ N(w). But, as N(a) = N(a′), we also have N(a′) ⊆ N(w). Therefore, a′ and a have an empty neighborhood
after this move and are won by white.

If the move that removes a is played on a black vertex b, then a must be in the neighborhood of b. Therefore,
since a and a′ have the same neighborhood, a′ is also in the neighborhood of b, which concludes the proof.

4 Pspace-completeness

In this section, we prove that computing the Left score of an instance of Bipartite Influence is Pspace-complete.

Bipartite Influence

Instance: A bipartite graph G = (B ∪W,E), an integer k ∈ N

Question: Is it true that Ls(G) ≥ k?

Theorem 28. Bipartite Influence is Pspace-complete.
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Proof. First, Bipartite Influence is in Pspace since a game ends after at most |B ∪W | moves. To prove the
completeness, we do a reduction from the game POS CNF. An instance of POS CNF is a CNF formula ϕ over a
set of variables X = {X1, . . . , Xn} where all the variables are positive. Alice and Bob alternately choose a variable
that has not been chosen yet. Variables chosen by Alice are set to true, those chosen by Bob are set to false. Alice
wins if and only if ϕ is true at the end. The related decision problem is the following one and has been proved to
be Pspace-complete by Schaefer in 1978 [Sch78].

Pos Cnf

Instance: A set of variable X and a positive CNF formula ϕ
Question: Does Alice win the game Pos Cnf played on (X,ϕ) playing first?

Let (X,ϕ) be an instance of Pos Cnf. Without loss of generality, by adding a useless variable, one can assume

that n = |X | is even. Denote ϕ =
m∧
j=1

Cj and, for 1 ≤ j ≤ m, denote Cj =
nj∨
i=1

Xj
i where nj is the number of variables

in Cj . We construct an instance of Bipartite Influence G = (B ∪W,E) as follows:

• For each clause Cj , 1 ≤ j ≤ m, we add a white vertex cj .

• For each variable Xi, 1 ≤ i ≤ n, we add a white and a black vertex xi
w, xi

b, and m + 2n − 1 black vertices
vi1, . . . v

i
m+2n−1.

• We finally add all the edges (xi
w, xi

b) and (xi
w, vik) for 1 ≤ i ≤ n and 1 ≤ k ≤ m+2n; and the edges (xi

b, cj)
whenever Xi ∈ Cj .

See Figure 6 for an illustration of the construction for the formula ϕ = (X1∨X2)∧(X2∨X3)∧(X3∨X4)∧(X4∨X1).
The big black vertices represent the m+ 2n− 1 = 11 black leaves attached to each vertex xi

w.
Before proving the reduction, we prove that there are optimal strategies for Left or Right in G consisting in

playing only vertices xi
w or xi

b (for 1 ≤ i ≤ n). For 1 ≤ i ≤ n, let Bi be the set of m + 2n − 1 black vertices
vik. We call such set a bag. All these vertices are twins and by Lemma 27 will be removed at the same time,
together with the vertex xwi , scoring at least 2n +m points. However, a move can remove at most one bag at a
time, and actually any move except the moves on vertices cj removes a bag. As a consequence, if at some point
Right chooses to play on a vertex cj whereas a bag is still present, Left will manage to take n/2 + 1 bags and
will remove at least

(
n
2 + 1

)
(2n+m) = n2 + nm

2 + 2n+m vertices. On the contrary, if Right always takes a bag
when one is left, Left can take at most n/2 bags, plus maybe the n + m remaining vertices, removing at most(
n
2

)
(2n+m) + n+m = n2 + nm

2 + n+m vertices.
Thus, until all the bags are removed, Right must always choose to play on a vertex xwi . When the bag Bi is

removed (by Left or Right), the only other vertices that can be removed in the same move are xwi , x
b
i and maybe

some clause vertices, but no vertices of other variables can be removed. Thus, if Left would have play on a vertex vik
in a bag, the vertex xbi is still present in the graph. Since Rmv(G, vik,⊂)Rmv(G, xi

b,) , by Theorem 24, playing on
xbi is always better. Finally, we can suppose that both Left and Right plays on vertices xbi and xri until all the bags
are removed. But then the graph is empty since only clauses variables could remain and they form an independent
set.

Note that the final Left score is exactly the difference between the number of vertices cj removed by Left (by
taking one adjacent vertex xbi of cj) and thus isolated by Right (by removing all the black vertices xbi adjacent to
cj).

Assume Alice has a winning strategy in Pos Cnf on (X,ϕ). Then Left follows the same strategy than Alice:
when Alice chooses variable Xi, Left removes vertex xbi . If Right answers vertex xwi′ , we assume that Bob plays
variable Xi′ and so on. At the end, Left will have take one neighbour of each clause vertex and thus will have
removed the m clause vertices. At the end, Ls(G) ≥ m.

Similarly, if Left has a strategy to have Ls(G) ≥ m, it means that she can choose vertices xbi in such a way that
she will touch all the clause variables. If Alice follows the same strategy, ϕ will be true at the end of the game.

Remark 29. In Bipartite Influence, the question was to know whether Ls(G) ≥ k. Since free points can be
given to a player by adding isolated vertices in the graph, the problem is still Pspace-complete with k = 0 by adding
k white vertices if k > 0 or −k black vertices if k < 0. Thus, determining which player has a winning strategy is
also Pspace-complete.
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c4

xb1

c1

xb2

c2

xb3

c3

xb4

xw1xw2

xw3 xw4

1111

11 11

Figure 6: Reduction of φ = (X1 ∨X2) ∧ (X2 ∨X3) ∧ (X3 ∨X4) ∧ (X4 ∨X1) to Bipartite Influence. Big black
vertices represent 11 pendant vertices.

Corollary 30. influence is Pspace-complete, even for bipartite graphs.

5 A sufficient condition to have a draw

Identifying draw games, i.e. games that are equivalent to 0, is essential in the study of a game in Milnor’s universe
since they can be removed from any sum. However, as seen in the previous section, determining in general if a game
is a draw is hard (since it is already hard to determine if Ls(G) = 0). In this section, we give a sufficient condition
to have a draw when the graph has some symmetries and we apply it to hypercubes, cylinders and torus.

5.1 Sufficient condition

An automorphism ϕ of a graph G is a function from V (G) to V (G) that preserves edges, i.e. if (u, v) ∈ E(G) if
and only if (ϕ(u), ϕ(v)) ∈ E(G). It is said to be involutive if ϕ(ϕ(u)) = u for all u ∈ V (G). We denote the usual
distance (i.e the length of the shortest path) between two vertices u and v by d(u, v). If u and v are not in the same
connected component, we let d(u, v) = ∞.

Definition 31. Let G = (B ∪W,E) be a bipartite graph. An automorphism ϕ of G is a BW-automorphism if it is
involutive, exchanging the colours of the vertices, and if for any v ∈ V (G), d(v, ϕ(v)) ≥ 3.

Theorem 32. Let G = (B ∪W,E) be a bipartite graph that has a BW-automorphism, then G = 0.

Proof. Let G = (B ∪W,E) a bipartite graph, and let ϕ be a BW-automorphism of G. To prove that G = 0, we
just need to prove that LS(G) = RS(G) = 0. By symmetry of G and ϕ(G), we actually just need to prove that
Ls(G) ≤ 0, that is to prove that the second player can achieve to take as many vertices as the second player. The
strategy of the second player will consist in always playing the image by ϕ of the vertex played by the first player.

To prove that this strategy works, it is sufficient to prove that Rmv(G,ϕ(u)) = ϕ(Rmv(G, u)) for all u ∈ G
and that Rmv(G,ϕ(u)) ∩ Rmv(G, u) = ∅. Indeed, if these two conditions are satisfied, then the second player can
always remove the image by ϕ of the moved played by the first player and will take the same number of vertices.
Then after two moves, the graph will still have a BW-automorphism and the second player can repeat his strategy.

Let u ∈ V and v ∈ Rmv(G,ϕ(u)). If v is a neighbour of ϕ(u), we have :

(v, ϕ(u)) ∈ E ⇔ (ϕ(v), ϕ(ϕ(u))) ∈ E as ϕ respects edges

⇔ (ϕ(v), u) ∈ E as ϕ is involutive.
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Figure 7: Hypercube H4

If v is not a neighbour of ϕ(u), v is isolated by playing ϕ(u), i.e. each neighbour w of v is also a neighbour of
ϕ(u). As ϕ preserves edges, the neighbours of ϕ(v) are the images by ϕ of the neighbours of v. Therefore, they are
all removed by playing ϕ(ϕ(u)) = u. This proves that ϕ(v) is isolated by playing u, and thus is in Rmv(G, u).

In both cases, ϕ(v) ∈ Rmv(G, u) and thus v = ϕ(ϕ(v) is in ϕ(Rmv(G, u)). This proves Rmv(G,ϕ(u)) ⊆
ϕ(Rmv(G, u)) for all u ∈ V .

To prove the other direction, we have the following equivalences:

∀u ∈ V, ϕ(Rmv(G,ϕ(u))) ⊆ ϕ(ϕ(Rmv(G, u)))

⇔∀u ∈ V, ϕ(Rmv(G,ϕ(u))) ⊆ Rmv(G, u) as ϕ is involutive

⇔∀v ∈ V, ϕ(Rmv(G,ϕ(ϕ(v)))) ⊆ Rmv(G,ϕ(v)) as ϕ is a bijection, by taking v = ϕ(u)

⇔∀v ∈ V, ϕ(Rmv(G, v)) ⊆ Rmv(G,ϕ(v)) as ϕ is involutive.

Finally, we have Rmv(G,ϕ(u)) = ϕ(Rmv(G, u)) for all u ∈ V .
A move in Bipartite Influence removes vertices at distance at most 2, and the vertices at distance 2 are

removed only if they are made isolated. Assume by contradiction there exists v ∈ Rmv(G,ϕ(u))∩Rmv(G, u). Then
d(v, u) ≤ 2 and d(v, ϕ(u)) ≤ 2. Since d(u, ϕ(u)) ≥ 3, we actually have d(u, ϕ(u)) = 3 (since u and ϕ(u) does not
have the same colour, and without loss of generality, we can assume that d(v, u) = 2 and d(v, ϕ(u)) = 1. But then
v cannot be isolated when playing u since it will still be connected to ϕ(u). Thus Rmv(G,ϕ(u)) ∩ Rmv(G, u) = ∅.

5.2 Applications

In this subsection, we apply Theorem 32 to hypercubes, torus and cylinders.

Definition 33 (Hypercube). We denote by Hn be the n-dimensional hypercube. The set of vertices of Hn is {0, 1}n

and two vertices are adjacent if and only if they differ on exactly one digit. We set black vertices to be the vertices
with an odd number of nonzero digits. See Figure 7 for a representation of H4.

Proposition 34. For n ≥ 3, Hn = 0.

Proof. By Theorem 32, we just need to find a BW-automorphism. Let n ≥ 3 and

ϕ :
{0, 1}n → {0, 1}n

(ε1, . . . , εn) 7→ (1 − ε1, 1− ε2, 1− ε3, ε4, . . . , εn)
.

The automorphism ϕ is involutive and d(u, ϕ(u)) = 3 for any vertex u, which implies that ϕ exchanges black
and white vertices and. Thus ϕ is a BW-automorphism and Hn = 0.
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Definition 35 (Cylinder). Let n,m be two positive integers with n even. We denote Cn,m the cylinder defined as
follows. The n×m vertices of Cn,m are denoted by vi,j with 1 ≤ i ≤ n and 1 ≤ j ≤ m. Vertices vi,j and vi′,j′ are
adjacent if and only if i = i′ and j = j′ ± 1 or j = j′ and i = i′ ± 1 mod n. We set black vertices to be the vertices
with i+ j = 0 mod 2.

Definition 36 (Torus). Let n,m two even positive integers. We denote by Tn,m the torus defined as follows. The
n ×m vertices of Tn,m are denoted by vi,j with 1 ≤ i ≤ n and 1 ≤ j ≤ m. Vertices vi,j and vi′,j′ are adjacent if
and only if i = i′ and j = j′ ± 1 mod m or j = j′ and i = i′ ± 1 mod n. We set black vertices to be the vertices with
i+ j = 0 mod 2.

v1,1 v1,2 v1,3 v1,4 v1,5 v1,6

v2,1 v2,2 v2,3 v2,4 v2,5 v2,6

v3,1 v3,2 v3,3 v3,4 v3,5 v3,6

v4,1 v4,2 v4,3 v4,4 v4,5 v4,6

Figure 8: Cylinder C4,6 (Torus T4,6 with the dashed edges)

See Figure 8 for a representation of C4,6 and T4,6. Note that a torus is a cylinder where the two extremal
columns are connected.

Proposition 37. If n ≥ 4 or m ≥ 4, then Tn,m = 0.
If n ≥ 4 and m is even or if n = 4k + 2 for a positive integer k, we have Cn,m = 0.

Proof. By symmetry of the torus, we can assume that n ≥ 4.
Assume first that n = 2 mod 4. Consider the following morphism on the vertices of Cn,m or Tn,m:

ϕ : vi,j 7→ v((i+ n
2
) mod n),j).

It is sending vertices to the symmetric vertex of that is in the same cycle. Thus ϕ is involutive. Since n = 2 mod 4,
the colour of u and ϕ(u) are opposite. Since n ≥ 6, they are distance at least 3. Thus ϕ is a BW-automorphism
and Cn,m = Tn,m = 0.

Assume now that n = 0 mod 4 and that both n and m are even. Consider now the morphism

ψ : vi,j 7→ v((i+ n
2
) mod n),(m+1−j).

One can check that ψ is an automorphism. Furthermore,

ψ(ψ(vi,j)) = ψ(v((i+ n
2
) mod n),(m+1−j)) = v((i+n

2
+n

2
) mod n),(m+1−(m+1−j)) = vi,j
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and thus ψ is involutive.
Since i+ j and i+ n

2 +m+ 1− j have not the same parity, ψ is exchanging black and white vertices.
Finally, d(vi,j , ψ(vi,j)) ≥

n
2 + 1 ≥ 3. Indeed, to go from vi,j to ψ(vi,j) one needs already n/2 steps to go to the

same line, and at least one more step to go to the same column since m+ 1− j 6= j (m is even).
Thus ψ is a BW-automorphism and by Theorem 32 we can conclude that Tn,m = Cn,m = 0.

5.3 Limits of Theorem 32

Despite Theorem 32 gives a good condition to find some draw graphs, we prove now that deciding if a BW-
automorphism exists in a graph is not solvable in polynomial time, unless the graph isomorphism problem is.

Definition 38 (Graph Isomorphism problem). We recall here that given two graphs G1 and G2, determining if G1

and G2 are isomorphic is not known to be solvable in polynomial time. Problems that are known to be at least as
difficult as this problems are called GI-Hard problems.

Note that the graph isomorphism problem is known to be computable in quasi-polynomial time [Bab15].

Theorem 39. Let G = (B ∪W,E) be a bipartite graph, deciding if G admits a BW-automorphism is GI-Hard.

Proof. We give a reduction from the graph isomorphism problem. Let G1 = (V1, E2), G2 = (V2, E2) be two graphs.
We construct an instance H = (B ∪W,E) of Bipartite Influence as follows. The graph H will be divided

into two bipartite graphs, H1 and H2. Let i ∈ {1, 2}. The graph Hi is the incidence graph of Gi where a leaf is
added to each vertex of Hi that corresponds to a vertex of Gi. More precisely, the vertex set of Hi is Vi ∪ Ei ∪ V ′

i

where V ′
i is a copy of Vi. Two vertices u and v are adjacent in Hi if and only if one of the following items is satisfied

• u ∈ Vi and v is the copy of u in V ′
i , or

• u ∈ Vi, v ∈ Ei and v is an edge incident to u in Gi.

The graph Hi is bipartite with parts Vi and Ei ∪ V ′
i . Note that the only vertices of degree 1 are the vertices in

V ′
i . Then H = H1 ∪H2. We choose as set of black vertices the set B = V1 ∪ E2 ∪ V ′

2 and as set of white vertices
the set W = V2 ∪ E1 ∪ V ′

1 .
We now prove that G1 and G2 are isomorphic if and only if there exists a BW-automorphism of H .
First suppose that G1 and G2 are isomorphic. Let φ be an isomorphism from G1 to G2. We construct a BW-

automorphism ϕ of H as follows. Vertices of V1 and V2 are exchanged as in φ. Since φ preserves edges, a vertex of
H1 corresponding to an edge (u, v) of G1 is send to the vertex of H2 corresponding to the edge (φ(u), φ(v)) of G2,
and conversely for the vertices of H2 corresponding to the edges of G2. Finally, a vertex of V ′

1 (respectively V ′
2 ) that

is a copy of a vertex u of V1 (resp. V2) is send to the copy of φ(u) in V ′
2 (resp. to the copy of φ−1(u) in V ′

1 ). Clearly,
ϕ is an automorphism that is involutive, is inversing the colour of the vertices, and since it is sending a vertex to a
vertex not in the same component, the distance between u and ϕ(u) is infinite. Thus, ϕ is a BW-automorphism of
H .

Assume now that a BW-automorphism ϕ of H exists. Since V ′
1 and V ′

2 are the only vertices of degree 1 of H1

and H2 respectively, they must be stable by ϕ. To respect the exchange of colours, ϕ must induced a bijection
between V ′

1 and V ′
2 . Indeed, the set V1 corresponds to the unique neighbours of the vertices of V ′

1 and thus must
be sent to the unique neighbours of the vertices of V ′

2 that correspond to the set V2. Finally, the vertices of E1 can
only be sent to the vertices of E′

2.
Let φ : V1 → V2 be the restriction of ϕ to V1. Then φ is an isomorphism of G1. Indeed, ϕ is involutive so φ is a

bijection. Consider u and v to neighbours in G1 and e = (u, v). Then ϕ(e) must be incident to φ(u) and φ(v) and
thus φ(u) and φ(v) are adjacent in G2. The reverse can be proved in the same way.

To conclude, G admits a BW-automorphism if and only if G1 and G2 are isomorphic, which proves that
determining whether a bipartite graph admits a BW-automorphism or not is GI-Hard.

6 Segments

6.1 State of the art

Recall that segments, as defined in [DGP+21], correspond to instances of Bipartite Influence played on paths.
Despite their simple graph structure, their resolution is not obvious.
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Definition 40 (Duchêne et al [DGP+21]). The class Csegment represents the class of all Bipartite Influence

graphs that are paths.

When playing on a segment, the graph may be split into two smaller segments. This led the study to consider
the class of disjunctive sum of segments (also corresponding to unions of paths), in order to play on a family that
is closed by a move operation.

Definition 41. The class C represents the class of all bipartite graphs that are finite disjunctive sums of elements
in Csegment.

A segment of n vertices starting with a black (resp. white) vertex will be denoted by Sn (resp. S−n). See
Figure 9 for an example.

Figure 9: Segment S−7

On the class C without isolated vertex (as such vertices can be immediately removed from any instance), remark
that a move removes between 2 and 5 vertices. A move that removes k vertices will be called a k-move. 4-moves are
the moves made by playing the vertex at distance 2 from the extremity of a segment. 5-moves can only be made
by Right on S−5 and by Left on S5, by playing the middle vertex.

By definition of the negative of a game, remark also that S−n = −Sn for all n ∈ N. Moreover, by symmetry, we
have S2n = S−2n.

On the class Csegment, Duchêne et al. [DGP+21] showed that the first player always wins. More precisely, the
scores are bounded according to the following result:

Theorem 42 (Duchêne et al [DGP+21]). Let Sn ∈ Csegment. We have:

−5 ≤ Rs(Sn) < 0 < Ls(Sn) ≤ 5

The main idea of the proof of this theorem is that, by playing in the middle vertex of a segment, the first player
can create two segments having a number of vertices that is very close. Consequently, this player can ensure to lose
at most two vertices in the remaining game. As his first move scores three vertices, it ensures a win for the first player.

In addition to this result, there are certain values of n for which the exact value of Ls(Sn) is known (e.g. when
n ≡ 1 mod 4). Yet, for the majority of them, the exact value of the score is an open problem. In the study
[DGP+21], the first 80 values of Ls and Rs are computed on segments, yielding Figure 10 (depicting the first 38
values). The structure of these results led to the following conjecture:

Conjecture 43 (Duchêne et al [DGP+21]). The sequences Ls(Sn) and Rs(Sn) are ultimately periodic.

Such a periodicity of the score would directly induce a polynomial time algorithm to solve the game on segments.

Concerning sums of segments, Theorem 42 does not hold when extended to the class C. The best bounds that
are currently known are given by the result below.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Ls(Sn) 1 2 3 4 5 2 1 2 3 2 1 2 3 4 3 2 3 2 3
Rs(Sn) 1 -2 -3 -4 -1 -2 -3 -2 -1 -2 -3 -2 -1 -4 -3 -2 -1 -2 -3

n 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
Ls(Sn) 2 5 4 3 2 3 2 3 2 5 4 3 2 3 2 3 2 5 2
Rs(Sn) -2 -1 -4 -3 -2 -1 -2 -3 -2 -1 -4 -3 -2 -1 -2 -3 -2 -1 -2

Figure 10: Left and Right score for segments in [DGP+21]
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Proposition 44 (Duchêne et al [DGP+21]). Let G ∈ C. We have:

• −4 ≤ Rs(G) ≤ 0 ≤ Ls(G) ≤ 4 if all the segments of G have even size,

• −5 ≤ Rs(G) ≤ 1 and −1 ≤ Ls(G) ≤ 5 if all the segments of G have even size except one.

In addition, the bounds in this result are tight. For example, consider the sum G = S9+S2 for which Rs(G) = 1.
This case is the smallest non-trivial graph in C where the first player does not win.

6.2 Mean and temperature of segments

As mentioned above, sums of segments have not been considered when there are at least two odd segments in the sum.
A way to address this issue is to consider the notion of mean and temperature of segments, by applying Corollary23.

We first deal with the computation of the mean of segments. Recall first thatmL(Sn) = mR(Sn) by Theorem 14.
Consequently, we will denote mn = mL(Sn) = mR(Sn).

Theorem 45. Let n ∈ Z. We have





mn = 0 if n ≡ 0 mod 2
0 ≤ mn ≤ 1 if n ≡ 1 mod 2 and n ≥ 0
−1 ≤ mn ≤ 0 if n ≡ 1 mod 2 and n ≤ 0

Proof. First, suppose that n is even. We know that Sn = S−n. Therefore, if p is even, Ls(pSn)
p

= Ls(0)
p

= 0 and if p

is odd, we have Ls(pSn)
p

= Ls(Sn)
p

. As − 5
p
≤ Ls(Sn)

p
≤ 5

p
, we have Ls(Sn)

p
→

p→∞
0.

Finally, lim
p→∞

Ls(pSn)
p

= 0 and mn = 0.

Now suppose that n is odd. Since S−n = −Sn, and as the mean is linear, we can assume, without loss of
generality, that n ≥ 0. We will show that 0 ≤ mn ≤ 1.
If n = 1, we have Ls(pS1) = Rs(pS1) = p as no move is available. Thus m1 = 1.
If n = 3, any move of a player removes all the three vertices of S3. Ls and Rs can thus be computed as follows:

Ls(2pS3) = 3 +Rs
(
(2p− 1)S3

)
= 3− 3 + Ls

(
(2p− 2)S3

)
= · · · = 0

Ls
(
(2p+ 1)S3

)
= 3 +Rs

(
2pS3

)
= 3− 3 + Ls

(
(2p− 1)S3

)
= · · · = 3

This proves that 0 ≤ Ls(pS3) ≤ 3 for all p. Consequently, m3 = lim
p→∞

Ls(pS3)
p

= 0.

If n = 5, by Example 12, we have 4S5 = 4. By denoting p = 4q+r with 0 ≤ r < 4, we have Ls(pS5) = Ls(rS5)+4q.

Thus, since 0 ≤ r < 4, Ls(rS5) is bounded, lim
p→∞

Ls(pS5)
p

= 1.

Suppose n ≥ 7. We first prove that Ls(pSn) ≤ p+8. Assuming that Left starts, we denote by pk the number of
segments of odd length in the resulting graph after the k-th move, and by sk the relative score, i.e. the difference
between the number of vertices taken by Left and the number of vertices taken by Right after the k-th move. We
will define a strategy for Right that has the following invariant property: for any k ≥ 0, if there exists at least one
segment of length four or greater, we have p2k + s2k ≤ p. Since we have p0 = p and s0 = 0, the invariant is true
before the first move. Note that we will only consider p2k and s2k to focus on the state of the game after each move
of Right.
The strategy of Right is the following: while there exists one segment of size at least four, Right considers a segment
of highest length (if there are several, consider any of them). If it has odd length, Right can, by playing a 3-move
on it on an extremity, transform it into a segment of even length; if it has even length, Right can, by playing a
4-move on it (which is always available on an even length segment of size greater than four) take four vertices and
leave a segment of the same parity. Therefore, after the k-th move of Right, we have s2k + p2k = s2k−1 + p2k−1 − 4.
Note that with such a strategy, Right does not create new odd segment.
Now, we consider the variation of the sequences sk and pk after the (k + 1)-th move of Left.
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• If the move of Left is a 5-move, necessarily, it is played on a S5 that is removed. We have p2k+1 = p2k − 1
and s2k+1 = s2k + 5, thus p2k+1 + s2k+1 = p2k + s2k + 4.

• If the move of Left is a 4-move, it does not change the number of segments of odd length. We have p2k+1 = p2k
and s2k+1 = s2k + 4, and thus p2k+1 + s2k+1 = p2k + s2k + 4.

• If the move of Left is a 3-move, and if it is in an even segment, it creates one odd segment and one even
segment. If it is in an odd segment, it creates two odd segments, unless it is on a S3. In both cases, the
number of odd segments is increased by at most one. We have p2k+1 ≤ p2k + 1 and s2k+1 = s2k + 3, thus
p2k+1 + s2k+1 ≤ p2k + s2k + 4. Note that since the odd segments are positive (i.e. n ≥ 0) at the beginning
of the game, and since Right’s strategy does not create new odd segment, Left cannot create negative odd
segment when playing.

• If the last move of Left is a 2-move, it does not change the parity of the number of odd segments. We have
p2k+1 = p2k and s2k+1 = s2k + 2, thus p2k+1 + s2k+1 = p2k + s2k + 2.

Finally, we always have p2k+1+s2k+1 ≤ p2k+s2k+4. Thus, as p2k+s2k = p2k−1+s2k−1−4, the invariant property
is satisfied until all segments have length three or less. In the final part of the game when all segments have length
three or less, as any move in a segment removes it fully, a greedy strategy ensures that Left takes at most three
vertices more than Right. As the largest available value for sk is p+5 (i.e., after a 5-move of Left, according to the
invariant), we obtain Ls(pSn) ≤ p+ 5 + 3 = p+ 8.

It remains to prove that Ls(pSn) ≥ 0. We consider a strategy for Left that preserves the following invariant: at
any moment of the game, Left has taken at least the same number of vertices than Right. Moreover, if it is Right’s
turn, there is no segment Sk with k < 0, i.e. all the remaining segments have at least one extremity black, and Left
has taken at least four vertices more then Right.
We define here the first part of the strategy for Left. Until all segments have size 3 or less, Left considers the
following strategy:

• First, Left takes four vertices on a segment. This move is available as we assumed n ≥ 7.

• If the last move of Right does not create a segment with both extremities white, if at least one segment has
size four or more, Left plays a 4-move on it (it might be a 5-move if the segment has length 5). In this way,
Left has taken at least four vertices and Right at most four, as 5-moves are only available for Right on S−5 and
the invariant ensures that there is no segment of this form when it is Right’s turn. Therefore, the invariant is
satisfied as Left does not create a Sk with k < 0.

• If the last move of Right creates a segment with both extremities white, by induction, such a segment did
not exist before he made this move. Thus, it has been created by a 3-move on a segment with extremities of
different colors. Therefore, this move has created a segment with two white extremities and an even segment
(eventually of size zero). Left answers by playing a 3-move on an extreme black vertex of the segment which has
two white extremities. Playing so, Left takes also three vertices and this segment now has a black extremity.
Once again, the invariant is still satisfied.

This strategy guarantees that the invariant is satisfied until all segments have size 3 or less. At this moment of the
game, if it is Left’s turn, by a greedy strategy, Left can ensure to take at least the same number of vertices than
Right for the rest of the game. Thus, as she already has at least the same number of vertices that Right, Left is
not losing.
If it is Right’s turn, by the invariant property, Left has taken at least four vertices more than Right (the four vertices
played at the beginning). Thus, regardless the move that Right does, Left will get more vertices than Right as any
segment has size three or less. This strategy ensures Ls(pSn) ≥ 0.

By gluing the two above results, we get 0 ≤ Ls(pSn) ≤ p + 8, implying 0 ≤ Ls(pSn)
p

≤ 1 + 8
p
. By taking the

limit, as we know from Theorem 14 that mn exists, we have 0 ≤ mn ≤ 1.

The above result about the mean is very useful to estimate the score of a sum of segments according to Corol-
lary 23. Yet, it remains to have an upper bound on the temperature of a segment. The following theorem provides
such a bound.
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Theorem 46. Let n ∈ Z. We have σ(Sn) ≤ 4.

Proof. Up to switching Right and Left, we can assume without loss of generality that n ≥ 0. We prove the result
by induction on n. If n ≤ 4, the result is straightforward as the temperature cannot be larger than the maximum
score on the game. If n = 5, one can prove that σ(Sn) = 4 according to Figure 4.

Assume now that n ≥ 6. By Definition 15 of the temperature, to prove that σ(Sn) ≤ 4, it is enough to prove

that for t ≥ 4, Ls((S̃n)t) ≤ Rs((S̃n)t). Let t ≥ 4. We recall that (S̃n)t = 〈(SL
n )t − t|(SR

n )t + t〉. Consider a Left
option gL and a Right option gR of Sn.

A move in Sn splits the segment into at most two parts, thus we can write gL = α + SiL
1

+ SiL
2

, and gR =
−β + SiR

1

+ SiR
2

with α, β > 0 the scores obtained by each move.

By induction, we have σ(SiL
1

), σ(SiL
2

), σ(SiR
1

), σ(SiR
2

) ≤ 4. Thus, gLt and gRt are frozen for t ≥ 4 and, by

Proposition 21, equal to their means. In particular, since the mean is linear, we have Rs(gLt ) = α+m(SiL
1

)+m(SiL
2

)

and Ls(gRt ) = −β +m(SiR
1

) +m(SiR
2

).

Assume first that n is odd. Right can only play 3-moves from Sn, thus β = 3 and both SiR
1

and Si
R
2 are of even

length. Therefore, by Theorem 45, m(SiR
1

) = m(SiR
2

) = 0 and we have:

Ls(gRt ) + t = −3 + t+m(SiR
1

) +m(SiR
2

) = −3 + t.

If Left made a 4-move, up to exchange SiL
1

and SiL
2

, we can suppose SiL
2

= 0. By Theorem 45, m(SiL
1

) ≤ 1 and
thus:

Rs(gLt )− t = 4− t+m(SiL
1

) ≤ 4− t+ 1 = 5− t.

If Left made a 3-move, m(SiL
1

),m(SiL
2

) ≤ 1 by Theorem 45, and we have:

Rs(gLt )− t = 3− t+m(SiL
1

) +m(SiL
2

) ≤ 3− t+ 1+ 1 = 5− t.

Finally, we obtain, for any options gL and gR:

Rs(gLt )− Ls(gRt ) ≤ 5− t− (−3 + t)

≤ 8− 2t

≤ 0

In particular, this is true if gLt − t and gRt + t are the best options of (̃Sn)t. Then we have:

Ls((̃Sn)t)−Rs((̃Sn)t) = Rs(gLt )− Ls(gRt ) ≤ 0.

Assume now that n is even. If Left made a 3-move, one of the remaining path is even and the other is odd.
Without loss of generality, we can assume that SiL

2

has even length. By Theorem 45, m(SL
i2
) = 0 and |m(SL

i1
)| ≤ 1.

This implies that
Rs(gLt )− t = 3 +m(SL

i1
) +m(SL

i2
)− t ≤ 4− t.

Otherwise, Left made a 4-move and only one path is remaining, and has even length . Thus we also have:

Rs(gLt )− t = 4 +m(Sn−4)− t ≤ 4− t.

Symmetrically, Ls(GR
t )+ t ≤ −4+ t. Therefore, if t ≥ 4, we have for any options gL and gR, Rs(gLt )−Ls(g

R
t ) ≤

8− 2t ≤ 0 and so, as before, Ls((̃Sn)t)−Rs((̃Sn)t) ≤ 0.

Finally, regardless if n is odd or even, we have Ls((̃Sn)t) − Rs((̃Sn)t) ≤ 0 for any t ≥ 4. In particular, this
means that σ(Sn) ≤ 4.

We now have all the material to give an estimate of the score on a sum of segments.

Corollary 47. Let n1, . . . , np ∈ Z, with exactly k of the ni of odd value. We have

−k − 4 ≤ Rs(Sn1
+ · · ·+ Snp

) ≤ Ls(Sn1
+ · · ·+ Snp

) ≤ k + 4

.
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Proof. This result is directly deduced from Theorem 46, Theorem 45 and Corollary 23.

Note that the bounds of Corollary 47 are tight. Consider for example a sum of 4n + 1 segments S5. Since
4S5 = 4 according to Example 12, we have Ls((4n+ 1)S5) = 4n+ Ls(S5) = 4n+ 5.

6.3 Additional results about the periodicity conjecture of segments

In order to explore the validity of Conjecture 43, more values are required. Recall that in [DGP+21], only the first
80 values of the score has been computed. The computation of the scores of segments can be boosted by using
equivalences between sums. Recall that in a sum of games, any component can be replaced by another component
equivalent to it.

The following result shows that two consecutive segments of even size (starting by the one that is a multiple of
4) can be replaced by the segment S2 in a sum.

Theorem 48. Let k ∈ N, we have S4k + S4k+2 = S2.

Proof. According to Lemma 8, it suffices to show that Ls(S4k + S4k+2 + S2) = 0.
We will prove by induction on k that for any k ∈ N, we have :

Ls(S−(4k+5) + S4k+3 + S2) = 0

Ls(S−(4k+3) + S4k+1 + S2) = 0

Ls(S4k + S4k+2 + S2) = 0

First, we give strategies for Left to ensure the following inequalities:

Ls(S−(4k+5) + S4k+3 + S2) ≥ 0

Ls(S4k+3 + S−(4k+1) + S2) ≥ 0

Ls(S4k + S4k+2 + S2) ≥ 0

In S4k+S4k+2+S2, Left can play a move on a extremal vertex in S4k+2 that takes exactly two vertices. After that,
it is Right’s turn and the game is S4k + S4k + S2 that is equivalent to S2. Therefore, Right also scores two points
and we have Ls(S4k+2 + S4k + S2) ≥ 0.
In S−(4k+5) + S4k+3 + S2 , Left can first play S2 and scores two points. Then, by Theorem 25 (third inequality),
imagine that Left gives the second vertex of S−(4k+5) to Right. After this move, the game is equivalent to S−(4k+3)+
S4k+3 + S−1 = −1. Once again, we have Ls(S−(4k+5) + S4k+3 + S2) ≥ 0.
In S4k+3 + S−(4k+1) + S2 , Left can first play an extremal move on S4k+3 that takes exactly two vertices. After
that, it is Right’s turn and the game is S4k+1 + S−(4k+1) + S2 = S2. Therefore, Right scores two points on it and
we have Ls(S4k+3 + S−(4k+1) + S2) ≥ 0.

Now, we give strategies for Right that ensure the other inequalities (i.e. Right is the second player and is not
losing).
If k = 0 or k = 1, the induction hypothesis is true by checking by hand all the possible options. Now assume k ≥ 2
and that the induction hypothesis is true for all 0 ≤ k′ < k.
First, remark that no 5-move is available in any of these games for Left as there is no S5 component.
Secondly, if Left plays a 4-move in any of these games, Right can answer by a 4-move in the other component that
is not S2 and then obtains an instance that is strictly smaller that the initial one and where he will not be losing
by induction.
Thirdly, since 2-moves are dominated, one can suppose, without loss of generality, that Left never plays one of
them.
It thus remains to consider which strategy can be used by Right when Left starts with a 3-move.
If the game is S4k + S4k+2 + S2:

• If Left plays a 3-move in S4k :
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– if this move creates two instances S4m+1+S4n (with 0 < n,m < k), Right can answer by playing a 3-move
in S4k+2 that creates S−(4m+1) + S4n+2. The resulting game is S4m+1 + S4n + S−(4m+1) + S4n+2 + S2 =
S4n + S4n+2 + S2 that is not losing for Right by induction hypothesis.

– if this move creates two instances S4m+3 + S4n+2, Right can answer by playing a 3-move in S4k+2 that
creates S−(4m+5) + S4n+2. The resulting game becomes S−(4m+5) + S4n+2 + S4m+3 + S4n+2 + S2 =
S4m+3 + S−(4m+5) + S2 that is also not losing for Right by induction hypothesis.

• If Left plays a 3-move in S4k+2:

– if she creates two instances S4m+2 + S4n+1, Right can answer by playing a 3-move in S4k that creates
S4m + S−(4n+1). The game becomes S4m+2 + S4n+1 + S4m + S−(4n+1) + S2 = S4m + S4m+2 + S2 and we
conclude as previously by induction.

– if she creates two instances S4m + S4n+3, Right can answer by playing a 3-move in S4k that creates
S4m + S−(4n+1). The game becomes S4m + S4n+3 + S4m + S−(4n+1) + S2 = S4n+3 + S−(4n+1) + S2 and
we can conclude by induction.

If the game is S4k+3 + S−(4k+5) + S2:

• if Left makes a 3-move in S4k+3, it necessarily creates two instances S4m+1 and S4n+3. Right can answer by
playing a 3-move in S−(4k+5) that creates S−(4m+1) and S−(4n+5). The resulting game is S4m+1 + S4n+3 +
S−(4m+1) + S−(4n+5) + S2 = S4n+3 + S−(4n+5) + S2, and thus not losing for Right by induction hypothesis.

• if Left makes a 3-move in S−(4k+5), it creates two instances S4m and S4n+2. Right can answer by playing a 3-
move in S−(4k+3) that creates S4m and S4n. The game becomes S4m+S4n+2+S4m+S4n+S2 = S4n+S4n+2+S2,
and we can conclude by induction.

If the game is S4k+3 + S−(4k+1):

• if Left makes a 3-move in S4k+3, she creates two instances S4m+1 and S4n+3. Right can answer by playing a
3-move in S−(4k+1) that creates S−(4m+1) and S−(4n+1). The resulting game is S4m+1 + S4n+3 + S−(4m+1) +
S−(4n+1) + S2 = S4n+3 + S−(4n+1) + S2, and hence not losing for Right by induction.

• if Left makes a 3-move in S−(4k+1), she creates two instances S4m+2 and S4n. Right can answer by playing a 3-
move in S4k+3 that creates S4m+2 and S4n+2. The resulting game becomes S4m+2+S4n+S4m+2+S4n+2+S2 =
S4n + S4n+2 + S2 and we can conclude by induction.

The above result yields a very significant way to make the computation of the values faster. In fact, as our
program is based on a dynamic programming approach, all sums of segments need to be stored. Thanks to this
result, all sums containing a S4k+2 can be simplified by replacing it with a S4k + S2.

Table 11 expands the result presented in [DGP+21] by giving the first 120 values of the score (instead of 80).
A careful analysis of this table suggests that Conjecture 43 holds, with a period of 40 and a preperiod of 30. In
addition, one can remark that after the preperiod, the structure of the values is very regular (almost of period 8),
except for n = 37, 77, 117 that correspond to the rare values satisfying Rs(Sn) = −5.

This new table is however not sufficient to prove the ultimate periodicity of the structure, as the conjectured
period of 40 does not appear frequently enough to be used in a general proof. In addition, the segments Sn and
Sn+40 are not equivalent for almost all values of (up to n = 40), which is another pitfall to prove the conjecture. A
first step towards it would be to prove that the values of Ls(Sn) are equal to 2 for all even n ≥ 32.
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n 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020
Ls(Sn) 1 2 3 4 5 2 1 2 3 2 1 2 3 4 3 2 3 2 3 2
Rs(Sn) 1 -2 -3 -4 -1 -2 -3 -2 -1 -2 -3 -2 -1 -4 -3 -2 -1 -2 -3 -2

n 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040
Ls(Sn) 5 4 3 2 3 2 3 2 5 4 3 2 3 2 3 2 5 2 3 2
Rs(Sn) -1 -4 -3 -2 -1 -2 -3 -2 -1 -4 -3 -2 -1 -2 -3 -2 -1 -2 -3 -2

n 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060
Ls(Sn) 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2
Rs(Sn) -1 -2 -3 -2 -1 -2 -3 -2 -1 -2 -3 -2 -1 -2 -3 -2 -1 -2 -3 -2

n 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080
Ls(Sn) 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 5 2 3 2
Rs(Sn) -1 -2 -3 -2 -1 -2 -3 -2 -1 -2 -3 -2 -1 -2 -3 -2 -1 -2 -3 -2

n 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100
Ls(Sn) 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2
Rs(Sn) -1 -2 -3 -2 -1 -2 -3 -2 -1 -2 -3 -2 -1 -2 -3 -2 -1 -2 -3 -2

n 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
Ls(Sn) 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 5 2 3 2
Rs(Sn) -1 -2 -3 -2 -1 -2 -3 -2 -1 -2 -3 -2 -1 -2 -3 -2 -1 -2 -3 -2

Figure 11: New values on Segments

7 Grids

As a natural extension to paths, we consider in this section rectangular grids. We denote by Gn,m the grid with n
rows and m columns, with alternated black and white vertices and a black vertex in the top left corner. See Figure
12 for an illustration of G2,7.

Despite their symmetry, there is no BW-automorphism in rectangular grids. Indeed, the vertices close to the
center of the grid are necessarily sent to each other by any automorphism, and thus could not be sufficiently distant.
The results of Section 5 cannot therefore be applied. Moreover, it seems that there are neither draws nor games
favourable to the second player in rectangular grids. Actually, all the computations made so far lead to a victory
of the first player. This induces the following conjecture.

Conjecture 49. Let n,m ≥ 2. We have Ls(Gn,m) > 0 > Rs(Gn,m). In particular, the first player wins and there
is no draw.

Note that if n or m is even, the grid is symmetric by exchanging the roles of Left and Right. Since the
game is nonzugzwang, Ls(Gn,m) = −Rs(Gn,m). Moreover, as Ls(Gn,m) ≥ Rs(Gn,m), it implies directly that
Ls(Gn,m) ≥ 0 ≥ Rs(Gn,m). However, if n and m are odd, this argument cannot be used.

In the rest of the section, we give some partial results supporting the conjecture for rectangular grids with two
and three rows.

Figure 12: Grid G2,7

7.1 Grids with two rows

In this subsection, we prove Conjecture 49 on grids with only two rows. As said before, since the number of rows
is even, we just need to consider the Left score. We actually prove a stronger result when the number of columns
is odd, by giving the exact value of Ls(G2,m).

Theorem 50. Let m ≥ 3 be an odd integer. We have Ls(G2,m) = −Rs(G2,m) = 4 if m ≥ 5 and Ls(G2,3) =
−Rs(G2,3) = 6.

For even m, we just manage to prove a lower bound on the score.
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Lemma 51. Let m ≥ 4 be an even integer. We have Ls(G2,m) ≥ 2.

Before proving Theorem 50 and Lemma 51, we introduce some notations that will be used in both proofs. As
each column contains at most one white and one black vertex, we will say playing i for playing the vertex of the
current player’s color in column i. Consider a connected component G at some point of a game played in a grid
with two rows. Note that G can only have columns with one vertex at its extremities. Thus the full columns are
consecutive. We encode G as a triplet (x, n, y) with x, y ∈ {0,−1, 1} and n an integer. The integer n corresponds
to the number of consecutive full columns, x represents the first column of G and y the last one with the following
convention: x = 0 (y = 0 resp.) if the column is full, x = 1 if there is a black vertex and x = −1 if there is a white
vertex. In Figure 14, the two grids have respectively forms (−1, 2− 1) and (1, 4, 1). Note that the form of a partial
grid completely characterizes it and that (x, n, y) and (y, n, x) correspond to the same graph.

Proof of Theorem 50. Form = 3, the first player can take the whole grid in one move, which implies that Ls(G2,3) =
−Rs(G2,3) = 6.

Let m ≥ 5 be an odd integer. We first prove that Ls(G) ≥ 4. Indeed, Left can play m+1
2 , i.e in the middle

column. This way, she takes four vertices and cuts the game in two parts of form (0, n−3
2 , 1) (see Figure 13). Then,

each time Right decides to play on column i, Left plays symmetrically on column m− i+1. If Right plays m+1
2 − 2

(respectively m+1
2 + 2) and removes the single black vertex of column m+1

2 − 1 (resp. m+1
2 + 1), the symmetric

move of Left will remove the symmetric vertices of Right’s move plus the other single black vertex. In all the other
cases, Left’s move removes exactly the symmetric vertices (considering a central symmetry) that Right has taken.
This way, Left can finish the game without loosing any vertex and Ls(Gn) ≥ 4.

. . . . . .

Figure 13: An optimal strategy for Left when the number of columns is odd, is to take the central black vertex
(marked with a red circle) and then playing the symmetric column. This strategy gives a final score of 4.

We now prove that Ls(G2,m) ≤ 4 by induction. First, we prove that if G has the form G1+G2 with G1 = (x, n, y)
and G2 = (−x, n+ 2,−y), then Ls(G) ≤ 4 (see Figure 14).

We prove this result by induction on n the number of full columns of G1 (G2 has n+2 full columns). Note that G2

has four more vertices than G1. Consider the first move of Left. Assume first that Left did not take a full component
and that Left plays in G1. By symmetry, we can assume Left has play in some column i with i ≤ n+1

2 (starting
to count from the first full column). The whole graph after this move can be written as R + (1, n− i − 1, y) +G2

with R that might be empty (and necessarily, i + 1 ≤ n). Then Right can answer by playing in column i of
G2. He takes the same number of vertices than Left. The remaining graph after these two moves has the form
R + (1, n− i − 1, y) +R′ + (−1, n− i+ 1,−y) where R and R′ are opposite (and might be empty). Hence, R and
R′ cancelled each other. By induction, Left can score at most 4 in (1, n− i − 1, y) + (−1, n− i + 1,−y), and thus
can score at most 4 in total.

Assume now that Left plays in G2 but did not take the whole graph. Again, by symmetry, we can assume Left
has play in some column i with i ≤ n+3

2 and that it remains G1 +R′ + (1, n+ 1− i,−y), where R′ might be empty
but where (1, n+1− i,−y) contains at least two vertices. If Right can take fully G1, he takes it and at the end, the

Figure 14: In (−1, 2,−1) + (1, 4, 1), Left can score at most 4.
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score will be at most 4. Otherwise, we must have n ≥ 2 and then we have i ≤ n. Right plays in column i of G1 and
take as many vertices as Left. Then it is remaining after the two moves R+(1, n− i−1, y)+R′+(−1, n− i+1,−y)
and we can conclude as before.

Finally, assume that Left takes a full component. If Right can take the other component, the game ends with a
score of at least 4. Otherwise, it means that Left played in G1 and that n ≤ 3. Let i ≤ 2 be the column where Left
played. If n = 1, the only case where Right cannot take the whole G2 is when G2 has form (1, 3, 1) or (0, 3, 1). In
the first case, Right can take four vertices and then both players take two vertices, ending in a draw. In the second
case, Right takes five vertices, Left can take the two remaining vertices, and the games end in a draw. If n = 2, Left
took at most six vertices. If x or y is equal to −1, then Right can take four vertices in G2 and leaves a graph with
two components of size at least 2 by playing in column 2 or 3. Thus at the end, Right will win at least six vertices.
If x = y = 1, Right can directly take six vertices in G2 by playing in column 2. In both cases, Left takes at most
ten vertices, ending with a score of at most 4. If x = 0 or y = 0, Right can take 5 vertices and there are at most
14 vertices in total, thus the score is also at most 4. Finally, if n = 3, Left took at most eight vertices. As before,
Right can take at least |G1| vertices by taking four vertices in his first move and splitting G2 in two components of
size at most 3 (if |G1| = 7) or 4 (if |G1| = 8).

Turn back to our original graph G2,m. Right can follow the following strategy :

• While Left does not play in the five columns in the middle, play the symmetric. The most left and most right
graphs are opposite and thus simplify each other. The remaining graph has form (1,m′,−1) with m′ odd. In
particular, there is still a symmetry center.

• If Left plays column (m + 1)/2 − 2 (or the symmetric), play the symmetric. The components on the left
and the right simplify. Only four vertices are left in the middle, so Left win at most four vertices. We have
Ls(G2,m) ≤ 4.

• If Left plays at distance 1 to the central column, i.e. she plays (m+ 1)/2− 1, then play the symmetric. The
two remaining graphs are opposite. So Ls(G2,m) ≤ 0.

• If Left plays the central column (m+ 1)/2:

– If the vertices in column (m+1)/2− 3 have been played, the graph was (before the move of Left) of the
form (1, 3,−1). Thus Left took six vertices and let a S2. Right can take it. The final score is 6− 2 = 4.

– If the vertices in column (m+ 1)/2− 3 have not been played, Right plays in column (m+ 1)/2− 2 and
takes four vertices (like Left did). Then the remaining graph has form (x, n, 1) + (−1, n+ 2,−x). Using
the result proved above (recall that (−1, n+ 2,−x) = (−x, n+ 2,−1), the score is at most 4 at the end.

Finally, Ls(G2,m) ≤ 4, and the theorem is proven.

Proof of Lemma 51. Let m ≥ 4 be an even integer. We prove that Ls(G2,m) ≥ 2 by giving a strategy for Left to
score 2. Left can start by playing in column m/2 (it corresponds to the vertex marked by a circle on Figure 15).
Denote by G′ the remaining graph after this first move. Left can then decide to ”give” the two vertices marked by
blue triangles in the graph of Figure 15. More precisely, we apply Theorem 25 with B0 = {x1, x2} where x1 and x2
are the black vertices of columns m/2+ 1 and m/2+ 2. We obtain Rs(G′) ≥ Rs(G′\B0)− |B0| ≥ −2, since G′\B0

is the sum of a game and its opposite, and thus a score 0. Finally, Ls(G2,m) ≥ 4−Rs(G′) ≥ 2.

. . . . . .

x1

x2

Figure 15: Strategy if the number of columns is even
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Figure 16: Example of grid of three rows and eight columns.

Theorem 50 and Lemma 51 actually suggest the following conjecture that gives the complete values for grids of
two rows. It only remains to prove that Ls(G2,m) ≤ 2 for even m. We have checked this conjecture up to m = 30.

Conjecture 52. Let m ≥ 2. We have

Ls(G2,m) = −Rs(G2,m) =





6 if m = 3;
4 if m ≡ 1 mod 2 and m ≥ 5 or m = 2;
2 if m ≡ 0 mod 2 and m ≥ 4.

7.2 Grids of three rows

As detailed in the previous sections, in the cases of segments and grids of two rows, a common technique to prove
that the first player has a winning strategy consists in cutting the graph into two ”similar” parts and then guarantee
that he will not lose many points on the rest of the game. Unfortunately, this technique is no more available for
grids having at least four rows, as single moves generally keep the graph connected. Yet, in the case of grids of
three rows, some moves split the grid into two parts, but other moves keep it connected. This is sufficient to yield
strategies for the first player in almost all configurations.

First note that if m is odd, as the grid is not symmetric, having Ls(G3,m) ≥ 0 or Rs(G3,m) ≤ 0 is not
straightforward at first sight. However, we will prove Conjecture 49 for grids of three rows in almost all cases.

Theorem 53. Let G3,m be a grid of three rows and m columns, with a black vertex at the top left. We have
Ls(G3,m) > 0, and if m 6≡ 3 mod 4, Rs(G3,m) < 0.

Proof. To make the proof more understandable, in the following figures, we will mark by a red circle the vertex
played by the first player, by red squares the vertices taken by this move, and by blue triangles the vertices freely
given to the opponent using Theorem 25.

Let G = G3,m be a grid of three rows.

• If m ≡ 0 mod 2. We already know by symmetry that Ls(G) = −Rs(G). So, without loss of generality, it is
sufficient to prove that Ls(G) > 0.

Left can adopt the following strategy: play the black vertex on column m
2 marked by a red circle (see Figure 17).

Left takes all vertices marked by red squares and scores 5 points. Then, she can give the two black vertices
x1 and x2 of column m

2 + 1 to Right, and apply Theorem 25 with B0 = {x1, x2}.

The remaining graph is composed of two grids G3,m
2
−1. But the left part has one missing white vertex

marked by a red square square. Add it to the graph by giving one more point to Right once again according
to Theorem 25 with W0 = {x3}. Note Hsym the symmetric graph obtained. The final score thus satisfies
Ls(G) ≥ 5 +Rs(Hsym)− |W0| − |B0| ≥ 5− 1− 2 = 2 .

• If m ≡ 1 mod 4 and Left starts, she can play the black vertex at the bottom of column m+1
2 marked by

a red circle (see Figure 18). Then, by giving to Right the two black vertices in top corners and the black
vertex in the middle of the first row, she creates two identical symmetric graphs. Note this set of three vertices
B0 = {x1, x2, x3} and the resulting graph Hsym. Therefore, the score satisfies Ls(G) ≥ 4+Rs(Hsym)−|B0| =
4 + 0− 3 = 1.
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x3

x1

x2

Figure 17: Strategy if m ≡ 0 mod 2

x2x1 x3

Figure 18: Strategy for Left if m ≡ 1 mod 4.

• If m ≡ 1 mod 4 and Right starts, he can play the vertex in the middle of the graph (see Figure 19), and then
give the two black vertices x1 and x2 of the columns m−1

2 and m+3
2 to Left. Note them B0 = {x1, x2}. The

remaining graph is composed of two instances of G3,m−1

2

, and is symmetric as m − 1 ≡ 0 mod 4. Note it

Hsym = 2∗G3,m−1

2

. Thus, by Theorem 25, the score verifies Rs(G) ≤ −5+Ls(Hsym)+ |B0| = −5+0+2 = −3

x1 x2

Figure 19: Strategy for Right if m ≡ 1 mod 4.

• If m ≡ 3 mod 4 and Left starts, she can play the middle vertex of the graph and give the four black vertices
at its diagonals to Right (see Figure 20). Note these four vertices B0 = {x1, x2, x3, x4}. The remaining graph
Hsym is composed of two instances of G3,m−3

2

, so it is equivalent to 0 as m− 3 ≡ 0 mod 4. Finally, the score

satisfies Ls(G) ≥ 5 +Rs(Hsym)− |B0| = 5 + 0− 4 = 1.

The case of grids of three rows is almost solved from the above result. As an open problem, it remains to show
that if m ≡ 3 mod 4 and Right starts, he has a winning strategy.
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