
Energy Complexity of Regular Languages1

Fırat Kıyak2, A. C. Cem Say3

Abstract

Each step that results in a bit of information being “forgotten” by a comput-
ing device has an intrinsic energy cost. Although any Turing machine can be
rewritten to be thermodynamically reversible without changing the recognized
language, finite automata that are restricted to scan their input once in “real-
time” fashion can only recognize the members of a proper subset of the class
of regular languages in this reversible manner. We study the energy expen-
diture associated with the computations of deterministic and quantum finite
automata. We prove that zero-error quantum finite automata have no advan-
tage over their classical deterministic counterparts in terms of the maximum
obligatory thermodynamic cost associated by any step during the recognition of
different regular languages. We also demonstrate languages for which “error can
be traded for energy”, i.e. whose zero-error recognition is associated with com-
putation steps having provably bigger obligatory energy cost when compared
to their bounded-error recognition by real-time finite-memory quantum devices.
We show that regular languages can be classified according to the intrinsic en-
ergy requirements on the recognizing automaton as a function of input length,
and prove upper and lower bounds.

Keywords: Quantum finite automata, Reversibility, Energy complexity,
Information theory

1. Introduction

The discovery of the relationship between thermodynamics and computation,
revealing the links between the concepts of heat, entropy, and information, is a
landmark scientific achievement [12]. As shown by Landauer [10], each bit of
information “forgotten” by a computing device is associated with the dissipation
of an amount of heat proportional to the absolute temperature of the device, and
thus an unavoidable minimum energy cost for any fixed temperature. Turing
machine programs [2] (and even finite automata with two-way access to their
input strings [8]) can be rewritten to be reversible, so that each one of their

1A preliminary version of this paper appeared as [18].
2Department of Mathematics, Boğaziçi University, İstanbul, Turkey
3Department of Computer Engineering, Boğaziçi University, İstanbul, Turkey

Preprint submitted to Theoretical Computer Science February 8, 2023

ar
X

iv
:2

20
4.

06
02

5v
2

 [
cs

.C
C

]
 7

 F
eb

 2
02

3

configurations has a single possible predecessor, and their computational steps
can therefore in principle be executed using arbitrarily small amounts of energy,
but things change when one limits attention to real-time finite automata.

It is known [16] that reversible real-time finite automata (where each state
has at most one incoming transition with each possible symbol of the input
alphabet) recognize only a proper subset of the class of regular languages, so
some regular languages necessarily have automata with states receiving multi-
ple transitions with the same symbol. Intuitively, it is impossible to “rewind”
computations of such machines, since they “forget” which one of a set of possible
predecessor states led them to their present state. It is natural to ask if these
“in-degrees” can be used to classify regular languages in terms of the minimum
energy required for their recognition by such automata.

It was precisely because of the reversibility requirement inherent in unitary
matrices that early definitions of real-time quantum finite automata (QFAs) [15,
3, 8] were not able to capture all regular languages. Modern definitions of QFAs
[6, 17], which recognize all and only the regular languages with bounded error,
are able to handle irreversible languages by using not one but many instances
of an architectural component (called an operation element) that can be seen
to correspond to the previously mentioned notion of “incoming transitions” in
deterministic finite automata (DFAs), so the energy question raised above is
relevant for the study of bounded-error QFAs as well.

Energy is a resource (like time and memory space) that has been studied
[14, 11] in the context of computational complexity theory. This paper takes up
this study in the additionally restricted framework of finite automata. We start
(Section 2) by clarifying the intuitive notion that links the number of incoming
transitions received by a state to energy expenditure by using the general QFA
definition of [17] to model the information loss inherent in the computations of
such machines, and using Landauer’s principle. We study the problem of de-
termining the maximum obligatory thermodynamic cost of any step associated
with the recognition of a given regular language by a finite automaton in the
following three sections. In Section 3, we show that zero-error quantum finite
automata have no advantage regarding this energy cost over their classical de-
terministic counterparts, which are restricted to contain just 0’s and 1’s in their
transition matrices. Section 4 establishes an upper bound on the number of
bits that have to be “forgotten” during any step of a computation associated
with the recognition of any regular language, namely, any such language on an
alphabet with k symbols can be recognized by a DFA with the property that
no state has more than k + 1 incoming transitions labeled with the same input
symbol, and thus requires no more than log2(k + 1) bits to be erased by any
step. In Section 5, we demonstrate languages for which “error can be traded
for energy”, i.e. whose zero-error recognition is associated with provably bigger
energy cost for some steps when compared to their bounded-error recognition by
real-time finite-memory quantum devices. Section 6 establishes lower and upper
bounds on the energy complexities (defined as the number of forgotten bits as a
function of input length) of irreversible languages, and demonstrates that these
languages can be classified in terms of their energy complexities. Section 7 is a

2

1 2 3 4

b

a

a

b

b

a

b

a

Figure 1: A DFA transition diagram

conclusion.

2. Information erasure by finite automata and the general QFA model

It is important to start by clarifying the nature of the resource whose usage
is studied in this paper. A computing device is said to “forget” log2 P bits of
information when it arrives at a configuration which has P predecessors, this in-
creases the entropy by kB ln 2 log2 P joules per kelvin (where kB is Boltzmann’s
constant), and the amount of dissipated heat can be calculated by multiplying
this entropy difference by the ambient temperature T [10]. It is evident that
the energy cost under consideration is directly proportional to the number of
forgotten bits. We will therefore define the energy complexity of a finite au-
tomaton as the maximum number of bits of information that it forgets while
running on any input string of a given length. Although we considered the name
“entropy complexity”, we decided that “energy” is a much more natural concept
to associate with the notion of a “ ‘resource”, when compared to entropy.4

Consider the DFA transition diagram in Fig. 1. If the machine is known to
have arrived in state 3 by consuming the symbol b from the input, there is no
way to tell which of the three states in {2, 3, 4} it was at in the previous step.
One sees that state 3 is associated with the maximum energy cost that can be
incurred by individual steps during computations of this machine, whereas state
2 incurs no such cost.

In the following three sections, we will focus on quantifying this maximum
energy cost that can be incurred by any particular step of an automaton’s
execution. It will be instructive to model this process by using a quantum finite
automaton model, which clearly differentiates the execution stages associated
with energy expenditure from the other stages that are carried out by unitary
(and therefore reversible) transformations.

Although classical physics, on which the intuition underlying deterministic
computation models is based, is supposed to be subsumed by quantum physics,
early definitions of quantum finite automata (e.g. [15, 8]) resulted in “weak”
machines that could only capture a proper subset of the class of regular lan-
guages. The cause of this apparent contradiction was identified [6] to be those

4The term “information complexity”, which has already been appropriated for other pur-
poses, would also be unsuitable, since the information that our machines forget is not “pos-
sessed” by them before the start of the computation, as will be seen shortly.

3

early definitions’ imposition of unnecessarily strict limitations on the interaction
of the automata with their environments. Classical finite automata, after all,
are not “isolated” systems, with loss of information about the preceding config-
uration and the ensuing transfer of heat to the environment implied by their
logical structure. The modern definition of QFAs, [6, 17] which we use below to
illustrate the information loss associated with the “costliest” computation step,
allows a sufficiently rich repertory of unitary transformations and measurements
that does not overrule any physically realizable finite-memory computation.5

A quantum finite automaton (QFA) is a 5-tuple (Q,Σ, {Eσ|σ ∈ ΣB}, q1, F),
where

1. Q = {q1, . . . , qn} is the finite set of machine states,

2. Σ is the finite input alphabet,

3. q1 ∈ Q is the initial state,

4. F ⊆ Q is the set of accepting states, and

5. ΣB = Σ ∪ {B }, where B /∈ Σ is the left end-marker symbol, placed
automatically before the input string, and for each σ ∈ ΣB, Eσ is the
superoperator describing the transformation on the current configuration
of the machine associated with the consumption of the symbol σ. For some
l ≥ 1, each Eσ consists of l operation elements {Eσ,1, . . . , Eσ,l}, where each
operation element is a complex-valued n× n matrix.

Although it is customary in the literature to analyze these machines using
density matrices [6, 1], we take the alternative (but equivalent) approach of [17],
which represents the “periphery” that will support intermediate measurements
during the execution of our QFA by an auxiliary system with the state set
Ω = {ω1, ..., ωl}. The thermodynamic cost of computational steps is made
explicit by considering an additional set S = {s1, ..., sl} of classical states, which
represent the information to be forgotten by the machine. These states will
mirror the members of Ω during computation, as will be described below.

Considered together, the auxiliary system and the “main system” of our
machine defined above have the state set Ω×Q. The quantum state space of the
overall system is Hl⊗Hn, the composite of the corresponding finite-dimensional
Hilbert spaces. Initially, this composite system is in the quantum state |ω1〉 ⊗
|q1〉, and the classical state is s1. At the beginning of every computational step,
it will be ensured that the auxiliary system is again at one of its computational
basis states, i.e. |ωj〉 for some j, and the classical state will be sj .

Let |ψx〉 = α1 |q1〉 + + αn |qn〉 denote any vector in Hn that is attained
by our QFA with nonzero probability after it has consumed the string x ∈ Σ∗.
We will examine the evolution of the overall system for a single step starting at

5References [1] and [17] provide a more comprehensive introduction to the quantum com-
putation notation and concepts discussed here.

4

a state |ωj〉 ⊗ |ψx〉. If the symbol σ is consumed from the input, the composed
system first undergoes the unitary operation described by the product UσUsj ,
as described below.

Usj is designed so that its application rotates the auxiliary state from ωj to
ω1, so that Uσ will act on

|Ψx〉 = |ω1〉 ⊗ |ψx〉 = (α1, α2, ..., αn︸ ︷︷ ︸
amplitudes of |ψx〉

, 0, 0, ..., 0︸ ︷︷ ︸
(l−1)×n times

)T .

Only the leftmost n columns of the matrix Uσ are significant for our purposes,
and the remaining ones can be filled in to ensure unitarity. Those first n columns
will be provided by the operation elements Eσ,1, . . . , Eσ,l, as indicated by the
following partitioning of Uσ into n× n blocks:

Uσ =


Eσ,1 ∗ ... ∗
Eσ,2 ∗ ... ∗
...

...
. . .

...
Eσ,l ∗ ... ∗


(Since Uσ is unitary, one sees that the operation elements should satisfy the

constraint
∑l
j=1E

†
σ,jEσ,j = I.)

Consider the n-dimensional vectors |̃ψxσ,i〉 = Eσ,i |ψx〉 for i ∈ {1, . . . , l}.
Clearly, the vector |̃Ψxσ〉 = Uσ |Ψx〉 that represents the overall system state
obtained after the unitary transformation described above can be written by
“stacking” these vectors, each of which corresponds to a different auxiliary state,
on top of each other, as seen in Equation 1.

|̃Ψxσ〉 =


˜|ψxσ,1〉
˜|ψxσ,2〉

...
|̃ψxσ,l〉

 = |ω1〉 ⊗ ˜|ψxσ,1〉+ |ω2〉 ⊗ ˜|ψxσ,2〉+ . . .+ |ωl〉 ⊗ |̃ψxσ,l〉 (1)

At this point in the execution of our QFA, the auxiliary system is measured
in its computational basis. The probability pk of observing outcome “ωk” out
of the l different possibilities is the square of the length of ˜|ψxσ,k〉. As a result
of this probabilistic branching, the main system collapses to the state |ψxσ,k〉 =
˜|ψxσ,k〉√
pk

with probability pk (for k such that pk > 0), and the fact that this
observation result is recorded for usage in the next step is represented by setting
the classical state to sk, overwriting its previous value.6 It is only this final
action of “forgetting” the previous value of the classical state that can cause an

6Each observation with l > 1 possible outcomes would necessarily leave the observer in one

5

energy cost for a step of a QFA: This information amounts to at most log2 l bits,
and one needs to expend a minimum of kBT ln 2 joules to erase each bit, where
T is the ambient temperature in kelvins, as described above [10]. (We note
again that this value is the obligatory energy requirement of not all, but only
the most “expensive” steps during the recognition of the language. The QFA
model we use forces all transitions related to all input symbols to be represented
by the same number (l) of operation elements. We will be using a more flexible
approach to take the different, possibly lower, individual energy costs of different
transitions in Section 6. The present framework will be useful for clarifying the
relationship between the DFA and QFA models, and for studying energy costs
of genuinely quantum machines in the next section.)

After processing the entire input string symbol by symbol in the manner
described above, the main system, described by some n-dimensional vector |ψ〉,
is measured in its computational basis. The probability of acceptance at this
point is the sum of the squares of the lengths of the amplitudes of the accepting
states in |ψ〉. Rejection is similarly defined in terms of the non-accepting states.
A language L is said to be recognized by a QFA with bounded error if there
exists a number ε < 1

2 such that every string in L is accepted and every string
not in L is rejected by that QFA with probability at least 1−ε. If ε = 0, i.e. the
QFA has the property that it accepts every input string with either probability
0 or 1, it is said to recognize the set of strings that it does accept with zero
error.

It is known [13] that “modern” QFAs defined in this manner can recognize
all and only the regular languages with bounded error.7 Given any DFA with n
states, it is straightforward to build a QFA with nmachine states that recognizes
the same language M with zero error. An examination of this construction is
useful for understanding the nature of the information lost when the classical
state is overwritten during a computational step of a QFA.

Consider the DFA of Fig. 1, whose transition diagram is replicated in Fig.
2a. Figures 2b and 2c depict the operation elements associated with symbols
a and b in the QFA implementation of this machine.8 In each square matrix,
both the rows and columns correspond to the states of the QFA, which in turn
correspond to the states of the DFA of Fig. 2a. The entry at row i, column
j of the k’th operation element for a symbol represents the transition that the
QFA would perform from its j’th machine state to the combination of its i’th
machine state and k’th auxiliary state upon consuming that symbol. Starting

of l different states. A finite-state observer can store only a fixed number of past observation
results in memory, and cannot perform an arbitrarily long sequence of observations without
overwriting (forgetting) some of the older outcomes. We model the case where this overwriting
happens at every step.

7“Zero-energy” QFAs with a single operation element in each superoperator correspond
to the earliest definition in [15, 3], and can recognize all and only the group languages (a
proper subclass of the class of regular languages, whose DFAs have the property that one
again obtains a DFA if one reverses all their transitions) with bounded error [3, 4].

8The left end-marker is inconsequential in DFA simulations, and its superoperator is not
shown.

6

1start 2 3 4

b

a

a

b

b

a

b

a

(a) DFA transition diagram

(b) Superoperator for a (c) Superoperator for b

Figure 2: A DFA and superoperators for its QFA implementation

with the vector (1, 0, 0, 0)T representing the machine being at the initial state
with probability 1, the QFA would trace every step in the execution of the DFA
on any input string, and recognize the same language with zero error.

The reader will note in Fig. 2 that the superoperators, which are just adja-
cency matrices for the DFA, have not one, but three operation elements precisely
because state 3 has three incoming transitions labeled with the same symbol in
Fig. 2a: We cannot have two 1’s in the same row of two different columns of
the matrices in Figures 2b and 2c, since they must be orthonormal. We use the
additional operation elements to represent the additional ways in which the ma-
chine can switch to state 3 with input b. Intuitively, the auxiliary state records
which of the three transitions was used to enter state 3, and it is not possible
to “trace the computation backwards” from that state when one has forgotten
that information.9 This is why the language recognized by these machines is
not “reversible” [9].

We have seen how any DFA with n states and at most l incoming transitions
to the same state with the same symbol can be simulated by a zero-error QFA
with n machine states and l operation elements (that only contain 0’s and 1’s)
per superoperator. Note that the QFAs that are constructed to imitate DFAs
in the fashion exemplified above do not use any “quantumness”: At all times,
the state vector of the QFA never represents a superposition of more than one
classical state, and just tracks the execution of the DFA faithfully. There is no

9Since none of the three states with b-transitions into state 3 is more likely to be the source
than the others, this information amounts to log2 3 bits.

7

probabilistic “branching” (since only one auxiliary state has nonzero amplitude
at any step), and no constructive or destructive interference among amplitudes.
It is natural to ask if QFAs with other complex-valued entries in their operation
elements can utilize the famous non-classical capabilities of quantum systems
to perform the same task employing more energy-efficient steps, i.e. with fewer
operation elements. We answer this question in Section 3.

3. Zero-error QFAs have no energy advantage

For any language L defined over alphabet Σ, the “indistinguishability” rela-
tion ≡L on the set Σ∗ is defined as follows:

(x ≡L y) ⇐⇒ (∀z ∈ Σ∗[xz ∈ L ⇐⇒ yz ∈ L]).

Lemma 1. Let M be a QFA recognizing a language L with zero error. Let x
and y be strings such that x 6≡L y. If |ψx〉 , |ψy〉 ∈ Hn are any two vectors that
are attained by M with nonzero probability after it reads x or y, respectively,
then 〈ψx|ψy〉 = 0.

Proof. Let us say that x and y are distinguishable with respect to L in k steps
if there exists a string z of length k that distinguishes them, i.e. xz ∈ L if and
only if yz /∈ L. We will prove the statement by induction on the number of
steps in which x and y are distinguishable with respect to L.

Basis:
If x and y are distinguishable with respect to L in 0 steps, let us say with-

out loss of generality that x ∈ L and y /∈ L. In this case, all entries of |ψx〉
corresponding to the non-accepting states in Q must be zero, since M would
otherwise reject x with nonzero probability. Similarly, all entries of |ψy〉 cor-
responding to the accepting states in Q must be zero. But this means that
〈ψx|ψy〉 = 0.

Induction step:
Assume that the statement is true for all pairs of strings that are distin-

guishable with respect to L in k steps, where k ≥ 0, and consider the case of
any x and y that are distinguishable in k + 1 steps. In this context, we will
further assume that 〈ψx|ψy〉 6= 0, and reach a contradiction.

Let σ be the leftmost symbol of the string z (of length k+1) that distinguishes
x and y. Consider two copies of M at states |ψx〉 and |ψy〉. When these two
machines consume the input symbol σ, the corresponding vectors representing
the composite system of the machine and its environment are both multiplied
by the unitary matrix Uσ to yield two nl-dimensional vectors, say,

|̃Ψxσ〉 =


˜|ψxσ,1〉
˜|ψxσ,2〉

...
|̃ψxσ,l〉

 and |̃Ψyσ〉 =


˜|ψyσ,1〉
˜|ψyσ,2〉

...
|̃ψyσ,l〉

 , (2)

8

where n and l are respectively the numbers of machine and auxiliary states, as
we saw in Equation 1. Since Uσ preserves inner products and angles, these “tall”
vectors are also not orthogonal by our assumption that 〈ψx|ψy〉 6= 0.

As discussed in Section 2, the state vectors that M can attain with nonzero
probability after consuming this σ are the normalized versions of the (nonzero)
n-dimensional “slices” of |̃Ψxσ〉 and |̃Ψyσ〉. Note in Equation 2 that if

〈
ψ̃xσ,j

∣∣∣ψ̃yσ,j〉 =

0 for all j ∈ {1, . . . , l}, then |̃Ψxσ〉 and |̃Ψyσ〉 must also be orthogonal. This
means that 〈ψxσ,j |ψyσ,j〉 6= 0 for at least one j, which is a contradiction, since
xσ and yσ are distinguishable in k steps.

It follows that the subspace generated by the vectors attainable byM through
reading strings in a particular equivalence class of ≡L must be orthogonal to
all the subspaces corresponding to the other classes. This provides a new proof
of the (already known) fact that zero-error QFAs can only recognize regular
languages.

Corollary 2. If a language L is recognized by a zero-error QFA M with n
machine states, each equivalence class C of ≡L corresponds to a subspace SC of
Hn, and any two subspaces corresponding to different classes are orthogonal to
each other. Since the sum of the dimensions of these subspaces is at most n, ≡L
can have at most n equivalence classes, and L is regular by the Myhill-Nerode
theorem.

We can now demonstrate that every zero-error QFA M has a corresponding
DFA M ′ which recognizes the same language, and is as efficient as M in terms
of both memory (number of states) and the energy requirement of the costliest
computational steps.10

Theorem 3. For any n, l > 0, if a language is recognized with zero error by a
QFA with n machine states and l operation elements per superoperator, then the
same language is also recognized by a DFA with n states and at most l incoming
transitions to the same state with the same symbol.

Proof. Let M be a zero-error QFA with n machine states and l operation ele-
ments per superoperator. By Corollary 2, M recognizes a regular language L.
Let k be the number of states of the minimal DFA D recognizing L. Each input
string x that carries D to state i ∈ {1, . . . , k} of D will carryM to a state vector
in a corresponding subspace Si of Hn.11 Consider the DFAM ′ that is described
by the 5-tuple (Q,Σ, δ, q1, F), where

10The fact that zero-error QFAs have no advantage over equivalent DFAs in terms of the
number of machine states was first proven by Klauck [7], using Holevo’s theorem and commu-
nication complexity arguments.

11At this point, one may be tempted to declare that the set of subspaces already provides
the state set of the DFA we wish to construct. After all, each matrix of the form Uσ that
we saw in Section 2 “maps” a vector in Si to one or more vectors in Sj if and only if D
switches from state i to state j upon consuming σ. However, this simple construction does
not guarantee our aim of keeping the maximum number of incoming transitions with the same
label to any state in the machine to a minimum.

9

1. Q is the finite set of states, containing
∑
i dim(Si) elements, with dim(Si)

equivalent states corresponding to Si for each i ∈ {1, . . . , k},

2. Σ is the same as the input alphabet of M ,

3. q1 is the initial state, selected arbitrarily from among the elements of Q
that correspond to the subspace containing the vector attained byM after
consuming the empty input string,

4. F is the set of accepting states, designated to contain all and only the
elements of Q that correspond to any subspace containing vectors attained
by M after consuming members of L, and

5. δ is the transition function, which mimics M ’s action on its state vector,
as follows: For each i ∈ {1, . . . , k}, call the subset of dim(Si) states cor-
responding to Si “the i’th bag”. If M maps vectors in Si to vectors in
Sj upon reading a symbol σ, all states in the i’th bag of M ′ will transi-
tion to states in the j’th bag with the symbol σ. For each bag, incoming
transitions will be distributed as “evenly” as possible among the members
of that bag, so that if M ′ has a total of Tj incoming σ-transitions to its
j’th bag, no state in that bag will have more than dTj/dim(Sj)e incoming
σ-transitions.

Let us calculate the maximum possible number of incoming σ-transitions
that can be received by a state inM ′. Let j be some state of D with p incoming
σ-transitions from states {i1, i2, ..., ip}. For any r ∈ {1, 2, ..., p}, let x be some
string which carries D to state ir andM to some vector |ψx〉 ∈ Hn with nonzero
probability. We know that the processing of σ corresponds to the action of the
matrix we called Uσ in Section 2. Recall from Equation 1 that

Uσ(|ω1〉 ⊗ |ψx〉) = |ω1〉 ⊗ ˜|ψxσ,1〉+ |ω2〉 ⊗ ˜|ψxσ,2〉+ . . .+ |ωl〉 ⊗ |̃ψxσ,l〉.

Since M transitions to a vector in Sj with probability 1 upon receiving σ, all

the ˜|ψxσ,k〉 must lie in Sj (for 1 ≤ k ≤ l). We therefore have Uσ(|ω1〉 ⊗ |ψx〉) ⊆
Hl ⊗ Sj . This is true for all x and |ψx〉, and Sir is, by definition, generated by
such vectors; therefore, Uσ(C |ω1〉 ⊗ Sir) ⊆ Hl ⊗ Sj .

By Corollary 2, the spaces C |ω1〉 ⊗ Sir are disjoint for all r ∈ {1, 2, ..., p}.
We have

dim(C |ω1〉 ⊗ Si1) + dim(C |ω1〉 ⊗ Si2) + ...+ dim(C |ω1〉 ⊗ Sip) ≤ dim(Hl ⊗ Sj),

since Uσ is an injective linear map. In other words,

Tj = dim(Si1) + dim(Si2) + ...+ dim(Sip) ≤ l.dim(Sj).

Therefore, Tj

dim(Sj)
≤ l, and no state receives more than l incoming σ-transitions.

10

We have seen that the erasure costs associated with the most expensive
steps of zero-error QFAs are precisely representable by DFAs. This will let
us conclude that the DFA-based results on these costs for the recognition of
different regular languages to be established in the following section are valid
for quantum machines as well.

4. An upper bound for information erasure

Is there a universal bound on the number of bits that have to be “forgotten”
by any computational step of any finite automaton? In this section, we provide
an answer to this question.

Theorem 4. Every regular language on an alphabet Σ can be recognized by a
DFA that has at most |Σ|+1 incoming transitions labeled with the same symbol
to any of its states.

Proof. For unary input alphabets, any minimal machine is already in the re-
quired form. For k > 1, let M be the minimal DFA recognizing some language
L on the alphabet Σ = {σ1, . . . , σk}. If M is in the required form, we are done.
Otherwise, let Q = {q1, q2, ..., qn} be the state set of M . We will add some
new states (each of which will be equivalent to some qi ∈ Q) to M to obtain a
larger machine recognizing L. We will use the sets C1, C2, ..., Cn so that each
Ci will contain the states that are equivalent to qi in our machine at every step
of our construction. Let µi denote the number of states in Ci at any point in
the process. Originally, each Ci = {qi}, and each µi = 1. Let dσ,i denote the
total number of incoming transitions to states in Ci with the symbol σ. Note
that dσ,i is equal to the sum of µj over the Cj containing states that transition
to states in Ci with the symbol σ, and it is independent of the details of which
particular state in Ci receives a particular σ-transition. Define

ui = µi(k + 1)−max
σ∈Σ

dσ,i. (3)

Note that if any state in any Ci receives more than k + 1 transitions with the
same symbol, then the DFA does not satisfy the requirement of the theorem.
The first term µi(k+1) is the maximum allowed number of incoming transitions
with the same symbol to Ci for the machine to satisfy the requirement of the
theorem. If each ui is nonnegative, then it is possible to distribute the incoming
transitions among the states in Ci such that no state receives more than k + 1
transitions with the same symbol. The following algorithm finds (µi)i∈{1,2,...,n}
making all ui nonnegative.

• Repeat until all (ui)1≤i≤n are nonnegative:

– Find an index i with the smallest ui value

– Add a state to Ci, increasing µi by 1

11

At each iteration of the loop,
∑
i∈{1,...,n} µi(k + 1) increases by k + 1. On

the other hand,
∑
i∈{1,...,n}maxσ∈Σ dσ,i also increases, but it increases by at

most k, since the added state has only k outgoing transition arrows. Therefore,
by Equation 3, the sum of all the ui increases by at least one. Note that
maxi∈{1,2,...,n} ui is bounded above by a constant, because only those ui that
are less than 0 are increased (by at most k + 1) during the execution of the
algorithm. The algorithm terminates at some point because the sum of finitely
many bounded variables cannot increase by one forever.

The required DFA is then constructed by distributing each Ci’s incoming
transitions evenly between its states, which works because each ui is now non-
negative.

We now show that the bound shown in Theorem 4 is tight.

Theorem 5. For every j ≥ 1, there exists a language Lj on a j-symbol alphabet
with the following property: All DFAs recognizing Lj have a state q such that at
least j + 1 states transition to q upon receiving the same symbol.

Proof. For the unary alphabet, it is easy to see that the language L1 containing
all strings except the empty string must have the property. For j > 1, define
the “successor” function F on {1, ..., j} by F (i) = (i mod j) + 1, and let B be
F ’s inverse. On the alphabet Σj = {σ1, ..., σj}, define

Lj = {w| w ends with σiσF (i) for some 1 ≤ i ≤ j}.

Let M be a DFA recognizing Lj . Assume, without loss of generality, that
M does not have unreachable states.

Similarly to the proofs of Theorems 3 and 4, we will be using sets (“bags”)
into which the states of M are partitioned. Each bag contains states that are
equivalent to the ones in the same bag, and distinguishable from all states in the
other bags. I is the bag that contains the initial state. For each k, Ak is the bag
containing the state reached by the input σB(k)σk, and Rk is the bag containing
any state reached by inputs of the form τσk, where τ is any substring not ending
with σB(k). Note that Ai and Rk are distinct bags for any i, k ≤ j, because all
states in Ai are accepting states and those in Rk are not. For X ∈ {A,R}, Xk

and Xl are also distinct when k 6= l, since M would reach an accepting state if
it consumes the symbol σF (k) when in a member of Xk, whereas it would reach
a rejecting state with that symbol from a state in Xl. I is distinct from all the
Ai and Ri, because it contains the only state which is two steps away from any
accept state. The bags (Ak)k, (Rk)k and I partition the entire state set.

The definition of Lj dictates that all incoming transitions to states in Ak or
Rk are labeled with the symbol σk. Let i (1 ≤ i ≤ j) be the index minimizing
|Ai|+|Ri|, i.e. the sum of states in Ai and Ri. Note that all states in all bags
(Ak)k, (Rk)k and I transition to either Ai or Ri upon reading the symbol σi,
so there are  ∑

1≤k≤j

|Ak|

+

 ∑
1≤k≤j

|Rk|

+ |I|

12

transitions with the symbol σi. Since |Ai|+|Ri| is minimal and |I|> 0, this
number is strictly larger than j(|Ai|+|Ri|). At least one state in Ai or Ri should
thus have at least j+ 1 incoming σi-transitions by the pigeonhole principle.

Theorems 4 and 5 imply that, for any particular temperature T , given any
amount of energy, there exists a regular language (on a suitably large alphabet)
whose recognition at T requires a DFA with at least that much energy cost for at
least one of its computational steps. When the alphabet is fixed, one can always
rewrite any DFA on that alphabet to obtain a machine recognizing the same
language with each step costing no more than the bound proven in Theorem 4.
By Theorem 3, the same energy costs are associated with zero-error QFAs for
that language.

5. Trading energy for error

It turns out that the minimum energy required for the most expensive step
during the recognition of some regular languages is reduced if one allows the
finite automaton to give erroneous answers with probability not exceeding some
bound less than 1

2 .
Recall the language family {Lj |j ≥ 1} defined in the proof of Theorem 5.

Any zero-error QFA recognizing some Lj must have at least j + 1 operating
elements by Theorem 3. Since L1 is not a group language, no QFA with a single
operating element can recognize it, even with bounded error [4].

Theorem 6. There exists a QFA with two operating elements per superoperator
that recognizes the language L2 with bounded error.

Proof. Consider Fig. 3, which depicts the transitions of a QFA named M2. (All
arrows in the figure correspond to transitions with amplitude 1, unless other-
wise indicated.) The superoperators for the left end-marker and the two input
symbols are shown in Fig. 4. Upon reading the left end-marker, M2 branches
to three equal-amplitude submachines that never interfere in the remainder of
the computation. For i ∈ {1, 2}, submachine M2,i accepts an input string if
and only if it ends with σiσF (i). Submachine M2,3 accepts every input. Since
any string is in L2 if and only if it is accepted by one of M2,1 and M2,2, M2

recognizes L2 with error probability 1
3 .

Theorem 7. For all j ≥ 3, there exists a QFAMj with three operating elements
per superoperator that recognizes the language Lj with error probability bounded
by j−1

2j−1 .

Proof. The argument is similar to the one in the proof of Theorem 6. Machine
Mj has j + 1 submachines. For i ∈ {1, . . . , j}, submachine Mj,i (depicted in
Fig. 5) accepts its input if and only if it ends with σiσF (i), whereas submachine
Mj,j+1 accepts every input. (In Fig. 5, arrow labels of the form Σj − Γ express
that all symbols of the input alphabet except those in set Γ effect a transition
with amplitude 1 between the indicated states.) Mj starts by branching with

13

1start

2 3 4 5

6 7 8 9

10

} M2,1

} M2,2

} M2,3

B,
1√ 3

B, 1√
3

B, 1√
3

σ1 σ2 σ1

σ2 σ1

σ2

σ2

σ1

σ2 σ1 σ2

σ1 σ2

σ1

σ1

σ2

σ1

σ2

Figure 3: A QFA recognizing L2 with bounded error

(a) Superoperator for B (b) Superoperator for σ1 (c) Superoperator for σ2

Figure 4: Transition matrices for the QFA of Figure 3

σi

σF (i)

σi

Σj − {σi, σF (i)}

Σj − {σi}

Σj − {σi} σi

B, 1√
2j−1

Figure 5: Submachine Mj,i in the construction of Theorem 7

14

amplitude 1√
2j−1

to each of Mj,i for i ∈ {1, . . . , j}, and with amplitude
√
j−1√
2j−1

to Mj,j+1. Strings in Lj must lead one of the first j submachines to acceptance,
and “tip the balance” for the overall machine to accept with probability j

2j−1 . It
is easy to see in Fig. 5 that the superoperators would have just three operating
elements.

6. Energy complexity of languages

In complexity theory, it is standard to represent the worst-case amount of a
computational resource used by an algorithm as a function of the length of its
input. A lower bound on the growth rate of this function for any algorithm for
a specific problem then serves as a measure of the “difficulty” of that problem.
Let us examine how our new energy cost metric can be used to classify regular
languages in this fashion. Recall that we define the energy complexity of a finite
automaton as the maximum number of bits that it can delete when running on
any input string of length n.

Group languages [4] have DFAs that contain no states with more than one
incoming transition with the same input symbol, and, equivalently, QFAs that
have a single operation element for each symbol. These languages can be rec-
ognized with zero energy cost. We now proceed to analyze the remaining case,
that is, the energy requirements of irreversible regular languages.

Theorem 8. Every irreversible regular language has linear energy complexity.

The proof of Theorem 8 consists of the following two lemmas, which establish
the lower and upper bounds, respectively.

Lemma 9. Every DFA recognizing an irreversible language has energy com-
plexity Ω(n).

Proof. Let M be a DFA that recognizes an irreversible language L. Without
loss of generality, assume that all states of M are reachable. We claim that the
transition function of M contains a “loop” that allows some state with multiple
incoming transitions with the same symbol to be visited arbitrarily many times
for sufficiently long inputs.

Since L is not reversible, there exists at least one state, say, q, of M which
has at least two incoming transitions labeled with some input symbol σ. Assume
that the input string w brings M to q from the start state.

Note that a sufficiently long input string of the form wσ∗ must eventually
“trap” M in a loop of U ≥ 1 states linked with σ-transitions. If q is a member
of that loop, we have proven our claim. Otherwise, some other state q′ that is
reachable from q by a substring of one or more σ’s must be the “entry point”
to the loop, and must receive at least two σ-transitions that originate from one
state in the loop and one state outside the loop. This proves the claim.

Consider the energy expenditure of M on inputs of the form wσ∗. It is clear
that the repeated state will have to be visited once every U steps for long input
strings, leading to an energy complexity that is proportional to at least n

U .

15

1

1

1

1

a

2

b

a

2

1

a

3

b

b

a

2

1

1

a

2

b

a

3

4

a

3

b

b

b

2

1

1

1

a

2

b

a

2

1

a

3

b

b

a

3

4

4

a

3

b

a

3

4

a

3

b

b

b

3

4

4

4

a

3

b

a

3

4

a

3

b

b

a

3

4

4

a

3

b

a

3

4

a

3

b

b

b

4

4

4

4

a

3

b

a

3

4

a

3

b

b

a

3

4

4

a

3

b

a

3

4

a

3

b

b

b

Figure 6: An “energy-efficient” DFA equivalent to the machine of Fig. 2a (See text for the
unspecified transitions.)

As for the upper bound, it is evident that each finite automaton M has
energy complexity cMn for some constant cM : For any input alphabet Σ, the
bound proven in Theorem 4 shows that no more than log2(|Σ|+1)n bits need
to be erased by a machine with that alphabet on any input of length n. The
following lemma brings this bound lower.

Lemma 10. For every regular language L on alphabet Σ and every positive
real number ε, there exists a finite automaton with energy complexity at most
(log2|Σ|+ε)n that recognizes L.

Proof. The idea is to trade memory (i.e. number of states) for energy: Let M0

be the minimal-state DFA recognizing L with C states. We consider equivalent
machines with more and more states: For any integer k > 0, consider a machine
Mk with which imitates M0 while scanning successive (k+1)-symbol substrings
of the input and then “forgetting” the information related to them wholesale
once every k + 1 steps of the computation, rather than at every step. Fig. 6
illustrates this construction for the language recognized by the DFA of Fig. 2a
for k = 3. The root of each tree in the diagram in that figure corresponds to
a point where the machine starts processing a new segment of the input with
its memory containing nothing about the consumed input prefix w except the
state that M0 would be at after consuming w. Each state is labeled with the
name of the state that it mimics in the diagram of Fig. 2a, and each “missing”
transition from any state at the lowest level of a tree enters the root of the tree
corresponding to the target of the imitated transition in Fig. 2a.

For inputs of length n, the automatonMk executes at most b n
k+1c steps that

can have positive energy cost. The cost of any such step is bounded above by
the logarithm of the maximum possible number of incoming σ-transitions to a
root state for any symbol σ, which is just log2(C|Σ|k). The energy complexity
of Mk is therefore at most log2(C|Σ|k)bn/(k + 1)c, that is,

log2(C)bn/(k + 1)c+ log2(|Σ|k)bn/(k + 1)c <
(

log2|Σ|+
log2(C)

k + 1

)
n,

where one can make the second term in the parentheses as small as one likes by
choosing k accordingly.

We aim to discover a finer classification of regular languages by examining,
for each language L, a lower bound on the constant cM on any automaton M

16

that recognizes L with energy complexity cMn. In this context, consider the
following nonempty subclass: Define an irreversible language L to be minimally
expensive if, for every positive real number ε, L can be recognized by some finite
automaton M with energy complexity cMn, where cM < ε. As an example,
consider the language LI = {w|w ∈ Σ∗, |w|≥ 1}. The minimal DFA recognizing
LI (Fig. 7), erases one bit of information at each step of its execution, as it
repeatedly “forgets” which state it left in the previous transition.

Σ

Σ

Figure 7: The minimal DFA recognizing LI

The machine of Fig. 7 is, however, far from being the most “energy-efficient”
finite automaton for LI . Consider what happens when one replaces the looping
state in Fig. 7 with a greater collection of equivalent states, as in Fig. 8:
Only one of the states in the new, bigger loop involves forgetting where one
came from, and paying the energy bill necessitated with that erasure. Like the
construction in the proof of Lemma 10, this new machine with three states in the
loop uses additional memory to store the information to be erased for a longer
time, and spends only a third of the energy spent by the previous machine for
identical input strings. Since one can decrease the coefficient of n in the energy
complexity associated with the recognition of LI to any desired positive value by
simply increasing the number of states in the loop, LI is a minimally expensive
language.

Σ Σ Σ

Σ

Figure 8: A more energy-efficient DFA for LI

We now show that some irreversible languages are not minimally expen-
sive, by demonstrating that any DFA recognizing them must in fact forget
more information than contained in the input string for certain long inputs,
i.e. that the bound of Lemma 10 is tight for those languages. In the follow-
ing, let χ(q, σ) denote the number of incoming σ-transitions to state q. We
are interested in the quantity

∑n
i=1 log2(χ(ui, σi)), which represents the to-

tal information forgotten when our DFA consumes an n-bit string σ1σ2...σn
and traverses the state sequence u1, u2, ..., un, starting from some state u0. Let
L = {w | w contains the substring bb and ends with a b}, the minimal DFA for
which is shown in Fig. 2a.

Theorem 11. Let M be any DFA recognizing the language L. Then there
exists ε > 0 such that for all sufficiently large n, there exists an input string

17

w = w1w2...wn for which
n∑
i=1

log2(χ(qi, wi)) ≥ (1 + ε)n,

where (q0, q1, q2, ..., qn) is the sequence of states traversed by M during the con-
sumption of w, beginning with the start state q0.

Proof. Assume without loss of generality that M has no unreachable states.
Note that no state of M can have different incoming transitions associated with
different input symbols. For every state u ofM with at least one incoming transi-
tion with some symbol σ, assign unique labels from the set T = {1, 2, ..., χ(u, σ)}
to those transitions in some arbitrary fashion.

Define an n-step subcomputation of M to be a sequence of moves (not nec-
essarily starting from the start state) during which it consumes a sequence
of n symbols. Each such subcomputation is associated with the sequence of
traversed states u = (u0, u1, u2, ..., un), the sequence of consumed symbols
s = (σ1, σ2, ..., σn), and the sequence of the labels of the used transitions, say,
t = (t1, t2, ..., tn). Note that a particular n-step subcomputation is uniquely
identified by the pair (u0, s); all the other items mentioned above can be de-
termined by “simulating” M if one knows this pair. Similarly, the pair (un, t)
also determines everything about an n-step subcomputation, since one can “go”
from un all the way back to u0 via transitions labeled tn, tn−1, etc. without any
ambiguity about the symbol consumed at any step, due to the property of M
we noted at the beginning.

Consider a scenario where we feed M input symbols selected uniformly ran-
domly from {a, b} at each successive step. Under these conditions, a DFA will
behave like a Markov chain, and is guaranteed to have a stationary distribution.
[5] Let D be such a distribution for M . It is clear from Fig. 2a that each state
of M with nonzero probability in D is equivalent to some state in {3, 4}, with
each of those classes having at least one positive-probability state in D.

Consider an information source which repeatedly transmits n-step subcom-
putations of M that it chooses by picking u0 from D and s uniformly randomly.
The Shannon entropy of this source is n + H(u0), where H(u0) is the entropy
of D, which is a lower bound for the number of bits required for expressing u0.
Note that the entropies associated with all the states u1, ..., un in this subcom-
putation also equal H(u0), since D is stationary.

Let us design a schema for coding the messages of this information source.
One idea is to send a pair (un, t), which, as mentioned above, uniquely iden-
tifies the subcomputation. One could start the message by describing un, and
continue with a concatenation of the binary encodings of the labels tn, tn−1,
etc. However, it is well known that the average number of bits per message is
reduced if one “compresses” several such messages together into a single “pack-
age”. Consider the following, more sophisticated scheme for packing some large
number p of messages together in such a fashion.

The bit string we construct begins describing p pairs of the form (un, t) with
a prefix that describes the first components of each pair by listing p state names.

18

We use Huffman coding (although any other similarly efficient code would also
do) and our knowledge of D to encode this information. Let us call the length
of this prefix U .

It remains to encode the label names t11, t12, ..., t1n, t21, t22, ..., t2n, ..., t
p
1, t

p
2, ..., t

p
n

appearing in the p sequences of transition labels corresponding to the p subcom-
putations we wish to describe. We will group these labels according to the in-
degrees of the states into which they enter in the transition diagram ofM . States
with in-degree 1 will be ignored, since one needs no information to “rewind” one
step from such a state. For each i > 1, let Sji be the number of transitions
into states with in-degree i in the jth subcomputation in the package. Let Si =∑p
j=1 S

j
i . Consider “filtering” the sequence t

1
1, t

1
2, ..., t

1
n, t

2
1, t

2
2, ..., t

2
n, ..., t

p
1, t

p
2, ..., t

p
n

so that one is left with just the Si labels of the transitions entering states with
this in-degree. Note that this possibly shorter sequence can be viewed as an Si-
digit number Ni written in base i. Each such Ni will be specified in a dedicated
block, as described below.

Let τ be the maximum in-degree in the state diagram of M . For each i from
2 up to τ , the description of the labels of transitions into states with in-degree
i begins with a dlog2(pn)e-bit prefix encoding the number Si, and ends with a
dlog2 i

Sie-bit postfix, which is the binary encoding of Ni. We concatenate these
τ −1 descriptions to the description of the p final states mentioned earlier. This
concludes our bit string encoding p n-step subcomputations.

The length of this package is (τ − 1)dlog2(pn)e+
∑τ
i=2dlog2(iSi)e+U . This

is a random variable, since the second and third terms depend on the randomly
selected subcomputations in the package. The expected length of the code for
each subcomputation is

(τ − 1)dlog2(pn)e
p

+

τ∑
i=2

E[dlog2(iSi)e]
p

+ E
[
U

p

]
,

which is at most
(τ − 1) log2(pn)

p
+

∑τ
i=2 log2(i)E[Si]

p
+

E[U]

p
+

2τ

p
. (4)

Note that Si is the sum of Sji , all of which have the same distribution (and the
same expectation). We have∑τ

i=2 log2(i)E[Si]

p
=

∑τ
i=2 log2(i)

∑p
j=1 E[Sji]

p

=

∑τ
i=2 log2(i)

∑p
j=1 E[S1

i]

p
=

∑τ
i=2 log2(i)pE[S1

i]

p

=

τ∑
i=2

log2(i)E[S1
i] =

τ∑
i=2

E[S1
i log2(i)]

=E

[
τ∑
i=2

S1
i log2(i)

]
.

19

It is important to see that this last value equals E[
∑n
i=1 log2(χ(ui, σi))]:

These expressions are two different ways of denoting the expectation of a ran-
dom variable which is the sum of the logarithms of the in-degrees of the n
states traversed in a randomly selected n-step subcomputation of M . One sum
lists these terms in “chronological” order, whereas the other one groups them
according to the associated in-degree.

We can thus rewrite the upper bound (4) we obtained above for the expected
number of bits per subcomputation as

E

[
n∑
i=1

log2(χ(ui, σi))

]
+

E[U]

p
+

(τ − 1) log(pn)

p
+

2τ

p
. (5)

In expression (5), the last two terms tend to 0 as p grows. The second term
approaches H(u0), which is the Shannon entropy of the probability distribution
of a “final state” in a randomly selected subcomputation, as discussed above.
Our code is self-delimiting and uniquely decodable. By Shannon’s source coding
theorem, the expected length of our code for a subcomputation cannot be less
than the entropy of the source, which we know to be n+H(u0), so

n+H(u0) ≤ E

[
n∑
i=1

log2(χ(ui, σi))

]
+H(u0),

which yields

E

[
n∑
i=1

log2(χ(ui, σi))

]
≥ n. (6)

We now propose an even more efficient way to encode our subcomputations.
Note that no subcomputation selected by our source will ever traverse a tran-
sition emanating from a state which has zero probability in D. Knowing D,
one can ignore all those transitions and still specify a path in the state dia-
gram that visits only the positive-probability states. For every such state q,
let ψ(q, σ) denote the number of σ-transitions incoming to state q from states
with positive probability in M . We note that 1 ≤ ψ(q, σ) ≤ χ(q, σ) for all
such q. Furthermore, there exist at least one state q′ and a symbol γ for which
ψ(q′, γ) < χ(q′, γ), since the initial state of M has zero probability in D and
so there must be at least one transition which allows M to move from a zero-
probability state to one with positive probability. Our latest code is identical to
the one described above, except that it uses the (possibly shorter) labels in the
set T ′ = {1, 2, ..., ψ(u, σ)} to name the σ-transitions that enter some positive-
probability state u. By exactly the same argumentation that led to Inequality
(6), we get

E

[
n∑
i=1

log2(ψ(ui, σi))

]
≥ n. (7)

20

We wish to calculate the decrease in the expected length of our coding, i.e.

E

[
n∑
i=1

log2(χ(ui, σi))

]
− E

[
n∑
i=1

log2(ψ(ui, σi))

]
.

Use the linearity of the expectation to obtain

n∑
i=1

E[log2(χ(ui, σi))− log2(ψ(ui, σi))] = nE[log2(χ(u1, σ1))− log2(ψ(u1, σ1))],

which follows from the fact that the ui have the same distribution for all i, and
the same thing is true for the σi as well.

We now use the state q′ to obtain a lower bound on this expectation.

E[log2(χ(u1, σ1))− log2(ψ(u1, σ1))]

=
∑
(u,σ)

P(u1 = u, σ1 = σ)(log2(χ(u, σ))− log2(ψ(u, σ))),

where the sum is taken over state-symbol pairs (u, σ) which have non-zero prob-
ability under the distribution of (u1, σ1). Keeping only the term corresponding
to the pair (q′, γ) on the right-hand side, we get

E[log2(χ(u1, σ1))− log2(ψ(u1, σ1))]

≥ P(u1 = q′, σ1 = γ)(log2(χ(q′, γ))− log2(ψ(q′, γ))).

Since u1 and σ1 are independent, P(u1 = q′, σ1 = γ) = P(u1 = q′)P(σ1 = γ).
Both of these probabilities are non-zero, and neither depends on n.

We know ψ(q′, γ) ≤ χ(q′, γ)− 1. Using this, we obtain

log2(χ(q′, γ))− log2(ψ(q′, γ)) ≥ log2(χ(q′, γ))− log2(χ(q′, γ)− 1),

whose right-hand side decreases as the χ-values increase, so

log2(χ(q′, γ))− log2(χ(q′, γ)− 1) ≥ log2(τ)− log2(τ − 1) > 0.

We have established

E[log2(χ(u1, σ1))− log2(ψ(u1, σ1))] ≥ J > 0,

where J does not depend on n. This lets us conclude that

E

[
n∑
i=1

log2(χ(ui, σi))

]
− E

[
n∑
i=1

log2(ψ(ui, σi))

]
≥ nJ. (8)

Combining Inequalities (7) and (8), we obtain

E

[
n∑
i=1

log2(χ(ui, σi))

]
≥ n+ nJ (9)

21

for some positive constant J independent of n. The left-hand side of Inequal-
ity (9) is the expectation of the number of bits M will forget on an n-step
subcomputation selected from the described distribution. By the probabilistic
method, there exists a particular n-step subcomputation starting from some
positive-probability state u0 and consuming a string s such that

n∑
i=1

log2(χ(ui, σi)) ≥ n+ nJ.

Every state with a positive probability in D is reachable from the initial state
q0 of M . Let K be the length of the longest simple path that connects q0 to
such a positive-probability state, and let x be an input string bringing M from
q0 to u0 through a simple path. The input string xs (of length at most n+K)
will force M to forget at least n+ nJ bits. This makes at least

n(1 + J)

n+K
=

1 + J

1 +K/n
(10)

forgotten bits per step. For all n ≥ 2K
J , the value (10) is at least 1+J

1+J/2 , and the
input string w = xs described above makes the machine forget at least(

1 +
J/2

1 + J/2

)
|w|

bits.

7. Concluding remarks

The approach we present for the study of energy complexity can be extended
to several other scenarios, like interactive proof systems, involving finite-memory
machines. We end with a list of our plans for future research, and open questions.

• As we noted, the general QFA model is not flexible enough to study the
energy costs of computational steps which forget less information than
the maximum amount allowed by the number of operation elements. The
formulation of a new model that is able to explicitly represent distinctions
between the “cheap” and “costly” steps of a quantum finite automaton
would be helpful in answering further energy complexity questions about
those machines.

• Are there languages whose bounded-error recognition by QFAs have lower
energy complexity than their zero-error recognition? Would the results of
Theorems 5, 6 and 7 about maximum step costs be helpful in answering
this question?

22

Acknowledgements

We thank Öykü Yılmaz and Meriç Üngör, who collaborated with us in an
earlier stage of this study regarding zero-error QFAs. We are grateful to Utkan
Gezer for his invaluable technical assistance. This research was partially sup-
ported by Boğaziçi University Research Fund Grant Number 22A01P1.

References

[1] Ambainis, A., Yakaryılmaz, A.: Automata and quantum computing
(2018), arXiv:1507.01988v2

[2] Bennett, C.H.: Logical reversibility of computation. IBM Journal of
Research and Development 17(6), 525–532 (1973)

[3] Bertoni, A., Carpentieri, M.: Regular languages accepted by quantum
automata. Information and Computation 165(2), 174–182 (2001)

[4] Brodsky, A., Pippenger, N.: Characterizations of 1-way quantum finite
automata. SIAM Journal on Computing 31, 1456–1478 (2002)

[5] Häggström, O.: Finite Markov Chains and Algorithmic Applications.
Cambridgre University Press (2002)

[6] Hirvensalo, M.: Quantum automata with open time evolution.
International Journal of Natural Computing 1, 70–85 (2010)

[7] Klauck, H.: On quantum and probabilistic communication: Las Vegas
and one-way protocols. In: 32th ACM Symp. on Theory of Comp. pp.
644–651 (2000)

[8] Kondacs, A., Watrous, J.: On the power of quantum finite state
automata. In: Proceedings 38th Symp. Found. Computer Science. pp.
66–75 (1997)

[9] Kutrib, M.: Aspects of reversibility for classical automata. In: Calude,
C.S., Freivalds, R., Kazuo, I. (eds.) Computing with New Resources:
Essays Dedicated to Jozef Gruska on the Occasion of His 80th Birthday,
pp. 83–98. Springer International Publishing (2014)

[10] Landauer, R.: Irreversibility and heat generation in the computing
process. IBM Journal of Research and Development 5(3), 183–191 (1961)

[11] Lange, K.J., McKenzie, P., Tapp, A.: Reversible space equals
deterministic space. Journal of Computer and System Sciences 60,
354–367 (2000)

[12] Leff, H.S., Rex, A.F. (eds.): Maxwell’s Demon 2: Entropy, Classical and
Quantum Information, Computing. CRC Press (2002)

23

arXiv:1507.01988v2

[13] Li, L., Qiu, D., Zou, X., Li, L., Wu, L., Mateus, P.: Characterizations of
one-way general quantum finite automata. Theoretical Computer Science
419, 73–91 (2012)

[14] Li, M., Vitányi, P.: Reversibility and adiabatic computation: Trading
time and space for energy. Proc. Royal Society of London, Series A 152,
769–789 (1996)

[15] Moore, C., Crutchfield, J.P.: Quantum automata and quantum
grammars. Theoretical Computer Science 237(1), 275–306 (2000)

[16] Pin, J.E.: On reversible automata. In: Simon, I. (ed.) Proceedings of the
first LATIN conference. pp. 401–416. Lecture Notes in Computer Science
583, Springer, Saõ-Paulo, Brazil (1992)

[17] Say, A.C.C., Yakaryılmaz, A.: Quantum finite automata: A modern
introduction. In: Calude, C.S., Freivalds, R., Kazuo, I. (eds.) Computing
with New Resources: Essays Dedicated to Jozef Gruska on the Occasion of
His 80th Birthday, pp. 208–222. Springer International Publishing (2014)

[18] Yılmaz, Ö., Kıyak, F., Üngör, M., Say, A.C.C.: Energy complexity of
regular language recognition. In: Implementation and Application of
Automata: 26th International Conference, CIAA 2022. pp. 200–211 (2022)

24

	1 Introduction
	2 Information erasure by finite automata and the general QFA model
	3 Zero-error QFAs have no energy advantage
	4 An upper bound for information erasure
	5 Trading energy for error
	6 Energy complexity of languages
	7 Concluding remarks

