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Abstract

The rendezvous task calls for two mobile agents, starting from different nodes of a network
modeled as a graph to meet at the same node. Agents have different labels which are integers
from a set {1, . . . , L}. They wake up at possibly different times and move in synchronous
rounds. In each round, an agent can either stay idle or move to an adjacent node. We consider
deterministic rendezvous algorithms. The time of such an algorithm is the number of rounds
since the wakeup of the earlier agent till the meeting. In most of the literature concerning
rendezvous in graphs, the graph is finite and the time of rendezvous depends on its size. This
approach is impractical for very large graphs and impossible for infinite graphs. For such graphs
it is natural to design rendezvous algorithms whose time depends on the initial distance D
between the agents. In this paper we adopt this approach and consider rendezvous in infinite
trees. All our algorithms work in finite trees as well. Our main goal is to study the impact of
orientation of a tree on the time of rendezvous.

We first design a rendezvous algorithm working for unoriented regular trees, whose time is in
O(z(D) logL), where z(D) is the size of the ball of radius D, i.e, the number of nodes at distance
at most D from a given node. The algorithm works for arbitrary delay between waking times of
agents and does not require any initial information about parameters L or D. Its disadvantage
is its complexity: z(D) is exponential in D for any degree d > 2 of the tree. We prove that
this high complexity is inevitable: Ω(z(D)) turns out to be a lower bound on rendezvous time
in unoriented regular trees, even for simultaneous start and even when agents know L and D.
Then we turn attention to oriented trees. While for arbitrary delay between waking times of
agents the lower bound Ω(z(D)) still holds, for simultaneous start the time of rendezvous can
be dramatically shortened. We show that if agents know either a polynomial upper bound on
L or a linear upper bound on D, then rendezvous can be accomplished in oriented trees in time
O(D logL), which is optimal. If no such extra knowledge is available, a significant speedup is
still possible: in this case we design an algorithm working in time O(D2 + log2 L).
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1 Introduction

The rendezvous task calls for two mobile agents, starting from different nodes of a network modeled

as a graph to meet at the same node. This task is ubiquitous in many applications. In the social

context, people may want to meet in a city whose streets form a graph. In computer networks,

software agents navigating in a network have to meet to share data collected from distributed

databases. In robotics, mobile robots circulating in a network of corridors in a mine or a building

may have to meet to coordinate maintenance tasks.

In most of the literature concerning rendezvous in graphs, the graph is finite and the time of

rendezvous depends on its size. This approach is impractical for very large graphs and impossible

for infinite graphs. For such graphs it is natural to design rendezvous algorithms whose time

depends on the initial distance D between the agents. In this paper we adopt this approach and

consider rendezvous in infinite trees. All our algorithms work in finite trees as well. Our main goal

is to study the impact of orientation of a tree on the time of rendezvous.

1.1 The model

We consider infinite trees. They can be either unoriented or oriented. An unoriented tree does not

have labels of nodes and the port labelings at each node are arbitrary. In oriented trees, one node,

called the root, has label R, all other nodes do not have labels, and at each node different from R

the port 0 is on the simple path toward R.

Agents have different labels which are integers from a set {1, . . . , L}. They wake up at possibly

different times and move in synchronous rounds. In each round, an agent can either stay idle or

move to an adjacent node. An agent makes a move by choosing a port number at its current node.

When entering the adjacent node corresponding to the chosen edge the agent learns the port of

entry and the degree of this node. We assume that the memory of the agents is unlimited: from

the computational point of view they are modeled as Turing machines. We consider deterministic

rendezvous algorithms. Both agents execute the same algorithm, each agent starting in its wakeup

round. Each agent knows its label which is a parameter of the algorithm but does not know the

label of the other agent. The execution time of such an algorithm is the number of rounds since the

wakeup of the earlier agent till the meeting. This time depends on values of the initial distance D

between the agents and of the size L of the space of labels. These values may be known or unknown

to the agents, depending on the scenario. By saying that the time of an algorithm is f(D,L) we

mean that this is the worst case time of the execution of this algorithm, over all pairs of starting

nodes of agents at distance D, over all pairs of agents’ labels from {1, . . . , L}, and over all possible

delays between waking times of agents, if the algorithm works for arbitrary delay.

1.2 Our results

We first design a rendezvous algorithm working for unoriented regular∗ trees of degree d ≥ 2. These

are infinite trees all of whose nodes have degree d. (For d = 2 this is the infinite line). The time of

∗The discussion of the assumption of regularity is deferred to the Conclusion.
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our algorithm is in O(z(D) logL), where z(D) is the size of the ball of radius D, i.e, the number of

nodes at distance at most D from a given node. The algorithm works for arbitrary delay between

waking times of agents and does not require any initial information about parameters L or D. Its

disadvantage is its complexity: z(D) is exponential in D for any degree d > 2. We prove that

this high complexity is inevitable: Ω(z(D)) turns out to be a lower bound on rendezvous time in

unoriented regular trees, even for simultaneous start and even when agents know L and D. Then

we turn attention to oriented trees. While for arbitrary delay between waking times of agents the

lower bound Ω(z(D)) still holds, for simultaneous start the time of rendezvous can be dramatically

shortened. Our algorithms for oriented trees do not assume regularity of the tree. We show that if

agents know either a polynomial upper bound on L or a linear upper bound on D, then rendezvous

can be accomplished in oriented trees in time O(D logL), which is optimal in view of [14]. If no

such extra knowledge is available, a significant speedup is still possible: in this case we design an

algorithm working in time O(D2 + log2 L).

1.3 Related Work

The task of rendezvous has been studied in the literature both in the randomized and deterministic

settings. Randomized rendezvous is surveyed in [2], cf. also [1, 5]. Deterministic rendezvous in

networks is surveyed in [23, 24]. Several authors considered geometric settings (rendezvous in an

interval of the real line, e.g., [5, 6], or in the plane, e.g., [3, 8, 11]). Rendezvous of more than two

agents, also called gathering, was studied, e.g., in [15, 17, 22].

In the deterministic setting, feasibility and time complexity of synchronous rendezvous in networks

is one of the main topics of investigation. Deterministic rendezvous of agents equipped with tokens

used to mark nodes was considered, e.g., in [21]. In most of the papers concerning rendezvous in

networks, nodes of the network are assumed to be unlabeled and marking nodes by agents is not

allowed. In this case, anonymous agents cannot meet in many highly symmetric networks, e.g.,

in oriented rings. Hence symmetry is usually broken by assigning the agents distinct labels and

assuming that each agent knows its own label but not the label of the other agent. Deterministic

rendezvous of labeled agents in rings was investigated, e.g., in [14, 19] and in arbitrary graphs in

[14, 19, 25]. Gathering many anonymous agents in unlabeled networks was studied in [15]. In this

weak scenario, not all initial configurations of agents are possible to gather, and the authors of [15]

characterized all such configurations and provided universal gathering algorithms for them. In [10],

the authors studied rendezvous under a very strong assumption that each agent has a map of the

network and knows its position in it. Using this assumption they designed optimal algorithms for

several classes of networks, including the infinite line and finite trees.

Another measure of efficiency of rendezvous algorithms is the amount of memory needed to execute

this task. Memory of the agents required to achieve deterministic rendezvous was studied in [18]

for trees and in [12] for arbitrary graphs. Memory needed for randomized rendezvous in the ring

was investigated, e.g., in [20].

A scenario significantly differing from the above was discussed by several authors. The difference is

in dropping the assumption that agents navigate in synchronous rounds. Asynchronous rendezvous

and approach in the plane was studied in [7, 9, 17] and asynchronous rendezvous in networks

modeled as graphs was investigated in [4, 13, 16]. In the latter scenario, the agent chooses the edge to
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traverse, but the adversary controls the speed of the agent. Under this assumption, rendezvous at a

node cannot be guaranteed even in the two-node graph. Hence the rendezvous requirement is relaxed

to permit the agents to meet inside an edge. In [4], the authors designed almost optimal algorithms

for asynchronous rendezvous in infinite multidimensional grids, under a strong assumption that the

agent knows its position in the grid. In [16], the authors designed a polynomial-cost algorithm for

asynchronous rendezvous in arbitrary finite graphs, without this assumption.

2 Unoriented regular trees

In this section we design and analyze a rendezvous algorithm for agents operating in an unoriented

infinite regular tree of degree d ≥ 2. This is an infinite tree all of whose nodes have degree d. (For

d = 2 this is the infinite line). Nodes do not have labels and ports at each node are arbitrarily

numbered by integers 0, 1, . . . , d− 1. Note that each agent knows d from the outset, as it sees the

degree of its starting node. In any such tree, we define the ball B(v, r) of radius r, centered at node

v, as the subtree induced by all nodes at distance at most r from v. Let z(r) be the number of

nodes in any ball B(v, r). Let a(r) = 2(z(r)− 1). Note that a(r) is the number of edge traversals

of a DFS exploration of any ball B(v, r), starting and finishing at the same node.

Labels of agents are integers from the set {1, . . . , L}. For any label ` ∈ {1, . . . , L} we define the

transformation Trans(`) of ` as follows. Lat σ be the binary representation of `. Trans(`) is the

sequence obtained from σ by replacing every bit 1 by the string (010101) and replacing every bit

0 by the string (101010). Hence Trans(`) is of length O(logL) and has the property that it does

not contain a substring of three consecutive zeroes.

2.1 The algorithm

For any node v and any positive integer r, we define the following procedures.

Procedure ACT (v, r)

Explore the ball B(v, r) by DFS, in increasing order of port numbers at each node,

starting and finishing at node v.

Procedure PASS(v, t)

Stay at node v for t rounds.

The following procedure takes as parameters the degree d of the infinite regular tree, a bit b of the

transformed label, and a positive integer i. For d = 2, i.e., for the infinite line, and for any integer

i ≥ 0, the procedure consists of two DFS explorations of the ball B(v, 22i), if the bit b is 1, and of

staying at node v for the duration of these two explorations, if the bit b is 0. (Exploration of a ball

of radius 0 takes time 0.) For d > 2, the procedure consists of two DFS explorations of the ball

B(v, 2i), if the bit b is 1, and of staying at node v for the duration of these two explorations, if the

bit b is 0.

Procedure Exec(d, b, i)
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if d = 2 then ri = 22i

else ri = 2i

if b = 1 then

ACT (v, ri)

ACT (v, ri)

else

PASS(v, 2a(ri))

We first present the high-level idea of the rendezvous algorithm and its challenges. The algorithm

exploits the fact that agents have different labels and guarantees that at some point one of the agents

stays idle at its starting node while the other one fully explores a sufficiently large ball centered at

its own starting node and thus meets the waiting agent. Exploration and waiting periods depend

on bits of the transformed label of the agent. Since agents do not know the distance between them,

the algorithm is divided into stages with increasing radii of explored balls and increasing waiting

times. The main challenge is due to the fact that agents may start with some delay and that, due

to possibly different label lengths, they complete the same stage at different speeds. Hence the

whole process may become significantly desynchronized and the difficulty is to hold one agent idle

at its starting node for a sufficiently long time to allow the other agent to meet it.

Now we are ready to succinctly describe Algorithm URT (for unoriented regular trees). The algo-

rithm is executed by an agent with label `, starting at a node v of an infinite regular tree of degree

d. The algorithm works in stages i = 0, 1, 2, . . . . In a stage i it “executes” consecutive bits bj of

Trans(`) by performing procedure Exec(d, bj , i). Notice that for d = 2, Exec(d, bj , i) explores balls

B(v, 22i) if bj = 1 and instructs the agent to wait a corresponding time if bj = 0, while for d > 2,

Exec(d, bj , i) explores balls B(v, 2i) if bj = 1 and instructs the agent to wait a corresponding time

if bj = 0. This is because for d = 2 the size of a ball is linear in its radius, while for d > 2 it is

exponential in it. Stages are organized so that their durations telescope. For technical reasons we

want the size of the balls treated in stage i+ 1 to be at least 4 times larger (and not only 2 times

larger) than those in stage i. The algorithm is interrupted as soon as the agents meet.

Algorithm URT

Trans(`) := (b1, b2, . . . , bk)

for i = 0, 1, 2, . . . do

for j = 1 to k do

Exec(d, bj , i)

2.2 Correctness and complexity

In this section we prove the correctness of Algorithm URT and analyze its time complexity. We

start with the definition of the critical stage. Intuitively, it is the first stage such that the radius ri
of the balls explored in this stage is at least the initial distance D between the agents. Thus, more

formally, the critical stage is the smallest integer i such that:

• D ≤ 22i, if d = 2
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• D ≤ 2i, if d > 2.

This smallest integer i is denoted by i∗. Hence ri∗ is the radius of balls explored in the critical

stage.

According to the algorithm, during an execution of bit 1 in stage i, an agent explores a ball of radius

ri twice. We refer to each of these explorations as one activity cycle. Thus, during an execution of

a single bit 1, an agent performs two activity cycles. Similarly, during an execution of a bit 0 in

stage i, an agent waits for two consecutive periods each of duration of one such exploration. We

refer to each of these waiting periods as one passivity cycle. Thus, during an execution of a single

bit 0, an agent waits for two passivity cycles.

For a given d, let πi = 2a(ri) be the duration of the execution of a bit in stage i, using procedure

Exec(d, b, i). Let y be the length of the transformed label of an agent. Let Si = yπi denote the

duration of stage i. The time α taken by the agent to reach its critical stage is the sum of durations

of all previous stages. Thus this time is
∑i∗−1

i=0 Si.

In the following lemma we compute the duration Si of stage i, depending on d and y.

Lemma 2.1 For i ≥ 0,

Si =

{
4i · 8y if d = 2

4yd (d−1)2i−1
d−2 if d ≥ 3

Proof. First consider the case when d = 2. In stage i, an agent explores a ball of radius ri = 22i.

We first compute z(ri), the number of nodes in the ball of radius ri. Since in this case the graph is

a line, z(ri) = 2 · 22i + 1. Recall that, a(ri) = 2(z(ri)− 1) is the number of edge traversals of a DFS

exploration of the ball B(v, ri), starting and finishing at the same node. Thus, a(ri) = 2 · 2 · 22i.
By definition, πi = 2a(ri) i.e., πi = 8 · 4i. Hence, Si = 8y4i.

Next suppose d ≥ 3. In this case, in stage i, an agent explores a ball of radius ri = 2i. The value

of z(ri) is as follows:

z(ri) = 1 + d+ d(d− 1) + d(d− 1)2 + d(d− 1)3 + · · ·+ d(d− 1)2i−1

= 1 + d{1 + (d− 1) + (d− 1)2 + · · ·+ (d− 1)2i−2}

= 1 + d
(d− 1)2i − 1

d− 2

Thus, in this case, a(ri) = 2d (d−1)2i−1
d−2 and πi = 4d (d−1)2i−1

d−2 . Hence, Si = y4d (d−1)2i−1
d−2 . 2

Lemma 2.2 For i, q ≥ 0, we have

Si+q =

{
4qSi if d = 2

(d− 1)2qSi + Sq if d ≥ 3

Proof. When d = 2, by Lemma 2.1, we have

Si+q = 4i+qyd

= 4q4iyd

= 4qSi
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Next suppose d ≥ 3. In this case, by Lemma 2.1, we have,

Si+q = 4yd
(d− 1)2i+2q − 1

d− 2

= 4yd
(d− 1)2i+2q

d− 2
− 4yd

d− 2

= 4yd(d− 1)2q
(d− 1)2i

d− 2
− 4yd

(d− 1)2q

d− 2
+ 4yd

(d− 1)2q

d− 2
− 4yd

d− 2

= 4yd(d− 1)2q
(d− 1)2i − 1

d− 2
+ 4yd

(d− 1)2q − 1

d− 2

= (d− 1)2qSi + Sq

2

The next lemma estimates the duration of any stage in terms of the duration of the preceding and

of the following stage.

Lemma 2.3 For i, p ≥ 0, we have 4Si+p−1 ≤ Si+p ≤ 5Si+p−1

Proof. We consider two cases:

• d = 2 In this case, by Lemma 2.2, Si+p = 4Si+p−1 < 5Si+p−1.

• d ≥ 3 By Lemma 2.2, we have Si+p = (d−1)2Si+p−1+S1. This implies Si+p > (d−1)2Si+p−1.

Since d ≥ 3, we can conclude that 4Si+p−1 ≤ Si+p. Finally consider the following:

Si+p−1 = (d− 1)2i+2p−4S1 + Si+p−2

(d− 1)2Si+p−1 ≥ (d− 1)2i+2p−2S1 (1)

Again, we have

Si+p = (d− 1)2i+2p−2S1 + Si+p−1

Si+p ≤ (d− 1)2Si+p−1 + Si+p−1 (by (1))

Si+p ≤ ((d− 1)2 + 1)Si+p−1 (2)

Since d ≥ 3, (2) implies Si+p ≤ 5Si+p−1. This concludes the proof.

2

Lemma 2.3 implies

Corollary 2.1 4πi+p−1 ≤ πi+p ≤ 5πi+p−1

In the next lemma we compute the value α of the time taken by an agent to reach its critical stage.

Lemma 2.4 α = 8yri∗
3 − 8y

3 if d = 2, and α = Si∗
(d−1)2−1 if d ≥ 3.
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Proof. When d = 2, we have

α = S0 + S1 + S2 + · · ·+ Si∗−1

= 8y + 4 · 8y + 42 · 8y + · · ·+ 4i
∗−18y (by Lemma 2.1 for d = 2)

= 8y(1 + 4 + 42 + . . .+ 4i
∗−1)

= 8y
4i

∗ − 1

3

=
8yri∗

3
− 8y

3
(∵ ri∗ = 22i)

Suppose d ≥ 3. Then we have

α = S0 + S1 + S2 + · · ·+ Si∗−1

= 0 + 4yd
(d− 1)2 − 1

d− 2
+ 4yd

(d− 1)4 − 1

d− 2
+ · · ·+ 4yd

(d− 1)2i
∗−2 − 1

d− 2

= 4y
d

d− 2
{(d− 1)2 − 1 + (d− 1)4 − 1 + · · ·+ (d− 1)2i

∗−2 − 1}

= 4y
d

d− 2
{(d− 1)2 + (d− 1)4 + · · ·+ (d− 1)2i−2 − (i∗ − 1)}

≤ 4y
d

d− 2
{(d− 1)2 + (d− 1)4 + · · ·+ (d− 1)2i

∗−2} (∵ i∗ ≥ 1)

≤ 4y(d− 1)2
d

d− 2
{1 + (d− 1)2 + · · ·+ (d− 1)2i

∗−4}

≤ 4y(d− 1)2
d

d− 2

[
(d− 1)2i

∗−2 − 1

(d− 1)2 − 1

]
≤ 4y

d

d− 2

[
(d− 1)2i

∗

(d− 1)2 − 1

]
− 4y

d

d− 2

[
(d− 1)2

(d− 1)2 − 1

]
≤ 4y

d

d− 2

[
(d− 1)2i

∗

(d− 1)2 − 1

]
− 4y

d

d− 2

[
1

(d− 1)2 − 1

]
(∵ (d− 1)2 > 1)

=
1

(d− 1)2 − 1

[
4yd

(d− 1)2i
∗ − 1

d− 2

]
=

1

(d− 1)2 − 1
Si∗

2

Since 1
(d−1)2−1 ≤

1
3 for d ≥ 3, Lemmas 2.1 and 2.4 imply

Corollary 2.2 α ≤ Si∗
3

Denote by A1 the agent that starts earlier, and by A2 the agent that starts later. (In the case of

simultaneous start, names A1 and A2 are given arbitrarily). Let δ ≥ 0 denote the delay of the start

of A2 w.r.t the start of A1.

The next lemma shows that if the delay is sufficiently large then agents meet during the critical

stage of the earlier agent.
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Lemma 2.5 Let α be the time in which agent A1 reaches its critical stage. If δ ≥ α + 3a(r∗i ), then

agents meet during the critical stage of A1 .

Proof. Agent A1 takes time α to reach its critical stage. Since each transformed label starts with

bits 01, during its critical stage agent A1 first executes two consecutive passivity cycles, i.e., for a

time 2a(r∗i ) it does not moves and then it starts executing its two consecutive activity cycles and

each activity cycle takes time a(r∗i ). Hence, in time at most α + 3a(r∗i ) since its start agent A1

reaches the node initially occupied by agent A2. Thus, if δ ≥ α + 3a(r∗i ), i.e., if agent A2 remains

inactive till that time, agent A1 meets A2 at its initial position. This happens during the critical

stage of A1. 2

2.2.1 Labels of equal length

In this section we assume that the transformed labels of the agents have the same length. This

implies that the duration of each stage i is the same for both agents. We denote by T1(i) and T2(i)

the time when A1 (resp. A2) starts its stage i.

Lemma 2.6 If δ ≤ α + 3a(r∗i ) then agent A2 starts its critical stage before the end of the critical

stage of A1.

Proof. Let y be the length of the transformed labels of the agents. The time taken by agent A2 to

reach its critical stage is δ+α after the start of agent A1, and the time taken by agent A1 to reach

its stage i∗ + 1 is α+ Si∗ . We prove the lemma by contradiction. Suppose that agent A2 starts its

critical stage after the end of the critical stage of A1. Hence δ+α > α+Si∗ which implies δ > Si∗ ,

and thus α+ 3a(ri∗) > 2a(ri∗)y because δ ≤ α+ 3a(r∗i ). Since α ≤ Si∗
3 and πi∗ = 2a(ri∗), we have

Si∗
3 + 3

2πi∗ > Si∗ and thus πi∗y
3 + 3

2πi∗ > πi∗y. This is a contradiction because y ≥ 6. 2

Lemma 2.7 If agents have labels of equal length, then they meet before the end of stage i∗ + 1 of

agent A1.

Proof. Let α be the time taken by A1 to reach its critical stage from its starting time. If δ ≥
α + 3a(r∗i ), then by Lemma 2.4, agent A1 meets agent A2 in stage i∗ of A1, before A2 starts

its execution. Thus we may assume that δ < α + 3a(r∗i ). Let the transformed label of A1 be

b11, b
1
2, . . . , b

1
y and that of A2 be b21, b

2
2, . . . , b

2
y. Our arguments to prove the lemma depend on the

value of δ as follows:

• δ ≤ a(ri∗) : Consider the smallest j such that b1j = 0 and b2j = 1. (Since transformed labels

of agents are different and have equal lengths, there are at least three such indices). Consider

the execution of the critical stage by the agents (Figure 1(A)). Since δ ≤ a(ri∗), agent A2

fully executes one activity cycle corresponding to b2j = 1 within the two passivity cycles of A1

corresponding to b1j = 0. Thus agent A2 meets A1 during the execution of the critical stage

of A1.

9



• a(ri∗) < δ ≤ 3a(ri∗) : The duration of execution of the first two bits 01 in the critical stage

is 4a(ri∗) for both agents (Figure 1(B)). Since a(ri∗) < δ ≤ 3a(ri∗), agent A2 is idle while

executing its bit b21 = 0 during a complete activity cycle of A1 corresponding to b12 = 1. Hence

A1 meets A2 during the execution of the critical stage of A1.

Figure 1: An illustration for the proof of Lemma 2.7: (A) when δ ≤ a(r∗i ), agent A2 meets A1

during the execution of the critical stage of A1, and (B) when a(r∗i ) < δ ≤ 3a(r∗i ), agent A1 meets
A2 during the execution of the critical stage of A1.

• 3a(ri∗) < δ ≤ 8a(ri∗) : In this case at least a time segment of length 3a(ri∗) of the critical

stage of A2 is executed during the execution of stage i∗ + 1 of A1 (Figure 2(A)). The first

time segment of length 8a(ri∗) of stage i∗ + 1 of A1 is devoted to the execution of the first

bit of the transformed label, which is 0. Thus A1 is idle during this time segment. The final

time segment of length 4a(ri∗) of the critical stage of A2 contains exactly two activity cycles

of A2 (since among the last two bits of the transformed label of each agent there is one bit 1).

Since 3a(ri∗)∗ < δ ≤ 8a(ri∗), at least one activity cycle of A2 in its critical stage is completely

executed during the first passivity period of A1 in its stage i∗ + 1. Thus agent A2 meets A1

during stage i∗ + 1 of the latter.

• 8a(ri∗) < δ < α+ 3a(ri) : In this case, by Lemma 2.5, agent A2 starts its critical stage

before the the end of the critical stage of A1. Let I be the initial time segment of length

8a(ri∗) of stage i∗ + 1 of A1 (Figure 2(B)). Since the duration of the execution of each bit in

stage i∗ + 1 is at least 8a(ri∗) (by Corollary 2.1), we know that during time segment I, agent

A1 executes the first bit of its transformed label, i.e., bit 0. Hence during time segment I,

agent A1 is idle. Since δ > 8a(ri∗), during time segment I agent A2 still executes its critical

stage. Since the duration of execution of each bit in the critical stage of the agents is 2a(ri∗),

during time segment I agent A2 must perform complete executions of at least 3 consecutive

bits of its transformed label. Among any three consecutive bits of any transformed label there

must be at least one bit 1. Hence, during time segment I in which agent A1 is idle, agent A2

performs two activity cycles of its critical stage. Thus it must meet agent A1 before the end

of stage i∗ + 1 of the latter.

2
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Figure 2: An illustration for the proof of Lemma 2.7: (A) when 3a(r∗i ) < δ ≤ 8a(r∗i ), agent A2

meets agent A1 during the stage i∗ + 1 of the latter, and (B) when 8a(r∗i ) < δ ≤ α+ 3a(ri), agent
A1 meets agent A2 before the end of stage i∗ + 1 of A1.

2.2.2 Labels of different lengths

In this section we assume that the labels of the agents have different lengths. Let X denote the

length of the shorter transformed label. We refer to the agent having this label as the faster agent,

and denote it by Af . Let βX, for β > 1, be the length of the longer transformed label. We refer

to the agent having this label as the slower agent, and denote it by As. These names are chosen

due to the fact that, since the duration of any stage of an agent is proportional to the length of

its transformed label, the agent with shorter transformed label completes its stages faster than the

agent with longer transformed label. Since β > 1 and X ≥ 6, we have βX ≥ X + 6. Let Si(f) and

Si(s) denote the lengths of stage i of the faster and slower agents, respectively. Let agent As start

its critical stage during the stage i∗ + p of agent Af , where p is an integer.

We will use the following technical lemma to estimate by which stage of As the agents will meet.

Lemma 2.8 Let agent As start its stage i∗ + q during the stage i∗ + k of Af where q ≥ 0 and

k ≥ q + 1. Let Is = Si∗+q+1(s) + Si∗+q(s)− Si∗+k(f). If Is ≥ 4πi∗+q+1, then agent As meets agent

Af in stage at most i∗+k+1 of Af . Furthermore, during this meeting agent As is in stage at most

i∗ + q + 1.

Proof. Let Ts(i) and Tf (i) denote the starting times of the stage i of the agents As and Af
respectively. Since agent As starts its stage i∗+q during the stage i∗+k of Af , we have Tf (i∗+k) ≤
Ts(i

∗ + q) < Tf (i∗ + k + 1). We consider the following two cases:

• Ts(i∗ + q + 1) < Tf(i
∗ + k + 1) : In this case agent As completes its stage i∗+q and starts

its stage i∗+q+1 before the end of stage i∗+k of agent Af (Figure 3(A)). Since Is ≥ 4πi∗+q+1,

we have Ts(i
∗+q+2) > Tf (i∗+k+1) and hence the part of stage i∗+q+1 of As executed after

Tf (i∗ + k + 1) has length at least 4πi∗+q+1. Now since k ≥ q + 1, we have πi+k+1 ≥ 4πi∗+q+1

and this implies that agent As fully executes at least 3 consecutive bits of stage i∗ + q + 1

during the execution of the first bit of stage i∗ + k + 1 of agent Af . The execution of any 3

consecutive bits of an agent contains at least two activity cycles and during the execution of

the first bit of any stage, an agent executes two passivity cycles. Thus, agent As executes at

least two activity cycles of stage i∗ + q + 1 during the first two consecutive passivity cycles
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of stage i∗ + k + 1 of agent Af . This implies that agent As meets agent Af during the stage

i∗ + k + 1 of the latter. During this meeting agent As is in stage i∗ + q + 1.

Figure 3: An illustration for the proof of Lemma 2.8: (A) Ts(i
∗ + q + 1) < Tf (i∗ + k + 1), and (B)

Ts(i
∗ + q + 1) = Tf (i∗ + k + 1). In both cases, agent As meets Af during the execution of stage

i∗ + k + 1 of Af ; during this meeting agent As is in stage i∗ + q + 1.

• Ts(i∗ + q + 1) ≥ Tf(i
∗ + k + 1) : Here we consider the following two subcases:

– Ts(i
∗ + q + 1) = Tf(i

∗ + k + 1) : Since πi+k+1 ≥ 4πi∗+q+1, agentAs executes at least

the first 4 bits of its stage i∗+q+1 during the execution of the first bit 0 of stage i∗+k+1 of

agent Af (Figure 3(B)). This implies that agent As meets agent Af during the execution

of the first two passivity cycles of stage i∗ + k + 1 of agent Af corresponding to the

execution of the first bit 0. The agent As is in stage i∗ + q + 1 during this meeting.

– Ts(i
∗ + q + 1) > Tf(i

∗ + k + 1) : In this case a portion of the stage i∗+q of agent As
is executed during the stage i∗+k+1 of agent Af . Let Is(i

∗+q) and Is(i
∗+q+1) be the

durations of the portions of the stages i∗+q and i∗+q+1 of As executed during the stage

i∗+k+1 of Af . Note that Is(i
∗+q+1) is of length zero when Ts(i

∗+q+1) ≥ Tf (i∗+k+2).

Let I denote the time segment of stage i∗+ k+ 1 of Af during which agent Af executes

its first bit 0. Since k ≥ q + 1, we have I = πi∗+k+1 ≥ 4πi∗+q+1 (by Corollary 2.1). The

execution of the last two bits of stage i∗+q is of duration 2πi∗+q and exactly one of these

last two bits is 1. This implies that the time segment of length 3
2πi∗+q at the end of stage

i∗+q of agent As contains at least one activity cycle. Thus, if Is(i
∗+q) ≥ 3

2πi∗+q (Figure

4(A)), then agent As executes at least one activity cycle of stage i∗ + q during the time

segment I (since I ≥ 4πi∗+q+1 ≥ 42πi∗+q). Since during the whole execution of I agent

Af remains idle, agent As meets agent Af in stage i∗ + k + 1 of the latter. During this

meeting agent As is in stage at most i∗ + q. Next suppose Is(i
∗ + q) < 3

2πi∗+q (Figure

4(B)). Note that in this case, agent As starts its stage i∗+ q+ 1 during the execution of

the first bit 0 of stage i∗ + k + 1 of agent Af . Now,

I − Is(i∗ + q) ≥ 4πi∗+q+1 −
3

2
πi∗+q (∵ I = πi∗+k+1 ≥ 4πi∗+q+1)

≥ 3πi∗+q+1

This implies that agent As fully executes at least the first 3 bits of stage i∗+q+1 during

time segment I. Since the execution of the first two bits in any stage contains exactly

two activity cycles, agent As executes two activity cycles of stage i∗+ q+ 1 during I and
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it meets agent Af in stage i∗ + k + 1 of the latter. During this meeting agent As is in

stage at most i∗ + q + 1.

Figure 4: An illustration for the proof of Lemma 2.8: (A) Is(i
∗+ q) ≥ 3

2πi∗+q, and (B) Is(i
∗+ q) <

3
2πi∗+q. In both cases, agent As meets Af during the execution of stage i∗ + k + 1 of Af . In case
(A), agent As is in stage at most i∗ + q and in case (B) agent As is in stage at most i∗ + q + 1.

2

We now proceed to the proof that agents meet always by the end of stage i∗ + 2 of As. The proof

is split into two cases in Lemmas 2.9 and 2.11.

Lemma 2.9 If agent Af starts its execution before the start of agent As, then the agents meet during

stage at most i∗ + 2 of As.

Proof. In this case, we have p ≥ 0. We consider two cases.

• p = 0 : In this case, agent As starts its critical stage during the execution of the critical stage

of Af (Figure 5(A)). We have Si∗(f) = πi∗X and Si∗(s) = πi∗βX. Since β > 1, we have

Si∗(f) < Si∗(s).

Si∗(s)− Si∗(f) = πi∗βX − πi∗X
≥ πi∗(X + 6)− πi∗X (∵ βX ≥ X + 6)

= 12a(ri∗)

Since the execution of one bit of stage i∗ has duration 2a(ri∗), this implies that at least 5 bits

of stage i∗ of agent As are fully executed during the initial part of the execution of stage i∗+1

of agent Af . Thus, since πi∗+1 ≥ 4πi∗ , agent As fully executes at least 3 consecutive bits of

stage i∗ during the execution of the first bit of stage i∗+ 1 of agent Af . The execution of any

3 consecutive bits of an agent contains at least two activity cycles and during the execution of

the first bit of any stage, an agent executes two passivity cycles. Thus, agent As executes at

least two activity cycles of stage i∗ during the first two consecutive passivity cycles of stage

i∗ + 1 of agent Af . This implies that agent As meets agent Af during the stage i∗ + 1 of the

latter.
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Figure 5: An illustration for the proof of Lemma 2.9: (A) when p = 0, agent As meets Af during
the execution of stage i∗ + 1 of Af , and (B) when p ≥ 1, agent As meets Af during the execution
of stage i∗ + p+ 1 of Af .

• p ≥ 1 : Let α be the time in which agent Af reaches its critical stage. We assume δ ≤ α+ 3
2πi∗

(otherwise, by Lemma 2.5, agents meet in stage i∗ of agent Af ). Since agent As starts its

critical stage during the execution of stage i∗ + p of agent Af (Figure 5(B)), we have,

δ + βα ≥ α+ Si∗(f) + Si∗+1(f) + · · ·+ Si∗+p−1(f)

α+
3

2
πi∗ + βα ≥ α+ Si∗+p−1(f) (∵ δ < α+

3

2
πi∗)

3

2
πi∗ + β

Si∗(f)

3
≥ Si∗+p−1(f) (∵ α <

Si∗(f)

3
) (3)

Let Is = Si∗+1(s) + Si∗(s)− Si∗+p(f). We compute a lower bound on Is as follows:

Is = Si∗+1(s) + Si∗(s)− Si+p(f) ≥ Si∗+1(s) + Si∗(s)− 5Si+p−1(f) (by Lemma 2.3)

≥ Si∗+1(s) + Si∗(s)− 15

2
πi∗ −

5

3
βSi∗(f) (by (3))

≥ πi∗+1βX + πi∗βX −
5

3
πi∗βX −

15

2
πi∗

≥ 10

3
πi∗βX −

15

2
πi∗ (by Corollary 2.1, πi∗+1X ≥ 4πi∗X)

≥ 10

3
πi∗(X + 6)− 15

2
πi∗ (∵ βX ≥ X + 6)

≥ 10

3
πi∗X

≥ 2

3
πi∗+1X (by Lemma 2.3, πi∗+1X ≤ 5πi∗X)

≥ 4πi∗+1 (∵ X ≥ 6)

Hence the lemma is true in this case by Lemma 2.8 substituting q = 0 and k = p.

2

Lemma 2.10 If agent As starts its execution before the start of agent Af then agent As starts its

stage i∗ + 1 after the start of stage i∗ of Af .
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Proof. If p ≥ 0, then the lemma is obvious by the definition of p. Thus we assume p < 0. Hence

the agent As starts its critical stage before the start of the critical stage of agent Af (Figure 6(A)).

We know that δ ≤ βα + 3
2πi∗ , where α is the time in which agent Af reaches its critical stage

(otherwise agent As meets agent Af before the latter starts its execution).

Figure 6: An illustration for the proof of Lemma 2.10: (A) when agent As starts its stage i∗ + 1
after the start of stage i∗ of agent Af , and (B) when agent As starts its stage i∗+ 1 before the start
of stage i∗ of agent Af .

Suppose for contradiction that agent As starts its stage i∗ + 1 before the start of stage i∗ of Af
(Figure 6(B)). Then we have the following inequalities:

δ + α ≥ βα+ Si∗(s)

βα+
3

2
πi∗ + α ≥ βα+ Si∗(s)

3

2
πi∗ +

Si∗(f)

3
≥ Si∗(s) (∵ α <

Si∗(f)

3
)

3

2
πi∗ +

πi∗X

3
≥ βπi∗X

3

2
πi∗ +

πi∗X

3
≥ πi∗(X + 6) (∵ βX ≥ X + 6)

This is a contradiction, since X ≥ 6). Hence the lemma is true. 2

Lemma 2.11 If agent As starts its execution before the start of agent Af , then agents meet during

stage at most i∗ + 2 of As.

Proof. Let δ > 0 denote the delay of the start of Af w.r.t the start of As, and let α denote the

time in which agent Af reaches its critical stage. We assume δ < βα+ 3a(ri∗) (otherwise agent As
meets agent Af during the stage i∗ of the former). Let agent As start its critical stage during stage

i∗ + p of Af , where p is an integer. Note that in this case p can assume either a non-negative or a

negative value. We consider two cases.

• p ≥ 0 : In this case the proof of the lemma is similar to the proof of Lemma 2.9. Indeed, if

p = 0, the proof is exactly the same (Figure 7(A)). Now consider the case when p ≥ 1(Figure

7(B)). We only show that inequality (3) also holds in this case and the rest of the proof is
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the same. Since the critical stage of As starts during the stage i∗ + p of agent Af we have

βα ≥ δ + α+ Si∗(f) + Si∗+1(f) + · · ·+ Si∗+p−1(f)

3

2
πi∗ + β

Si∗(f)

3
≥ Si∗+p−1 (∵ α <

Si∗(f)

3
and adding

3

2
πi∗ ≥ 0 on the left hand side)

Hence inequality (3) holds in this case.

Figure 7: An illustration for the proof of Lemma 2.11 when p ≥ 0 and: (A) agent As starts its
stage i∗ during the stage stage i∗ of agent Af , and (B) agent As starts its stage i∗ during the stage
i∗ + p of agent Af for p ≥ 1.

• p < 0 : In this case the critical stage of As starts before the start of the critical stage of Af .

By Lemma 2.10, agent As starts its stage i∗ + 1 after the start of stage i∗ of Af . Let Ts(i)

and Tf (i) denote the starting times of the stage of i of the agents As and Af respectively. We

consider two subcases: Ts(i
∗ + 1) < Tf (i∗ + 1) and Ts(i

∗ + 1) ≥ Tf (i∗ + 1).

– Ts(i
∗ + 1) ≥ Tf(i

∗ + 1) : Let agent As start its stage i∗+1 during the stage i∗+1+u

of agent Af for u ≥ 0. First suppose that u = 0 (Figure 8(A)). We have

Si∗+1(s)− Si∗+1(f) = βπi∗+1X − πi∗+1X

≥ 6πi∗+1 (∵ βX ≥ X + 6)

This implies that agent As fully executes at least 5 bits of stage i∗+1 during the execution

of stage i∗+2 of Af . Since πi∗+2 ≥ 4πi∗+1, agent As fully executes at least 3 consecutive

bits of stage i∗ + 1 during the execution of the first bit of stage i∗ + 2 of Af . At least

one of those 3 bits is 1. Since during the execution of the first bit of any stage agents

remains passive, agent As meets agent Af during the execution of the stage i∗+ 2 of the

latter.

Next consider the case when u ≥ 1 (Figure 8(B)). Let Is = Si∗+2(s) + Si∗+1(s) −
Si∗+1+u(f). Since agent As starts its stage i∗+ 1 during the stage i∗+ 1 +u of agent Af
we have

βα+ Si∗(s) ≥ δ + α+ Si∗(f) + Si∗+1(f) + · · ·+ Si∗+u(f)

βα+ Si∗(s) ≥ Si∗+u(f) · · · (1)
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Figure 8: An illustration for the proof of Lemma 2.11 when p < 0, Ts(i
∗+ 1) ≥ Tf (i∗+ 1) and: (A)

agent As starts its stage i∗ + 1 during the stage i∗ + 1 of agent Af i.e., u = 0, and (B) agent As
starts its stage i∗ + 1 during the stage i∗ + u+ 1 of agent Af for u ≥ 1.

Thus,

Is = Si∗+2(s) + Si∗+1(s)− Si∗+1+u(f) ≥ Si∗+2(s) + Si∗+1(s)− 5Si∗+u(f) (by Lemma 2.3)

≥ Si∗+2(s) + Si∗+1(s)− 5βα− 5Si∗(s)(from (1))

≥ βπi∗+2X + βπi∗+1X −
5

3
βπi∗X − 5βπi∗X (∵ α <

Si∗(f)

3
)

≥ βX(42πi∗ + 4πi∗ −
20

3
πi∗) (by Corollary 2.1)

≥ (X + 6)13πi∗ (∵ βX ≥ X + 6)

≥ 156πi∗ (∵ X ≥ 6)

≥ 6πi∗+2 (by Corollary 2.1)

Hence by Lemma 2.8 substituting q = 1 and k = u+ 1, we can conclude that agent As
meets agent Af during the stage at most i∗ + u + 2 of Af and moreover, during this

meeting agent As is in stage at most i∗ + 2.

– Ts(i
∗ + 1) < Tf(i

∗ + 1)) : By Lemma 2.10, we have Ts(i
∗ + 1) > Tf (i∗). Let I =

δ + α + Si∗(f) − βα − Si∗(s). Since agent As starts stage i∗ + 1 during the stage i∗

of Af , we have I > 0. Note that I is the duration of the part of stage i∗ + 1 of

agent As that is executed during the execution of stage i∗ of Af . Now one of the last

two bits of any transformed label is 1. Thus, if I ≥ 3
2πi∗ , then agent Af executes at

least one complete activity cycle of its stage i∗ during the execution of the first two

passivity cycles in stage i∗+ 1 of As corresponding to the first 0 of its transformed label

(Figure 9(A)). Thus in this case agent Af meets agent As during the stage i∗ + 1 of the

latter. Now suppose I < 3
2πi∗ (Figure 9(B)). Let Ii∗+1 = Si∗+1(s) − Si∗+1(f). Then

Ii∗+1 = βXπi∗+1−πi∗+1X ≥ 6πi∗+1. The difference Ii∗+1− I is the duration of the part

of stage i∗+1 of As executed during the stage i∗+2 of agent Af . Since I < 3
2πi∗ < πi∗+1,

we have Ii∗+1 − I > 5πi∗+1. This implies that during the execution of the first bit 0

of the stage i∗ + 2 of agent Af , agent As executes at least 3 consecutive bits of stage

i∗ + 1 (since πi∗+2 ≥ 4πi∗+1). At least one of these bits must be 1. Hence while agent

Af executes two passivity cycles of total length πi∗+2, agent As executes at least two

activity cycles of its stage i∗ + 1 and it meets agent Af during stage i∗ + 1 of As.
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Figure 9: An illustration for the proof of Lemma 2.11 when p < 0, Ts(i
∗+ 1) < Tf (i∗+ 1) and: (A)

I ≥ 3
2πi∗ , and (B) I < 3

2πi∗ .

2

2.2.3 Complexity of Algorithm URT

The correctness of Algorithm URT follows immediately from Lemmas 2.7, 2.9 and 2.11. Indeed,

these three lemmas together imply that agents always meet. It remains to estimate the complexity

of Algorithm URT. This is done in the following theorem.

Theorem 2.1 Consider two agents with different labels from the set {1, . . . , L}, executing Algorithm

URT in an unoriented infinite regular tree of constant degree d ≥ 2, starting at an unknown distance

D. Let z(D) be the number of nodes in a ball of radius D in this tree. Then the agents meet in

time O(z(D) logL).

Proof. Recall that the execution time τ of the algorithm is counted since the start of the earlier

agent. Let A be any agent. In view of Lemma 2.1 and since the length of the transformed label

of A is in O(logL), we have that the duration Si(A) of stage i of A is in O(z(ri) logL) for any i.

Hence each of Si∗(A), Si∗+1(A), Si∗+2(A) are in O(z(r∗i ) logL), and hence in O(z(D) logL). Let

α(A) be the length of time since the start of A to the time when A reaches its critical stage. By

Corollary 2.2, we have α(A) ≤ Si∗ (A)
3 , and hence α(A) is also in O(z(D) logL).

Let A1 be the earlier agent or any of the agents if they start simultaneously. Let δ ≥ 0 be the delay

of the start of the later agent w.r.t the start of A1. By Lemma 2.5, if δ ≥ α(A1) + 3a(ri∗) then

agents meet during the critical stage of A1. In this case, τ ≤ α(A1) + Si∗(A1) and hence τ is in

O(z(D) logL).

Hence we may assume that δ < α(A1) + 3a(ri∗). Thus δ is in O(z(D) logL). If agents have labels

of equal length then by Lemma 2.7 we have τ ≤ α(A1) + Si∗(A1) and hence τ is in O(z(D) logL).

Suppose that agents have labels of different lengths and that Af is the faster agent and As is the

slower agent. By Lemma 2.9, if Af = A1 then τ ≤ δ + α(As) + Si∗(As) + Si∗+1(As) + Si∗+2(As).

Hence in this case τ is in O(z(D) logL). Finally, by Lemma 2.11, if As = A1 then τ ≤ α(As) +

Si∗(As) + Si∗+1(As) + Si∗+2(As). Hence in this case τ is in O(z(D) logL). This proves that in all

cases τ is in O(z(D) logL), and hence concludes the proof. 2
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2.3 The lower bound

Algorithm URT has the advantage of working without any extra assumptions: agents may start

with arbitrary delay and do not need any knowledge of the parameters of the problem which are the

initial distance D between them and the size L of the space of labels. However, the disadvantage

of the algorithm is its complexity that has as a factor the number z(D) of nodes in a ball of radius

D in the underlying tree. For any degree d > 2 of the tree, the value of z(D) is exponential in D,

thus making the time of the algorithm prohibitively large for large D. Hence it is natural to ask if

such a long time is actually needed for rendezvous. In this section we show that the answer is yes.

In fact we prove that Ω(z(D)) is a lower bound on the time of rendezvous, even in the most benign

scenario, when the agents start simultaneously and know the exact values of D and L.

Theorem 2.2 For any d ≥ 2 there exists a port labeling of the infinite regular tree of degree d, such

that the time of any rendezvous algorithm is in Ω(z(D)), even if agents start simultaneously and

know the exact values of D and L.

Proof. For d = 2 the theorem is trivial because then z(D) ∈ Θ(D). Hence we may assume that

d > 2. Consider the port numbering of the infinite regular tree of degree d in which port numbers at

both ends of each edge are equal. For any d > 2, there is exactly one such tree, up to isomorphism.

Notice that an agent executing any rendezvous algorithm in this tree cannot learn anything during

the execution. Indeed, when the agent takes port p at some node, it knows in advance that it

will enter the adjacent node of the same degree d by a port with the same number p. Hence a

rendezvous algorithm in this tree does not have any “if” statements. It is simply a sequence of

terms from {0, . . . , d − 1} corresponding to ports taken at consecutive steps. This sequence may

depend on the label of the agent, but for a given label it is fixed.

Consider any initial distance D > 0 and any size L > 1 of the space of labels. Suppose that

there exists an algorithm A guaranteeing rendezvous in time at most t < z(D)/2 for any agents

with different labels starting simultaneously at distance D. Consider any labels `1 6= `2 and let

(a1, . . . , at) and (b1, . . . , bt) be the sequences of integers from {0, . . . , d − 1} corresponding to the

executions of the algorithm by agents A1 and A2 with labels `1 and `2, respectively. For any node

v and any sequence (c1, . . . , ck) of port numbers, let v(c1, . . . , ck) denote the node which an agent

reaches starting from node v and taking consecutive ports c1, . . . , ck.

Let v1 and v2 be the starting nodes of agents A1 and A2, respectively, and let s ≤ t. If agents meet

after time s, then they are at the same node after s steps, i.e, v1(a1, . . . , as) = v2(b1, . . . , bs). This

implies that v2 = v1(a1, . . . , as, bs, bs−1, . . . , b1). Thus, if agents meet after some time s ≤ t, then,

for a fixed starting node v1 of A1, the number of possible starting nodes v2 of agent A2 is at most

t. However, the number of nodes at distance exactly D from v1 is larger than half of the size z(D)

of the ball of radius D centered at v1. Hence there exists a node v2 of A2 at distance D from v1
such that agents A1 and A2 starting from nodes v1 and v2, respectively, and executing algorithm A
do not meet after time at most t. This is a contradiction and it proves that the time of algorithm

A is in Ω(z(D)). 2

Another lower bound Ω(D logL) on rendezvous time was proved in [14]. It was proved for agents

operating in a ring with port numbers 0, 1, 0, 1, 0, 1, . . . in clockwise order, even if agents start
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simultaneously and know the exact values of D and L. The same proof is valid for agents in

the infinite line with the same port numbering. Hence this lower bound also holds for agents in

any infinite regular tree of degree d ≥ 2 containing such an infinite line. This gives the following

corollary.

Corollary 2.3 For any d ≥ 2, any rendezvous algorithm working for all infinite regular trees of

degree d with arbitrary port numberings, must have time in Ω(z(D) +D logL), even if agents start

simultaneously and know the exact values of D and L.

Notice that for d = 2, i.e., for the infinite line, where z(D) is in Θ(D), the above corollary implies

that Algorithm URT has optimal complexity.

3 Oriented trees

An oriented tree is a tree such that one node called the root has label R, all other nodes do not

have labels, and at each node different from R the port 0 is on the simple path toward R. In

this section we investigate rendezvous in infinite oriented trees. First note that Algorithm URT

designed for rendezvous in unoriented regular trees works for oriented regular trees with the same

complexity. However, we will show that in many cases orientation allows us to significantly speed

up rendezvous.

We start with the observation that if the delay between the starting times of agents can be arbitrary

then there is a large lower bound on rendezvous time even in oriented regular trees. This lower

bound holds even if agents know the exact values of the initial distance D and of the size of the

label space L.

Proposition 3.1 For any d ≥ 2, the time of any rendezvous algorithm working for agents with

arbitrary delay in infinite oriented regular trees of degree d is in Ω(z(D)), even if agents know the

exact values of D and L.

Proof. Consider two agents at distance D. The adversary starts one of the agents and delays the

start of the other agent by δ = z(D). The earlier agent cannot visit all nodes at distance D from

its starting node by time δ. Let v be any such node not visited by time δ. If the initial node of the

later agent is v then the execution time of algorithm A is at least z(D). 2

The lower bound Ω(D logL) from [14] holds for infinite oriented regular trees as well (this bound

holds even for simultaneous start). Hence we get

Corollary 3.1 For any d ≥ 2, any rendezvous algorithm working for agents with arbitrary delay in

infinite oriented regular trees of degree d, must have time in Ω(z(D)+D logL), even if agents know

the exact values of D and L.

Thus for agents starting with arbitrary delay, rendezvous must be slow, even for oriented regular

trees. It turns out that for simultaneous start, the situation changes dramatically. Recall that for
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unoriented trees, rendezvous must be slow even for simultaneous start. By contrast, we will show

that orientation helps to speed up rendezvous significantly in this case. Indeed, we design three

algorithms. All of them work for arbitrary oriented trees (regularity does not have to be assumed).

Two of them work in the optimal time O(D logL) under assumption that agents know some upper

bounds on the parameters D or L. The third algorithm works without any extra assumptions and

has the complexity O(D2 + log2 L), hence it still avoids the extremely costly lower bound Ω(z(D)).

The main idea of these three rendezvous algorithms is the same. We have to avoid costly exploration

of balls that was crucial in Algorithm URT. Here is where we use orientation. Agents go “up”

(towards the root) in order to position themselves on the same branch and then make moves up

and down on this branch, depending on bits of their transformed label. These moves play a role

similar to ball exploration for unoriented trees but are much faster, and permit the agents to meet

when the range of the moves is sufficiently large.

In all these algorithms we will use the following procedures that take a positive integer x as parame-

ter. Procedure Up(x) consists of x consecutive moves, each of them taking port 0, unless the root R

is visited on the way. In the latter case the agent stops at R and stays there forever. Thus the proce-

dure results in going x steps towards the root or getting to the root. Procedure Up−and−Down(x)

consists of an execution of Procedure Up(x) followed by a backtrack to the node where Procedure

Up(x) started. Procedure Up(x) lasts x rounds and Procedure Up−and−Down(x) lasts 2x rounds.

3.1 Known polynomial bound L∗ on label space size L

In this section we assume that the agents know some common polynomial upper bound L∗ on the

size L of the label space. Let λ = dlogL∗e + 1. Hence the length of the binary representation of

all labels is at most λ and the agents know λ. Moreover, since L∗ is a polynomial upper bound on

L, we have that λ is in O(logL). For any label ` ∈ {1, . . . , L} we define the padded label Pad(`) as

follows. Let (c1, . . . , cs) be the binary representation of `. Pad(`) is the binary sequence of length

2λ obtained as follows. First concatenate a prefix of λ − s zeroes to (c1, . . . , cs) to get a sequence

of length λ, and then replace each bit 1 by 10 and each bit 0 by 01. All padded labels have equal

length 2λ and the following property. If `1 6= `2 then there exists an index j ≤ 2λ, such that the

jth bit of Pad(`1) is 1 and the jth bit of Pad(`2) is 0.

Algorithm Known-Bound-on-L works in stages i = 0, 1, . . . . In a stage i the agent makes 2i steps up

and then“executes”consecutive bits of its padded label: if the bit is 1, the agent executes Procedure

Up− and−Down(2i), and it stays idle for 2 · 2i rounds if the bit is 0. There is an exception to this

rule: if an agent visits the root R, it stops executing moves and stays there forever. In view of the

simultaneous start, the use of padded labels whose length is the same for both agents guarantees

that both agents will start each stage simultaneously (unless one of them visits R). The algorithm

is interrupted as soon as the agents meet.

Algorithm Known-Bound-on-L

Pad(`) := (b1, b2, . . . , bk)

for i = 0, 1, 2, . . . do

Up(2i)

for j = 1 to k do
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if bj = 1 then

Up− and−Down(2i)

else

stay idle for 2 · 2i rounds

Theorem 3.1 Consider two agents with different labels from the set {1, . . . , L}, executing Algorithm

Known-Bound-on-L in an infinite oriented tree, starting simultaneously at an unknown distance D.

Suppose that agents know a common polynomial upper bound L∗ on the size L of the label space.

Then the agents meet in time O(D logL), which is optimal.

Proof. Let i∗ be the smallest integer i such that D ≤ 2i. First suppose that none of the agents

visits the root R before the end of stage i∗. The duration of stage i is (4λ + 1)2i, for each of the

agents. Since agents start simultaneously, they also start each stage i simultaneously. By induction

on i, after the first execution of Procedure Up(2i) of stage i, agents are at distance at most D and

each agent ends stage i at the same node at which it was after the first execution of Procedure

Up(2i) in this stage. Consider the time t immediately after the first execution of Procedure Up(2i
∗
)

of stage i∗. Both agents are on the same branch in the tree, at distance at most D. Let A1 be the

lower agent and A2 the upper agent (i.e., A2 is on the simple path from the position of A1 at time

t to the root). Let j ≤ 2λ be the first index such that the jth bit of the padded label of A1 is 1 and

the jth bit of the padded label of A2 is 0. Both agents execute this jth bit simultaneously during

2 · 2i∗ rounds. Hence the upper agent A2 stays idle at distance at most D while the lower agent

A1 executes the first part of Procedure Up− and−Down(2i
∗
). In view of D ≤ 2i

∗
this guarantees

that agent A1 meets agent A2. This meeting occurs during stage i∗, i.e., in time O(2i
∗
λ) which is

O(D logL), by definition of λ and i∗.

Next suppose that one of the agents visits root R before the end of stage i∗. Suppose that agent

A1 is the first to visit this node. Let g1 and g2 be the distance of the starting node of agent A1

(resp. A2) from the root. Hence g2 ≤ g1 +D. Hence, if agents do not meet before, agent A2 must

reach the root R by the end of stage i∗ + 1 and stop. Hence the meeting must occur at the latest

in time O(2i
∗
λ) which is O(D logL), by definition of λ and i∗. 2

3.2 Known linear bound D∗ on the initial distance D

In this section we assume that the agents know some common linear upper bound D∗ on the initial

distance D between them but they may have no knowledge about L. For any label ` ∈ {1, . . . , L}
we first define the prefix-free label PF (`) as follows. Let (c1, . . . , cs) be the binary representation of

`. In order to obtain PF (`), replace each bit 1 by 10, each bit 0 by 01 and add bits 11 at the end.

The obtained sequence is of length 2s+ 2 and has the property that if we start with two different

labels then none of the obtained sequences can be a prefix of the other (cf. [14]). To get the adapted

label Adapt(`), replace each 1 by 10 and each 0 by 01 in the string PF (`). The resulting sequence

Adapt(`) has length 4s + 4. Notice that since binary representations of labels may have different

lengths, the same is true for the adapted labels. However, the adapted labels have the property

that if `1 6= `2 then there exists an index j, such that the jth bit of Adapt(`1) is 1 and the jth bit

of Adapt(`2) is 0.

22



Algorithm Known-Bound-on-D has the same idea as Algorithm Known-Bound-on-L but now we do

not need stages, as a linear bound D∗ on D is known: agents know the appropriate search range

from the outset.

Algorithm Known-Bound-on-D

Adapt(`) := (b1, b2, . . . , bk)

Up(D∗)

for j = 1 to k do

if bj = 1 then

Up− and−Down(D∗)

else

stay idle for 2D∗ rounds

if the current node is not R then

Up(D∗)

Theorem 3.2 Consider two agents with different labels from the set {1, . . . , L}, executing Algorithm

Known-Bound-on-D in an infinite oriented tree, starting simultaneously at a distance D. Suppose

that agents know a common linear upper bound D∗ on D. Then the agents meet in time O(D logL).

Proof. First suppose that none of the agents visits the root R by the end of the first execution of

procedure Up(D∗). Consider the time t immediately after the first execution of Procedure Up(D∗).

Both agents are on the same branch in the tree, at distance at most D. Let A1 be the lower

agent and A2 the upper agent. Let j be the first index such that the jth bit of the adapted

label of A1 is 1 and the jth bit of the adapted label of A2 is 0. Both agents execute this jth bit

simultaneously during 2D∗ rounds. Hence the upper agent A2 stays idle at distance at most D

while the lower agent A1 executes the first part of Procedure Up − and − Down(D∗). In vew of

D ≤ D∗, this guarantees that agent A1 meets agent A2. This meeting occurs in time O(D∗k) which

is O(D logL), by definition of k and D∗.

Next suppose that one of the agents visits the root R by the end of the first execution of procedure

Up(D∗). Suppose that agent A1 is the first to visit this node. Let g1 and g2 be the distance of the

starting node of agent A1 (resp. A2) from the root. Hence g2 ≤ g1 +D. It follows that if agent A2

did not visit root R by the end of the first execution of procedure Up(D∗) then it must visit it by

the end of the second execution of procedure Up(D∗). Hence the meeting occurs in time O(D∗k)

which is O(D logL), by definition of k and D∗. 2

3.3 No extra knowledge

We finally consider the situation when agents start simultaneously but do not have any extra

knowledge about the parameters D and L. In this case we design a rendezvous algorithm which,

although slower than the two previous ones, still avoids the exponential lower bound z(D) that was

unavoidable for unoriented trees even with simultaneous start and also unavoidable for oriented

trees with arbitrary delay.
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First, for any label `, define an infinite binary sequence Adapt∗(`). The sequence is defined as

follows. Concatenate infinitely many copies of the prefix-free label PF (`) (defined in the previous

subsection) and denote the obtained sequence by PF ∗(`). Then Adapt∗(`) is defined by replacing

each 1 by 10 and each 0 by 01 in PF ∗(`). Note that an equivalent way of defining Adapt∗(`) is to

concatenate infinitely many copies of the adapted label Adapt(`), defined in the previous subsection.

The idea of Algorithm No-Extra-Knowledge is similar to that of Algorithms Known-Bound-on-L

and Known-Bound-on-D but with two important differences. First, in each stage only one bit of

Adapt∗(`) is processed and second, in consecutive stages the ranges of agents’ moves are not doubled

but increased by 1. The algorithm is interrupted as soon as the agents meet.

Algorithm No-Extra-Knowledge

Adapt∗(`) := (b1, b2, . . . )

for j = 1, 2, . . . do

Up(j)

if bj = 1 then

Up− and−Down(j)

else

stay idle for 2j rounds

In the proof of correctness and the analysis of complexity of Algorithm No-Extra-Knowledge we

will use the following lemma.

Lemma 3.1 Consider two distinct labels `1 and `2. For any index j ≥ 4 there exists an integer

y ≤ 4 logL, such that the (j + y)th bit of Adapt∗(`1) is 1 and the (j + y)th bit of Adapt∗(`2) is 0.

Proof. First consider the infinite sequences PF ∗(`1) and PF ∗(`2). Let x be the length of PF (`1).

Let i ≥ 1 be any even index. Let i′ ≥ i be the smallest index at which a copy of PF (`1) starts

in PF ∗(`1). By definition of a prefix-free label, there exists an index i′′ ≤ i′ + x such that the

i′′th bit is different in PF ∗(`1) and PF ∗(`2). Let p1q1 and p2q2 be the pairs of bits in Adapt∗(`1)

and Adapt∗(`2) respectively, corresponding to the i′′th bit of PF ∗(`1) and PF ∗(`2) respectively.

Hence, either (p1q1) = (10) and (p2q2) = (01) or vice-versa. In both cases, for one of the indices t

corresponding to these bits, the t-th bit of Adapt∗(`1) is 1 and the t-th bit of Adapt∗(`2) is 0.

Consider any index j ≥ 4. Let i = 2bj/4c. Hence we have i′′ ≤ i′ + x ≤ i + 2 logL and thus

t ≤ 2i′′ ≤ 2i+ 4 logL ≤ j + 4 logL, which concludes the proof. 2

We are now ready to prove the correctness and analyze the complexity of Algorithm No-Extra-

Knowledge.

Theorem 3.3 Consider two agents with different labels from the set {1, . . . , L}, executing Algorithm

No-Extra-Knowledge in an infinite oriented tree, starting simultaneously at a distance D. Then the

agents meet in time O(D2 + log2 L).

Proof. First assume that none of the agents visits the root R before the meeting. Since agents

start simultaneously, they execute each turn of the for loop (corresponding to the consecutive bits)
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precisely in the same time period. It is enough to prove the theorem for D ≥ 4. Consider any

index j ≥ D. After the execution of the j-th bit both agents are on the same branch in the tree, at

the same distance at most D. Let `1 be the label of the lower agent. By Lemma 3.1, there exists

an integer y ≤ 4 logL, such that the (D + y)th bit of Adapt∗(`1) is 1 and the (D + y)th bit of

Adapt∗(`2) is 0. During the execution of bit t = D + y, first both agents execute procedure Up(t)

simultaneously, and then the upper agent stays idle for 2t rounds, while the lower agent executes

procedure Up − and −Down(t). Since t ≥ D, the lower agent must meet the upper agent during

the first half of the execution of this procedure. It follows that the agents meet at the latest after

the execution of bit D + d4 logLe. Since the time of execution of any bit j is 3j, executing all bits

until bit D + d4 logLe takes time O((D + d4 logLe)2) = O(D2 + log2 L).

Next assume that one of the agents visits the root R before the meeting. Consider the first agent

visiting R. This must happen at some time s before the end of the execution of bit D + d4 logLe.
The other agent must reach R by the time s + D. Since s is in O(D2 + log2 L), the meeting at R

must also happen in time O(D2 + log2 L). 2

Remark. It is important to explain why the ranges of agents processing consecutive bits are

incremented by 1 and not doubled, as in the other algorithms. If the range in the processing of

the j-th bit was 2j instead of j, then processing bit D + d4 logLe would take time O(2D+d4 logLe)

causing an exponential blow-up. Incrementing by 1 results in total cost quadratic in D+ logL but

not exponential. We have seen before that when some upper bound on D or on L is known, this

problem can be avoided altogether, resulting in optimal complexity O(D logL).

4 Conclusion

We studied deterministic rendezvous in unoriented and oriented infinite trees, showing the impact

of orientation of the tree on the time of rendezvous. For unoriented regular trees, we designed an

algorithm working in time O(z(D) logL) and showed a lower bound of Ω(z(D) + D logL) on the

time of any such algorithm. While these bounds match for d = 2 and are very close for d > 2

if L is not very large, there remains a gap whose filling is a natural open problem. For oriented

regular trees with arbitrary delay between waking times of agents, the situation is identical: the

above algorithm still works and the same lower bound is valid. However, for simultaneous start in

oriented trees (not necessarily regular), the situation is different. Assuming either the knowledge of

a polynomial upper bound on L or of a linear upper bound on D, we showed algorithms working in

time O(D logL), which is optimal. Without such extra knowledge, we showed an algorithm working

in time O(D2 + log2 L), thus avoiding the exponential lower bound Ω(z(D)) without additional

assumptions. If D and logL are of the same order of magnitude, this algorithm is still optimal. The

problem whether there exists a rendezvous algorithm working in oriented trees in time O(D logL)

for simultaneous start, without assuming any knowledge concerning D and L, remains open.

It remains to discuss our assumptions concerning the environment where the agents operate. First

it is natural to ask if our results could be generalized for graphs which are not trees. Our main

rendezvous algorithm for unoriented regular trees relies on exploration of balls of increasing radii,

with the aim of meeting the other agent that stays idle at some node of such a ball during its explo-

ration. It should be recalled that while in an anonymous tree a ball can be explored in time linear
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in its size, no such exploration algorithm is known in arbitrary anonymous graphs because of loops

that the agent may not notice due to anonymity of the nodes. Hence most rendezvous algorithms

known from the literature and working for anonymous graphs (cf. [14, 19, 25]) are restricted to

finite graphs, rely on the exploration of the entire graph, and have complexity polynomial in its

size. Efficient algorithms working for infinite graphs [4, 10] use additional assumptions, such as the

knowledge of the position of the agent in the graph. It remains open to design efficient rendezvous

algorithms working in arbitrary infinite graphs without such extra knowledge.

Restricting attention to trees, we should discuss the assumptions that they are infinite and, in case

of unoriented trees, regular. The first assumption is for convenience of problem statement, in order

to dismiss algorithms relying on the exploration of the entire tree. In [14], the authors give such an

algorithm working in time O(n+ logL), where n is the size of the tree. In our case, the assumption

that the tree is infinite can be easily removed. All our algorithms work for finite trees as well,

without change of complexity. (In the case of finite trees, “regular” means that all internal nodes

have the same degree.)

The discussion of the second assumption, that of regularity of the tree, is more subtle. In our

algorithm for unoriented trees, we use it in order to guarantee that all balls of a given radius have

equal size, and thus an agent can compute the periods of its idleness to match exploration periods

of the other agent. This is not possible if the tree is arbitrary because then different balls of the

same radius can have very different sizes. If agents knew a common upper bound b(s) on the size of

any ball of radius s then our algorithm for unoriented trees could be generalized to arbitrary (non-

regular) trees with z(D) replaced by b(D) in the complexity. However, for arbitrary unoriented

trees without any extra knowledge, designing a rendezvous algorithm with time close to optimal

seems to be a challenging open problem. By contrast, all our algorithms with simultaneous start

for oriented trees are efficient and work without assuming regularity, as these algorithms do not

rely on exploring balls in the tree.
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