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PAIRED 2-DISJOINT PATH COVERS OF BURNT PANCAKE GRAPHS

WITH FAULTY ELEMENTS

TOMÁŠ DVOŘÁK AND MEI-MEI GU

Abstract. The burnt pancake graph BPn is the Cayley graph of the hyperoctahedral group
using prefix reversals as generators. Let {u, v} and {x, y} be any two pairs of distinct vertices
of BPn for n ≥ 4. We show that there are u − v and x − y paths whose vertices partition the
vertex set of BPn even if BPn has up to n − 4 faulty elements. On the other hand, for every
n ≥ 3 there is a set of n − 2 faulty edges or faulty vertices for which such a fault-free disjoint
path cover does not exist.

1. Introduction

Consider a stack of pancakes of different diameters where each pancake has a burnt side. A chef
spatula can be inserted at any point in the stack and used to flip all pancakes above it. The burnt
pancake problem, introduced by Gates and Papadimitriou [8], is to sort the stack in order of size
using the minimum number of flips so that all pancakes end up with the burnt side on bottom.

The problem may be modeled by a burnt pancake graph BPn whose vertices and edges represent
the stacks of n burnt pancakes and their flips, respectively. As the graphs defined in this way are
actually Cayley graphs of the group of signed permutations generated by prefix reversals, they
possess a number of useful properties such as vertex-transitivity or relatively small degree and
diameter with respect to the size of the graph. Moreover, they are relatively sparse, compared to
e.g. the class of hypercubes, which makes them appealing as a model of interconnection networks
for parallel and distributed computing. This inspired an extensive research of burnt pancake
graphs focused on their structural properties as well as related algorithmic problems such as
matching preclusion [12], routing schemes [11], fault tolerance [20], conditional diagnosability [21],
component connectivity [9], weak pancyclicity [1] or neighbor connectivity [10].

A k-disjoint path cover (k-DPC) of a graph G is a set of k paths whose vertex sets form a par-
tition of the vertices of G. This concept originated from the interconnection networks community
and was motivated by applications where the full utilization of network nodes is important [18].
The problem of construction of a k-DPC joining given sets of k sources and k sinks has been
studied in two incarnations: In the paired version, the i-th path runs between the i-th source and
i-th sink while in the unpaired version each path joins an arbitrary source and sink. The problem
was previously investigated for general graphs [7] as well as for various network models includ-
ing recursive circulants [14], grid graphs [17], hypercube-like networks [18], faulty hypercubes [4],
hypercubes [5], interval graphs [19] or torus-like graphs [16].

In this paper we study paired 2-disjoint path covers of burnt pancake graphs with faulty elements

representing network nodes or communication links that have become overloaded or unavailable.
The paper is organized as follows. The next section introduces terminology, notation and surveys
previous results on burnt pancake graphs. Section 3 provides tools that are used as building blocks
for the inductive construction in the proof of the main theorem, described in Section 4. The paper
is concluded with a discussion on the optimality of the main result and an open problem that may
serve as inspiration for future research.
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2. Preliminaries

The aim of this section is to introduce notation and terminology. In the rest of this paper, n
always stands for a positive integer while k̄ denotes the negation of an integer k, i.e., k̄ = −k. We
use [n] and 〈n〉 to denote the sets {1, 2, . . . , n} and [n] ∪ {k̄ | k ∈ [n]}, respectively.

As usual, V (G) stands for the vertex set and E(G) for the edge set of a graph G. The distance

of vertices u, v of G is denoted by dG(u, v). Given the subgraphs H1, H2, . . . , Hk of G,
⋃k

i=1 Hi

denotes the subgraph of G induced by the vertices of
⋃k

i=1 V (Hi).
Let F ⊆ V (G) ∪ E(G) be a set of faulty elements of G which may include both faulty vertices

and faulty edges. Then G−F stands for the graph with vertices V (G)\F and edges E(G)\(F ∪E′)
where E′ is the set of all edges of G incident with the vertices of F . Vertices (edges) of G−F are
then called fault-free vertices (fault-free edges) of G. To simplify the notation, in the case that
F = {x} we use G− x to denote G− {x}. Furthermore, we use G− F1 − F2 to denote the graph
(G− F1)− F2. If H is a subgraph of G, G−H denotes the graph G− V (H).

2.1. Paths and cycles. A sequence 〈u1, u2, . . . , un〉 of distinct vertices such that any two con-
secutive vertices are adjacent is a path between vertices u1 and un. The vertex and edge sets
{u1, u2, . . . , un} and {u1u2, u2u3, . . . , un−1un} of such a path P are denoted by V (P ) and E(P ),
respectively. The length of a path P is defined as the size of E(P ) and denoted by ℓ(P ). For the
notational convenience, a path P between vertices u and v is denoted by P [u, v]. Given a path
P [u, v], we use P [v, u] to denote the path between v and u obtained by reversing the sequence
P [u, v].

Let P = 〈u1, u2, . . . , un〉 and Q = 〈un, un+1, . . . , um〉 be paths such that V (P ) ∩ V (Q) = {un}.
Then the concatenation of P with Q, written as P +Q, is the path 〈u1, u2, . . . , un, un+1, . . . , um〉.

As the operation + is associative, we can safely use
∑k

i=1 Pi instead of P1 + P2 + · · ·+ Pk.
If 〈u1,u2,. . . , un〉 is a path and un is adjacent to u1, the sequence 〈u1,u2,. . . , un, u1〉 is a cycle

of length n. The vertex and edge sets {u1, u2, . . . , un} and {u1u2, u2u3, . . . , un−1un, unu1} of such
a cycle C are denoted by V (C) and E(C), respectively, while its length is denoted by ℓ(C). Note
that therefore we can view C as a graph with vertices V (C) and edges E(C). A Hamiltonian cycle

(Hamiltonian path) of a graph G is a cycle (path) that contains each vertex of G exactly once.
A graph is Hamiltonian if it contains a Hamiltonian cycle. A graph is Hamiltonian-connected if
there is a Hamiltonian path between any pair of distinct vertices of the graph.

Let C = 〈u1,u2,. . . , un, u1〉 be a cycle, i 6= j ∈ [n] and put u0 = un, un+1 = u1. Vertices a and
b are called

• concordant neighbors of ui and uj on C if (a, b) ∈ {(ui−1, uj−1), (ui+1, uj+1)},
• discordant neighbors of ui and uj on C if (a, b) ∈ {(ui−1, uj+1), (ui+1, uj−1)}.

Let S = {s1, s2, . . . , sk} and T = {t1, t2, . . . , tk} be two disjoint subsets of distinct vertices
of a graph G. A paired k-disjoint path cover (k-DPC for short) of G joining S and T is a set
{P1, P2, . . . , Pk} of k pairwise vertex-disjoint paths in G such that Pi = P [si, ti] for all i ∈ [k] and
⋃k

i=1 V (Pi) = V (G). Sets S and T are called terminal sets of size k, their elements are terminal

vertices. In the following we always assume that terminal sets are disjoint and of the same size.
Note that if a graph on at least four vertices admits a 2-DPC for arbitrary terminal sets, then

it must be Hamiltonian-connected.

2.2. Burnt pancake graphs. A signed permutation of [n] is an n-permutation u1u2 · · ·un of 〈n〉
such that |u1||u2| · · · |un| is a permutation of [n]. Given an integer i ∈ [n] and a signed permutation
u = u1u2 · · ·ui · · ·un of 〈n〉, the i-th prefix reversal of u is denoted by ui and defined as the signed
permutation ūiūi−1 · · · ū1ui+1 · · ·un. As an example consider a signed permutation u = 12̄35̄4 of
[5], then u3 = 3̄21̄5̄4 while u5 = 4̄53̄21̄.

The n-dimensional burnt pancake graph, denoted by BPn, is defined [8] as the graph whose
vertex set consists of all signed permutations of 〈n〉, two vertices u, v ∈ V (BPn) being adjacent
whenever ui = v for some i ∈ [n]. Fig. 1 depicts BPn for all n ∈ [3]. Note that BP2 is an 8-cycle
while the girth of BPn for n ≥ 2 is known to be equal to 8 [3].



PAIRED 2-DISJOINT PATH COVERS OF BURNT PANCAKE GRAPHS WITH FAULTY ELEMENTS 3

The definition implies that BPn is an n-regular graph, |V (BPn)| = n! · 2n and |E(BPn)| =
n ·n! ·2n−1. It is easy to see that BPn is not a bipartite graph for any n ≥ 3: Indeed, BP3 contains
a 9-cycle

〈123, 2̄1̄3, 3̄12, 312, 1̄3̄2, 2̄31, 231, 3̄2̄1, 1̄23, 123〉

and the same is true for any BPn with n ≥ 4 since it contains BP3 as a subgraph as explained
below.

1 1̄

12 1̄2

2̄1̄

21̄

12̄ 1̄2̄

21

2̄1

123 1̄23 3̄2̄1 32̄1

2̄1̄3 2̄13 231 23̄1

21̄3 213 2̄31 2̄3̄1

12̄3 1̄2̄3 3̄21 321

1̄32̄ 132̄ 1̄32 132

3̄12̄
3̄1̄2̄

3̄12 3̄1̄2

312̄ 31̄2̄ 312 31̄2

1̄3̄2̄ 13̄2̄ 1̄3̄2 13̄2

3̄2̄1̄
32̄1̄

123̄ 1̄23̄

231̄
23̄1̄

2̄1̄3̄ 2̄13̄

2̄31̄ 2̄3̄1̄ 21̄3̄ 213̄

3̄21̄ 321̄ 12̄3̄ 1̄2̄3̄

BP1

BP2

BP3

Figure 1. Burnt pancake graphs BPn for n ∈ [3].

BPn can be partitioned into 2n vertex-disjoint subgraphs BP i
n, i ∈ 〈n〉, where BP i

n is the
subgraph induced by the vertices {u1u2 · · ·un ∈ V (BPn) | un = i}. Note that each BP i

n is
isomorphic to BPn−1. Given distinct i, j ∈ 〈n〉, the set of all edges between BP i

n and BP j
n is

denoted by Ei,j(BPn). Note that the edges of Ei,j(BPn) always form a matching. An edge of
BPn is called an out-edge if is falls into Ei,j(BPn) for some i, j ∈ 〈n〉. Given a vertex v ∈ V (BP i

n),
a unique out-edge leads from v to its neighbor outside of BP i

n, denoted by vn and called the out-

neighbor of v.

2.3. Previous results. The next two lemmas summarize useful properties of burnt pancake
graphs that follow directly from the definition.

Lemma 1 ([2, 3, 11]). Let n ≥ 2 and i, j ∈ 〈n〉 such that i 6= j. Then

|Ei,j(BPn)| =

{

(n− 2)! · 2n−2 for i 6= j

0 otherwise .

Lemma 2 ([12]). Let n ≥ 3, u ∈ V (BP i
n) and v ∈ V (BP j

n) for some i, j ∈ 〈n〉.

(1) If i = j and 1 ≤ dBPn
(u, v) ≤ 2, then un 6= vn.

(2) If i 6= j and dBPn
(u, v) ≤ 3, then un 6= vn.
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The following results on Hamiltonicity of burnt pancake graphs with faulty elements are due
to Kaneko [13].

Lemma 3 ([13]). Let n ≥ 3 and F ⊆ V (BPn) ∪ E(BPn). If |F | ≤ n − 2, then BPn − F is

Hamiltonian. If |F | ≤ n− 3, then BPn is Hamiltonian-connected.

Lemma 4 ([13]). Let F ⊆ V (BPn) ∪ E(BPn) with |F | ≤ n− 2 and {k1, k2, . . . , km} ⊆ 〈n〉 such

that n ≥ 4 and m ≥ 5. If each of the m subgraphs BP k1
n − F , BP k2

n − F , . . ., BP km
n − F is

Hamiltonian-connected, then for each u ∈ V (BP ki
n ) and v ∈ V (BP

kj

n ), 1 ≤ i 6= j ≤ m, there is

a Hamiltonian path between u and v in
⋃m

i=1 BP ki

i − F .

3. Tools

In this section we describe the tools that are necessary for our constructions of Hamiltonian
paths and disjoint path covers. We start with two simple observations.

Proposition 1. Let n ≥ 4, F be a set of at most n−3 faulty elements in BPn, and k1 6= k2 ∈ 〈n〉.

(1) If BP k1
n − F admits a disjoint path cover, x, y, z, w are arbitrary distinct vertices of BPn − F

and k2 6= k1, then some of its paths contains an edge ab such that an ∈ V (BP k2
n − F ),

bn ∈ V (BP k3
n − F ) for some k3 ∈ 〈n〉 \ {k1, k2, k1}, {a, b, an, bn} ∩ {x, y, z, w} = ∅ and both

out-edges aan, bbn are fault-free.

(2) If BP k1
n −F contains a Hamiltonian cycle C and x, y are arbitrary distinct vertices of BPn−F ,

then C contains an edge ab such that an, bn fall into BP k3
n − F,BP k4

n − F , respectively, for

some k3, k4 ∈ 〈n〉 \ {k1, k2, k1} such that k3 6= k4, {a, b, an, bn}∩ {x, y} = ∅ and both out-edges

aan, bbn are fault-free.

(3) If x, y, z are arbitrary distinct vertices of BP k1
n −F , e ∈ F and k2 6= k1, then there is a vertex

a in BP k1
n − F − {x, y, z} such that an ∈ V (BP k2

n − F ) and the out-edge aan is fault-free.

Moreover, if e is an edge, then a is not incident with e, if e is a vertex, then a is not its

neighbor.

Proof. (1) As k2 6= k1, Lemma 1 implies that BP k1
n contains (n − 2)! · 2n−2 vertices ai such that

ani ∈ BP k2
n . If ai is fault-free, any DPC of BP k1

n includes a path P that passes through ai. Since
ℓ(P ) ≥ 1, there is a neighbor bi of ai on P . Note that if ai, aj are two such distinct vertices,
then Lemma 2 implies d(ai, aj) > 2 which means that their corresponding neighbors bi, bj must
be distinct as well. Each such edge aibi may be “blocked” by a faulty element of F or a vertex of
{x, y, z, w}. As |F ∪ {x, y, z, w}| ≤ n+ 1 < (n− 2)! · 2n−2 for n ≥ 4, there is an edge ab such that
both out-edges and out-neighbors of a and b are fault-free while {a, b, an, bn}∩{x, y, z, w} = ∅. By
Lemma 2, the out-neighbors of a and b fall into distinct subgraphs, which means that bn ∈ V (BP k3

n )
for some k3 6∈ {k1, k2, k1}.

(2) Observe that any four consecutive vertices on C induce a path of length three which — by
Lemma 2 — contains an edge ab such that neither an nor bn falls into BP k2

n . There are possibly
⌊|V (C)|/4⌋ pairwise vertex-disjoint paths of length three on C with such an edge ab, but

• at most two of them may have its vertices or their out-neighbors in {x, y},
• at most f2 of them may contain vertex with a faulty out-edge or faulty out-neighbor,
• where |V (C)| = |V (BP k1

n )| − f1 while f1 + f2 = |F | ≤ n− 3.

Since
⌊

|V (BP k1
n )| − f1
4

⌋

− f2 − 2 ≥ (n− 1)! · 2n−3 − (n− 3)− 2 > 1

for n ≥ 4, the cycle C contains an edge ab with the desired properties. The fact that an, bn fall
into distinct subgraphs follows from Lemma 2.

(3) By Lemma 1 there are (n − 2)! · 2n−2 vertices of BP k1
n whose out-neighbors lie in BP k2

n .
Note that

• at most f1 ≤ 3 of them may fall into {x, y, z},
• at most f2 ≤ |F | ≤ n− 3 of them may be either faulty or incident with a faulty out-edge
or adjacent to a faulty out-neighbor,
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• if e is an edge, at most f3 ≤ 2 of them may be incident with it,
• if e is a vertex, at most f4 ≤ n− 1 of them may be its neighbors.

As f1+f2+max{f3, f4} ≤ 2n−1 < (n−2)! ·2n−2 for n ≥ 4, a vertex a with the desired properties
exists. �

Proposition 2. Let {k1, k2, . . . , km} ⊆ 〈n〉 with m ≥ 5. Then there is a permutation k′1, k
′
2, · · · , k

′
m

of k1, k2, · · · , km such that k1 = k′1, k
′
m = km and k′i 6= k

′

i+1 for i ∈ [m− 1].

Proof. Let G be a graph on the vertex set 〈n〉, an edge joining two vertices i, j ∈ 〈n〉 whenever
i 6= j̄. Consider a subgraph H of G induced by the set {k1, k2, . . . , km}. Then for every vertex
v of H we have dH(v) ≥ m − 2 > |V (H)|/2 for m ≥ 5. Hence by [15, Problem 10.24], H is
Hamiltonian-connected. It follows that H contains a Hamiltonian path k1 = k′1, k

′
2, · · · , k

′
m = km

which forms the permutation with the desired properties. �

The next lemma extends Lemma 4 to Hamiltonian paths between arbitrary endvertices provided
that the number of subgraphs is larger.

Lemma 5. Let F be a set of at most n − 3 faulty elements of BPn and {k1, k2, . . . , km} ⊆ 〈n〉
such that n ≥ 4 and m ≥ 6. If each of m subgraphs BP k1

n − F , BP k2
n − F , . . ., BP km

n − F is

Hamiltonian-connected, then
⋃m

i=1 BP ki

i − F is Hamiltonian-connected as well.

Proof. Let u, v be distinct vertices of the graph
⋃m

i=1 BP ki

i −F . If they fall into distinct subgraphs,
then a Hamiltonian path between them exists by Lemma 4, so we can assume that they fall into
the same subgraph, say BP k1

n . By our assumption there is a Hamiltonian path H1[u, v] of BP k1
n .

By part (1) of Proposition 1 there is an edge ab ∈ E(H1[u, v]) such that aan, bbn, an, bn are
fault-free and H1[u, v] = H2[u, a] + 〈a, b〉 + H3[b, v]. As Proposition 1 (1) also guarantees that
the out-neighbors an, bn of a, b fall into distinct subgraphs and we have m − 1 ≥ 5, by Lemma 4
there is a Hamiltonian path H4[a

n, bn] of
⋃m

i=2 BP ki

i − F . Then H [u, v] := H2[u, a] + 〈a, an〉 +

H4[a
n, bn] + 〈bn, b〉+H3[b, v] forms the desired Hamiltonian path of

⋃m

i=1 BP ki

i − F . �

Now we are ready to extend Lemma 4 from Hamiltonian paths to 2-disjoint path covers.

Lemma 6. Let F be a set of at most n − 3 faulty elements of BPn and {k1, k2, . . . , km} ⊆ 〈n〉
such that n ≥ 4 and m ≥ 5. If each of m subgraphs BP k1

n − F , BP k2
n − F , . . ., BP km

n − F admits

a 2-DPC joining arbitrary terminal sets of size two, then

(1)
⋃m

i=1 BP ki
n − F is Hamiltonian-connected,

(2) there is a 2-DPC of
⋃m

i=1 BP ki
n −F formed by paths P [u, v] and Q[x, y] for arbitrary terminal

vertices u, v, x, y such that neither {u, v} nor {x, y} belong to BP ki
n − F for some i ∈ [m],

(3) if m ≥ 6,
⋃m

i=1 BP ki
n − F admits a 2-DPC for arbitrary terminal sets of size two.

Proof. First deal with part (2). As m ≥ 5, by Proposition 2 we can assume that u ∈ V (BP k1
n −F ),

v ∈ V (BP km
n − F ) and ki 6= ki+1 for i ∈ [m − 1]. Similarly, by Proposition 2 we can rearrange

k1, k2, · · · , km to obtain k′1, k
′
2, · · · , k

′
m such that x ∈ V (BP

k′

1
n − F ), y ∈ V (BP

k′

m
n − F ) and

k′i 6= k
′

i+1 for i ∈ [m− 1].
By Lemma 1, for every pair i, j ∈ 〈n〉 such that i 6∈ {j, j̄} we have |Ei,j(BPn)| − |F | ≥

(n − 2)! · 2n−2 − (n − 3) > 4 for n ≥ 4 and therefore Ei,j(BPn) contains at least four fault-free
edges incident to fault-free vertices in this case. Recall that Ei,j(BPn) forms a matching and
therefore these edges are incident with distinct vertices. It follows that for every i ∈ [m − 1] we
can select edges viui+1 ∈ Eki,ki+1

(BPn − F ) and yixi+1 ∈ Ek′

i
,k′

i+1
(BPn − F ) such that

• vi ∈ V (BP ki
n −F ), ui+1 ∈ V (BP

ki+1

n −F ), yi ∈ V (BP
k′

i
n −F ) and xi+1 ∈ V (BP

k′

i+1

n −F ),
• all the vertices of {ui, vi, xi, yi}mi=1 are pairwise distinct.

provided that we put u1 := u, vm := v, x1 := x and ym := y.
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By our assumption, for each i ∈ [m] there is a 2-DPC ofBP ki
n −F formed by {Pi[ui, vi], Qj[xj , yj]}

where j ∈ [m] is such that k′j = ki. Then

P [u, v] := P1[u, v1] + 〈v1, u2〉+
m−1
∑

i=2

(Pi[ui, vi] + 〈vi, ui+1〉) + Pm[um, v] and

Q[x, y] := Q1[x, y1] + 〈y1, x2〉+
m−1
∑

i=2

(Qi[xi, yi] + 〈yi, xi+1〉) +Qm[xm, y]

form the desired 2-DPC of
⋃m

i=1 BP ki
n − F joining the given terminal sets, see Fig. 2 for an

illustration.
Next we show that part (1) is an immediate corollary of part (2). To that end, let u, v be

distinct vertices of
⋃m

i=1 BP ki

i − F . Select an arbitrary fault-free edge ab in a subgraph, different

from those containing u and v, and apply part (2) to obtain a 2-DPC of
⋃m

i=1 BP ki

i − F formed
by the paths P [u, a] and Q[b, v]. Then

H [u, v] := P [u, a] + 〈a, b〉+Q[b, v]

is the desired Hamiltonian path of
⋃m

i=1 BP ki

i − F .
Finally, to settle part (3), assume that m ≥ 6. If one of the subgraphs, say BP k1

n − F ,
contains exactly three terminals, say u, v, x, apply part (3) of Proposition 1 to select a vertex a
of BP k1

n − F − {u, v, x} such that both an and aan are fault-free while an and y fall into distinct
subgraphs. By our assumption there is a 2-DPC {P [u, v], P1[x, a]} of BP k1

n −F , and by Lemma 4
there is a Hamiltonian path Q1[a

n, y] of
⋃m

i=2 BP ki
n . The desired 2-DPC of

⋃m

i=1 BP ki
n − F is

formed by P [u, v] and Q[x, y] := P1[x, a] + 〈a, an〉+Q1[a
n, y].

If u, v are contained in the same subgraph, say BP k1
n − F , by our assumption this subgraph

contains a Hamiltonian path P [u, v]. Next observe that by part (1) of the current lemma (that
we have just proved above),

⋃m

i=2 BP ki
n − F is Hamiltonian connected and therefore contains

a Hamiltonian path Q[x, y]. Then P [u, v] and Q[x, y] form the desired 2-DPC of
⋃m

i=1 BP ki
n − F .

Finally, if all terminals u, v, x, y are contained in the same subgraph, say BP k1
n − F , by our

assumption this subgraph contains a 2-DPC formed by the paths P [u, v] and Q1[x, y]. By part (1)
of Proposition 1, one of these paths, say Q1[x, y], contains an edge ab such that both out-vertices
an, bn and out-edges aan, bbn are fault-free. Moreover, an and bn fall into distinct subgraphs. Note
that the removal of ab splits Q1[x, y] into two paths Q2[x, a] and Q3[b, y]. Furthermore, Lemma 4
guarantees the existence of a Hamiltonian path H [an, bn] of

⋃m

i=2 BP ki
n − F . The desired 2-DPC

of
⋃m

i=1 BP ki
n − F is then formed by P [u, v] and

Q[x, y] := Q2[x, a] + 〈a, an〉+H [an, bn] + 〈bn, b〉+Q3[b, y].

�

As a corollary we obtain another extension of Lemma 4. This time we show that Hamiltonian-
connectivity is preserved even if one of the subgraphs is only Hamiltonian provided that the others
admit 2-DPC’s for arbitrary terminal sets and the number of subgraphs is sufficiently large.

Lemma 7. Let n ≥ 4, {k1, k2, . . . , km} ⊆ 〈n〉 such that m = |〈n〉| − 1 and F be a set of at most

n − 3 faulty elements of BP
kj
n for some j ∈ [m]. Suppose that BP

kj
n − F is Hamiltonian while

BP ki
n for each i ∈ [m] \ {j} admits a 2-DPC for arbitrary terminal sets of size two. Then there is

a Hamiltonian path in
⋃m

i=1 BP ki
n − F between u and v provided that

(1) either u ∈ V (BP k1
n ) and v ∈ V (BP km

n ),
(2) or u, v ∈ V (BP k1

n ) and j > 1.

Proof. Let C denote the Hamiltonian cycle of BP
kj

n −F . First assume that u and v are chosen so
that (1) holds. We start with the case that j = 1 or j = m, without loss of generality assuming the
former, which means that u lies on the cycle C in BP k1

n −F . By Lemma 2, the two neighbors of u
on C have out-edges leading to different subgraphs, and therefore we can select a neighbor a of u on
C such that its out-neighbor an falls into a subgraph BP kl

n , 2 ≤ l ≤ m. Observe that the vertices
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v1u = u1

y2x2

v2u2

y3x3

v3u3

y1x = x1

viui

y = ymxm

v = vmum

yjxj
. . .

. . . . . .

. . .

BP k1
n BP k2

n BP k3
n BP

ki
n BP km

n

BP
k′

2
n BP

k′

3
n BP

k′

1
n BP

k′

m
n BP

k′

j
n

Figure 2. Illustration of the proof of part (2) of Lemma 6. The paths P [u, v] and
Q[x, y] are denoted by green and blue colors, respectively. The indices i, j ∈ [m]
are selected so that ki = k′m and k′j = km. Please note that in general it may not
be true that (k1, k2, k3) = (k′2, k

′
3, k

′
1) or km 6= k′m as depicted in this illustration.

of C form a Hamiltonian path H1[u, a] of BP k1
n −F . Recall that our assumptions imply that each

subgraphBP ki
n , 2 ≤ i ≤ m is Hamiltonian-connected. If an 6= v, Lemma 5 guarantees the existence

of a Hamiltonian path H2[a
n, v] of

⋃m

i=2 BP ki
n . Then H [u, v] := H1[u, a] + 〈a, an〉 + H2[a

n, v] is

the desired Hamiltonian path of
⋃m

i=1 BP ki
n − F .

If, however, an = v, by part (2) of Proposition 1 we can select an edge bc of C such that
{b, c} ∩ {u, a} = ∅ while both out-neighbors of b and c fall into

⋃m

i=2 BP ki
n . By removing edges bc

and ua, we split C into paths P [u, b] and Q[c, a] (or P [u, c] and Q[b, a], but we can without loss of
generality assume the former), thus forming a 2-DPC of BP k1

n −F . Note that our assumptions on
b and c imply that v 6∈ {bn, cn}, and therefore Lemma 5 guarantees the existence of a Hamiltonian
path H2[b

n, cn] of
⋃m

i=2 BP ki
n −v. Then the desired Hamiltonian path of

⋃m

i=1 BP ki
n −F is formed

by

H [u, v] := P [u, b] + 〈b, bn〉+H2[b
n, cn] + 〈cn, c〉+Q[c, a] + 〈a, an = v〉.

It remains to settle the case that neither u nor v belongs into BP
kj

n . Apply part (2) of
Proposition 1 to select an edge ab on the cycle C such that the out-neighbors an, bn belong to
⋃

i∈[m]\{j} BP ki
n while {an, bn}∩{u, v} = ∅. Hence by Lemma 6 there is a 2-DPC of

⋃

i∈[m]\{j} BP ki
n

formed by the paths P [u, an] and Q[bn, v]. Let H3[a, b] be the Hamiltonian path of BP
kj
n − F

formed by the vertices of the cycle C. Then

H [u, v] := P [u, an] + 〈an, a〉+H3[a, b] + 〈b, bn〉+Q[bn, v]

is the desired Hamiltonian path of
⋃m

i=1 BP ki
n − F . �

The next lemma settles a special case needed for the construction in the proof of our main
result.

Lemma 8. Let n ≥ 4, k1, k2 ∈ 〈n〉 such k1 6= k2 and F be a set of at most n−3 faulty elements of

BP k1
n . Suppose that BP k1

n −F is Hamiltonian-connected while BP k
n for each k ∈ 〈n〉\{k1} admits

a 2-DPC joining arbitrary terminal sets of size two. Then BPn − F admits a 2-DPC joining

arbitrary terminal sets of size two provided that each of BP k1
n −F and BP k2

n contains exactly two

terminals.

Proof. Let x, y, u, v be pairwise distinct vertices such that x, y ∈ V (BP k1
n − F ) and u, v ∈

V (BP k2
n ). Our goal is to construct 2-DPC’s of BPn − F formed by {P [x, y], Q[u, v]} as well

as by {P [x, u], Q[y, v]}.
As BP k1

n −F is Hamiltonian-connected, it contains a Hamiltonian path H [x, y]. By part (1) of
Proposition 1 this path contains an edge ab such that {a, b, an, bn} ∩ {x, y, u, v} = ∅. The removal
of the edge ab splits H [x, y] into two paths, say P1[x, a] and Q1[y, b], thus forming a 2-DPC of
BP k1

n − F .



8 TOMÁŠ DVOŘÁK AND MEI-MEI GU

Furthermore, as |〈n〉 \ {k1}| = 2n − 1 > 6 for n ≥ 4, Lemma 6 implies that
⋃

k∈〈n〉\{k1}
BP k

n

admits a 2-DPC formed by {P2[a
n, bn], Q2[u, v]} as well as by {P3[a

n, u], Q3[b
n, v]}. The first

desired 2-DPC of BPn − F is then formed by

P [x, y] := P1[x, a] + 〈a, an〉+ P2[a
n, bn] + 〈bn, b〉+Q1[b, y],

Q[u, v] := Q2[u, v],

while the other 2-DPC is defined by

P [x, u] := P1[x, a] + 〈a, an〉+ P3[a
n, u],

Q[y, v] := Q1[y, b] + 〈b, bn〉+Q3[b
n, v].

�

The last result of this section establishes the basis needed for the inductive construction in the
proof of our main result.

Theorem 1. BP3 has a 2-DPC joining arbitrary terminal sets of size two.

Proof. Since BP3 is a vertex transitive graph, we can fix one terminal vertex to 123 ∈ V (BP 3
3 ).

By a computer search we were able to find the 2-DPC’s of BP3 for all different distributions of
the remaining three terminals. The list of the resulting paths is available online at Mendeley Data
[6]. �

4. Main result

At this point, we are well armed to formulate and prove the main result of this paper.

Theorem 2. Let n ≥ 4 and F be a set of at most n − 4 faulty elements in BPn. Then there is

a 2-DPC of BPn − F joining arbitrary terminal sets of size two.

Proof. We argue by induction on n. As the case n = 4 follows from part (3) of Lemma 6 using
Theorem 1, we can assume that n ≥ 5 and that the statement of the theorem holds for n − 1.
Recall that BPn can be partitioned into 2n ≥ 8 vertex-disjoint subgraphs BP i

n, i ∈ 〈n〉, where
each subgraph is isomorphic to BPn−1. First observe that if BP i

n contains no more that n − 5
faulty elements for all i ∈ 〈n〉, then, by the induction hypothesis, each of m subgraphs BP k1

n −F ,
BP k2

n − F , . . ., BP km
n − F admits a 2-DPC joining arbitrary terminal sets of size two. Then the

statement of the theorem holds by Lemma 6.
It remains to settle the case that there is a k∗ ∈ 〈n〉 such that BP k∗

n contains exactly n − 4
faulty elements while the remaining subgraphs as well as all the out-edges are fault-free. To that
end, let u, v, x, y be distinct vertices of BPn − F . Our goal is to construct vertex disjoint paths
P [u, v] and Q[x, y] to form a 2-DPC of BPn−F . Recall that the induction hypothesis implies that
for each k ∈ 〈n〉 \ {k∗}, the (fault-free) subgraph BP k

n admits a 2-DPC joining arbitrary terminal
sets of size two. Note that this implies that each of these subgraphs is also Hamiltonian-connected.
Moreover, the subgraph BP k∗

n is Hamiltonian-connected by Lemma 3.
We consider four cases according to the distribution of the terminal vertices.
Case 1. All four terminal vertices are contained in the same subgraph BP k1

n − F for some
k1 ∈ 〈n〉.

Subcase 1.1. k∗ = k1.
Choose an arbitrary faulty element e ∈ F and set F ′ = F \ {e}. As now |F ′| = (n− 1)− 4, by

the induction hypothesis there is a 2-DPC {P1[u, v], Q1[x, y]} of BP k1
n − F ′. If e does not lie on

P1[u, v] or Q1[x, y], select an arbitrary edge ab on Q1[x, y]. If e lies on P1[u, v] or Q1[x, y], we can
without loss of generality assume the latter. If e is a faulty edge, let a, b be the vertices of Q1[x, y]
incident with e. In both cases we have

Q1[x, y] = Q2[x, a] + 〈a, b〉+Q3[b, y].

If e is a faulty vertex w visited by Q1[x, y], let a, b be its neighbors on this path so that

Q1[x, y] = Q2[x, a] + 〈a, w, b〉+Q3[b, y].
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Recall that we have all faulty elements inside BP k1
n and therefore the out-edges and out-neighbors

of a and b are also fault-free. In any case we have d(a, b) ≤ 2 and therefore, by Lemma 2, the
out-neighbors an and bn of a and b belong to different subgraphs BP k2

n and BP k3
n , respectively.

It remains to recall that BP i
n is Hamiltonian-connected for each i ∈ 〈n〉 \ {k1} and therefore, by

Lemma 4, BPn −BP k1
n contains a Hamiltonian path H [an, bn] between an and bn. Then

P [u, v] := P1[u, v] and

Q[x, y] := Q2[x, a] + 〈a, an〉+H [an, bn] + 〈bn, b〉+Q3[b, y]

form the desired 2-DPC of BPn − F .
Subcase 1.2. k∗ = k2 ∈ 〈n〉 \ {k1}.
As BP k1

n contains no faulty elements in this case, by the induction hypothesis it admits a 2-
DPC {P [u, v], Q1[x, y]}. By Proposition 1 one of the paths, say Q1[x, y], contains an edge ab such
that an ∈ V (BP k2

n − F ) and bn ∈ V (BP k3
n ) for some k3 ∈ 〈n〉 \ {k1, k2}. We can without loss

of generality assume that a is closer to x than b on Q1[x, y], exchanging the roles of x and y is
necessary, which means that Q1[x, y] = Q2[x, a] + 〈a, b〉+Q3[b, y]. By part (1) of Lemma 7 there
is a Hamiltonian path H [an, bn] of BPn − F −BP k1

n . Put

Q[x, y] := Q2[x, a] + 〈a, an〉+H [an, bn] + 〈bn, b〉+Q3[b, y]

and observe that then {P [u, v], Q[x, y]} forms the desired 2-DPC of BPn − F .
Case 2. Terminal vertices are contained in two distinct subgraphs BP k1

n and BP k2
n , where

k1, k2 ∈ 〈n〉 and k1 6= k2. We distinguish three subcases.
Subcase 2.1. One subgraph contains exactly three terminals. We can without loss of generality

assume that u, v, x fall into BP k1
n − F while y lies in BP k2

n − F .
(2.1.1) k∗ 6= k1.
By part (3) of Proposition 1 we can select a vertex w in BP k1

n − F such that w 6∈ {u, v, x}, its
out-neighbor wn falls into BP k3

n − F for some k3 ∈ 〈n〉 \ {k1, k2} and the out-edge wwn is fault-
free. Recall that y lies in BP k2

n − F and therefore wn 6= y. As k1 6= k∗, BP k1
n admits a 2-DPC

{P1[u, v], Q1[x,w]}. Recall that each of the remaining subgraphs is Hamiltonian-connected and
therefore BPn − F −BP k1

n contains a Hamiltonian path H [wn, y] by Lemma 4. Then

P [u, v] := P1[u, v] and

Q[x, y] := Q1[x,w] + 〈w,wn〉+H [wn, y]

form the desired 2-DPC of BPn − F .
(2.1.2) k∗ = k1.
Here, we provide two different constructions depending on whether the terminals x and y are

adjacent or not.
(2.1.2.1) xn = y.
As BP k1

n −F is Hamiltonian-connected, it contains a Hamiltonian path H1[u, v]. Recall that x
lies in BP k1

n − F − {u, v}, which means that H1[u, v] passes through x and there are two distinct
neighbors, say a and b, of x on this path. Then the removal of x splits H1[u, v] into two paths
P1[u, a] and Q1[b, v], thus forming a 2-DPC of BP k1

n − F − x. Note that it may happen that
a = u or b = v, but none of these equalities jeopardizes the construction that follows. Recall that
the out-edges leading out of BP k1

n form a matching and therefore we have y = xn 6∈ {an, bn}. As
(n−1)−3 ≥ |{y}|, BP k2

n −y is Hamiltonian-connected by Lemma 3. Consequently, BPn−BP k1
n −y

is Hamiltonian-connected by Lemma 4 and therefore it contains a Hamiltonian path H2[a
n, bn].

Then

P [u, v] := P1[u, a] + 〈a, an〉+H2[a
n, bn] + 〈bn, b〉+Q1[b, v]

Q[x, y] := 〈x, y〉

form the desired 2-DPC of BPn − F , see Fig. 3a.
(2.1.2.2) xn 6= y.
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As |F ∪ {x}| = (n− 1)− 2, by Lemma 3 there is a Hamiltonian cycle C of BP k1
n − F − x. Let

a and b be discordant neighbors of u and v on C. Note that

ℓ(C) = |V (BP k1

n − F − x)| = (n− 1)! · 2n−1 − (n− 3) > 4

for n ≥ 5 and therefore we can select a, b in such a way that a 6= b. It follows that the removal of
edges ua and xb splits C into two paths P1[u, v] and Q1[a, b] forming a 2-DPC of BP k1

n − F − x.
Furthermore, as the out-edges leading out of BP k1

n form a matching, it must be the case
that the vertices an, bn and xn are pairwise distinct. If y 6∈ {an, bn}, then, by the induction
hypothesis, BPn − BP k1

n satisfies the assumptions of Lemma 6 and therefore admits a 2-DPC
P2[x

n, an], Q2[b
n, y]. On the other hand, if y = an or y = bn, then we can without loss of generality

assume the latter and put Q2[b
n, y] = 〈y〉. Further, as BP k2

n − y is Hamiltonian connected by
Lemma 3, it follows that BPn − BP k1

n − y is Hamiltonian-connected by Lemma 4 and therefore
contains a Hamiltonian path P2[x

n, an]. In both cases, set

P [u, v] := P1[u, v],

Q[x, y] := 〈x, xn〉+ P2[x
n, an] + 〈an, a〉+Q1[a, b] + 〈b, bn〉+Q2[b

n, y]

and observe that then {P [u, v], Q[x, y]} forms the desired 2-DPC of BPn − F , see Fig. 3b.

a

b

x

u

y
v

BP
k1

n

bn

BPn −BP
k1

n

an

(a) xn = y

a

b

x

u

y

xn

v

BP
k1

n

bn

BPn −BP
k1

n

an

(b) xn 6= y

Figure 3. Construction of a 2-DPC in the subcase (2.1.2). The paths P [u, v]
and Q[x, y] are depicted by green and blue colors, respectively. The subgraph
BPn −BP k1

n is enclosed by a dotted line.

Subcase 2.2. u, v ∈ V (BP k1
n − F ), x, y ∈ V (BP k2

n − F ) for some k1, k2 ∈ 〈n〉, k1 6= k2.
Recall that each BP k

n , k ∈ 〈n〉, is Hamiltonian-connected and therefore there is a Hamiltonian
path P [u, v] of BP k1

n − F . Moreover, by Lemma 5 there is a Hamiltonian path Q[x, y] of BPn −
F −BP k1

n which together with P [u, v] forms the desired 2-DPC of BPn − F .
Subcase 2.3. u, x ∈ V (BP k1

n − F ), v, y ∈ V (BP k2
n − F ) for some k1, k2 ∈ 〈n〉, k1 6= k2.

If k∗ ∈ {k1, k2}, then the desired 2-DPC of BPn − F exists by Lemma 8. We can therefore

assume that k∗ ∈ 〈n〉 \ {k1, k2}. Note that we can without loss of generality assume that k∗ 6= k1,
swapping the roles of k1 and k2 if necessary.

By part (1) of Proposition 1 there is a fault-free vertex a of BP k∗

n such that an belongs to
BP k1

n − u − x. By Lemma 3, there exists a Hamiltonian cycle C of BP k∗

n − F . Then a has
two neighbors on C and by Lemma 2 one of them has its out-neighbor in a subgraph different
from both BP k1

n and BP k2
n . So let b be the neighbor of a on C such that bn ∈ BP k3

n , where
k3 ∈ 〈n〉 \ {k1, k2, k∗}. Note that the vertices of C form a Hamiltonian path H [a, b] of BP k∗

n − F .
As |〈n〉| ≥ 10, we can select a k4 ∈ 〈n〉 \ {k1, k2, k3, k∗, k1}. Using part (1) of Proposition 1 again,
we can select a vertex c in BP k1

n − {u, x, an} such that cn ∈ BP k4
n . By the induction hypothesis,
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there is a 2-DPC of BP k1
n consisting of the paths P1[u, a

n] and Q1[x, c]. By Lemma 6, there is
a 2-DPC of BPn −BP k1

n −BP k∗

n formed by the paths P2[b
n, v] and Q2[c

n, y]. The desired 2-DPC
of BPn − F is then formed by

P [u, v] := P1[u, a
n] + 〈an, a〉+H [a, b] + 〈b, bn〉+ P2[b

n, v],

Q[x, y] := Q1[x, c] + 〈c, cn〉+Q2[c
n, y],

see Fig. 4.

a

b

xu

c

an

vy

BP
k
∗

n BP
k1
n BP

k2
n

bn

BP
k3
n

cn

BP
k4
n

BPn −BP
k
∗

n −BP
k1
n

Figure 4. Construction of a 2-DPC in the Subcase 2.3. The paths P [u, v]
and Q[x, y] are depicted by green and blue colors, respectively. The subgraph
BPn −BP k∗

n −BP k1
n is enclosed by a dotted line.

Case 3. Terminal vertices are contained in three distinct subgraphs BP k1
n −F , BP k2

n −F and
BP k3

n − F , where k1, k2, k3 ∈ 〈n〉 are pairwise distinct.
Subcase 3.1. u, v ∈ V (BP k1

n − F ), x ∈ V (BP k2
n − F ), y ∈ V (BP k3

n − F ).
Recall that the subgraph BP k

n − F

• is Hamiltonian-connected for each k ∈ 〈n〉 by Lemma 3,
• admits a 2-DPC joining arbitrary terminal sets of size two for each k ∈ 〈n〉 \ {k∗} by the
induction hypothesis.

The desired 2-DPC of BPn − F is formed by a Hamiltonian path P [u, v] of BP k1
n − F and

a Hamiltonian path Q[x, y] of BPn − F −BP k1
n which exists by part (1) of Lemma 7.

Subcase 3.2. u, x ∈ V (BP k1
n − F ), v ∈ V (BP k2

n − F ), y ∈ V (BP k3
n − F ).

(3.2.1) k∗ ∈ 〈n〉 \ {k1, k2, k3}.
Note that we have k∗ 6= k2 or k∗ 6= k3 and we can without loss of generality assume the latter.

As BP k∗

n −F is Hamiltonian-connected, by part (1) of Proposition 1 it contains vertices a, b such

that an and bn fall into BP k3
n −y and BPn−BP k∗

n −BP k3
n −{u, v, x}, respectively. Let H1[a, b] be

a Hamiltonian path of BP k∗

n −F . By Lemma 6 there are paths P [u, v] and Q1[x, b
n] forming a 2-

DPC of BPn −F −BP k∗

n −BP k3
n . As BP k3

n is Hamiltonian-connected, it contains a Hamiltonian
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path H2[a
n, y] of BP k3

n . The desired 2-DPC of BPn − F is then formed by P [u, v] and

Q[x, y] := Q1[x, b
n] + 〈bn, b〉+H1[b, a] + 〈a, an〉+H2[a

n, y].

(3.2.2) k∗ = k1.
As BP k1

n − F is Hamiltonian-connected, it contains a Hamiltonian path P [u, x]. By part (1)
of Proposition 1, the path contains an edge ab such that {a, b} ∩ {u, x} = ∅ = {an, bn} ∩ {v, y}.
Removal of the edge ab splits P [u, x] into two paths, say P1[u, a] and Q1[b, x], forming a 2-DPC
of BP k1

n − F . Recall that for each of k ∈ 〈n〉 \ {k1}, the subgraph BP k
n admits a 2-DPC joining

arbitrary terminal sets of size two. Consequently, by Lemma 6 there is a 2-DPC of BPn−F−BP k1
n

formed by P2[a
n, v] and Q2[b

n, y]. The desired 2-DPC of BPn − F then consists of

P [u, v] := P1[u, a] + 〈a, an〉+ P2[a
n, v],

Q[x, y] := Q1[x, b] + 〈b, bn〉+Q2[b
n, y].

(3.2.3) k∗ = k2 or k∗ = k3.
Without loss of generality assuming the former, recall that BP k2

n is Hamiltonian-connected. As
|〈n〉| ≥ 10, we can select a k4 ∈ 〈n〉 \ {k1, k2, k2, k3}. Then, by part (1) of Proposition 1, there is a
fault-free vertex a of BP k2

n such that an ∈ BP k4
n . Let H [v, a] be a Hamiltonian path of BP k2

n −F .
Since an /∈ {u, x, y}, by Lemma 6 we obtain a 2-DPC of BPn − BP k2

n consisting of the paths
P1[a

n, u] and Q[x, y]. The desired 2-DPC of BPn − F is then formed by Q[x, y] and

P [v, u] := H [v, a] + 〈a, an〉+ P1[a
n, u] .

Case 4. Terminal vertices are contained in four distinct subgraphs: u ∈ V (BP k1
n − F ), x ∈

V (BP k2
n −F ), v ∈ V (BP k3

n −F ), y ∈ V (BP k4
n −F ), where ki ∈ 〈n〉 for i ∈ [4] are pairwise distinct.

Subcase 4.1. k∗ = ki for some i ∈ [4]. We can without loss of generality assume that k∗ = k1.
Recall that BP k1

n − F is Hamiltonian-connected. By part (1) of Proposition 1 we can select a
fault-free vertex a of BP k1

n such that a 6= u and an 6∈ {v, x, y}. Let H [u, a] be a Hamiltonian path
of BP k1

n −F . By Lemma 6 there is a 2-DPC of BPn −BP k1
n consisting of the paths P1[a

n, v] and
Q[x, y]. The desired 2-DPC of BPn − F is then formed by Q[x, y] and

P [u, v] := H [u, a] + 〈a, an〉+ P1[a
n, v].

Subcase 4.2. k∗ ∈ 〈n〉 \ {k1, k2, k3, k4}.
Note that in this case we have k∗ 6= k1 or k∗ 6= k2. Without loss of generality assuming

the former, recall that BP k∗

n is Hamiltonian-connected. Therefore, by part (1) of Proposition 1

we can select distinct vertices a and b in BP k∗

n − F such that an falls into BP k1
n − u while

bn 6∈ V (BP k1
n ) ∪ {v, x, y}.

As BP k1
n is Hamiltonian-connected as well, there are Hamiltonian paths H1[u, a

n] and H2[a, b]

of BP k1
n and BP k∗

n − F , respectively. By Lemma 6 there are paths P1[b
n, v] and Q[x, y] forming

a 2-DPC of BPn −BP k1
n −BP k∗

n . The desired 2-DPC of BPn − F is then formed by Q[x, y] and

P [u, v] := H1[u, a
n] + 〈an, a〉+H2[a, b] + 〈b, bn〉+ P1[b

n, v].

�

5. Concluding remarks

Is the upper bound n− 4 on the number of faulty elements in Theorem 2 sharp? It is easy to
see that for every n ≥ 3 there exists a set F of n − 2 faulty edges or faulty vertices of BPn such
that a 2-DPC of BPn − F joining certain terminal sets does not exist.

Indeed, let u and x be two vertices at distance two in BPn and w be their common neighbor.
Let Fe be the set of n − 2 faulty edges incident with w but distinct from wu and wx. Then w
is incident with exactly two fault-free edges and therefore any fault-free path passing through w
must visit both u and x. It follows that BPn − Fe does not admit a 2-DPC consisting of paths
P [u, v] and Q[x, y] for any terminals v and y. An analogical statement holds for BPn − Fv where
Fv is the set of all vertices incident with edges of Fe except w.

Consequently, the result of Theorem 1 is optimal, but there is still a small gap between the
upper and lower bounds on the number of faults tolerated by Theorem 2. Note that in Section 3,
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which provides tools for the constructive proof of the main result, all the statements are valid also
for the case of n− 3 faulty elements. It is therefore natural to conclude this paper with an open
problem: Is it possible to improve the upper bound on the number of faulty elements provided by
Theorem 2 to n− 3?
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