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Abstract. In a recent paper, Jason P. Bell and Jeffrey Shallit introduced
the notion of Lie complexity and proved that the Lie complexity function
of an automatic sequence is automatic. In this note, we give more facts
concerning Lie complexity and define the extended of Lie complexity
and the prefix Lie complexity. Further, we prove that some proprieties of
Lie complexity also hold for the extended Lie complexity. Particularly,
we prove that the extended Lie complexity function and the first-order
difference sequence of the prefix Lie complexity function of an automatic
sequence are both automatic.

1 Introduction

The study of patterns in a word is one of the fundamental topics in combina-
torics on words. To understand the behavior of factors of a special form (e.g.,
palindromes, bordered, unbordered, squarefree, repetition-free, k-power, etc.) in
a word, people introduced and studied various complexity functions. Among
these functions, we can mention cyclic complexity [5], arithmetical complex-
ity [2], abelian complexity [7], Lempel-Ziv complexity [8], and the factor com-
plexity [1][Chapt. 10].

In a recent paper [3], Bell and Shallit introduced the notion of Lie complexity.
Given a finite alphabet

∑

and an infinite word w over
∑

, the Lie complexity
function Lw : N → N satisfies that Lw(n) is the number of conjugacy classes
(under cyclic shift) of length-n factors u of w with the property that every
element of the conjugacy class appears in w. From their initial paper, this notion
was motivated by ideas from the theory of Lie algebras. In this article, we propose
to review this notion from another perspective: the cycles on the Rauzy graphs
of the infinite word w. In section 2 we recall the basic terminology about words.
In section 3 we recall the notion of Rauzy graph, and give an alternative proof
of the following theorem announced in [3]:

Theorem 1 (Theorem 1.1 in [3]) For every infinite word w over a finite al-
phabet and for every positive integer n, we have

Lw(n) ≤ Cw(n)− Cw(n− 1) + 1,

where Lw(n) is the value of the Lie complexity function of w at n and Cw(n) is
the number of length-n factors of w.

http://arxiv.org/abs/2207.05859v1


2 Shuo Li

We then define the quasi-small circuits on Rauzy graph and prove the fol-
lowing theorem:

Theorem 2 For every infinite word w over a finite alphabet and for every pos-
itive integer n, we have

Qsw(n) ≤ Cw(n+ 1)− Cw(n) + 1,

where Qsw(n) is the number of quasi-small circuits in the n-th Rauzy graph
of w.

In section 4 we define the extended Lie complexity function and the prefix
Lie complexity function of an infinite word w. We prove that Theorem 1 also
holds for the extended Lie complexity functions.

In Section 5 we prove more facts concerning Lie complexity, two results are
announced as follows:

Theorem 3 For every infinite word w over a finite alphabet and for every pos-
itive integer n, we have

Lw(n) + Lw(n+ 1) ≤ Cw(n)− Cw(n− 1) + 1 + |Alph(w)| + p(n+ 1),

where Lw(k) is the value of the Lie complexity function of w at k, Cw(k) is the
number of length-k factors of w, |Alph(w)| is the cardinality of the alphabet of
w and p(k) is the cardinality of the set
{[p]|[p] ⊂ Fac(w), |p| = k, p is primitive}.

Theorem 4 With the same notation and the same hypothesis on w as above,
for every positive integer n ≥ 6, we have

Lw(n)+Lw(n+1)+Lw(n+2) ≤ Cw(n)−Cw(n−1)+1+3|Alph(w)|+|Alph(w)|2+p(n+1)+p(n+2),

In Section 6 we prove that the extended Lie complexity function and the first-
order difference sequence of the prefix Lie complexity function of a k-automatic
sequence are still k-automatic.

2 Preliminaries

Let
∑

be a finite alphabet and w be either a finite word or an infinite word
over

∑

. A factor of w is a finite block of contiguous symbols occurring within
w. Particularly, the empty word is also a factor of w. The length of the empty
word is 0 and it will be denoted by ε. For any non-negative integer n, let Fw(n)
denote the set of all length-n factors of w and let Cw(n) denote the cardinality
of Fw(n). The sequence (Cw(n))n∈N is called the factor complexity sequence of
w. We let Fac(w) denote the collection of all factors of w (including the empty
word).

For any finite (resp. infinite) word w, a finite word a is called a prefix of w if
there exists another finite (resp. infinite) word b such that w is the concatenation
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of a and b, i.e. w = ab. Similarly, for any finite word w, a finite word a is called
a suffix of w if there exists a finite word b such that w = ba.

Let w be an infinite word. For any non-negative integer n, let wn denote
the length-n prefix of w and let w[n] denote the n-th letter in w. Thus, w =
w[1]w[2] · · ·w[n] · · · and, for any non-negative integer n, wn = w[1]w[2] · · ·w[n].
For any couple of integers i, j with i ≤ j, let w[i..j] denote w[i]w[i + 1] · · ·w[j].

Let u and v be two finite words, they are called conjugate when there exist
words x, y such that u = xy and v = yx. The conjugacy class of a word w is
denoted by [w]. By convention, let us define [ε] = {ε}.

For any natural number k, we define the k-power of a finite word u to be the
concatenation of k copies of u, and it is denoted by uk. Particularly, u0 = ε for
any u. A finite word w is said to be primitive if it is not a power of another word.
Let Prim(w) denote the set of primitive factors of w. For any finite word u and
any positive rational number α, the α-power of u is defined to be uau0 where
u0 is a prefix of u, a is the integer part of α, and |uau0| = α|u|. The α-power of
u is denoted by uα. We also define the ω-power of u as the word uω = uuu · · · .
A finite word a is said to be of the period b if there exists a rational number α

satisfying α ≥ 1 and a = bα.

Letw be a word and let n be a positive integer, we define [w]n =
{

u
n
|u| |u ∈ [w]

}

.

Example 5 Let u = aba, then u
5
3 = abaab, u

2
3 = ab and [u] = {aab, aba, baa}.

Further, [u]1 =
{

v
1
3 |v ∈ [u]

}

= {a, b}. Similarly, [u]2 = {aa, ab, ba} and [u]5 =

{aabaa, abaab, baaba}. ⊓⊔

Let w be an infinite word over a finite alphabet, the Lie complexity function
Lw : N → N is defined as follows: for any positive integer n, Lw(n) is the
cardinality of the following set

{[p]|[p] ⊂ Fac(w), |p| = n} .

Let us define CLw(n) = {[p]|[p] ⊂ Fac(w), |p| = n}.

3 Rauzy graphs and quasi-small circuits

Let us first recall the notion of Rauzy graph. Let w be an infinite word over a
finite alphabet

∑

. For any positive integer n, let the Rauzy graph Γn(w) be an
oriented graph whose vertex set is Fw(n) and its edge set is Fw(n+ 1); an edge
e ∈ Fw(n+1) starts at the vertex u and ends at the vertex v, if u is a prefix and
v is a suffix of e. Let us define Γ (w) = ∪∞

n=1Γn(w).
Let G be an oriented graph and let V and E be respectively the vertex set

and the edge set of G. G is called weakly connected if for any couple of different
vertices a, b ∈ V , there exists a sequence of vertices a = v1, v2, ...vk = b such that
for any integer i satisfying 1 ≤ i ≤ k − 1, there exists an edge ei either from vi
to vi+1 or from vi+1 to vi. It is well known that the Rauzy graphs of any words
are weakly connected.
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Let Γl(w) be a Rauzy graph of w. A sub-graph in Γl(w) is called a simple
closed path if there are j vertices v1, v2, . . . , vj and j distinct edges e1, e2, . . . , ej
for some integer j, such that for each t with 1 ≤ t ≤ j − 1, the edge et starts
at vt and ends at vt+1, and for the edge ej, it starts at vj and ends at v1. A
simple closed path is called a elementary circuit if the j vertices in the path are
distinct; further, j is called the size of the circuit.

Proof ( of Theorem 1).
This theorem is trivial for n = 1.
Let us suppose n ≥ 2. For any class of conjugacy [p] in CLw(n), there exists

a closed simple path in Γw(n − 1) such that its edge set is [p]. Further, the
edge sets of these closed simple paths are pairwise disjoint. Now let us remove
one edge in each of these closed simple paths, we then have a sub-graph graph
Γ ′
w(n−1). This graph is still weakly connected. However, for a weakly connected

graph, we have e − v + 1 ≥ 0, where e is the number of edges and v is the
number of vertices in the graph. Applying this relation on Γ ′

w(n − 1), we have
the number of vertices is Cw(n)−Lw(n) and the number of edges is Cw(n− 1),
thus Cw(n)− Lw(n)− Cw(n− 1) + 1 ≥ 0. ⊓⊔

Remark 6 We can prove that the simple closed path with the edge set [p] is, in
fact, a simple circuit, which will be proved in Lemma 12. However, as it is not
mandatory in this proof, we will prove this fact in the following of the article. ⊓⊔

Now let us give some basic proprieties of the circuits in the Rauzy graphs.

Lemma 7 Let w be either a finite word or an infinite word over a finite alphabet
and let Γl(w) be a Rauzy graph of w for some l satisfying 1 ≤ l ≤ |w|. Then for
any elementary circuit C in Γl(w), there exists a unique primitive word q, up

to conjugacy, such that the vertex set of C is
{

p
l

|p| |p ∈ [q]
}

and its edge set is
{

p
l+1

|p| |p ∈ [q]
}

.

Proof. In the case that the size of C is no larger than l, the lemma is proved
by Lemma 5 in [4]. If the size of C is larger than l, let its size be k and let
its vertices and edges be respectively v1, v2, ..., vk and e1, e2, ..., ek. For each i

satisfying 1 ≤ i ≤ k, let us define pi to be a word by concatenating consecutively
the last letter of words ei, ei+1, ..., ei+k−1 with er = er−k if r ≥ k+1. The words
p1, p2, ..., pk are pairwise conjugate. Further, for each i satisfying 1 ≤ i ≤ k, from
the fact that the edges in the order of ei, ei+1, ..., ei+k−1 form a circuit, we can
deduce that vi is a suffix of vipi. From the hypothesis that |pi| > |vi|, we have vi
is the length-k suffix of pi and ei is the length-k + 1 suffix of pi. As p1, p2, ..., pk

are pairwise conjugate, the vertex set of C is
{

p
k
|p| |p ∈ [p1]

}

and its edge set is
{

p
k+1

|p| |p ∈ [p1]
}

.

Here we prove the primitivity of p1. If p1 is not primitive, then there are
two distinct integers r, s satisfying 1 ≤ r, s ≤ k such that p′r = p′s, and further,
vr = vs. This contradicts the hypothesis that C contains k distinct vertices. ⊓⊔
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From the previous lemma, each elementary circuit can be identified by an
associated primitive word q defined in the previous lemma and an integer l such
that Γl(w) is the Rauzy graph in which the circuit is located. Let all elementary
circuit be denoted by C(q, l) with the parameters defined as above.

In [4] we defined the notion of small circuit, in this note we extend this notion
to quasi-small circuit. Recall that the small circuits in the graph Γl(w) are those
elementary circuits whose sizes are no larger than l. A circuit C in Γl(w) is
defined to be primitive if it is elementary and there exists a primitive factor u

of length l + 1 such that the vertex set of C is [u]l and the edge set is [u]l+1.
A circuit is called quasi-small if it is either small or primitive. Consequently, if
C(q, l) is a quasi-small circuit in Γl(w), then l ≥ |q| − 1.

Proof (of Theorem 2). We remark that the statements previously announced for
small circuits of a finite word in Lemma 7 and Lemma 8 in [4] also hold for quasi-
small circuits of a finite word as well as an infinite word over a finite alphabet.
Thus, Theorem 2 can be proved by using the arguments given in Lemma 10 and
Lemma 11 in [4]. ⊓⊔

Example 8 Let us define u = abaaabaaaaba, the Rauzy graph Γ4(u
ω) is as

follows:

aaaa

aaba

baaa

abaa

aaab

baaa

baab

abaa

baaab

abaaa

aabaa

abaaa

baaaa

aabaa

abaab
baaba

aaaab

aaaba

In this graph, there are three elementary circuits: C(aaaab, 4), C(aaab, 4) and
C(aab, 4). All of these circuits are quasi-small: C(aaab, 4) and C(aab, 4) are both
small, while C(aaaab, 4) is not small, it is primitive. Remark that the number
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of vertices and edges in this graph are respectively 8 and 10, the total number of
quasi-small cycles in this graph, which is 3, is bounded by 10− 8 + 1. ⊓⊔

4 Extended Lie complexity and prefix Lie complexity

In this section, we consider two different extensions of Lie complexity. For a
given infinite word w over a finite alphabet, the extended Lie complexity function
eLw : N → N is defined that for any positive integer n, eLw(n) is cardinality of
the following set:

{[p]n|[p]n ⊂ Fac(w), n ≥ |p|, p ∈ Prim(w)} .

It is obvious that for any positive integer n, Lw(n) ≤ eLw(n). However, we
have the following fact:

Theorem 9 For every infinite word w over a finite alphabet and for every pos-
itive integer n, we have

eLw(n) ≤ Cw(n)− Cw(n− 1) + 1.

Example 10 Let us consider the Lie complexity and the extended Lie complexity
functions of the word v = (aba)ω:

n 0 1 2 3 4 5 6 7 8 9 10 · · ·
Lv(n) 1 2 2 1 0 0 1 0 0 1 0 · · ·
eLv(n) 1 2 2 1 1 1 1 1 1 1 1 · · ·

We can easily check that Lv(n) ≤ eLv(n) for every positive integer n. ⊓⊔

Theorem 9 is a consequence of the following lemmas.

Lemma 11 Let p, q be two primitive words such that |p| = |q|, then for any
integer n such that n ≥ |p| − 1, the cardinality of [p]n equals |p|; further, [p]n =
[q]n if and only if p, q are conjugate.

Proof. If n ≥ |p|, there exists a bijection from [p]n to [p]. Thus, the statement is
true.

If n = |p| − 1, let us first prove that the cardinality of [p]n equals |p|. If it is
not the case, there exist a word t ∈ [p]n and two different letters a, b such that
ta, tb ∈ [p]. However, it cannot be true because the number of occurrences of a
in ta and tb are not same.

Now let us suppose n = |p|−1 = |q|−1 and [p]n = [q]n. From the hypothesis,
there exists a word t ∈ [p]n and two letters a, b such that ta ∈ [p], tb ∈ [q].
However, with the hypothesis [p]n = [q]n, we can deduce that the numbers of
occurrences of each letter in p and in q should be the same. Thus, a = b and
p, q ∈ [ta]. ⊓⊔
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Lemma 12 Let w be an infinite word with over a finite alphabet and let n be a
positive integer. For any [p]n ∈ {[p]n|[p]n ⊂ Fac(w), n ≥ |p|, p ∈ Prim(w)}, there
exists a quasi-small cycle C(p, n−1) in the graph Γw(n−1). Further, let [p]n, [q]n
be two elements in {[p]n|[p]n ⊂ Fac(w), n ≥ |p|}, C(p, n− 1) = C(q, n− 1) if and
only if p, q are conjugate.

Proof. If [p]n ∈ {[p]n|[p]n ⊂ Fac(w), n ≥ |p|, p ∈ Prim(w)}, we can easily check
that there exists a simply closed path ([p]n−1, [p]n) in Γw(n− 1). Further, from
the previous lemma, this simply closed path is a quasi-small circuit and can be
identified as C(p, n− 1).

If there exist two primitive p, q such that |p| ≤ n, |q| ≤ n and C(p, n− 1) =
C(q, n − 1), then |[p]n| = |[q]n|. Further, from previous lemma, |p| = |q|, and
moreover, p, q are conjugate. ⊓⊔

Proof (of Theorem 9). This statement is obviously true for n = 1.
Now for any positive integer n ≥ 2, from the previous lemma, there exists an

injection from {[p]n|[p]n ⊂ Fac(w)} to quasi-small cycles in Γw(n − 1), we then
can conclude by using Theorem 2. ⊓⊔

Here let us define the prefix Lie complexity. Let w be a finite word, the prefix
Lie complexity function pLw : N → N counts the number of conjugacy classes
such that every element of the conjugacy class appears in a prefix of w. Formally,
for any positive integer i satisfying 1 ≤ i ≤ |w|, pLw(i) is the cardinality of the
following set:

{[p]|[p] ⊂ Fac(wi)} .

Theorem 13 Let w be a finite word, then for any integer i satisfying i ≥ 1, one
has:

0 ≤ pLw(i+ 1)− pLw(i) ≤ 1.

Proof. First, it is trivial that

{[p]|[p] ⊂ Fac(wi)} ⊂ {[p]|[p] ⊂ Fac(wi+1)} .

Thus, 0 ≤ pLw(i+ 1)− pLw(i).
Now let us prove pLw(i+1)− pLw(i) ≤ 1 by contradiction. If this inequality

does not hold, then there exist two different conjugacy classes [p], [q] such that
[p], [q] ⊂ Fac(wi+1) and [p], [q] 6⊂ Fac(wi). Further, there exist two words p′, q′

satisfying the following proprieties:
1) p′ ∈ [p], q′ ∈ [q];
2) the suffix of wi+1 of length |p| (resp. of length |q|) is the uni-occurrence of p′

(resp. q′) in wi+1.
From 1) and 2), |p′| 6= |q′|, otherwise, p′ = q′ and [p] = [q]. Without loss of
generality, let us suppose that |p′| < |q′|. Thus, there exists a non-empty word
t such that q′ = tp′. Remark that p′t ∈ [q], hence, p′t ∈ Fac(wi+1). However,
if it is the case, p′ has an occurrence in wi. This contradicts the propriety 2)
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listed as above. Hence, for any positive integer i satisfying i ≥ 1, there exists at
most one conjugacy class [p] such that [p] ⊂ Fac(wi+1) and [p] 6⊂ Fac(wi). we
conclude. ⊓⊔

Let w be an infinite sequence. Let us define the the sequence (∆pLw(n))n∈N

as follows: For any non-negative integer n, let

∆pLw(n) = pLw(n+ 1)− pLw(n).

Corollary 14 For any infinite sequence w, the sequence (∆pLw(n))n∈N is a
0, 1-sequence.

5 More facts on Lie complexity

In this section we prove Theorem 3 and 4.

Lemma 15 Let w be an infinite word over a finite alphabet and let n be a
positive integer larger than 3, then there exists a bijection between the sets:

∪i|n,1≤i<n {[p]n|[p]n ⊂ Fac(w), p ∈ Prim(w), |p| = i} ,

{C(p, n− 2)|[p]n ⊂ Fac(w), p ∈ Prim(w), |p| < n} .

Proof. From Lemma 12, there exists a bijection between

∪i|n,1≤i<n {[p]n|[p]n ⊂ Fac(w), p ∈ Prim(w), |p| = i} ,

and
{C(p, n− 1)|[p]n ⊂ Fac(w), p ∈ Prim(w), |p| < n} .

However, if there exists a circuit C(p, n− 1) in Γn−1 for some primitive p with
|p| | m and |p| 6= m, there exists a circuit C(p, n− 2) in Γn−2. Thus, there exists
the bijection stated as above.

Lemma 16 Let w be an infinite word over a finite alphabet and let n be a
positive integer larger than 5, then there exists a bijection between the sets:

∪i|n,1≤i<n {[p]n|[p]n ⊂ Fac(w), p ∈ Prim(w), |p| = i} ;

{C(p, n− 3)|[p]n ⊂ Fac(w), p ∈ Prim(w), |p| < n} .

Proof. A similar argument as above proves the bijection.

Lemma 17 Let w be an infinite word over a finite alphabet and let n be a
positive integer, then there exists a bijection between the sets:

{[p]n|[p]n ⊂ Fac(w), p ∈ Prim(w), |p| = n} ;

{C(p, n− 1)|[p]n ⊂ Fac(w), p ∈ Prim(w), |p| = n} .
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Proof. It is a corollary of Lemma 12.

Proof (of Theorem 3). Let w be an infinite word over a finite alphabet and let
n be a positive integer. If we let CLw(n) = {[p]|[p] ⊂ Fac(w), |p| = n}, then

CLw(n) = ∪i|n {[p]n|[p]n ⊂ Fac(w), p ∈ Prim(w), |p| = i} .

Let us prove the theorem for n = 1. In this case, we only need to prove that

Lw(1) + Lw(2) ≤ 2|Alph(w)|+ p(2).

It is obvious because Lw(1) = |Alph(w)| and

Lw(2) = | {[p]2|[p]2 ⊂ Fac(w), p ∈ Prim(w), |p| = 1} |+ | {[p]2|[p]2 ⊂ Fac(w), p ∈ Prim(w), |p| = 2} |

≤ |Alph(w)|+ p(2).

To prove this statement for n ≥ 2, let us investigate the quasi-small cycles
in Γw(n− 1). From Lemma 15 and 17 there exist bijections:

F : ∪i|n+1,1≤i<n+1 {[p]n+1|[p]n+1 ⊂ Fac(w), p ∈ Prim(w), |p| = i} → Sn+1,

G : ∪i|n,1≤i≤n {[p]n|[p]n ⊂ Fac(w), p ∈ Prim(w), |p| = i} → Sn;

with Sn+1 = {C(p, n− 1)|p ∈ Prim(w), |p||n + 1, |p| 6= n+ 1}
and Sn = {C(p, n− 1)|p ∈ Prim(w), |p||n}. Knowing that all elements in Sn+1 ∪
Sn are quasi-small cycles in Γw(n− 1). Combining with the following relations:

|Sn+1 ∩ Sn| ≤ | {C(p, n− 1)|p ∈ Prim(w), |p| = 1} | ≤ |Alph(w)|,

Lw(n+1) = |CLw(n+1)| = |∪i|n,i6=1{[p]n|[p]n ⊂ Fac(w), p ∈ Prim(w), |p| = i} |+p(n+1),

we conclude that

Lw(n+ 1) + Lw(n) = |Sn+1|+ p(n+ 1) + |Sn|

= |Sn+1 ∪ Sn|+ p(n+ 1) + |Sn+1 ∩ Sn|

≤ Cw(n)− Cw(n− 1) + 1 + |Alph(w)| + p(n+ 1).

Proof (of Theorem 4). With the same notation as above and with a n larger than
5. let us investigate the quasi-small cycles in Γw(n−1). From Lemma 15, 16 and
Lemma 17 there exist bijections:

F : ∪i|n+1,1≤i<n+1 {[p]n+1|[p]n+1 ⊂ Fac(w), p ∈ Prim(w), |p| = i} → Sn+1,

G : ∪i|n,1≤i≤n {[p]n|[p]n ⊂ Fac(w), p ∈ Prim(w), |p| = i} → Sn;

H : ∪i|n+2,1≤i<n+2 {[p]n+2|[p]n+2 ⊂ Fac(w), p ∈ Prim(w), |p| = i} → Sn+2,

with Sn+1 = {C(p, n− 1)|p ∈ Prim(w), |p||n+ 1, |p| 6= n+ 1},
Sn = {C(p, n− 1)|p ∈ Prim(w), |p||n}
and Sn+2 = {C(p, n− 1)|p ∈ Prim(w), |p||n+ 2, |p| 6= n+ 2}.
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Further, all elements in Sn+1∪Sn∪Sn+2 are quasi-small cycles in Γw(n−1).
With some analogue relations as above:

|Sn+1 ∩ Sn| ≤ |Alph(w)|, |Sn+2 ∩ Sn+1| ≤ |Alph(w)|,

|Sn+2 ∩ Sn| ≤ | {C(p, n− 1)|p ∈ Prim(w), |p| = 1, 2} | ≤ |Alph(w)|+ |Alph(w)|2,

Lw(n+1) = |CLw(n+1)| = |∪i|n,i6=n+1{[p]n|[p]n ⊂ Fac(w), p ∈ Prim(w), |p| = i} |+p(n+1),

Lw(n+2) = |CLw(n+2)| = |∪i|n,i6=n+2{[p]n|[p]n ⊂ Fac(w), p ∈ Prim(w), |p| = i} |+p(n+2),

we conclude that

Lw(n+ 2) + Lw(n+ 1) + Lw(n) = |Sn+2|+ p(n+ 2) + |Sn+1|+ p(n+ 1) + |Sn|

= |Sn+2 ∪ Sn+1 ∪ Sn|+ |Sn+1 ∩ Sn|+ |Sn+2 ∩ Sn|+ |Sn+2 ∩ Sn+1|+ p(n+ 1) + p(n+ 2)

≤ Cw(n)− Cw(n− 1) + 1 + 3|Alph(w)| + |Alph(w)|2 + p(n+ 1) + p(n+ 2).

6 Automaticity

A sequence (sn)n∈N is called k-automatic if there exists a finite automaton
such that sn is the output of the this automaton when imputing the base-
k representation of n. A sequence (tn)n∈N taking values in Z is k-regular if
there is a row vector v, a column vector w, and a matrix-valued morphism
ζ : {0, 1, ..., k − 1} → Z

d×d such that tn = vζ(x)w, where x is the base-k repre-
sentation of n. From [1][Thm. 16.1.5], a k-regular sequence is k-automatic if it
takes only finitely many distinct values. In this section, we prove the following
result by using similar arguments given in [3]:

Theorem 18 Let s be a k-automatic sequence, then the sequences (eLw(n))n∈N

and (∆pLw(n))n∈N are both k-automatic. Moreover, (pLw(n))n∈N is k-regular.

The proof of Theorem 18 is based on the following result [6]:

Theorem 19 Let s be a k-automatic sequence.
(a) There is an algorithm that, given a well-formed first-order logical formula φ

in FO(N,+, 0, 1, n → s[n]) having no free variables, decides if φ is true or false.
(b) Furthermore, if φ has free variables, then the algorithm constructs an au-
tomaton recognizing the representation of the values of those variables for which
φ evaluates to true.

Further, from [6], if A is an automaton accepting the base-k representation of
pairs (i, n) in parallel, then the sequence an = # {i : A accepts (i, n) } is k-
regular.

Proof (of Theorem 18). We first show that the sequences (eLw(n))n∈N and
(pLw(n))n∈N are both k-regular. Let us construct a first-order logical formula
e-lie(i, n) for the pairs (i, n) as follows:
(a) There exists an integer m satisfying 1 ≤ m ≤ n;
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(b) the word s = w[i..i + m − 1] is primitive and lexicographically least in its
conjugacy class;
(c) [s]n ∈ Fac(w);
(d) the word w[i..i+m− 1] is the earliest occurrence of s in w.
Then the number of i making e-lie(i, n) true equals eLw(n).

Similarly, let us construct a first-order logical formula p-lie(i, n) for the pairs
(i, n) as follows:
(a) There exists an integer m satisfying 1 ≤ m ≤ n;
(b) the word s = w[i..i+m− 1] is lexicographically least in its conjugacy class;
(c) [s] ∈ Fac(w[1..n]);
(d) the word w[i..i+m− 1] is the earliest occurrence of s in w.
Then the number of i making p-lie(i, n) true equals pLw(n).

We construct these formulas in a number of steps:
factoreq(i, j, n) asserts that the length-n factor w[i..i+n−1] equals w[j..j+n−1].
prim(i, n) asserts that the length-n factor w[i..i + n− 1] is primitive.
power(i,m, n) asserts that the length-n factor w[i..i + n − 1] is of the period
w[i..i +m− 1], i.e. w[i..i + n− 1] = (w[i..i +m− 1])

n
m .

perfac(k, j,m, n) asserts that w[j..j +m− 1] is a period of w[k..k + n− 1].
shift(i, j, n, t) asserts that w[i..i+ n− 1] is the shift, by t positions, of the factor
w[j..j + n − 1], i.e. there are two words a,b such that |a| = n − t, |b| = t,
w[j..j + n− 1] = ab and w[i..i+ n− 1] = ba.
conj(i, j, n) asserts that the factor w[i..i+n− 1] is a conjugate of w[j..j+n− 1].
lessthan(i, j, n) asserts that the factor w[i..i+ n− 1] is lexicographically smaller
than w[j..j + n− 1].
lessthaneq(i, j, n) asserts that the factor w[i..i+n−1] is lexicographically smaller
than or equal to the factor w[j..j + n− 1].
allconj(i, n) asserts that all conjugates of w[i..i+ n− 1] appear as factors of w.
allconjpref(i,m, n) asserts that all conjugates of w[i..i+m− 1] appear as factors
of w[1..n].
allpower(i,m, n) asserts that for all elements s in [w[i..i+m− 1]], s

n
m appear as

factors of w.
lexleast(i, n) asserts that w[i..i + n − 1] is lexicographically least among all its
conjugates that actually appear in w.
e-lie(i, n) asserts that there exists an integer m such that 1 ≤ m ≤ n, that
w[i..i +m − 1] is primitive, that all elements in [w[i..i +m− 1]]n appear in w,
that w[i..i+m− 1] is the lexicographically least in its conjugacy class and that
w[i..i +m− 1] is its first occurrence in w.
p-lie(i, n) asserts that there exists an integer m such that 1 ≤ m ≤ n, that
all elements in [w[i..i + m − 1]] appear in w[1..n], that w[i..i + m − 1] is the
lexicographically least in its conjugacy class and that w[i..i +m− 1] is its first
occurrence in w[1..n].

Here are the definitions of the formulas. Recall that the domain of all vari-
ables is N = {0, 1, · · · }.
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factoreq(i, j, n) := ∀u, v(i+ v = j + u ∧ u ≥ i ∧ u < i+ n) =⇒ w[u] = w[v]
prim(i,m) := ¬(∃j(j > 0∧ j < m∧ factoreq(i, i+ j,m− j)∧ factoreq(i, (i+m)−
j, j))
power(i,m, n) := m ≥ 1∧m ≤ n ∧ (∀t(t+m < n) =⇒ w[i+ t] = w[i+ t+m])
perfac(k, j,m, n) := m ≥ 1 ∧m ≤ n ∧ power(k,m, n) ∧ factoreq(j, k,m)
shift(i, j, n, t) := factoreq(j, i + t, n− t) ∧ factoreq(i, (j + n)− t, t)
conj(i, j, n) := ∃t(t ≤ n) ∧ shift(i, j, n, t)
lessthan(i, j, n) := ∃t(t < n) ∧ factoreq(i, j, t) ∧ w[i + t] < w[j + t]
lessthaneq(i, j, n) := lessthan(i, j, n) ∨ factoreq(i, j, n)
allconj (i, n) := ∀t(t ≤ n) =⇒ ∃jshift(i, j, n, t)
allconjpref (i,m, n) := ∀t(t ≤ m) =⇒ ∃j(j +m ≤ n) ∧ shift(i, j,m, t)
allpower(i,m, n) := ∀jconj(i, j,m) =⇒ ∃kperfac(j, k,m, n)
lexleast (i, n) := ∀jconj(i, j, n) =⇒ lessthaneq(i, j, n)
e-lie(i, n) := ∃m(1 ≤ m∧m ≤ n)∧prim(i,m)∧allpower(i,m, n)∧lexleast(i,m)∧
(∀jfactoreq(i, j,m) =⇒ (j ≥ i))
p-lie(i, n) := ∃m(1 ≤ m∧m ≤ n)∧allconjpref(i,m, n)∧lexleast(i,m)∧(∀jfactoreq(i, j,m) =⇒
j ≥ i)

From the remarks preceding the proof, we prove that (eLw(n))n∈N and (pLw(n))n∈N

are both k-regular. Since the factor complexity of automatic sequences are lin-
ear [1][Thm. 10.3.1], and, from Theorem 9, (eLw(n))n∈N is bounded, the se-
quence (eLw(n))n∈N is hence automatic. Further, as (pLw(n))n∈N is k-regular,
from [1][Thm. 16.2.2], (pLw(n + 1))n∈N is k-regular. Moreover, from [1][Thm.
16.2.1], (∆pLw(n))n∈N is k-regular. From Corollary 14, (∆pLw(n))n∈N is bounded,
thus, it is k-automatic. ⊓⊔

Example 20 Let t be the Thue-Morse word, the fixed point of the morphism µ

sending 0 to 01 and 1 to 10. Using the free software Walnut [10], we can imple-
ment the algorithm in the previous proof to find automata generating (eLt(n))n∈N

and (∆pLt(n))n∈N. The sequence (eLt(n))n∈N is generated by the following au-
tomaton:
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start state

Similarly, we obtain the following automaton generating (∆pLt(n))n∈N:

1 1

1

1

1 0

1

1

0

0
1

0

1

0

1

1

1

start state

0
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0

1

0

1
0, 1
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