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Abstract. The present paper proves that a Sleptsov net (SN) is Turing-complete, that considerably improves, with a 

brief construct, the previous result that a strong SN is Turing-complete. Remind that, unlike Petri nets, an SN always 

fires enabled transitions at their maximal firing multiplicity, as a single step, leaving for a nondeterministic choice of 

which fireable transitions to fire. A strong SN restricts nondeterministic choice to firing only the transitions having 

the highest firing multiplicity. Keywords: Sleptsov net; Turing-completeness; place-transition net; multiple firing. 

 

1. Introduction 

The present paper proves that a Sleptsov net (SN) is Turing-complete, that considerably improves, 

with a brief construct, the previous result [1] that a strong SN is Turing-complete. 

Remind that, unlike Petri nets, an SN always fires enabled transitions at their maximal firing 

multiplicity, as a single step, leaving for a nondeterministic choice of which fireable transitions to fire. A 

strong SN restricts nondeterministic choice to firing only the transition having the highest firing 

multiplicity. 

The proof pattern follows [1], simulating a Shepherdson and Sturgis register machine (RM), 

proven to be Turing complete [2]. Remind that an RM implements three operations over a finite set of 

registers, each resister storing a nonnegative magnitude: increment, decrement (when a register is greater 

than zero), and zero check. Here we present an SN that implements zero check (fig. 1a) having same, as in 

[1], simple nets for increment (fig. 1b) and decrement (fig. 1c) implementation. 

The results have been obtained and double-checked within modeling system Tina [3] which 

upcoming version supports SNs. 

 

 

 

b) increment; 

 

a) zero check; c) decrement. 

Fig. 1. SN components simulating instructions of RM. 
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2. Zero check with an SN 

Lemma 1. SN in fig. 1a implements zero check of variable X. 

 

Proof. 

a) Suppose    . 

In  ̅      , the only fireable sequence          fires: 

 

    
  
→            

  
→       

  
→    . 

 

A token within place    indicates that value of   equals to zero. 

 

b) Suppose    .  

In  ̅           , the only fireable sequence              fires: 

 

         
  
→                

    
→                 

  
→         . 

 

A token within place    indicates that value   is greater than zero. 

Marking of other places, except of           , is not changed. 

  

Proof of Lemma 1 is illustrated with a parametric marking graph shown in fig. 2 and a trace of the 

net images shown in fig. 3, with highlighted in red firing transitions, obtained in system Tina [3]; in the 

line below a series of images, the number of firing transition copies is indicated in case it is greater than 

unit. We use letter   to specify both a register of RM and its value; besides, we use local numbering of 

places and transitions within constructs of fig. 1, which are remunerated during composition of SN 

simulating an RM [1]. 

 

 
 

Fig. 2. Parametric marking graph for zero check net shown in fig. 1a. 

 

Theorem 1. SN simulates RM. 

 

Directly follows from Lemma 1 and RG simulation technique [1]. 



 

Corollary. SN is Turing-complete. 

 

Directly follows from Theorem 1 and [2]. 

 

 

    
t1 fires t2 fires t6 fires no fireable 

a) X=0; 

    

t1 fires 2t2 fire t3 fires no fireable 
b) X>0. 

Fig. 3. Trace of transition firing sequences for zero check. 

3. Conclusion 

We have proven that an SN is Turing-complete i.e. capable of universal computations without 

any additions. 
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