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Abstract

We introduce concepts of external and internal complexity to analyze the relation

between an adaptive system and its environment. We apply this theoretical framework

to the construction of models in a cognitive system and the selection between hypotheses

through selective observations performed on a data set in a recurrent process and propose

a corresponding neural network architecture.

1 Introduction: Complex adaptive systems

A complex adaptive system is situated in an environment. That environment is
always more complex than the system itself, and therefore, it can never be com-
pletely predictable for the system, but the system depends on regularities of the
environment for maintaining its energy supply needed to support its internal struc-
tures and processes. Thus, the input that the system can receive or extract from its
environment has regularities as well as aspects that appear random to the system.
Only the regularities are useful for the system because by its very nature, a system
will itself be defined by regularities that it constructs from its input and that are
maintained through and expressed by internal processes. So the system needs ex-
ternal regularities that it can translate into these internal ones while random input
at best is useless and at worst detrimental for the system. It depends on the system
itself and its internal model of the external environment, however, which part of
the potential input is meaningful and regular and which part is devoid of meaning
and structure, and random. In that situation, adaptation consists in increasing the
former at the expense of the latter, under the capacity constraints imposed by the
system’s internal structure. This means that the system on one hand will try to ex-
tract as many regularities as possible from the environment and on the other hand
internally represent those as efficiently as possible in order to make optimal use of
its capacity. We shall introduce the notions of external complexity and internal
complexity in order to be able to investigate these two complementary aspects con-
ceptually and quantitatively. Our main thesis will be that complex adaptive systems
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try to increase their external complexity and to reduce their internal complexity.
Each of these two processes will operate on its own time scale(s), but they are also
intricately linked and mutually dependent upon each other. So, for example the
internal complexity will only be reduced under the assumption of fixed input, fixed
external complexity, to represent that given input more efficiently, but when the
system wants to handle additional, new input, to increase its external complexity,
it may then also first increase its internal complexity and thereby create the po-
tential for a subsequent reduction of the internal complexity on another time scale
perhaps. The increase of internal complexity can for example occur through the
creation of redundancy, e.g. duplication of some internal units or structures. Upon
this redundancy, a process of differentiation or specialization can operate, through
random mechanisms or internal selection, so that the system will become able to
handle more diverse input and thereby increase its external complexity. Once this
happened, the system can then again try to represent this newly acquired input more
efficiently and thus decrease its internal complexity. Conversely, for the decrease
of internal complexity, the system can also discard some of its input as irrelevant
and meaningless for its purposes and thus decrease the external complexity. Again,
the decrease of external complexity required for the selection of the most relevant
input is a subsidiary process, and the primary goal remains to increase external
complexity and to decrease internal complexity.
While ultimately, the system depends on its environment, what is relevant for the
system is only what is reflected in its internal model. Therefore, for example, exter-
nal complexity is not evaluated as the amount of raw data gathered by the system,
but rather by what can be processed in the internal model. More precisely, the
system does not represent some invariant external reality, but rather constructs its
own model according to which it operates and that is only modulated by external
input (see [2] for a discussion of this issue in the context of neurosemantics). What
is counted as input is decided by the internal model and not by the environment.
In particular, complexity, even what is called external complexity, thus ultimately
becomes an internal criterion.
At least this is what we can learn from the neurosciences and the theory of cogni-
tion. A similar duality has also been proposed in evolutionary biology. Gould[5]
contrasts form and function. The latter refers to the adaptation to an external
environment that could possibly be lethal for the organism. The former represents
the internal laws of structure and development that predetermine those adaptation
possibilities that the system possesses. An evolved organism is not a completely
flexible conglomeration of functional adaptations to various external requirements
and challenges, but rather an intrinsically constrained and therefore rather stable
form that had evolved some features that by chance proved adaptable to new ex-
ternal circumstances, perhaps by acquiring new functions, different from those for
which it originally evolved.
The environment is dangerous, and the organism has to adapt by generating appro-
priate functions (here, on an evolutionary time scale). Its potential for adaptations,
however, is determined essentially by its internal form. It is essential to capture
this balance conceptually.

2 External and internal complexity

External complexity measures the amount of input, information, energy obtained
from the environment that the system is capable of handling, processing. Of course,
for our purposes, it is important that this can be measured as an entropy – and
therefore, terms like “energy” need some qualification when employed in this con-
text. In this sense, external complexity is data complexity.
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Internal complexity measures the complexity of the representation of this input
by the system. In this sense, internal complexity is model complexity.
The aim of the system then is to handle as much input, as many data as possible
with as simple a model as possible. In fact, the simpler the model for representing
some given data set is, the more capacity is free to process additional input and
to increase its external complexity. The more input can be handled, the more the
system can grow and develop and enlarge its capacity and the higher the system’s
potential for reducing internal complexity is. Thus, the system will try to increase,
to maximize its external complexity, and to reduce, to minimize its internal com-
plexity.
These aims may seem conflicting, but such a conflict is avoided when these two
processes operate on different time scales. So, given the internal model that the
system employs for organizing the input, it tries to increase the complexity of that
input. Given the input, conversely, it tries to simplify its model representing that
input and thus to decrease complexity. Of course, what is for example the input
depends on the time scale under investigation. On a short time scale, the input just
consists of individual signals, whereas on a longer time scale, it is given by a prob-
ability distribution for the signals drawn from a certain signal space. A successful
model cannot just be based on single input signals, but its aim is to account for
the regularities in sequences of input signals, and so, it cannot be fully adapted on
the time scale on which the individual signals are received as input. Nevertheless,
the two processes of the increase of external complexity and the decrease of internal
complexity are not independent of each other, and so, their respective time scales
become linked. Also, what is considered and accepted as input in the sense of a
meaningful signal, instead of being discarded as meaningless noise, in turn depends
on the internal model of the system. In the present essay, however, we do not ex-
plore the constructive act of the creation of meaning by the system, and we refer
to [9] instead.
Before we are able to give formal definitions, we need to clarify one further aspect.
There is no such thing as raw data for a system. What is a datum for a system, as
opposed to something which is simply ignored and does not exist for the system, and
also what constitutes a distinction between different inputs, as opposed to inputs
that are lumped together and considered as identical by the system, depends on an
internal model θ. In that situation, the system does not just attempt to acquire
inputs that increase the complexity but are meaningless within the model, but on
one hand also adapts the model, while on the other hand it also selects the inputs
so that the model can get simplified. Thus, a mechanism for decreasing internal
complexity is necessary for balancing the increase of external complexity through
taking in additional input.

If a system differentiates into subsystems, then the roles of external complexity
and internal complexity get reversed for the subsystems. Namely, the encompass-
ing system becomes part of the environment for the subsystems, to the degree that
they become autonomous and independent from the rest of the system, and con-
versely, the subsystems then can become part of the inner environment for the
original system. Thus what is internal to the whole system may represent external
input for the subsystems, and on the basis of their internal processes and opera-
tions, the subsystems produce output that can then be treated by the rest of the
system as external input. Of course, the subsystems will never become completely
autonomous and independent of the rest of the system, but only partially so. Our
concepts of external complexity and internal complexity then provide formal tools
to analyze this relationship.

We now proceed to formal definitions of our complexity concepts based on the
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entropy concepts of statistical mechanics and information theory. Given a model
θ, the system can model data as X(θ), with X = (X1, ..., Xk), and we assume that
X(θ) introduces an internal probability distribution P (X(θ)) so that an entropy
can be computed in (1) below. Our hypothesis then is that the system will try to
maximize the external complexity

−
k∑

i=1

P (Xi(θ)) log2 P (Xi(θ)). (1)

The purpose of the probability distribution P (X(θ)) is simply to quantify the in-
formation value of the data X(θ). In principle, this quantification is also possible
through other means, for example through the length of the representation of the
data in the internal code of the system. If we assume optimal coding, however,
which is a consequence of the minimization of internal complexity, then the length
of the representation of a datum Xi(θ) behaves like log2 P (Xi(θ)) (a code is good
if frequent inputs are represented by short code words, see [17]).
How external complexity can be increased then depends on the time scale involved.
The system can try to increase the amount of information X(θ) that is meaningful
within the given model θ on a short time scale, or it can adapt the model θ on
a longer time scale so as to be able to process more input as meaningful. When
the input is given, however, for example when the system has gathered input on
a time scale when the distribution of input patterns Ξ (we use a different letter
now to denote the inputs because we are now considering patterns on a different
time scale) becomes stationary, then the model should be improved to handle that
input as efficiently as possible, i.e. to decrease the internal complexity which we
now define as follows:

= −
k∑

i=1

P (Ξi|θ) log2 P (Ξi|θ) − log2 P (θ) (2)

wrt θ. Thus, as in Rissanen’s minimum description length principle [17],1 the
variational problem is

min
θ

(− log2 P (Ξ|θ) − log2 P (θ)). (3)

(We are leaving out the notation for the expectation value, i.e. the summation
over the different input patterns, for the first term here, as the emphasis is on the
model and not on the data.) The expression to be minimized now consists of two
terms, the first measuring how efficiently the data are encoded by the model, and
the second one how complicated the model is. Of course, the probability P (θ) as-
signed to a model depends on the internal structure of the system, and in principle
that internal structure then also becomes subject to optimization, in the sense that
frequently used or otherwise important models get higher probabilities than ob-
scure ones. In computer science, this term simply corresponds to the length of the
program required to encode the model, and so ultimately it depends on the binary
alphabet as the ultimate code. Obviously, other systems may employ other basic
codes that have to be considered as fixed on the time scale under consideration,
like the neural code as represented by spiking patterns of neurons in brains. This
does not affect our general scheme that does not depend on the nature of the code
employed.
Below, however, the variational principle (3) will undergo an important modifica-
tion when we shall introduce the concept of an observation in addition to datum
and model.

1Essential differences between that principle and our approach will appear below.
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3 Learning

We shall now analyze the preceding concepts in a more specific setting, namely the
one of learning.
Learning is the transformation of correlations into associations. These
associations serve to predict and anticipate future events.
There exist different criteria for the evaluation of a learning process. In statistical
learning theory as developed by Vapnik and Chervonenkis ([19, 20]), the natural
criterion is the expected prediction error on future data of a model based on partial
and incomplete information. The task is to construct a probability distribution
drawn from an a-priori specified class for representing the distribution underlying
the random data received. In this theory, it is shown that this error depends both
on the accuracy of the model on the training set as well as on its simplicity. If
the model produces a high error on the training data, then it is plausible that one
should also expect a high error on future data drawn from the same distribution.
If the model is too complicated, one encounters the risk of over-fitting the training
data and to thus incorporate spurious or putative regularities into the model that
will not be born out by future data. Therefore, the model should be drawn from a
model class of bounded complexity, the precise complexity measure in this context
being the Vapnik-Chervonenkis dimension. In this theory, one may then also adapt
this complexity as the size of the data set grows. In its simplest form, statistical
learning theory thus finds a representation with smallest error in a class with given
complexity constraint and on this basis estimates the expected error on future data
drawn from the same distribution by the error on the test or training set plus an
over-fitting error that is controlled by the complexity (the Vapnik-Chervonenkis
dimension). In particular, in the framework of statistical learning theory, one can
understand the issue of over-fitting vs leaving out some regularities. This is not the
same, because over-fitting is caused by including into the model what is noise in
the data. This leads to putative regularities. Leaving out regularities in our sense
means that one does not recognize that the model can be simplified. Over-fitting
also makes the model more complicated than necessary, but for the reason that
too much attention is paid to details that turn out to be irrelevant. Either can be
avoided by imposing constraints on the model complexity.

Our question is what amount of data compression is allowed by the regularities
present in the data set. If the internal complexity is chosen too small the model
does not have enough capacity to represent all the important aspects of the data
set, i.e. is not sufficient to recreate the data to the desired degree of accuracy. If the
internal complexity is too large, on the other hand, then the model is not forced to
represent the data efficiently, i.e., can leave out some of the regularities and forego
some possibilities for compression of the data set. A special case of this problem is
solved by the approach of Computational Mechanics as developed by Crutchfield,
Shalizi and coworkers (see in particular [18]) that first identifies the class of all
representations with maximal prediction power and then chooses the simplest one
among those. However, in our setting the problem is what are the regularities in
the data that on one hand allow a compression and on the other hand are both
valid and sufficient for future predictions, as opposed to what is noise and random
effects. As will become clear below what is noise is not solely a property of the data
set, but also depends on the model adopted or constructed by the system.
The problem addressed by statistical learning theory is to construct a probability
distribution on the basis of a training set that is a random and incomplete repre-
sentation of an underlying input space. Other theories rather treat the problem of
the representation of a given data set without regard to future data, i.e. in a setting
where only the data received are of interest. In Rissanen’s principle of Minimum
Description Length ([17]), the criterion is the efficiency of the representation of a
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given data set. This again has two components, one being the complexity of the
model that represents the data, or the length of the program needed to describe
the model, the other one being the length of the representation of the data by the
model. So, a good model is both simple itself and able to represent the data effi-
ciently. In this theory, one may derive an estimate for the expected error on future
data drawn from the distribution for which the model has been developed that is
qualitatively similar to the one from statistical learning theory. A practical diffi-
culty can be the guess for a good model2 class. In statistical learning theory, this is
not an issue because the model class is typically assumed given. In the approach of
Gell-Mann and Lloyd ([4]), the description of the data set is split into the regular
part, represented by an ensemble of which the data distribution is a typical mem-
ber, and the random part that is not captured by the properties of this ensemble.
For an efficient representation, the sum of the corresponding complexity measures
should not exceed the complexity of the data set by itself. In this manner, the latter
represents an effective lower bound for the efficiency of the representation.
All these approaches punish overly complicated models, either indirectly by causing
an over-fitting error, or directly by including a term measuring the model complex-
ity into the functional to be minimized.
This also fits well into our framework. The internal complexity should not be too
large, or preferably even minimized under appropriate constraints on the adequacy
of the representation of the data. This internal complexity then represents the
model complexity. The other term is related to the external complexity, because
that is enlarged if the data are represented accurately, i.e., if the error on the train-
ing set is controlled. This is related to Jaynes’ principle of maximizing the ignorance
([8]). Jaynes argued that a model representing data should have the largest possible
entropy under the constraint that all observations made on the data be reproduced.
The advantage of this principle is that this eliminates any putative regularities in
the model not supported by the data. In particular, this avoids the problem of over-
fitting. As argued by Gell-Mann and Lloyd, this principle needs to be constrained
so as not to eliminate the essential regularities in the data set as represented by
the ensemble in which they are embedded, and to avoid having an overly complex
representation through ignoring established regularities in the data. In any case,
this principle expands the random part at the expense of the regular part, and Gell-
Mann and Lloyd then assure that one still stays on the optimal line given by the
intrinsic complexity of the data set. Thus, Jaynes’ principle maximizes the external
complexity, but it needs to be constrained so as not to overshoot its purpose by
ignoring possibilities for data compression, i.e. for decreasing internal complexity
which then frees capacities for handling additional data and thereby increase the
external complexity more efficiently in a new direction.
This also leads to still another criterion for the evaluation of models representing
data drawn from some distribution, namely the information gain made possible
both by the choice of the model, and by the selection of the data to be gathered or
observed. The latter is a new aspect that has not yet been addressed in the above
discussion. This leads us to a more dynamic view of the development of models
and already touches the fundamental issue of the creation of meaning of data with
respect to an internal model.

In order to clarify these issues further, and to demonstrate the conceptual aspects of
our framework, we now make the fundamental distinction between model, obser-
vation, and datum. Here, the middle term, observation, refers to the extraction

2We employ the term “model” here as used in the mathematical theory of parametric statistics,
that is as an element of some given set of probability distributions – constituting the class –,
determined inside that set by the values of finitely many parameters. This is more restricted than
the sense in which the word “model” is employed elsewhere in this article.

6



of the value of a particular quantity or function (in the mathematical sense), like
brightness, color, temperature, relative frequency of a particular item,..., from a
given datum or data pool. In fact, from the perspective of neurobiology, even these
quantities are already indirect constructions on the basis of more basic sensory per-
ceptions, like recordings of photons on the retina. What constitutes an observation,
or, better, what the system can observe, depends on its internal structure and its
general model of the environment. The result of the observation, however, is de-
termined by the data at hand. This is trivial, but the important point is that the
system never has direct access to the data, but has to construct a model of the
environment solely on the basis of the values of its observations. This brings us
already beyond the framework underlying the theories just described as we now
need to consider feedback loops. In fact, our theory needs two feedback loops (see
[9] for more details). The internal feedback loop selects the observations on a given
data set on the basis of the internal model and its complexity. A prominent neuro-
biological example is the feedback between the visual cortex and the intermediate
relais in the LGN for the processing of visual information (see in particular [16]).
The outer feedback loop selects the data subjected to the model’s observations. An
example is the senso-motoric loop.
In the light of the above discussion, Jaynes’ principle then says that for given data,
or, more precisely, given the observations made on the data set, the maximum en-
tropy representation should be chosen - with the modification of Gell-Mann and
Lloyd, of course, so as not to loose the essential regularities observed in the data.
In this way, as much entropy as possible is assigned to the data and as little as
possible to the model itself (in the simplest situation, this maximum entropy model
then simply is a Gibbs distribution as familiar in statistical mechanics). There is an
important point here, already emphasized above and to be addressed again below,
namely that the probability distribution whose entropy is to be maximized here is
not one that lives on the data, but one that lives inside the system, on the class of
models that the system is capable of forming, for example giving the probability of
various stored patterns to match the input data. In particular, it will only reflect
those aspects of the data that can exhibit some regularities for the system.
In contrast, if the model, or, more precisely, the method for determining it on the
basis of the observations made, is given, for example a Gibbs distribution, and if
observations can be made on a given data set, then these observations should be
selected so as to minimize the resulting entropy of the model, with the purpose
of minimizing the uncertainty left about the data. In particular, the observations
should be made independent of each other, since an observation whose results can
already be predicted from the results of other observations made does not decrease
the entropy or reduce the uncertainty (see e.g. [11] for a formal treatment). The
inner feedback loop thus tries to reduce complexity. A neural network implementa-
tion of this principle is presently under investigation.
Finally, if the data set itself can be varied, i.e. if the system can choose its input,
then again the complexity should be maximized, because now we are dealing with
external complexity. Thus, data should be chosen for maximal information gain.
Jaynes’ principle appears here once more, but now as the principle to maximize
surprise when exploring the environment. It should be stressed, however, that, as
before, the principle cannot be applied unconditionally since the system does not
have direct access to the external data, but only through the observations it can
make on the basis of its internal model. This should be a fundamental design prin-
ciple for autonomous robots, but here we cannot explore this issue any further.
An input is meaningful if it leads to some information gain in an internal model.
This is a different way to explain the preceding principle of the maximization of
external complexity. If, in contrast, the input does not affect the model it is use-
less for the system and ignored. This important topic will be further explored in [9].
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The preceding analysis does not yet apply to distributed systems consisting of indi-
vidual units that do not have full access to the information contained in the system
and that therefore need to optimize their own information flow based on complexity
measures when participating in the information processing tasks of the system as a
whole. Here, one has to distinguish carefully between the perspective of the system
for which the units constitute part of its (internal) environment (following [15]) and
the perspective of these units or other subsystems for which the encompassing sys-
tem is partly external. The system theoretic aspects of this situation are explored
in [9]. For an analysis in the context of neural networks, we can for example refer
to [14, 1, 10].

4 Complexity of data analysis and internal models,
or how to design a neural network

In this section, we shall exemplify the general scheme developed above in a more
concrete situation. We shall describe how the capacity of a – very simple – system
that analyzes data and builds internal models of them increases through a sequence
of steps that increase, reduce or shift complexity to another scale. In order to have
a more concrete example available, we shall describe the corresponding steps for the
design of a neural network. (The sequence of steps given below does not represent
a temporal order, but only some attempt at a conceptual dissection of aspects that
are usually intertwined.)
Preparation: Adapt to some signal space, or specify the task.
The adaptation here refers to systems that are products of an evolution in some
environment, like organisms as representatives of biological species. Such organisms
have sensory organs that receive signals from a certain input space, and the cor-
responding range of signals that the system is capable of receiving is the result of
an adaptation. The task specification, in contrast, is the result of a system design,
for example for a neural network. That is not all, however, as the system should
be adapted or designed so that on one hand, it covers the full range of the signal
space, and on the other hand that the signals are received without unnecessary
redundancy. In the simplest case, this means that each signal that falls within the
range to be covered is received by precisely one sensor. Thus, the receptive fields
of the sensors should cover the signal space without overlaps. That latter prop-
erty can be achieved through the mechanism of global competition between the
sensors. This means that whichever sensor responds most strongly to some signal
(because its receptive field is positioned best for that particular signal) should be
able to suppress the responses of all other sensors so that it becomes the one that
responds exclusively to that particular signal. This guarantees the useful mathe-
matical property that

∑
i pi = 1 where pi is defined as the probability that a signal

x drawn from the signal probability distribution p(x) falls into the receptive field
of the sensor i.
Step 1: Place receptive fields so as to cover a signal space efficiently.
We consider a system that is trying to reconstruct the underlying probability dis-
tribution p(x) of signals coming from some input space. This is a task addressed by
several neural network architectures, like the Kohonen algorithm [12]. The prob-
ability distribution p is unknown to the system that only receives random signals
following that distribution. The system covers the input space by the receptive
fields of its sensors, and on the basis of each signal received, it can perform some
adaptation (for example through a stochastic gradient descent). If it simply tries
to increase the external complexity of its coverage of the signal space, it will shrink
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each receptive field when stimulated by a signal; namely that external complexity
should be computed as −∑

i pi log pi where the index i refers to a sensor and pi

denotes the probability that the receptive field of i is stimulated. It is important to
realize at this point that the external complexity is not simply a property or function
of the input distribution, but that it also depends on how the system structures the
input space, here through the positions and sizes of its receptive fields. Of course, in
the situation analyzed here, pi is unknown to the system. Nevertheless, on average,
shrinking receptive fields that receive signals will increase that complexity because
that will lead to a more even distribution of the sizes pi of the receptive fields.
Step 2: Predict future signals.
In addition to its attempts at extracting as much information as possible from the
signal space through a good covering by receptive fields, the system can also con-
struct some internal estimate q for p that assigns some “subjective” probability qi to
each sensor for receiving a signal. That, in contrast, should be increased whenever
that sensor receives a signal so as to decrease the corresponding internal complexity.
This is rather obvious, of course, since a sensor that is frequently stimulated should
be expected to receive many signals in the future as well. In that manner, the
uncertainty about future signals is reduced through an adaptation of the internal
model, here represented by q. This analysis can be carried somewhat further (for
example by considering the Kullback-Leibler distance

∑
i pi log pi

qi
between p and

q), but the preceding should be sufficient for understanding the principle behind
this example.
In any case, prediction can only be successful in the presence of regularities in the
input. We shall need to return to the point how the system can identify and exploit
regularities in its input. At this moment, we only observe that the preceding is
meaningful when while the input signals are allowed to occur randomly the under-
lying probability distribution that governs this randomness in turn is not random
itself, but remains invariant over the course of the input analysis performed by the
system. Of course, one can conceive and analyze situations where that probability
distribution is changing as well, but in the end, all such changes must exhibit some
regularities, follow some rules. Otherwise, no input analysis is possible.
Step 3: Improve the arrangement of the receptive fields.
So far, the preceding would be rather useless as a neural network design. While the
sizes of the receptive fields are determined by our entropy principle, their shapes
are still arbitrary. Moreover, the locations of the receptive fields do not reflect any
relationships between the sensors, that is, sensors that are close to each other in
the system need not have similar receptive fields. The first issue could be solved in
a certain sense automatically, through a self-organization process based on internal
constraints. For example, if the receptive fields compete with each other for cover-
age of the signal space and try to expand around some center, then as a result of
such a competition, we should obtain a rather regular tesselation of the signal space
by the receptive fields. This will work the better the fewer degrees of freedom are
available for each such field. In other words, strict internal constraints lead to a cov-
ering of the input space that is efficient in the sense that the shapes of the receptive
fields are simple and efficient for grouping the signals. This is somewhat analogous
to one of the main results of statistical learning theory [19]. Concerning the other
issue, namely that it is desirable that sensors that are for example neighbors inside
the system should also form neighboring receptive fields so that the topology of
the input is reflected in the relative positions of the sensors inside the system, this
must be stipulated by some additional rule. The Kohonen algorithm [12] represents
a good example; here the rule is that whenever a sensor adapts its receptive field
on the basis of some signal received, its neighboring sensors also change their fields
in the same direction (but typically by a smaller amount). The general principle
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here is local cooperation. The global competition in the signal space and the
local cooperation inside the system do not get into conflict with each other as they
operate on different scales.
Step 4: Integrate the information from different sensors.
We proceed to the next step where the system increases the external complexity
by reducing the complexity of the individual sensors and shifting complexity to a
higher level that coordinates and integrates the results of those sensors. Namely, as
discussed, so far each sensor has been operating individually, analyzing all aspects
or dimensions of the input, and carving out its own receptive field, typically in
competition with the other sensors to prevent their corresponding receptive fields
from overlapping, thereby avoiding unnecessary redundancy3. Now a much more
efficient representation of the inputs can be achieved if each sensor specializes on
one specific dimension of the signal space. Thus, a sensor does not record anymore
all the features of a signal, that is, its position in signal space, but only one feature
of it, that is, in a geometric terminology, one coordinate value of that position.
The position of the signal in the input space then is not anymore determined by
an individual sensor, namely the one into whose receptive field that signal falls,
but by the combination of the values of several sensors that record complementary
features of that signal. This, of course, is a well-known and trivial point, namely
that a combinatorial code is vastly superior to one that requires an individual sym-
bol for each item to be encoded. Nevertheless, for implementing that, the system
needs some kind of integration mechanism that assigns complementary features to
its sensors, instead of letting them directly compete with each other for carving out
their own specific receptive fields. It also needs to reconstruct the signal position
from the values of the individual coordinates or features. Thus, the system has to
develop some complexity at some higher level while at the lower level of the individ-
ual elements, the sensors, the complexity is reduced. If the system is large enough,
or, more precisely, if it possesses sufficiently many elements, then the overall (inter-
nal) complexity should decrease when a more complex coordination or integration
mechanism is introduced that permits in turn a simplification of those elements. At
the same time, the external complexity is increased.
Step 5: Patterns as specific signal combinations.
Through a combinatorial code, the system can now also evaluate a collection of
signals simultaneously, or compare the signals in some temporal sequence. Specific
signal combinations that either occur particularly frequently, or at least sufficiently
well represent certain similarity classes of signal combinations, or that, alternatively,
are given to a neural network as training patterns, can then be encoded as internal
patterns. The system can then assign new input to one of these stored patterns,
based on similarity criteria. The Hopfield network [7] implements this task through
the gradient descent of some energy function whose minima correspond to those
stored patterns.
However, the performance of such neural networks is rather limited, and in any
case, the preceding is somewhat misleading. That one already sees from the purely
qualitative principle of information as a difference that makes a difference,
before any attempts at a quantification. For the analysis of a visual image under
varying lighting conditions it is useless to simply record the grey or color levels at
individual receptors. The only meaningful aspects are brightness or color differences
in a visual scene, between different receptors. In fact, this is what is recorded by
the sensory apparatus of animals. This then leads to an automatic correction for
uniform background properties. And, of course, this is the basis of all edge and
motion detection and the like in our visual system, namely the analysis of a visual

3Of course, in order to guarantee the robust functioning of the system, often, some such overlap
and redundancy should be helpful, but this is not the issue presently considered.
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scene on the basis of spatial or temporal differences between recordings from recep-
tors. Obviously, for going beyond the identification of the most simple structures
in a visual scenes, this needs to be iterated. In a neural network (for example [13]),
this is then easily implemented by introducing several internal layers each of which
detects differences in the output received from the preceding one. While, as we shall
see below, this is still far too simple, at this point we are naturally led to
Step 6: Evaluate higher order properties instead of individual signals.
The next step that again reduces complexity at some internal level consists in not
analyzing individual input signals anymore, but evaluating the average feature val-
ues of some collection of them. This reduction of internal complexity in turn enables
the system to increase its external complexity by becoming able to analyze input
signals that occur simultaneously and to detect patterns in such signal sets. In vi-
sual input spaces, such a collection of signals then is an image, and the evaluation
of a specific feature on such an image is an observation.4 In technical terms, the
features under consideration could be certain Fourier modes. These observations,
that is, the features to be evaluated, should then be chosen so as to reduce the
uncertainty about the image. We can think here of some probability distribution
on the space of images. For maximizing external complexity, that distribution is
chosen as the one of maximal entropy under the constraints given by the observed
feature values, a Gibbs distribution in mathematical terminology. Now for reduc-
ing the uncertainty, for decreasing the internal complexity, the features should be
chosen in such a manner as to decrease the entropy of that Gibbs distribution, as
in [21]. In words, the features selected, that is the observations performed, should
be as informative as possible about the image and narrow down the possibilities
for the structure of the image – note that the system does not have access to the
full image, i.e., to all its details, but has to guess or reconstruct it solely on the
basis of the observations performed. Of course, if the system were able to perform
arbitrarily many such observations, the uncertainty could be reduced as much as
desired, but the number and the types of such observations are constrained by the
system’s internal structure. This is a good example of the general principle that
the system needs to build up a complex structure, here the collection of features it
can evaluate, on some large time scale in order to be able to reduce complexity on
a short time scale, here the uncertainty about the images constituted by the signals
received.
General principle: Construct a model of the input space.
This aspect is the most important one underlying all the steps analyzed here. What-
ever information the system obtains and extracts from the signals received from the
input space, it always has to operate with only partial knowledge. When the sensors
arrange their receptive fields as described above, the only information the system
then gets from a single signal is in which receptive field it falls. The more precise
position within that receptive field is accessible to the system only when it can
perform additional, more detailed observations, but the system we consider here
is assumed to operate with the precision limit given by the receptive fields of the
sensors. Of course, one can then stipulate or construct a system that is capable of
more precise observations, but again that system then will have its own limitations.
When the system then constructs, or is given, some prototypical patterns of signal
combinations, as analyzed above, it will then classify the inputs on the basis of these
patterns. These patterns then constitute the internal model (or, to be consistent
with the terminology employed above, the model class) within which the system
analyzes the input. Thus, it will no longer predict the input itself, or reconstruct
an image on the basis of incomplete information, as in previous steps, but rather
recognize the input signals as belonging to one of the stored patterns. This leads

4Note, however, that the term “observation” has been used in a more general sense above.
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to
Step 7: Relate the input to the internal patterns or categories.
This means that when input is received, the system does not compute a proba-
bility on the space of external images, but on the internal space of patterns. In
other words, the system is not interested in the details of the input by themselves,
but rather tries to assess to which of its patterns or categories that input belongs.
Thus, the relevant mathematical object is a probability distribution on the space of
patterns. The entropy of that distribution should be maximized subject to the con-
straints coming from the observations performed on the input. Thus, constrained
by the knowledge obtained from the observations, the entropy for the identity of
the pattern corresponding to that input is maximized. When the patterns are faces
– face recognition is a standard task for neural networks – the observations are
about certain features of the visual input from an actual face, in particular relative
sizes and positions of certain parts, and these observations of course make some of
the stored patterns more likely to correspond to the input than others. Again, the
observations should be selected so as to have maximal distinctive power between
different ones of the more probable patterns, that is, they should reduce the uncer-
tainty as much as possible. As explained in the previous section, this requires an
internal feedback loop where depending on the present state of the probability
distribution on the patterns, that is on the internal model, the observations to be
performed on the input are chosen among those that the system is capable of.
An important aspect here is that our system, for example a neural network, needs
to operate on two distinct time scales, a slow one for constructing the model class,
or learning the training patterns, and a fast one for relating the input received
on-line to those patterns. Of course, when the system is learning, and even if it is
trained through supervised learning, these patterns reflect, or are chosen to reflect,
some conspicuous or important aspects of the input. Typically, those aspects can
be correlations in longer sequences of inputs, and the system then learns by trans-
forming those into internal associations. A good example is the Hebb-type learning
rule [6] commonly employed in neural networks where synapses are strengthened
according to the correlation between the activities of the pre- and the postsynaptic
neuron. In that way, the network will become able to form an association between
those activities, in the sense that an input in the presynaptic neuron can trigger,
or at least facilitate, the firing of the postsynaptic one. What is underlying this is
another
General principle: Detect regularities and construct invariants.
These regularities may occur inside or between images. They allow a compression
of the description and internal representation of images or collections of images, as
analyzed for example in [4]. Following that reference, those regularities should then
constitute the model as opposed to the non-regular aspects of an input that can
only be treated as random and are subject to the entropy maximization principle.
It is insightful, however, to bring in a complementary aspect. We consider once
more the example of face recognition. If the system has stored a particular face
as a pattern it then needs to identify visual images as instances of that pattern
even when they are rotated or translated in space (so that the object is seen from
a perhaps completely different direction or the individual parts are recorded by dif-
ferent sensors than in the original image that may have led to the pattern) or when
viewed under different lighting conditions (so that not only brightness, but also the
distribution of lit and shaded parts varies considerably, even dramatically so for au-
tomatic image recognition programs). In mathematical terminology, following [3],
this means that the input differs from the stored pattern by a certain transforma-
tion. The system then has two possibilities: Either divide out these transformations
and only store the resulting quotient as an abstract invariant pattern and do the
same with all images received. Or subject any image received as input to suitable
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transformations so as to match the transformed image with the stored pattern. In
either case, the system has to implement the corresponding class of transformations,
either implicitly, for example through automatic correction for overall brightness as
discussed above, or explicitly, for example by internally (mentally) rotating images
that are perceived as upside-down. In [3], it has been argued that the aspects of a
pattern that are invariant under a suitable class of transformations constitute, or
better, lead to a “gestalt”. The cognitive system or neural network should then not
recognize a particular pattern that corresponds to an external image in a one-to-one
manner, but rather only that abstract gestalt. So, in conclusion, we are not simply
distinguishing the regular and the random aspects of some input (relative to an
internal model), but we demand a specific operation that divides out those aspects
that are not essential for the gestalt. In that manner, the two aspects get linked
more tightly inasmuch as that operation as an application of our transformations
that suppresses the inessential aspects in turn essentially defines the gestalt.

5 Example: Pattern recognition in a neural net-

work

This section is based on a project carried out with Holger Arnold. Here, I describe
the principles according to which a neural network can recognize patterns on the
basis of the selective evaluation of input features via an internal feedback loop. A
detailed presentation of the actual neural network will be given elsewhere.
The main focus of this example will be on Steps 6 and 7 above, but on the back-
ground of the other ones. We assume that the network or system has stored or
identified a collection of patterns labelled by i = 1, ..., n. These patterns might
correspond to faces, visual shapes or other geometric objects,...; for thinking about
this example, it is probably useful to think about patterns to be recognized in visual
scenes. Also, on its input, the system can evaluate certain features α = 1, ..., m, like
edges, corners, or, better, features of a somewhat higher level, like specific distri-
butions of input pixels on some small subregion of the retina, or relative distances
between certain conspicuous points in the scene. It is important for understanding
the purpose of the network that we assume to be in a situation where the network is
not capable of evaluating all the possible features simultaneously in its input, sim-
ply because there are typically far too many possibilities. Rather, the idea is that
the network will selectively perform observations, that is, evaluate those features
that have the highest potential for discriminating between those patterns that are
probable candidates on the basis of the observations already performed. Thus, the
basic design principle is a feedback loop between observations that affect the proba-
bility distribution in the space of patterns and the selection of further observations
on the basis of that probability distribution.
We first need to implement the relationship between patterns and features. This
can be done on the basis of supervised learning as is standard in neural networks.
So, the observed values xα of the features induce activations yi of the patterns:

yi = f(
∑

α

wiαxα) (4)

where f might be a sigmoid function f(s) = 1
1+e−κs where for our purpose a rather

large value of the parameter κ might be best so as to get a sharp threshold later
on. Namely, we call a pattern i activated if yi > θ where θ is some threshold that
we can tune to our convenience, perhaps again by supervised learning. The wiα
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are weights that can likewise be learned through supervised Hebbian learning. The
essential point is that they should be positive, and perhaps large, if feature α occurs
in pattern i, and 0 or negative if not.
Conversely, each pattern i then makes a prediction ξα(i) about the values of the
features occurring in the input; this is nothing but the value or the strength with
which feature α occurs in pattern i. Again, this will be the result of supervised
learning or direct implementation. The point is that an activated pattern predicts
the values of certain observations that could be, but have not yet been performed
on the input, and these predictions can thus be checked against observations, in
order to confirm or refute the hypothesis that a pattern i is the one present in the
input. We now need to make this more precise.
The preceding two operations, namely the activation of patterns on the basis of
observations and the prediction of the outcomes of further observations by the acti-
vated patterns are fast. In certain cases, a feature observed may alredy determine a
unique pattern as the single one whose activation is above threshold. In that case,
no feedback is necessary, and the task is solved. In most cases, however, an observed
feature will activate several patterns, and the decision between those patterns then
has to be achieved on the basis of selected further observations, and this is the task
the network has to solve. For that purpose, we now need to compute a probability
distribution that assigns probabilities to the activated patterns on the basis of the
observations performed so far. According to our general reasoning with entropy
maximization, this should be a Gibbs distribution. Thus, the probability of pattern
i is given by

p(i) =
1
Z

e−
P

α λαξα(i) (5)

where the sum extends over all observations α performed so far, with the partition
function Z =

∑
i e−

P
α λαξα(i) and multipliers λα determined on the basis of the

observations α performed,

Ep(ξα) :=
∑

i

ξα(i)
1
Z

e−
P

α λαξα(i) = xα (6)

where xα is the observed value of feature α.5 One should note that those multipliers
do not always exist so that a slight modification might be required which, however,
will not affect the general scheme. For example, if the observations only admit bi-
nary values, namely tell whether a feature is present or not, then our Gibbs distri-
bution will simply assign uniform probabilities to all those patterns that match the
observation and discard the others (formally, this simply means that the correspond-
ing multiplier is infinite, and we need to look at a higher order expansion). Also,
there is a problem if the vector (x1, ..., xM ) of observed feature values falls outside
the convex hull of the vectors predicted by the competing hypotheses i = 1, ..., n.
This, of course, simply means that no combination of the hypotheses can recover
the observed features, and clearly, in such a situation, the system needs to admit
or generate new hypotheses. Having discussed this point, we now return to the
case where our multipliers exist. The entropy of our Gibbs distribution encodes
the uncertainty about which pattern is the correct one on the basis of the obser-
vations performed so far. The system now needs to select that observation to be
performed next that reduces that uncertainty as much as possible.6 Roughly, the

5We might also stipulate a different rule for the determination of the λα, depending on the
precise circumstances in which the system is operating. This will not substantially affect the
general scheme.

6This step is formally similar to the one in [21], but the conceptual aspects are different because
the system needs to determine here what observations to perform on the basis of its current internal
hypotheses.
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idea should be to find a new observation � with maximal discriminative power, i.e.,
with maximal ∑

i

p�(i)|ξ�(i) − x̄�|2 ; (7)

here p� is the new probability distribution taking into account feature �, and x̄�

is the expected value of that feature. That value could be either computed from
the probability distribution itself, that is as

∑
i p�(i)ξ�(i) or be taken as long-term

average given before the actual observation of the feature is performed, i.e., before
its value is measured. Thus, we stipulate that this expectation value is formed on
the basis of the long-term observations of the system, that is, on the basis of all
the previous pattern recognition operations carried out by the system in the past.
Thus, this value depends on the experience of the system and can be implemented
into the system through a process of unsupervised learning. In the context of the
analysis of visual scenes, this represents the statistics of natural scenes as learned by
the system either in its individual ontogenesis or through an evolutionary process.
In any case, this represents the longest time scale involved in our example.
We now need to address the question about how to identify that feature �, or, in a
more weaker form as we are argueing that it is impractical for the system to check
all possible features, to identify some feature that leads to a reasonably large decay
of the uncertainty. Doing so, we shall also see that the above heuristic idea needs a
modification, in order to take the fact into account that in general the features are
not independent of each other. More precisely, we need to take the correlations of
our new feature with the ones already observed into account.
The following approximation argument is useful: We wish to change the probability
distribution p given in (5) to

p�(i) =
1
Z

e−
P

α λαξα(i)−λ�ξ�(i) (8)

with a coefficient λ� to be determined analogously to (6). Instead of doing that,
however, we rather study the infinitesimal effect on the entropy of p� near λ� = 0.
That entropy is given as

H(λ, λ�) = −
∑

i

p�(i) log p�(i) (9)

= log Z(λ, λ�) +
∑

i

(λ�ξ
�(i)

1
Z

e−
P

α λαξα(i)−λ�ξ�(i) +
∑

α

λαξα(i)
1
Z

e−
P

α λαξα(i)−λ�ξ�(i))

with the partition function

Z(λ, λ�) =
∑

i

e−
P

α λαξα(i)−λ�ξ�(i). (10)

Since the entropy is maximal for λ� = 0 under the constraints (6), the first derivative
wrt λ� vanishes at 0, and the leading term will be given by the second derivative.
Moreover, when we compute derivatives, on account of (6), for the last term in (9),
we only need to compute derivatives of the coefficient λα. We now compute

∂2

∂λ2
�

H(λ, λ�)

=
−1

Z(λ, λ�)

∑

i

ξ�(i)(
∂λα

∂λ�
ξα(i) + ξ�(i))e−

P
α λαξα(i)−λ�ξ�(i)

+
1

Z(λ, λ�)2
(
∑

i

(
∂λα

∂λ�
ξα(i) + ξ�(i))e−

P
α λαξα(i)−λ�ξ�(i))(

∑

i

ξ�(i)e−
P

α λαξα(i)−λ�ξ�(i))

= Ep(ξ�)Ep(ξ� − ∂λ

∂λ�
ξ) − Ep(ξ�(ξ� − ∂λ

∂λ�
ξ)) (11)
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that is, the (negative of the) variance w.r.t. our probability distribution p of the
new feature ξ� corrected for its dependence on the old ones. That dependence is
easily computed from (6). Namely, if we write those constraints in the form

Fα :=
∑

i

ξα(i)
1
Z

e−
P

α λαξα(i) = xα (12)

we have
∂λ

∂λ�
= −(

∂F

∂λ
)−1 ∂F

∂λ�
(13)

where ∂F
∂λ stands for the matrix with entries ∂F α

∂λβ
and ∂F

∂λ�
for the vector ∂F α

∂λ�
. Those

entries are computed from (6) as

∂Fα

∂λβ
= −

∑

i

ξαξβe−
P

α λαξα(i)−λ�ξ�(i) = −Ep(ξαξβ) (14)

∂Fα

∂λ�
= −

∑

i

ξαξ�e−
P

α λαξα(i)−λ�ξ�(i) = −Ep(ξαξ�). (15)

Since we are at a maximum, the second derivatives of H have to be non-positive,
and this checks from (11), as they are the negatives of variances. In particular, H is
locally decreased most if we select a new feature for which that variance is maximal.
The important point is of course that this variance of the feature to be evaluated
depends on the patterns currently under consideration because it is computed w.r.t.
the probability distribution p that is determined by those patterns. In particular,
we are not attempting to maximize the absolute information gain resulting from
evaluating a new feature, but rather seek a feature that can discriminate best be-
tween the currently active hypotheses. Thus, the variance occurring here is not
the one for the probability distribution of the feature, but rather the one for the
prediction of the feature by the hypotheses.
In practice, the network will not be able to check all possible features for identifying
the one with maximal variance, but rather a collection of patterns must activate
some subset of features among which then the maximization can be carried. Again,
that relationship must either be based on the hypotheses presently active, that is
compute some g(

∑
i vαiξ

α(i)) for some bounded increasing function g (a sigmoid,
for example) and some coefficients vαi determined by Hebbian learning, and then
select the class of those features for which the value of that expression is above
some threshold, or alternatively on long-term experience, that is on unsupervised
learning as already explained above.
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