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m Abstract

In this paperwe presengeneralresultson aggregatiorof variables specificallyasit appliesto decom
posable(partitionable)dynamicalsystemsWe show that a particularclassof transitionmatrices,
namely,thosesatisfyinganequitablepartitioningproperty,areaggregableinderappropriatedecomposi
tion operatorslt is alsoshownthatequitablepartitionshavea naturalapplicationto the descriptionof
mutation-selectiormatrices(fitnesslandscapesyvhentheir fitnessfunctionshavecertainsymmetries
concordanwith the neighborhoodelationshipsn the underlyingconfigurationspace We proposethat
the aggregatevariabledescriptionsof mutation-selectiosystemffer a potentialformal definition of
units of selectionandevolution.

Keywords: Fitness Landscapes, Aggregation of Variables, Decomposability, Mutation, Selection
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m Introduction

Biological systemsasa generalkule consistof very largenumbersof interacting,hierarchically
arrangedsubcomponentdvery introductorybiology textbookpresentsts readerwith the statement
thatmulticellularorganismftenconsistof alargenumberof cell typesarrangednto preciseconfigura
tion in threedimensionswhile eachcell in turn containsa vastarrayof macromoleculesConversely,
individual organismgoften of differing genotypehemselvesnteractwith oneanothernn demesand
populationsvhich arefacedwith bothintra andinterspecificcompetition.

Theresultinghigh dimensionalityof mostbiological systemshouldmakean exhaustivedescrif
tion of the statespace(andthusthe statedynamic)completelyintractable What makesdynamical
systemrepresentationf biological modelspossible(and,for that matter,the conceptualdentification
of "units" of biological structureandfunction)is thefortunatefact thatanexhaustivedescriptionof the
statespacds not necessaryo predictthe behaviorof manybiological entitiesand/ortheir components
Consequentlyit is of fundamentalmportanceto theoreticabiology to understanadvhy andunderwhat
circumstances descriptionof a complexsystemcanbe achievedwith fewer macroscopic/ariables.
Although this representatiorhas conceptuallyinformed philosophersof biology (Wimsatt 1981,
SchankandWimsatt1988),concreteresultson this representatioproblemhavelargely beenobtained
outsideof biology, mostly in economicgSimonandAndo 1961, Ando and Fisher1963),computer
science(Holland 1975) as physicalchemistry(Haken1977).In this paperwe summarizethe current
knowledgeaboutaggregabilityof lineardynamicalsystemsandput the existingresultson a systematic
basis.Finally we discusgheapplicability of theseresultsto modelsof geneticevolution.

A reducedvariabledescriptioncanbe dueto eitherof thetwo propertiesvhich we will discuss
in this paper:systemdecomposabilityand aggregatiorof variables.As we will see,while the two
conceptsareoftenrelatedto oneanothertheyarein principleindependent.

To makeour definitions concretewe startwith a biological (or any complex,multivariable
dynamicalsystem)with a statespacespecifiedby vectorx={x;...x,} andsomediscretetime-evolution
operatorg(x(t))=x(t+1) which fully determineghe distributionof the statevariablesin the nexttime
step.In the mostgeneralcase X (t+1)=¢; (X(t)), i.e. whereeachstatevariableis potentiallydependent
on the stateof everyothervariablein the systemlndeed,onecouldconjectureghatan“exact"represen
tation of any biological systemwould requireexactlysucha scenariosincein aliving organismor an
ecosystemeveryentity in someindirectway interactswith everyothercomponent.

Fortunately|t is oftenthe casethatbiological systemsarein somesensé'modular”,in thatone
can identify subsetsof variablesC={x;...xn}, wherefor an appropriateordering of variables,
Ci={xg..%}, ..C={ Xz',»:lk,-—l---xz',»:lk,-}’ .Cm={Xn_k,+1.--%n} With k; =|C; | the number of elementsin
the Jth class. These subsets are chosen such that they interact strongly with one another and not at all
(or sufficiently weakly) with members of other subsets. Exact decomposability also requires that

CiNC;=0.



Copy of DecompPaper.nb 3

Consequently, the state dynamics of any variable x;€C; can be expressed as a function
X (t+1)=¢; (C; (1)), implying that the function ¢:x(t)-x(t+1) itself is decomposable into functions
¢1...¢1 ...om, €ach of which acts only on the state variables within the corresponding partition C, . From
a computational standpoint, it follows that each partition is dynamically self-contained, and that we
only need information about the state variables within the same partition to compute the frequency of
the variable in the next time step.

As a straightforward example of decomposability, consider a general linear dynamical system
X(t+1)=Ax(t) where A is a constant valued square matrix of dimension n with coefficients A;;. For an
arbitrary matrix structure, we have x; (t+1):Z’j‘:l Ajj X;(t). However, for a decomposable system, the
transition matrix will have a block-diagonal form

AL O O OO
0O -~ 0 0 O
(0.1) A=|0 O A 0 O
000 -~ O
0 00O

where each square submatrix A; of dimension k; (the number of elementsin the Ith partition) contains
nonzero coefficients for (some) interaction terms A;; for i,jeC,;, and zero elsewhere, corresponding to
the absence of cross-partition interactions. For a system described by a matrix of the above form, we
have x; (t+1)=3 jcc, Aj Xj(1) givenieC,. It thereforefollows thatthe dynamicswithin eachpartitioncan
be representedndependentlyof oneanotherasC, (t+1)=A, C, (t). Decomposabldéinear systemsand
approximatelydecomposablsystemshavingthis structurehavebeenanalyzedin somedetail else
where(SimonandAndo, 1961).

While no biological systemis probablyperfectlydecomposablen suchaway, it is reasonable,
at leastasa first-orderapproximationjt is alsotrue thata largedegreeof localizationandmodularity
existin organismaldesign.At any giventime during developmentgenenetworkscanoften be parti
tionedinto regionsof stronglyinteractingcomponentsjust ascells giving rise to specifictissuetypes
and organsystemsare often developmentallyandfunctionally modularwith respecto therestof the
organism.Anotherwell-studiedexamplecomesfrom populationbiology - the so-calledmetapopula
tion (Levins 1969),in which mostcompetitionand otherforms of interactionbetweenconspecific
individualsoccurin localizeddemegatherthanacrossan entire population.Oneevencanarguethat
biology asa sciencewould be impossibleif therewould not be a certainminimal degreeof decompos
ability, atleastin experimentasituations.

The examplef organsystemsandinterdemiccompetitionraisesthe relatedissueof aggregabi
ity. Apartfrom beingrelatively self-containednodules organsystemsarecharacterizedby whatcom
plex systemgheoristsreferto as"emergent'propertiesj.e. from a particularinteractionof lower-order
"microvariables"thereariseidentifiable "'macrostate'variableswhich haveinteractionpropertiesas
statevariablesin their own right. For instance gventhoughorgansarein somesenseaggregatesf
cells, it is obviouslyusefulto think of organsashavingrolesasindividual entitieswithin physiological
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systems apart from being aggregates of cell types, just as interacting living organisms are obviously
individuated entities rather than a collection of organs.

To formalize these notions of "emergence" and "macrostates,” consider again a dynamical
system with n state variables, x(t+1)=¢(x(t)). We define this dynamical system to be aggregable if there
exists some transformation y=f(x) such that y has m<n state variables, and that there is some operator ®
suchthaty(t+1)=d(y(t)) givesadynamicallysufficientdescriptionof thedynamicsofy (i.e. y;...ym act
asstatevariablesfor theaggregatedystem).

A familiar exampleof aggregatiorof variablescomesfrom thermodynamicsyheremacrostate
variablessuchasenergy,temperatureandentropycanbe derivedfrom the distributionof molecular
microstatesn an ensembleandthatthe macrostateshemselveserveasdynamicallysufficient state
variablesfor the system Aggregationof variablesis alsoimplicit in theidentificationof units of selee
tion in evolutionarybiology, in arguingthathigherentitiessuchasgenomegor undergroupselection
scenariospopulationsactasunits of transmissiorandselectionwhile beingthemselvegomposedf
suchunits(geneshtthelower level.

It shouldbe notedthatwe makeno assumptiongboutwhich variablescontributeto any mac
rostatecomponenty, . In principle,eachy, couldbe afunctionof all of the microstater any subset
thereof,y, =f(X1...X,), hencethe variablescontributingto any two macrostatesould containany num
ber of overlappingmicrostatevariables.Thus,while aggregatiorof variablesprovidesa reducedvari-
abledescriptionof the systemdynamicsat the macrostatéevel, theindividual macrostateseednot be
functionsof non-overlappingartitionsof microstatesindeed,in the caseof thermodynamicseach
macrostatevariableis a function of every microstate(gas moleculeconfiguration).Consequently,
aggregativityneednotimply decomposabilitynor vice-versa.

Dynamicalsystemswhich areboth decomposablandaggregableonstitutea specialclassof
phenomenaln suchsystemsgachmacrostatevariabley, is a function of a partition f, (C,), i.e.

y) (t+1)=dy; ()=(f, (C,(t))). Model representationsf suchsystemscombinethe computationabnd
conceptualadvantagesf having on the one handthe smallernumberof macrostatevariablesasa
consequencef aggregativityand smaller,mutually exclusivesubsetf microstatesontributingto
eachvariable.

We now turn our attentionto the formal propertiesof decomposabland aggregabldinear
systems.

m Aggregation and Decomposability of Linear Dynamical Systems
Consideragaina generic,n-dimensionallinear dynamical systemx(t+1)=Ax(t). We ask

whetherthereexistsan aggregatioroperatorQ suchthatfor y=Qx, thereis a matrix A specifying the
aggregate dynamics y(t+1):Ay(t). In general Q can be any (mxn) linear operator that projects the n-
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dimensional vector x into m-dimensional spacefory.
It follows from the definitions of aggregativity that

(1.0) X (t +1) =Ax (t), Y (t +1) =AY (t)
QAx = AQx,

therefore, given an aggregation Q for a system defined by A, the operator for the aggregate dynamics A
has to satisfy the relation:

(1.1) AQ=QA

Note that this relation has to hold for arbitrary aggregation and transition operators, though for the
purposes of further analysis we restrict attention to linear operators.
If QQ' isintertible, A can be solved for explicitly:

(1.2a) AQQ -Qxqd,
A -1
A-QaQ (QQ)

This impliesthatin casesvhereanexactaggregatiorof variables(definedby Q) exists,A can
be expressedh the aboveform. As will be discussedelow, it doesnotimply thatan exactaggregate
dynamicaloperatorA existsfor an arbitraryaggregatiorrule (thoughit will be arguedthatin some
sensel.2ais the bestapproximationto an aggregatelynamicsoperatorevenin casesvherean exact
aggregationn termsof Q doesn'strictly speakingexist).

Expressedn summatiorform anddefiningmatrixD=QQ", (1.2a)is

n n
(1.2b) AlJ—ZZZQiAijQTjKD"lKJ
K=l i-1j-1

The product QQ" in (1.2) isinvertibleif and only if Q isfull rank. If Q is an orthogonal square
matriX, this product is the identity matrix and we have a trivial diagonalisation as the aggregate
A=QAQ!.

If the row vectors of Q={c}; ... m}' are orthogonal to one another, QQ' is a diagonal matrix
with entries D=, Q «? (which equalsn; for matrices of unweighted characteristic vectors, since
each nonzero coefficient of Q is unity) with the inverse D! having reciprocal entries D”‘l:DiII . Thus,
for aggregations of decomposable systems, the coefficients of A are, expressed again as sums:

(1. 3) AIJ—ZZQ A 5 Q]k

It can be shown that some aggregate description exists for any dynamical system specified by a
square matrix A, albeit an often trivial one. It follows as a general consequence of the spectral theorem
for matrices that we can aways write an aggregation in terms of the eigensystem of A, i.e. for a matrix



Copy of DecompPaper.nb 6

of eigenvectors Q of A with a corresponding diagonal matrix of eigenvalues A, we have QA=QA,
because every matrix A has at least one eigenvalue A and at least one associated eigenvector q, since
we can write Ag=1q. We can treat q as a (column vector) matrix Q, thus the following holds with
A=(2) and Q=g

Result 1.1:
Every nxn matrix A with n=2 has an aggregation of variables with m<n.

As acorollary, given eigenspace {q; ...q,,} of A, associated with eigenvalue A, the mxn matrix
Q with rows q; is an aggregation of variablesfor A with A=l,, where I, isthe mxm identity matrix
for some m<n.

If A issymmetric, we obtain a stronger result, i.e an aggregation for any m macrostates up to
m=n can be constructed:

Result 1.2

If A issymmetric it has an aggregation with every dimension m, 1<m=<n.

Proof: A symmetric(or Hermitian)hasn realeigenvectorsit sufficesthereforeto selectanym of them
for the constructiorof thematrix Q of eigenvectors.

The disadvantagef an eigensystenaggregationpf course|s thatin orderto computeeachof
the m aggregatevariablesonerequiresinformationaboutall n microstatesaseigenvectoraregener
ally expressed@sa linear combinationof all n statevariablesof a system.Consequentlyalthoughthe
aggregatiorallows a reducedstatevariabledescriptionof systemdynamics,the aggregatevariables
themselvesften haveno interpretationfrom the standpointof macroscopisystemproperties.The
main motivationbehindaggregatiorof variables,afterall, is to uncoverdynamicallysufficient vari-
ablesat variouslevelsandclustersof variablesthatactin a dynamicallycoherentmannerldentifying
subsetf coherentlyacting variablesultimately allows one to determinethe natureof any system's
communicatiorwith other,similar systemgthroughinteractionof macrostateariablesasin thermody
namics),aswell asoffering insightinto the "emergent'macrostatevariablesthat ultimately drive the
relevantsystemdynamics.

Consequentlyye areinterestedn aggregationsvhich alsodeterminesystemdecompositions
(i.e. Q with orthogonakow andcolumnvectors),or at leastaggregatioroperatorsvherethe entriesfor
any onerow or columnarea small subsetof the total statespace While it follows from Theorems
1.1-2thatsomeaggregatioralwaysexists,it shouldbe apparenthatanaggregatiorwith anarbitrary
choiceof Q (onecomputationallyconvenientor intuitively meaningfulfrom the standpoinof system
structure)neednot necessaril)satisfyAQx:QAx for anyvectorx for A definedin (1.2).
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= Interpretation of A

In orderfor A to be an appropriatedescriptorof the aggregatelynamics,both X=Qx and
X(t+1)=AQx mustbe meaningfulstatevariables.ldeally, one would want the defining dynamical
propertiesof the original systemto be conservedn the transformedaggregatelescription.For exam
ple, if x describesa probability distributionandA is a transitionmatrix, we expectthat X shouldalso
be a probability distributionunderthe actionof A.

In the abovespecialcaseof A a stochastianatrix actingon distributionvectorsiit is notneces
sarily the casethat any aggregatiorof variables(actingon the original statevectorx) shouldgive a
distributionor thatthe aggregat&iynamicsoperatorA is stochasticFor anarbitrarychoiceof weighted
entriesin Q, Y5 Ayis notgenerallyequalto unity giveny; Ajj=1for all j.

Givenarow-stochasticirreduciblematrix A (the sameargumentapplyto columnstochasticity
by transpositiorandleft versusright multiplication), by assumptiorl,, A=1,. In orderfor A asto be
row-stochasticye alsoneedto satisfylmAzlm. Because&Q:QA, it follows that

1mAQ: 1mQ°\= 1mQ

i.e. 1,Q is aneigenvectoof A with the eigenvaluel=1. Sinceby the Perron-Frobeniu$heorenthis
eigenvaluds unique,it follows that1,,Q=1,. Thisleadsto Lemmal.0:

Lemma 1.0:
For any positive-definite(andthereforeirreducible)stochastianatrix A, A definedin (1.4)is stochas
tic if andonly if 1,,Q=1,

since(1y Q); :ZT‘zl g , i.e. thecolumnsumof Q, this conditionwill alwaysbefulfilled for a partition
ing.

One often encountersa more fundamentalproblemthan conservatiorof stochasticityin the
transformatiorfrom A to A. While (1.2)follows asa consequencef (1.1),the converses nottrue, i.e.
it doesnot follow thatgivenaratematrix A andanarbitraryaggregatiorQ therewill beadynamically
sufficient descriptionof the aggregatevariablesin termsof A=QAQ" (QQ") 1 Otherwise it would
be the case that any aggregation (at least those specified by full-rank aggregation matrices) would be
possible for any linear dynamical system.

To see that given some transition operator A and a choice of aggregation Q, the matrix A in
(1.2) does not in general satisfy (1.1),

A-dd (@) ' = A - a0 =
AQY Q= AQ Q
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the lastline cannotgenerallybe rewrittenas AQ:QA becaus€Q' Q) is not itself a full-rank matrix
andis thereforenotinvertible.

Ontheotherhand,it is the casethatin somesenseA asdefinedin (1.2)is the bestapproxima
tion to theaggregatelynamicsgivenanarbitrary(not exactlyaggregableA andchoiceof aggregation
Q. By "bestapproximation”we meanthatfor a definedsetof statevectorsx, we wantto minimizethe
differencebetweerthe aggregatiorof the statevectorafteratime step,Y (t)=QAX(t) versusheapproxt
mationto Y(t) asAQx(t). To do this we computethe distancegor somenormof

TY (t) -Qx (t) [| = |IB Y (0)-QA x (0) ||

given a choice of aggregate dynamic matrix B, or equivaently, we ask which B minimizes ||BQx-QAX||
for aset of x in the state space. From the following result, we can show that B=A will on average
minimize the difference:

Theorem 1.1:

The matrix B=A minimizes ming|[BQ-QA|, where the matrix norm |[X|| is the Frobenius (Euclidean)
norm, i.e.

1/2
||X||=Z>qj]

i

We derive the B that minimizes |[BQ-QA\|| by differentiating and solving for the coefficients of B
(here theindices |,J and K,L denote the m rows of Q, whilei,j and k,| are used to index the n columns
of Q and the rows/columns of A)

_ 2
1.6) @H'E?aQB.JQM')

2 ) ) D e Yaa [T ac 53| o

The partia derivative @ BKL =1 for K=I, XL and is O otherwise. Hence, (1.6) can be rewritten as:
2y Ok 0L Qi = Ok QJk- SUbStitUti ng, we obtain

ZZZBlJQJkéKlQJkZZZZQqA;kéK.Q]k
K k L K k0

E BILZQkQIJZZBlLD_J=ZZQ,<|A|kQL
L K L kK
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The last expression is equivalent to BQQ' =QAQT , therefore B=A minimizesthe Euclideannorm

IBQ-QAIL

This doesnot meanthat||AQx-QAx|| is minimizedfor any choiceof x (or evenlower dimen
sionalsubspacesf the n-spaceof x), however,it doesmeanthatoveranv<n dimensional region the
vector space defined by the rowspace of A, A gives aminimum distance between AQX and QAX.

It follows because for any choice of a uniform state vector X={X;...X,} where X;=X; and an n-
dimensional sphere £(x) about X, letting G=BQ-QA, y=Gx=BQx-QAXx (with g;; the coefficients of G):

n n n n
j=1 j=1 j=1 j-1
Z [Zgij Xj Zgikxk :ZZXJ' Xk Zgij gji = <xG' Gx >
j K . i
j k

i
Computing the expected value of |y |?, by integrating over x={x...X,}, we derive:

2

> )G ch () X xk dx Gy = >\ > Gy (Cov (xj, xk) +x?) G}
i k

i ] K i
For a distribution&(x) with sphericalsymmetryaroundx (i.e. for all x;, £(X+x )=£(X-%")), we have
[% €0 ... X0) d % = 0, therefore:

Cov (Xj, Xk) + 2—J§(x)xj Xk dXx =

\' X~ =
JJ JXJ' Jxkg(xl... Xn) dXj dXk ... dX =k Var (xj)

since by definition, spherical distributions have zero cross term covariances. Furthermore, we require
that the radii in all orthogonal directions are equal, i.e. Var(x )=Var(x;)=c for al i,j. Consequently,

(1.7)

EL|¥1%] =
(0®+x2) ) g% = (6" +x%) (11GI)?= (0" +x*) (|]BQ-QA|[) %y,
i

If for convenience we chose X=0 and the variance (corresponding to the square of the n-ball radius)
equal to unity, then the integral over the sphere givesus ( | | BQ- QA | | )24 1 =IIAQ-QA].
Consequently, one can think of (1.2) as the best possible approximation to an aggregable system even
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in cases where an exact aggregation is not possible.

Even for transition operators that are not aggregable with respect to a given Q, we can ask
whether there exists a subspace of values x for which the system is exactly aggregable. We show that
for systems where the aggregation matrix corresponds to a partition (decomposition) of variables, one
can specify conditions on x and on A such that

QX = AT (QFN) T x

holdsexactly.
We restrictour attentionto partitioningsdefinedby Q, i.e. aggregationsvhich arealsodecompe
sitions.With aproperorderingof statevariablesthe partition matrix canbewrittenin theform

di 0 0
Q=10 - 0
O 0 dm

If the aggregate variables are an unweighted sum 3;_c, X, €ach vector g, is a characteristic vector
defined such that g;, =1 for x;€C; and O otherwise. Because the aggregate variables for partitions are
functions of non-overlapping subsets of variables, they tend to be more computationaly tractable in
determining conditions for aggregability.

We first compute the constraints on x for arbitary A and Q for which the aggregation is exact.
Rewriting the matrix products in terms of sums, we have

I

j

X

(1.8a) (QAX) = {ZQi Aj

for Q, acharacteristic vector, the above evaluates to
YA x> [ZAU'
i - i el

j
while applying (1.3) gives usfor the general case

(1.8b) (QAX), =

X|

(1.9 a)

_ Q]
(g () x), Z [Z > Qi A m] > Qioxx

3 iel jed kel

which for matrices of characteristic vectorsis
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1ob) )

J

)y A

iel jed

5

ked

Setting (1.8b) equal to (1.9b) and solving for x given arbitary A, we have
(1. 10 a)

-:——ZXJ] S J:>Xi:Xj Vi,j e G

jed

i.e. exact aggregation is satisfied whenever the within-partition distributions are uniform.
When the coefficients of Q are weighted characteristic vectors and thus not equal to unity, in
order for (1.8a) to equal (1.8b), the entries of x must satisfy the relationship:

B S Qux vk €G

(1.10b) xj = — <
: ZkeJ Q]kz jed

If the aggregate variables are an unweighted sum i, X, €ach vector q; is a characteristic
vector defined such that g;, =1 for x;eC; and 0 otherwise. Because the aggregate variables for partitions
are functions of non-overlapping subsets of variables, they tend to be more computationally tractablein
determining conditions for aggregability.

We first compute the constraints on x for arbitrary A and Q for which the aggregation is exact.
Rewriting the matrix products in terms of sums, we have

Z D QA e 0y - ) Qu A

red iel ked i el
Because Q is nonzero only for jeJ, the outer sum on the left-hand side evaluates to the term inside the
parentheses multiplied by Q, giving us the constraint

(1.11a)
;;Q A Q]r—ZkeJJQ]k ;Q A

In the case of Q amatrix of characteristic vectors, both sides simplify to:
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This corresponds$o a matrix A wherethe within-partition columnsumsareequalto a constantMatri-
ceswith this structureare saidto be column-equitabl€Tinhoferand Stadler2001)andcorrespondo
anequitablepartitionof statevariables Fromthis we canconcludethatanexactaggregatiorcorrespone
ing to equitablepartitionsare alwayssatisfiedfor column(or row) equitablematrices.In the caseof
arbitrarycoefficientsin Q, the constraintcanbeinterpretecasa weightedcolumn-equitability.

Conditions(1.11)insurethatA is aggregableinderthe constraintof Q for any choiceof state
vectorx. While (1.10)suggestshatfor anarbitraryA therewill alwaysbe somex which satisfyexact
aggregability it turnsout thatonly for column-equitablenatricesareaggregablesolutionsx invariant
andstableundertheactionof A, (in otherwords,if x(t) is aggregablex(t+1)=Ax(t) will only beaggre
gableif A is columnequitable)j.e.

Result 1.3:
If x isan exactlyaggregablesolutionQAX:AQX, thenin generalAx is alsoaggregabléf andonly if
A is column-equitable.
In the caseof Q a matrix of characteristiozectors,if x satisfiesthe aggregabilityconditions,
thenfrom (1.10)we know thatx; =x; for all i,jeC, . Sincewe have

(AX) :ZAika:ZZAika
k

K keK

andequalityof x, for all k within eachpartitionK, in orderfor

ZZAika=ZZAijk=>Aik=Ajkf0ri, j €G.

K keK K keK

In the caseof real-valuedcoefficientsof Q, the samereasoningshowsthatif x satisfies(1.10b),then
Ax will generallyonly beaggregabléf theweighted-columrequitability condition(1.11b)holds.

m Equitable Partitions

Exact aggregability of atransition matrix A (with A;; the transition rate from j to i) requires that
given partitions C, ,C;

D A=) Ak=Su Vi, keG; ieG

i el i el
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An intuitive interpretationof the constantcolumnsums; is thateveryelement of the partition| has
the samenumber(or, in the continuouscase magnitudepf connectiongo someelement(spf partition
J. Thereis no requirementhatthe matricesbe symmetric,thereforethe sumof connectiongrom all
elementsf Jto anyparticularelement of | neednot be constantThis corresponds$o the specialcase
of acolumn-equitablgartitionof atransitionmatrix.

An equitablepartitioning of any setof verticescorrespondso a decompositiorinto subsets
suchthateveryelementof eachsubsethasthe samenumberof connectiongoverall) to the elementof
any other partition. The conceptof equitablepartitionswasfirst developedn connectionto graph
theory (Schwenkl1974,McKay 1981,Godsil1990)asa methodof identifying graphinvarianceproper
tiesunderwithin-partition perturbation.

The graph-theoretidefinition of equitablepartitionsis givena graphG=(V,E) with vertexset
V,E anda partition of verticesn=(C;...C,) into m non-empty and mutually digoint subsets C. The
partition 7 is said to be equitable if for any i and j the number of neighbors (denoted by R,;) of any
vertex x;C; depends only on the partition indices |,J and thus independent of choice of vertex within
apartition.

The equivalence classes defined by an equitable partition specify a reduced "quotient graph”
G/r, a directed multigraph where each partition C; is represented as a "reduced” vertex V; with R,
connections to vertex V,. Any partition  corresponds to a representation as a characteristic matrix Q
such that Q;;=1 for iel and O otherwise.

Figure O illustrates equitable partitioning on a graph. Consider first the 12 vertex, 15 edge graph
on the left hand side. The labeled graph on the right hand side codes each vertex by shadings and
shapes in accordance to membership in equivalence classes (e.g. solid circles have one solid circle and
two open circle neighbors, shaded squares are defined by having one open circle, one shaded square,
and one open square neighbor, etc). The directed graph on the bottom represents the quotient graph for
the equitable partitioning.

The number of edges R ; can be computed directly from the adjacency matrix of the original
graph in Figure 1. Arranging terms so that members of the same equivalence classes are in the same
partition blocks, we get the adjacency matrix, with A;=1 for vertices connected by an edge and O
otherwise:
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OO0 00O FrOPFr OOoOOoOOo
O O0OPFPOO0OO0OO0OPFr OO0OOoOOo
O O0OO0OO0OPFrPOPFrP, OOOOoOOo
O O0OO0OPFrOO0OPFr OO0 O0OO0oOOo
P OOORFRP, OO0OO0OOOOoLPR
OPrPO0OO0OO0OFrR OO0 oo
OrRrPrPFPOOO0OO0OORFr OO0oOo
P OOPFPOO0OO0OO0OOOoOrOo
O O0OOPFrRPPFPOOOOOOoOOo
O O0OPFrPOOFr,rOO0OOOOoOOo

OO O0OO0OO0OO0OPFrRrR OOOLRPEFk
eleolNeololNolNolNoll i ) o]

for which the quotient graph coefficients (corresponding to the number of edges connecting
"aggregate” verticesin the lower graph of Fig. 1) are given by:

0210

_ 1100
R”:.ZIZJA”’R: 10 1 2
e e 0010

The matrix R can be interpreted as an aggregation of variables representation of the adjacency
matrix A, note that according to definition (1.2), R differs from A only by normalizationconstants.
Equitablepartitioning canbe interpretedas an exactaggregatiorof variableswherethe aggregation
matrix specifiesequivalencelassesvith respecto thenumberof neighboran othersubsets.

As with any subsetsiefinedby anequivalenceelation,equitablepartitionscanbe interpreted
asthe orbits underthe actionof a permutation(group automorphismjpn the vertexset. This basic
propertyof vertexinvariancewithin a partition canbe describedormally by defining equitableparti
tions asorbits of a groupautomorphisnof a graph.If Aut[G] is theis theautomorphisn{permutation)
groupof all permutationsf G, andH is any subgroupof Aut[G], thenthe orbits O ...O of V under
H defineanequitablepartitionandcorrespondo C; ...Cy.

The definition of equitablepartitionsis readily generalizedo transitionmatriceswith non-
discretecoefficients.Stadlerand Tinhofer (2001)definea row andcolumnequitablematrices respee
tively, suchthatgivenany partitions (and corresponding aggregation matrix Q with row vector q; ),

m m
(2.1) Aq,:z Ry ds; QITA:ZSIJQTJ
i i

where

RIJ:ZA”; SIJ:ZA”

jed i el
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The matrix is row-equitable if for some real-valued matrix R (referred to as the structure matrix of an
equitable partition G/r) such that all rows of the submatrix Ak (arectangular submatrix of dimension
IC X|Ck |, i.e. the submatrix where all entries of A;; with ieC; and jeC;) sum to the same value R;.
Column equitability requires that the every column sum within block 1,Jisequal to S;.

Matrices which satisfy both the row and column equitability relationships are said to be
"equitable." Thisis astronger condition than is necessary for exact aggregation, but it does not require
matrix symmetry or identity of all A; for all i,jeC, ,C;. An equitable matrix has the property:

(22) S|J N = Ryny

where n, =|C, |, etc. Equitable matrices have a number of significant spectral properties (Stadler and
Tinhofer 2000), which are briefly summarized by the following theorem:

Theorem 2.1 (Stadler and Tinhofer, 2000):
If R and S are the row and column structure matrices for A,x, and q; is the characteristic vectol
partition C; , then for matrix eigenvalues A and eigenvectors x,
a) Spec(R)=Spec(S)cSpec(A)
b) Ax=Ax and q; x+0 for somei = AeSpec(S)
c) yr(X)=xs(x); if A isdiagonalizable, then R,S are diagonalizable and yr(x) isafactor of ya(X).

Computing the aggregation matrix A for an equitable partition is straightforward using (1.2),
for A acolumn equitable matrix, we have

G/ = A= (@A (@7 =) D0 - A

which issimply % S.

Because the aggregate matrix is simply a normalized structure matrix, it follows from the above
Theorem that any eigenvalues of the aggregate matrix A will alsobe eigenvaluef the adjacency
matrix A, while the characteristigolynomialsof A will befactorsof the characteristipolynomialof
A providedthatA is adiagonalizablenatrix.

It wasshownabovethatthe conceptof equitablepartitioningcanbe extendedo aggregation
matricesQ whosenonzeroentriesare arbitrary positive real numbersratherthan unity. While the
column-equitablgoartition constraint(1.11b)follows from aggregatiorby characteristiocvectors(1.8b),
a moregeneralcriterion (1.11a)describeghe conditionson A consistenwith weightedcharacteristic
vectors.We will referto suchsystemsas"weighted"equitablepartitions,i.e. systemsvheretheaggre
gatedvariablesalsocorrespondo adecompaosition.

A specialcaseof weightedequitablepartitioningis thatof the decomposableystemsliscussec
in SimonandAndo (1961).For a dynamicalsystemspecifiedby a matrix of the form (0.1), overa
timescalesufficientsuchthateverystatevectorsubsets, whosedynamicsaregivenby submatrixA; is
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within some error € of its equilibrium distribution, there exists an aggregation of variables given by Q
such that g =v; (thefirst eigenvector®f A, ) anda corresponding@ggregatelynamicsoperatorA =1,
(theleadingeigenvalueof A, ).

Aggregationof variablesin Simon-Andotype systemswherethe row vectorsof Q arethefirst
eigenvector®f eachsubmatrix represeng limiting scenaridor equitablepartitions,namelyonewhere
the membershipf any variablex;, €C; is determinedhot by symmetriesof interactionbut simply by
whetherthereis anyinteractionwith anotherstatevariableatall. Becausehereis no symmetryrequire
mentfor within-partitioninteractionsgachcoefficientof Q hasareal-valuederm,q;, =v;, .

m Equitable Partitions on Fitness Landscapes

Introducingequitablepartitionsfrom a graphtheoreticperspectivanakesa numberof biologi-
cal applicationgntuitive. Many biological systemsincluding metabolicandgenenetworks,arerepre
sentedas(edgeor vertex-weightedpraphs Perhapshe best-studiedyraphrepresentatioim biology is
the modelof a fithesslandscapeor moregenerally,a genotypeconfigurationspace We proposethat
equitablepartitioningmay proveto be a powerfultool for analyzingcomplexfitnesslandscapesn that
it offers both anaggregate-variabldescriptionof systemdynamicsandthe identificationof self-con
taineddecomposablentitiesthatserveasbuilding blocksof fithessfunctions.

A "fitnesslandscape’(Wright 1932, Stadler1994) consistsof a configurationspace(V,¢) of
entities (genotypes, phenotypes, etc) and a real-valued function f(V):»R mappingeachvertexto a
fitnessvalue. The configurationspaceitself is definedby someneighborhoodelationshipbetween
vertices,mostoften definedin termsof transitionprobabilitiesbetweerdifferentgenotypewia muta
tion. If we definegenotypesaslengthn stringswhereeach'locus" hasoneof a k-letter alphabetthe
vertexsetconsistsof k" genotypesThe neighborhoodelationshipis specifiedby positinga per-locus
point mutationratep.

Becausanutationsat eachlocusareindependendf one another the mutationmatrix canbe
representedecursivelyas a Kroneckerproductof per-locusmutationmatrices(Rumschitzki1987,
Eigenetal 1989),i.e. an n-locusmutationmatrix M is constructedasfollows (assumingequalmuta
tion ratesatall loci andequalratesbetweerallelesat anylocus):

M1 Moy o uM 1w oo
N R PRI
UMy iMoo Mh-1 oo 1

If we posita sufficiently low point (perlocus)mutationrateu<<1 suchthatthe probabilitiesof multi-
ple mutantspergeneratiorscalein proportionto x4 ~0 for d=2, thenareasonabldirst-orderapproxima
tion of the mutationspaces asa Hamminggraph(V,E), whereE is anedgeconnectingany two verti-
ces(x,y) whoseHammingdistanced(x,y)=1.
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Constructinga transition (weightedadjacency)matrix for mutationon a Hamminggraphis
straightforward For an n-locussystemwith point mutation,asa first orderapproximation(with col-
umn normalizationthe mutationmatrix M is specifiedby:

Mj = ifdi,j)

=1, Mj =1-ngifd,j)=0
Mj =0 ifd(,j)=2

with thetransmissiordynamicgully determinedy x(t+1)=Mx(t).

The factorizationof mutationmatricesinto individual loci suggestanimmediateapplicationof
equitablepartitioningto M. Sincethe orderingof genotypess arbitrary,we canarrangetheminto
equivalenceclasseglefinedby the allelic identity at any givenlocus.For example we write downthe
possiblegenotypeshierarchicallyby allelic identity at eachlocusfor a 2 locus, 3 allele system,
000,001,010,011,100,101,110,114e mutationselectiormatrix is

1-3u U U 0 U 0 0 0
U 1-3u 0 U 0 U 0 0
U 0 1-3u U 0 0 U 0
~ 0 u u 1-3u 0 0 0 u
M = L 0 0 0 1-3u L L 0
0 u 0 0 U 1-3u 0 u
0 0 u 0 U 0 1-3u u
0 0 0 U 0 U U 1-3u

It canbe seenthatthereare severaldecomposition®f M consistenwith equitablepartitioning. The
first andobviousoneis thata partitioninto 4x4 blocks(correspondingo equivalenceclassesdentical
at thefirst locusO** and1**) is equitablelf we useright multiplication suchthatx(t+1)=Mx(t) for a
genotypedistribution x, thenthe column structurematricesS, =1-2u shouldbe proportionateto the
exchangerateswithin equivalenceclasseswhile S;=u shouldgive a measureof cross-partition
exchangeates.

Generalizingthis resultis straightforwardoecausesvery point mutationalneighborexceptfor
the one at the referencdocuslies within its respectivepartition, thereforefor an n-locusmutation
system S, =1-(n-1u andS, =u. Furthermoreunderthe assumptiorof equalforward andreversemuta
tion rates the matrix is symmetric,sothatR=S for any mutationmatrix of this form. Consequentlyall
of theresultsof Theorem(2.1) apply,includingpartc (becaus81=MT, M is diagonalizable).

Anotherconsequencef the factorizability of M is thatthe matrix is characterizedby "nested"”
equitablepartitions.Within an equivalenceclassdefinedas 1**, for example thereare additional
equivalenceclasseglefinedby 10* and 11* andso forth. For a partition with equivalenceclasses
definedon a pair of loci, the structurematriceshavethe form R, =1-(n-2), with off-diagonalentries
Ry; equalto u when IJ arememberof the sameequivalencelasswith respecto thefirst locusandO
otherwise.

This canberepeatedverequivalencelasseslefinedoveranarbitrarynumberof loci, i.e. for



Copy of DecompPaper.nb 18

k-locus equivalence classes, there are 2% partition blocks with structure matrix entries R =1-(n-k)u and
R;=u for 1J members of the same equivalence class with respect to (k-1) reference loci, otherwise
R;=0.

Equitable partitioning immediately becomes problematic when we introduce fitness values and
have a mutation-selection matrix instead. Using absolute rather than relative measures of frequency and
fitness allows a linear representation of mutation-selection systems (Jones 1976, Thompson and
McBride 1974, Hermisson et a 2001) i.e.

K
(3.2) Xi (t+1) =X (t)w +Z(uijV\4Xj - ji WX )
j=1

or in matrix form, x(t+1)=Ax(t) where A=WM and W is a diagonal matrix of fitness values for each
genotype, i.e. Wij=w; and O elsewhere.

It should be clear that in general (for instance, the case where all genotypes have different
fitness values), there is no symmetry in A and thus the mutsel matrix will not be equitable (as every
row or column sum within any block partition will be different from every other). However, the same
arguments that allow equitable partitioning on a mutation matrix alow it in cases where the fitness
function is also factorizable.

If the fitness function of any genotype can be expressed as a product of the fitness contributions
of each individual locus, then the mutsel matrix can be constructed recursively given an existing matrix
A for n-1 loci and an nth locus which at which the 1...v allelescontributefitnessvaluesw!" (nthlocus,
ith allele),

WoowW g . WL
@y am T e
Wen Wenoooe W

Considerthe specialcasewherethefithesscontributionat anylocusdepend®nly onits allelic
state(for instancejn a BooleangenotypegachO or 1 hasanequalcontributionto fithessregardles®f
its position), which reducesthe aboverecursionto matriceswith identicalwt =..w"=w; for all loci.
This is analogougo the assumptiorwe madein constructinghe mutationmatrix, i.e. transitionrates
beingequalatall loci.

Underthe assumptiorof multiplicative effectsat eachlocus(or, in the caseof a log transform,
additivity), the fithesslandscapesorrespondso a single-peaK'Fujijama” landscapgsensukauffman
1993).To give a concreteexample considera fitnesslandscapdor ann-locus,2-allelesystemwhere
the optimumis choserfor conveniencéo be x;={00...0}. We constructa multiplicative fithessfunc-
tion W(X)=Wp (1 — 5)90 where W, is the fitness of the optimum (the same arguments apply for any
fitness function which can be expressed as W(X)=f(Xo,d(X,Xg)).
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This immediately suggests equivalence classes with respect to fitness measure, defined as all
genotypes with the same Hamming distance to the optimum. There are (n+1) such classes,

Ca ={Co...Cn} Where Co={xo} and Cy isthe set of (

d) vertices of Hamming distance d with respect to

the optimum.

An aggregation operator for a Hamming distance-based equitable partition Qx=X (with X4 the
frequency distribution within the class Cqy) is given by a matrix of characteristic vectors (given an
arrangement of vertices starting with the optimum down through the various Hamming distance classes
1...n) such that Qg =1 (or some nonzero coefficient in the case of a weighted aggregation operator) if |
is Hamming distance d from the optimum and O elsewhere. This gives us:

o)
Xq = I;d Xi = le

Following (1.2), given mutation the mutation-selection matrix A, we derive the expression for
the aggregate dynamics matrix A, summed over |,J classes of different components

i)

ieG jeC

ieG jeC

From the definition of equitable partitions each element i of equivalence class | has a constant
fitness value, Wy, and all mutation rates yj; must equal a constant-valued w5 for al i jel,J. An add
tional constraintis imposedby the structureof the hypercubef we hold to the assumptiorthat multi-
site mutationsarenegligible.BecausesachpartitionC, is definedby Hammingdistance betweenits
elementsaandan optimumgenotypejt canbe seenthatthe memberof eachequivalenceclassdo not
communicatenith oneanotherapartfrom thetrivial A; =W (1-nu) retentionratefor eachvertex.For
instancejf in a4-locussystem{0000} is the optimum,thereis no point mutationthatwill take{1000}
to {0100} etc.

This meanghatfor a sufficiently low mutationrate,the aggregatéransitionratesarein propor
tion to the cross-termsums

The coefficients of A can be interpreted as "aggregate” mutation rates and fitness values. Because the
fitness values of each genotype within any partition are equal, the aggregate fitness value W is equal to
that of any its elementsw for al ieC, . The aggregate mutation rates M,; representhe collectivetranst
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tion rate from partition C; to partition C;, i.e. u19=ic; X jes Mij-

As for mutation matrices, the mutsel matrix for a multiplicative single-peaked landscape is both
row and column equitable, as a consequence of al genotypes within a partition (distance class) having
equal fitness. From Theorem (2.1a) it follows that the eigenvalues of A are asubset of those of A for a
multiplicative landscape.

To illustrate, consider a mutation-selection matrix A for afive locus system with a per-locus
mutation rate ;=0.1 and fitness values Wooo =1 at the optimum genotype and (1 — s)¢ for any genotype
of Hamming distance d, with s=0.1. Figure 1a shows a plot of the spectrum of A. It can be seen in the

graph that the multiplicity of every eigenvalue corresponding to each distance d class is (2) eg.

A=0.7366hasa multiplicity of 5, A=0.6295hasa multiplicity of 10,andsoforth.

The spectrunof the aggregatednutselmatrix A (Fig. 1b) consistsof the sameeigenvectorsis
that of the original matrix, only with multiplicities of unity becauseachHammingclassis representec
asa singlevariable.Theleadingeigenvaluesf A andA (in this casel; =0.8564)correspondso the
equilibrium meanfitnessof the population(Moran 1976,Buerger1998,2000),andthe sameleading
eigenvaluecharacterizethe equilibrium of the aggregata@lescription.This is to be expectedasfor any
exactaggregationif AQx=AQx, thenAx=Ax.

Eigenetal (1989,pgs200-202)implicitly took advantag®f equitablepartitioningandaggrega
tivity to computeleadingeigenvectorgtheir "quasispeciestistributions)and error-threshold®n a
single-pealdandscapeWhile our aggregatioroperatordollow a different scalingandformalization,
we essentiallyreplicateEigenetal'sresultsto illustratethe utility of aggregatioomethodsn calculating
mutant-clasequilibriumfrequencieandestimatingerror-thresholdalues.

The leadingeigenvectorfor a single-peakmutation-selectiommatrix canbe interpretedasthe
mutation-selectiorequilibrium aboutthe global optimum. Becauseof the fithessand mutationaldis-
tanceequivalenceelationsinherentin the systemcomputingthe aggregatérequenciewithin equiva
lenceclassess asinformative aboutthe structureof the systemascomputingthe entire distribution
(i.e. we areinterestedn the frequencief the optimal fitnessgenotype the total numberof mutant
classl neighborsetc).

Mutation-selectiormatricesare computedfor the samefitnessfunction asin Figure 1, for
different per-locusmutationrates.For eachmutationalvalue,the mutselmatrix A andthe aggregate
matrix A is computed The stationanydistributionsderivedfor eachA areshownin Figure2. For low
mutationratesof course the equilibrium distributionsare of courseconcentrateshearthe optimum,
with fairly low probability densityaboutthe error one neighborsand negligible probability density
elsewhereln contrastasu—0.1 (as shown by the lower curvesin Fig. 2, with the mutation rate being
nu where n=5 loci), the probability densities at and near the optimum are not necessarily greater than
elswhere, illustrating the familiar "error threshold" phenomenon. If individual genotype frequencies
rather than aggregate class frequencies were plotted, every frequency would tend towards 3—12 at the

error thresshold. In the case of these plots of aggregate frequency, each class d tends towards 3—12 (2) .
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Thaterrorthresholdestimatecanbe doneon the aggregateepresentatioiilustratesthat sub
setsof genotypedefinedby distanceclassedrom the optimum are evolutionarily equivalentunder
point mutationandselection Hence thereareseveraimplicationsof an equitablepartitionrepresenta
tion of a single-peakandscapeOn the onehand,by replacingthe statevariablesx with X; =(Qx), , we

havereduceda 2" dimensionakystemto oneof n+1 dimensiongwith the Hammingclassd partition
n

d
and neighborhoodelationsto membersof otherfithessclasseswe haveidentified the entitiesthe

selectionandtransmissiorprocess'sees"at a macroscopidevel. BecauseX=Qx is a dynamically
sufficient descriptionof mutation-selectioprocesspne canregardeachaggregatevariable X, rather
thaneachgenotypeasa unit of evolution.

We nextinquire whetherequitablepartitioning canbe generalizedo describemore complex
landscapesp)amely,thosewherethefitnessvaluesof eachgenotypearedefinedby distancego multi-
ple local optima.

having( ) members)Secondly,n by definingequivalenceclassesn termsof commonfitnessvalues

m Aggregation of Multipeaked Landscapes

By extensionof the modelfor a single-peakedandscapewe constructa fitnessfunctionwhere
the fitnessof any genotypedependonly on the Hammingdistanceto a setof k referencevertices,
W(x)=Fw(d1,d>...dx), whered; is the distanceof genotypex to thejth vertex.An exampleof sucha
fitnessfunction would be one whereeachreferencevertexcorrespondso a local optimum,andthe
fithessof any genotypeis determinedoy how far it deviatesfrom any or all local optima. Again,
becausehe systemis definedin termsof Hammingdistancesthereis the assumptiorof equivalent
effectsateachlocus.

In orderfor equivalenceclassesleterminedy Hammingdistancego be dynamicallysufficient
entitieswith respecto mutationandselectionoperatorspoththefithessvaluesandnumberof muta
tional neighbordn eachclassmustbefully determinedy the Hammingdistancevalues.While fitness-
value equivalenceclassesare well-definedfor an arbitrary numberof referencevertices,aswe will
showbelowit is not necessarilfthe casethatequivalenceclassedasedon fithessarealsoequivalence
classeswith respecto the numberof mutationalneighborsin otherwords,unlike the caseof a single
referencevertex(or, aswe will seetwo) for threeor morereferencererticesHammingdistanceslone
arenot sufficientdescriptorof neighborhoocquivalencelasses.

Consider(againon ann-locus,2 allele configurationspace)a fithessfunction F,(d; ,dz) deter
mined by the Hammingdistanceswith respecto two referenceverticesx; ,x,. We defineD;, asthe
Hamming distancebetweenthe two referencevertices.If Dio=n (for example,x;=00...0 and
x2=11...1),it shouldbe obviousthatthe equivalenceclassesareidenticalto thosedefinedby a single
referencevertex,becausel; is fully determinedy d,=n-d;.

Whenthereferenceverticesarenot mirror images someloci areidenticalandothersareoppo
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site, giving us 0<D1,<n. Taking advantagef the symmetriesn this situation,we divide theloci into
thosethatareidenticalat bothreferenceverticesNsx andthosethatdiffer Nya=n-Nsix . FOr anygene
typex;, thedistanceto bothreferenceverticesDiy) j 0N the subset Nrix loci is of course the same. The
subclass Hamming distances Dyix),j together with Dyay j2 andDyway j,1 define equivalenceclasses
with respecto neighbors pecausdor any choiceof genotypethe Hammingdistanceover the fixed
subseto bothreferencegenotypess identicalwhile the subsebf variableloci behavedike a size Ny,
single-peak(or oppositepole) partitions.All membersof a particularclass(Dwar j,1,D¢fix),j) Shares
exactlythesamenumberof neighborsn class(Dap j,1+1, Dix),j) €tc.

In turn, it canbe shownthatthe variableandfixed loci aredeterminedby the Hammingdis-
tancesof eachgenotypeto the referenceverticesandby D;,. Overthe Ny, loci, the respectiveHam-
ming distancesrom X; t0 Nyar1 andNya2 aredenotedasDvay 1 @andDvar j2=Nvar-Dan j,1, i.€.

(4. 1)

dj,1 =D¢ix),j +Dwaryj,1
dj,2 :D(fix),j +D(var)j,2 :D(fix),j + (Nyar —D(var)j,l):>

di 1+dj,2=2D¢ix),j +Dwaryj,1=2D¢ix),j +Di2
dj,l—dj,z:D(var)j,l—D(var)j,Z:2D(var)j,1—D12:>

1=D(fix),j +D(var)j,l
dj,2 = D(fix),j +D(var)j,2 = D(fix),j + (Nyar —D(var)j,l):>

2dj 1 =2 (Diix),j + Dvaryj,1)
dj 1+dj,2-Di2=2Dix),j

From the last set of derived relations, it can be seen that d; ;,d; >, and D1, are in themselves sufficient
to compute Dsix and D4 . In turn, the latter values define the mutational equivalence classes, because
any genotypes which have a common Dar) j1 Dwan j,2 @d Dyix),j With respect to the two reference
vertices share the same number of mutational neighbors in other equivalence classes (because Dyjx and
Dya fully determine the number of neighbors in hamming classes Dyar j1+1, Divar) j,2-1 €tc).

Thisimplies that we can fully describe the mutation-selection dynamics on afitness function of
two variables in terms of pairwise Hamming distances. As there are n possible distances to either x; or
X2, there are (n-D1»+1)(D12+1) Hamming partitions, each of which has cardinality

(4.2) | Coiyopiar | = (n[;fi[ilz) (E[l),lazr>

Since D is of order n, the effective dimensionality of the aggregated system is of the order n?,
as one might expect for a system defined by two degrees of freedom. The dynamical sufficiency of
pairwise distance classes is illustrated in Figure 3, in which the equilibrium distributions are again
computed for a range of mutation rates. The fitness functions are in all cases chosen such that given
two local optima
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(at 00000 and 10101) with fitness values wy W, , while the fitness of all other genotypes x are given by
wi (1 -5 +wa (1 - 5)°.

In 3a,we computedistributionsfor a fitnessfunctioncorrespondingo Eigenet al'sdegenerate
quasispeciespne wherew; =W, =1 over a rangeof mutationrates(the only differencebeingin the
choicesof s valueswith s,=.05<s; =0.1 sothatthefitnessfunctionis "sharper'nearthefirst optimum).
Unlike the Eigenetal model,the frequencieplottedarenot individual genotypdrequenciesut rather
(d1,d2) equivalenceslassfrequenciegwith (0,3) and(3,0) the frequencie®f thelocal optima).Figure
3b repeatghe samefor a near-degeneratguasispeciesyne wherew; =1 andw,=.99, giving error
thresholdresultsqualitativelysimilar to thoseof Eigenandcolleagues.

Taking as an examplea fithessfunction F,(d; ,d>,d3) definedby threevariables,it canbe
shownwith a counterexampléhatatleastin the generalcase Hammingdistancego eachof thethree
referenceverticesdo not defineequivalenceelationswith respecto the numberof neighborsn other
Hammingdistanceclasseslf in a four locus systemour referencepointsare 1110,1101,1011hoth
1000and 0111 arein the equivalenceclassspecifiedby the Hammingdistanceg2,2,2). However,
while 1000 hasa neighbor(0000)in the (3,3,3)class thereareno single-seineighborsn the (3,3,3)
classfor 0111.Consequentlynot all genotypesn an equivalenceclassdefinedby pairwiseHamming
distance(andin this model,fithess)areequivalentin their neighborhoodelations.Therefore from the
standpointof mutation-selectioroperatorswhich dependon invariancein both fithnessvaluesand
numberof neighborsacrossclassestheseequivalenceclasseswill not give a dynamicallysufficient
aggregation.

We caninsteadaskwhich equivalenceelationsdo give satisfythe equitablepartitioningproper
ties with respecto mutationoperatorsandto whatextentthesepartitionsareconcordantith equiva
lence classeglefinedby constantfitness.We proposethe following methodof defining equivalence
classesvhich canbe shownto definean equitablepartitioning:let « reference vertices be given. We
pick a particular reference vertex (the first one, for instance) and divide the set of all n sites into the
allelic state with respect to reference vertex 1.

For « reference vertices, there are 21 possible overlap classes wi,w12,w13...0123,...0123._«
defined in thisway, the sizes of which are denoted as

ni, N1z, N13, ... N123, ... N123. . . &«
with
x-1
x -1
Z N1 ij... =M Z( )=2K‘1
v
v-tupl es v=1

wheren; aretheloci with allelic statesuniqueto the first referencevertex,n;, is the numberof loci

sharedbetweerreferenceverticesl and2 but differentfor all otherverticesetc. By simplesymmetry
argumentsthe overlapclassesy =ny3_ . ... N123,=Ngp etc, becausdy definition allelic stateshatare
sharedon somesetof referenceverticesarealsoshared(in the oppositeconfiguration)by the comple
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mentingsubsebf referencevertices.For examplejf anallelic identity of "1" at somelocusis unique
to a particularreferencevertices thentheremainingreferenceverticesmusthavethe allelic state"0" at
thatsite.

The neighborhoodequivalenceclassesare defined by Hamming distanceson the subsets
d;,d15...d123...d123. . Theserepresenthe (partial) Hammingdistancedrom any genotypeto the sub
setsof loci sharedbetweervariousy-tuplesof referencevertices,i.e. d; 23 is the Hammingdistanceof
the subsetof loci on somegenotypeto the sharedsubsetconfigurationdefining referencewvertices
1,2,3.

For the reasongliscussedbovein the two-dimensionaktase the Hammingdistancesacross
overlapsubsetsiefineequivalenceclassewith respecto mutationalneighborhoodsThis canbe seen
by notingthateachoverlapsetactsasaneffectivesinglereferencegenotypewith respecto the appropri
ate subsetof loci, andthereforethe partial Hammingdistanceswithin any subsetof loci definedas
sharedoverav-tuple behavan the sameway asHammingdistance®n a singlepeaklandscapeTo see
thata partitionof loci into overlapclassesorresponds$o equivalenceclassesinderthe actionof point
mutation,we offer thefollowing proof:

Result: Given a partitioning of loci into v-tuples, each corresponding to a class of loci with identical
alelic states over reference vertices in the v-tuple, the partial Hamming distances from any genotype to
the v-tuple reference vertices specifies an equitable partitioning.

Proof: We define the Hamming distance from any genotype to the ith reference vertex as D; and the
partial distancesto the v-tuple overlap classes as d, . Consider two genotypes x; and x,.

First, equal partial distances to the v-tuple classes imply equal Hamming distances, because
each D isafunction of the d, namely

D: Z 6v,i <%+6v,i[dv,i_%})

v-tupl es

where 6, =1 if iev-tuple, -1 otherwiseIn otherwords,if i isamemberof thev-tuple, we addd, other
wise (n-d). Similarly, equaloverlapclassesmply equalHammingdistanceneighborhoodlassedor
any numberof point mutationsin av-tuple setof loci. Assumingthatx; andx, arein thesameoverlap
classesthenfor any mutationin x;, onecanpick a mutationin x, suchthatthe mutantsequenceare
in the sameoverlap(v-tuple) equivalenceclass.In turn, equaloverlapclassesmply equalHamming
distanceclassesthereforecorrespondingnutationsin the samev-tuplesof x; andx, will resultin
genotypesn thesameHammingclassegD; ...D,).

We notethat while theseresultswerederivedfor a 2-allele systemthey canin principle be
generalizedo scenarioswith an arbitrary numberof allels providedthat certainconstraintson the
fitnesseffectsof eachmutationare met (seeAppendix). Becausdhe equivalenceclassegdefinedby
overlapclassesn the k-referencevertexcasereduceto equivalenceclasseslefinedby Hammingdis-
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tancesin the k=1 andk=2 casesHammingdistance-basedlassesanbe madeto define equitable
partitionsfor |-allele models.

To illustrate an equitablepartitioningfor a threevariablefitnessfunction, consideragainthe
four locussystemwith thereferencevertices1110,1101,1011Thev-tuplet subsetf loci (g,) defined
by overlapsare g;23=1***, g1o=*1**, g13=**1*, @r3= ***1, eachwith correspondingizen,=1. By
symmetry,n;» is the mirror-imageof nz (definingthe sameloci) andso forth for otherdoublesand
singletons.For any genotype(we will use0000,0101,1010,1114sexamples)the partial Hamming
distancesof these four genotypeson the four subsetsare, respectively (diz3, diz,
d;3,d23)=1111,1010,0101,0000.

In this casetherearefour overlapclassesvith sixteenpossiblepartialHammingdistanceconfig-
urations.The examplesuggests generalizeaxpressiorior the numberof configurationclasseandby
extensiorthe sizeof theaggregatedtatespace.

A neighborhoodequitablepartitioninginto subsetslefinedby overlapclassdistancegivesusa
statespaceof size:

4.3) ] Mk + 1) = (e + 1)

v-tupl es

the upper bound is for the "worst case scenario” of reference vertices spaced equidistantly from another
(with an expected distance of Z—ET between each vertex). The number of aggregate variables is of the
order n?<2", which is a substantial reduction of system dimensionality when k<<n.

In turn, the number of genotypes in each equivalence class defined by

(d1j,d12j,...d123j,...0123..j) IS

(4.4) | Gy dipj, .o dizgjoee. diza g | = H (nlz”v>

diz. .y
v-t upl es

In the caseof two referencevertices,(4.3) and(4.4) reduceto (4.2), asexpectedFurthermore,
if thereferenceverticesarechosen'sequentially'with respecto oneanothersuchthateveryreference
vertex containsa subsetor mirror imageof everyotherone(e.g.0000,1100,1111}the statespaceis
reduceddueto the numberof degree®f freedombeinglessthanthe numberof referencevertices(i.e.
the distanceto 0000is simply n minusthedistanceto 1111).

The differencebetweerthe two dimensionabndk-dimensionalitnessfunctions,of course s
thatin the generak-vertexmodelthereis no oneto onecorrespondenceetweermutationalneighbor
hood equivalenceclasseqdefinedby Hammingdistanceson overlapclasssubsetspndequivalence
classedefinedby commonHammingdistanceswith respecto all vertices(andby extensionfitness
classesvhenfitnessis determinedy theseHammingdistances).

Result: Unequal overlap classes imply unequal Hamming distance neighborhood classes under point
mutation, even for genotypes with identical Hamming distance classes.



Copy of DecompPaper.nb 26

Proof: Let x; and X, have the same Hamming distance classes (D; ...D, ), but with different overlap
classes in some subset of v-tuples. Chose some arbitrary v-tuple such that d, ,>d, ; (without lossof
generality).Selectsomey tuple distanced, '=d, 1 +1. For sakeof argumentandagainwithout loss of
generality),assumehatlocus1 is amemberof thev-tuple. Thenundertheactionof a d,'-stepmutation
in the v-tuple classof loci in x;, the progenyarein the Hammingclass(D;-d,',...,Dj-d; ,d,",...D-
o.vd,") with ¢; , definedasin the previousresult.Fromthisit canbe seenthatx, is in thed,"' partial
distanceclassof thev-tuple andin thed,' Hammingdistanceclasswith respecto thereferenceverti-
Ces.

The constructionof a Hammingdistanced' neighborhoodetfor x, requiresd’ point mutations
on thev-tuplein question.The samecannotbe donefor x;, for eventhoughit is in the sameHamming
distanceclass by assumptiorwe haved,>d, ; .

To demonstrat¢hatequivalencelasseslefinedby distancedo referenceverticesdo not gener
ally give equitablepartitions,considerthe graphin Figure4aversusthosein Figure4b. In 4a,the
transitionmatricesA andtheir aggregatapproximationA were computed by using a fitness function
W(X)=; wi(1— 5)%, with three reference vertices 11101,11010,10110 and w; =wo=w,=1 , 5,=0.1
,$=0.05, s3=0.01.The distribution x(t) was computed over 10 time steps, and in the figure shown
Qx(10) is plotted against X (10) to show their divergence. A square error of ~1072 is obtained. For this
particular choice of fitness functions, the aggregate approximation to the stationary distribution is quite
accurate, ssimply because the macrovariable dominating the aggregate distribution X(t) happens to
contain the optimal genotypes in the original system x(t).

In contrast, for the distributions shown in 4b, mutsel matrices were computed using a fitness
function W(x)=3; W(1 —5)“" with fitness components determined by overlap class identity o; rather
than x-tuple Hammingdistancegby coincidencethereare3 overlapclassesn this case sothe samew
and s parametersre usedfor convenience)Not surprisingly,the distributionsQx(t) and X(t) are
practically superimposedor any choiceof t, with squareerrorsof ~107¢ correspondingo the limits
of Mathematica's numericalaccuracy.

It is fairly obviousthatconstructingitnessfunctionsdefinedby overlapclassess highly unnatu
ral andcontrived,in thatit is difficult to invision how sucha fitnessfunctionwould occurin nature.
The examplewas chosensimply to illustrate the limits of aggregatiorof variablesin systemswith
multidimensionalfitnessfunctions.It shouldalsobe notedthatin this particularcaseaggregatiorof
variablesofferedno greatreductionin the sizeof the statespaceevenin the casewhereit wasexact,
thoughthis caveatbecomedesssignificantfor very largegenotypespaces.

The non-congruencbetweemmutationalneighborhoodandHammingdistanceclassegin this
casecorrespondingo phenotypeor fithessclasses)llustratesafairly ubiquitousphenomenoim evolu
tionary biology, in which genotypeswith identical(or atleastfunctionally equivalentphenotypefiave
different evolutionaryhistoriesby virtue of havingdifferentphenotypesn theirimmediatemutational
neighborhoods-or example pnecanhaveafitnesslandscapavith k peaks somesubsebf which have
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identical fitness values. However, some peaks will be surrounded by relatively high fitness single-point
mutation neighbors while others will have low fitness mutation neighbors (corresponding to high
versus low mutational robustness, e.g. Wagner et al 1997), and the equilibrium densities about each
peak will ultimately reflect the fitness values of their mutational neighbors (Schuster and Swetina
1989, Wilke 2001).

m Discussion

Aggregationmethodshavetwo majorimplicationsfor the analysisof mutation-selectiomod
els, onepractical,the otherconceptual At a practicallevel, the identification of equivalenceclasses
and dynamically sufficient aggregatevariablesreducesthe dimensionalitynecessaryor predicting
systemdynamicsandderiving equilibrium distributions.For mutation-selectioomodelswhereHam
ming graphsare the underlyingconfigurationspace(a standardmodelfor point mutation)andthe
fitnessfunctionsaredeterminedoy Hammingdistancego a small subsef local optima,the computa
tional reductionis quite substantialpne from an exponentiainumberof variables(a" for a size a
alphabet) to arelatively small polynomial of the order ga—ll for x local optimaasreferenceooints.

More significantperhapsarethe conceptualmplicationsof the equivalenceclasseshemselves
By identifying equivalenceclassef genotypeghatareidenticalto oneanotherin both their fithess
valuesandin their mutationalneighborhoodsi.e. the numberof mutationalneighborsn otherclasses
definedby their mutationalneighborhoods)pne partitionsgenotypesnto subsetghat actidentically
underthe actionof boththe transmissior{mutation)andselectionoperatorsNumerousdiscussion®n
the units of evolution (Lewontin 1970) haveuseddynamicalsufficiencyasa criterionfor identifying
evolutionaryunitsaboveor belowthelevel of theindividual. Implicit in this definitionis theidentifica
tion of equivalenceclasseghat canbe describedoy aggregatevariablesunderthe actionof higher-
orderselectionandtransmissiorprocesses.

Most of the discussion®f evolutionof entitiesabovethe individual (genotype)evel (suchas
group selection,speciesselectionetc) focuseson the identification of equivalenceclassedrom the
standpoinbf selectiononly. As wasshownabovein the caseof a«>2 referencerertexfitnessfunction,
it is not sufficientfor genotypedo be equivalentunderselectionfor any subsetbe an evolutionary
equivalenceclass.If the equivalenceclasseslefinedwith respecto mutationandwith respecto selee
tion arenot identical,neithera partition into fithessclassesior a partition into mutationalneighbor
hoodclassegivesadynamicallysufficientdescriptionfor the mutation-selectioprocess.

Our resultspresentedheresuggesthatthe actualrangeof fithessfunctionswhich allow exact
equitablepartitioningmay be quite limited. An obviousdirectionto takefuture inquiriesinto aggrega
tion anddecomposabilityvould beto look for mutation-selectiosystemsvherethe operatoris nearly
equitablypartitionable andaskover which time scalesapproximationby equitablepartitionsgivesa
goodapproximatiorof systemdynamics.
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The decomposabilityand aggregatiorpropertiesof one particularclassof dynamicalsystems
haveactuallybeenstudiedin somedetail, namelythe "nearly decomposablefast-slowlinear systems
treatedin SimonandAndo's(1961)work. Their approachfocuseson the fact that somedynamical
systemscanbe partitionedinto subsetsuchthat within-partition interactionsare much strongerthan
cross-partitioninteractions.Suchnear-decouplingeadsto short-termnear-decomposabilitfor each
subsetandlonger-termaggregatiorof variablesaseachsubsetendsto quasi-equilibriumThis classof
modelsmay proveto be moregenerallyapplicableto evolutionarysystemgShpaketal, in preparation)
thanthe exactaggregatiorof equitablepartitions.

However,decompositiorof fast-slowdynamicalsystemss still a specialclassof (weighted)
equitablepartitions,at leastasanapproximation As our analysisin thefirst sectionshowedanyaggre
gationof variablesin alinear systemwill be someform of equitablepartition. Yet we know of many
exampleof dynamicaldecomposabilityandaggregabilityin biological systemghatdo not correspond
to equitablepartitions.The reasonwe believe lies in thefact thatotherforms of decomposabilityand
aggregabilityarealwaysassociateavith nonlinearsystemsandtheir properties.

A well-known exampleof decomposabilityn populationgeneticss the conceptof selection
actingon geneqor specificcharactersasopposedo genotypeskorinstancegivenann-locus,multi-
allelic geneticsystemunderlinkage equilibrium andadditive (or multiplicative) fithessfunctions,the
statedynamicscanbe sufficiently describedn termsof allele frequenciesat individual loci (Lewontin
andKojima, 1960),in fact, the dynamicsof allelesat eachindividual locusis dynamicallysufficient.
For example,for a genotypespaceon the frequenciesof {AB,Ab,aB,ab}, the frequenciedp(-
A*),p(@*),p(*b),p(*B)} (with A* denotingany genotypeassociatedvith allele A atthefirst locus)are
dynamically sufficient descriptorsf W(AB)=w(A)w(B) andso on for the other genotypesand if
P(AB)=p(A*)p(B*) etc.

The ability to predictgenotypdrequenciegrom allele frequenciesinderlinkageequilibriaand
to derivefitnessfunctionswith referenceo lower (singlelocus)units hassuggestedeneralizednod
els of characterdecompositioranalyzedoy Wagnerand Laubichler(2000), Laubichlerand Wagner
(2000),andin asomewhatifferentformulationby Kim andKim (2000).We proposehatthis form of
dynamical decomposability(i.e. through identification of equivalenceclasseswith respectto
"characters'suchasallelic statesat a particularlocus)is onewhich is independenand ultimately
incompatiblewith equitablepartitioning.

Following WagnerandLaubichlerbut usinga notationspecificto genotypespacesonsistent
with thefitnesslandscap&nalysesn this paperdefinea setof genotypeg x; ....xn } with anassociatec
frequencyvector p;={ p;...pn}. The equivalenceclasse<C!={C;....C,} andtheir associatedrequen
ciesm ={r1..n1m} aredefined such that (for example) every genotype xeC, hasanidenticalallelic state
at a particularlocus. More generally,the equivalenceclassesan be definedas a setof genotypes
identical over somesubsetof sites,or a "schema’(sensuHolland 1975, Goldberg1988, Altenberg
1995). For example onesuchequivalenceclassfor a 4-locusgenotypewould be the setof all genc
typesC, of theform 0***, C, of thoseof theform 1*** defining partitionC. In turn, anotherclassof
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partitionsC? will bedefinedby theallelic identity atthe secondocus,andsoon.

Wagnerand Laubichlerdefinethe CartesiarproductC'xC? to be an oc (orthogonalcompli
ment) partitioningif C=C'xC?, or more generally,C=C!xC?...xC". They constructoc-partitionby
choosinga setof invertible functionsF={ f; [f:C; =C;} which maps every element in one equivalence
class to the corresponding genotype in another class. For example, f could map 101 to 001, with *01
defining an equivalence class with respect to all loci except the first. In the case where F is atransitive
map, i.e. s=fi3(x) and t=fy (u) implies t=1,_(x), F defines a complementary (orthogonal) partitioning
C={C;...C}, with every class in the complementary partition is C={s~x if there is fj;eF|s=f;(X)}.
This map defines an equivalence class because the functions in f are transitive and invertible (Rosen
1984, Bogart 1990), and defines each genotype x as x=C, (\C;.

Givenanoc-partitioning,WagnerandLaubichlerhaveshownthat for fithessfunctionssatisfy
ing the additivity conditionandfor "character'frequenciessatisfyinga generalizedinkage equilib-
rium, the equivalenceclassfrequenciesr; area dynamicallysufficientdescriptorof evolutionundera
selectionoperator.Specifically,they requirethatall fitnessfunctionssatisfywhatthey referto as"pi-
additivity," with m the Malthusianfitnessparameter:

(5.1) m(f; (X)) =m(x) +cy3.

In other words, the fitness differences between members of the same equivalence class (i.e. alelic state
at a particular locus) are some constant ¢;; determined by the rest of the genotype or character state
configuration. This effectively excludes any type of nonlinearity due to epistasis in fitness functions.
The other condition, of course, is generalized ("Pi") linkage equilibrium,

p (X)

713

(5.2)  pi (F15 (X)) =ps (X), wherepy (X) =

with p(x) denoting the frequency of x while p; (x) refers to the marginal frequency in the Jth partition.
This definition is equivalent to the conventional linkage equilibrium condition p(xer, (\7;)=m 73 .

It was shown by Wagner and Laubichler that if these criteria are met, the Crow and Kimura
(1970) selection equation on genotypes (in continuous time)

(5.34a) Pi =pPi (M -m
can be aggregated into adynamically sufficient description as
(5.3 b) o= (Mo -m

with m; being the mean fitness of all genotypes in equivalence class . The aggregation of p;...pn iNto
state variables 1 ..., requires that the action of selection of genotypes within partition not changing
the fitness differences between partitions, so that ultimately the only "relevant” dynamics are due to
competition between partitions.

Aggregation into equivalence classes defined by allelic states at a given locus are shown to be
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dynamically sufficient if each equivalence class has an equal variance in fitness, a condition which if
fulfilled under pi-additivity and generalized linkage equilibrium. Their results have been extended to
discrete-time selection systems (Wagner and Carter, unpublished) and to mutation-selection scenarios
(Altenberg, unpublished) where the mutation operators fulfill the factorizability conditions of (3.1).

What is interesting about the Wagner and Laubichler resultsis that their equivalence classes do
not constitute an equitable partition. In fact, for the ssmplest case of a "Fujijama’ landscape (e.g. 0000
the optimal genotype, with fitness mi®> for Hammingdistanced neighbors)the equivalencelasses
areactuallyorthogonato oneanotherUnderequitablepartitioning,{1000,0100,0010,0001¢onstitute
an equivalenceclass,while a partitioninto per-locusallelic identity classegivesthe eightgenotypes
{1000,1100,1010,...1111fpr the partitiondeterminedy 1***,

The questionarisesasto how a partitioningwhich is non-equitablébut neverthelesgivesa
dynamicallysufficientaggregatiorof variablesoccursin apparenviolation of Result(1.3). Theanswer
seemdo lie in the fact thatthe generalresultof aggregationsorrespondingoe equitablepartitionsis
restrictedto linear dynamicalsystemsin orderfor mutation-selectiomlynamicsto belinearized.,it is
necessaryo useabsolutefrequenciesandfithessvaluesratherthan relative frequenciesandfitness
values(asin 3.2). This linearizationis whatallows for equitablepartitioninginto Hammingdistance
(or overlapclassesyivena congruencéetweerfitnessvaluesandmutationaldistance.

In contrast,the partitioning and aggregationinto equivalenceclassesbasedon shared
character/allelicstatesis only possiblein a systemwith relative frequenciesas statevariablesand
relative fitnessvaluesasthe selectionparametersThe reasons thatthe aggregatior(5.3b) usesthe
invariancepropertyof the Crow-Kimuraequationwhich is invariantunderhe additionof a constanto
all fitnessvalues(WagnerandLaubichler,2000).The linearizeddynamicalsystemanalyzedn thefirst
sectionof this paperdoesnot havethis propertyandhencedoesnot allow this form of aggregation.

In otherwords,thereexistdecompositionendaggregationsf variablesin nonlinearsystems
which do not apply to their linear counterpartsThe transformatiorfrom absoluteto relativefrequen
ciesinvolvesa projectionof anN dimensionakpaceontoa N-1 dimensionaimanifold (becausef the
constraintthat }; pi=1 and };, 7y =1). Consequentlyan aggregatiorwhich holdsin the lower dimen
sionalspaceneednotapplyto the higherdimensionalepresentation.

However thefactthatthetransformatiorof alinearrepresentationf mutation-selectionlynam
ics to a nonlinearrepresentatiofusingrelativefrequencies)nvolvesa projectiononto a lower-dimen
sionalsubstancémpliesthataggregabilityin the linear representatiois probablya necessarybut not
sufficient) criterionfor aggregabilityin the nonlinearrepresentation. This suggestshatthereprobably
existentirefamilies of aggregablenddecomposablaonlineardynamicalsystemsGiventhefact that
the conditionsunderwhich linearsystemsanbedecomposed ratherrestrictive,andthatmostbiologi-
cal systemsnvolve somekind on nonlinearinteractionsthe majority of modularstructuresandemer
gent"aggregatetharactersn biologicalsystemgprobablyinvolve differentaggregatiormanddecomposi
tion rulesthancanbe describedy equitablepartitioning.
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m Appendix: Equitable Partitions for Multiple Alleles

In general, the equitable partitions defined over Hamming classes for 1 and 2 reference vertex
fitness landscapes or by overlap classes for larger numbers of reference vertices do not apply for
genetic systems with more than two alleles per locus. Thisis simply because for multiple alleles with
arbitrary fitness effects for any allele at a given locus do not define equivalence classes with respect to
distance, i.e. for any genotype no two Hamming distance d neighbors need have the same fitness value,
and thus the correspondence between mutational distance classes and fitness classes generally breaks
down (of course, the sameistrueif one allows for different effects of substitution at different loci). For
instance, if we allow 3 alleles per locus with different fitness effects, the genotypes 200 and 100 will
not have the same fitness distance to (Hamming distance one) sequence 000.

However, if one orders the L allelic states at each locus as a={ a3 ,a»...a.} and posits L-1
mutation parameters uj ,u2,...u —1 (orderedsuchthatu is the symmetricmutationratebetweerappropri
ately chosensubsetf «) , if the fitnessdifferencesdw; correspond in proportion to each y;, then
mutational distance will be congruent with fitness differences. As an example, consider the familiar
Kimura 3-parameter model for nucleotides A,C,G,T with mutation rates

A G A ST
l11i iﬂl ;
Ce— T C «— G
H2 M3

andafitnesseffectof ow; fixed for eachmutationeventy; atall loci.

For a k-referencevertexsystemwe againusethefirst referencevertexasthe sequenceisedto
deriveall subsequenbverlapclasseskFor any sequencethe allelesat eachlocusarelabeledaccording
to their positionin the mutationorderschemeelativeto thefirst referencevertex,i.e.for A: A=1,G=2;
C=3,T=4,for C: C=1,T=2,A=3,G=4.

The overlapclasseshemselvesire definedasfollows: let nc, denotethe numberof loci at
which all verticesin theset{i1} areidenticalto thefirst vertexattheith site,all verticesin theset{i,}
carryinglabel2, andsoforth throughL. Thereareatotal of L“~* classes of the form:

nQ:n{llzl...il...Kl},{lz...iz...Kz} ..... (I ... 0L... x )} anzn
|
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Having defined subsets of loci as overlap classes, the partial Hamming distances
(dc, dc,,...dc, ,...dc, ) define equivalence classes (as for the diallelic case, for k>2 reference vertices the
fitness values of genotypes must be determined by partial Hamming distances in order to be equitable).
Each vector dc, =(dd, ...dk ) such that each d& €{0...nc,} and 3, d, =n. In turn, every overlap class nc,
has subspace size:

Zl by 1- (n+k‘1)<|_”o

for nc, greater than some critical value, while over the entire space of possible overlap relations the
number of equivalence classesis

ng +L-1 (n+L-1)! n
D(Q;q )ZDnr11+<L-1>1<L

which again, for large numbers of loci, gives an effective reduction in the dimensionality. For the k=1
and k=2 vertex systems, overlap class partitions reduce to Hamming distance equivalence classes as
they did inthe L=2 dial€lic case.

The same reasoning used to show that partial Hamming distances define equitable partitionsin
the diallelic case apply here, the only difference being that multiple mutational steps must be taken into
account for each type.
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m Figures

FigureO:

An equitablepartition of a 12-vertexgraphandits reduceds-vertexgraph(from Stadlerand Tinhofer,
2000), showingthe four equivalenceclassedefinedby equalnumbersof neighboringverticesthe
otherclasses.

Figure1:
a) The spectrumof a mutation-selectiomatrix A for a 5-locus,2-allele systemwith an optimumfit-
nessvalueWp=1.0 at 00000anda fitnessfunction W(x)=W (.9)%**) (corresponding to a single-peak

n
fitness landscape) and a per-locus mutation rate 4=0.1. Note the (

CI)-fold multiplicity of eigenvaluesin

the dth class.

b) The spectrum of the aggregate representation A wherethe aggregationrmatrix sumsmembersf the
samed-valueequivalenceclassesnto singlevariables.The eigenvaluesreidenticalto thosein parta,
butin theaggregateepresentatiothereis no eigenvalualegeneracygeachonehasa multiplicity of one.

Figure 2:

For the samesingle-pealfitnessfunction asshownin Figurel, the frequencief the d-classentries
are shownfor the stationary(quasispeciedjistributionof the aggregatenutselmatrix A. Thefrequen
ciesof theoptimaandtheclassl...5Hammingdistanceneighborsareshownfor arangeof point muta
tion ratesO<u<1.0. Thefigure illustratesthe error thresholdphenomenormat u~.25, asshownby the
factthatHammingerrorl...5classebecomeasfrequentasthe optimum.

Figure 3:

a) Equilibrium distributionsfor "degenerate'tjuasispecieq,e. a two-peakfitnesslandscapevhere
00000and 10101both havefitnessequalto unity, while othergenotypedavea fitnessvalue deter
minedby their minimum distanceto oneof the peaks(1 — s)™"%  with 5=0.1 for the first peakand
0.05for the secondcorrespondingo a "steeper'slopeaboutthefirst optimum).Of thetwelve equiva
lence classespnly the frequenciesof eachpeaksequenceandits Hammingdistanceone neighbor
classesare shownfor clarity. Eachfrequencyvalue correspondso the aggregatgairwiseHamming
distanceclasseswith (0,3)and(3.0) correspondingo therespectivdocal optima.

b) Showsthe samescenariasin 3a, but with almostdegeneratguasispecieghefitnessvaluesof the
local optimaare1l.0and.99,respectively.

Figure4:
a) Plot of Qx(10) versusX(10) for Hammingdistanceclassaggregatiorafter 10 time steps(with an



Copy of DecompPaper.nb 34

initial distributionsuchthatthefrequencyat 00000is setto unity) anda per-locusmutationrateof 0.1.
The fitnessfunction is chosento be W(x)=(.99% +(.95% +(.9)%, giving the aggregateequivalence
classeq22 total) definedby equalentries(d; ,d,,d3). The figure clearly showsthat the frequencies
(acrossall equivalnceclassesyerivedfrom the aggregatelynamicaloperatorA arenot equivalento
the aggregatiorof thefrequencieslerivedfrom A.

b) Plotof Qx versusx for overlapclassaggregatiorior afitnessfunctiondefinedonthe overlapclasses
W(x)=(.99° +(.95%2+(.9)% ,whereeacho; representshe partial overlapdistanceFor this partitioning
thereare 12 equivalenceclassesThe essentiallyperfectsuperpositiorof Qx(10) and X(10) demon
stratethatafitnessfunctiondefinedon overlapclassegivesan exactequitablepartition.
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