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The world is embracing the presence of connected autonomous vehicles which are expected to play 
a major role in the future of intelligent transport systems. Given such connectivity, vehicles in the 
networks are vulnerable to making incorrect decisions due to anomalous data. No sophisticated attacks 
are required; just a vehicle reporting anomalous speeds would be enough to disrupt the entire traffic 
flow. Detection of such anomalies is vital to ensure the security of a vehicular network. We propose 
the use of traffic flow theory for anomalous data detection in vehicular networks, by evaluating the 
consistency of microscopic parameters which are derived by traffic flow theory (i.e. speed and space-
headway) with macroscopic views of traffic under different traffic conditions. Though a little attention has 
been given to using traffic flow properties to determine anomalous basic safety message (BSM) data, the 
fundamental nature of traffic flow properties makes it a robust assessment tool. Usually, traffic flow data 
are determined through roadside units (RSUs) such as cameras and loop detectors; they are financially 
impractical to roll out on an entire network. Therefore, the method proposed in this study establishes 
traffic flow data that are used as “ground truth” through RSUs if available, or by the vehicles’ own 
sensor systems. The numerical results indicate that the proposed method provides extremely reliable and 
consistent predictions of anomalous BSM data. The more the road segment is congested, the higher the 
accuracy of the anomalous space-headway detection. The anomalous speed detection performs robustly 
well across all the traffic conditions. The study also finds that both global and local ground truths provide 
consistent results.

© 2020 Elsevier Inc. All rights reserved.
1. Introduction

The emergence of wireless V2X communication is expected to 
facilitate ubiquitous communication between vehicles, transport 
infrastructure and the cloud. The integrity of the data that are 
sent through these networks is crucial for the success of Intel-
ligent Transport Systems (ITS). The default nature of these ve-
hicular networks currently is content-oriented, which means that 
their primary objective is to deliver content and rely on traditional 
methods for guaranteeing the provenance of the data that are 
transmitted [6]. Modern vehicles, which connect to these vehicu-
lar networks, are computational units with significant capabilities, 
thus create security vulnerabilities that are present in all modern 
networked systems. Moreover, threat vectors and the possibilities 
of malfunctioning of these vehicular endpoints are significantly 
greater [2]. However, due to the nature of vehicular networks, the 
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current cryptographic digital signatures and other authentication 
mechanisms which provide methods of determining the authentic-
ity of the messages are not adequate to secure vehicular networks 
and guarantee the provenance of the data that are exchanged [11]. 
For instance, vehicles following proper encryption with valid sig-
natures could still send invalid or false information [21]. This be-
comes even more challenging because of the ephemeral nature of 
the vehicular nodes that connect to these networks as they can 
connect and leave the network within a very short period of time.

There have been numerous proposals for ensuring the prove-
nance of data in ephemeral sensing networks. They leverage the 
availability of anchor nodes, which are trustworthy [27] [29]. We 
argue that these anchor nodes are naturally present in ITS and pro-
vide the ground truth. Thus, the macro level information of the 
local phenomena of physical traffic that is provided by these an-
chor points can be combined with traffic theory to guarantee the 
provenance of the data in vehicular networks. For example, if there 
is an accident on the road at a particular location, it is reflected in 
the dynamics of the traffic flow, and its spatiotemporal evolution 
is a fundamental phenomenon as exemplified by the traffic con-
gestion indications of maps such as Google maps [31].
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Essentially, observed traffic data that are transmitted by a co-
hort of vehicles from a specified region at a given time should 
be consistent with the fundamental properties described by traffic 
flow theory, namely the fundamental relationship between flow, 
density and speed. The trusted anchor nodes, that act as external 
data sources, such as loop detectors and other RSUs measure traf-
fic density, flow and speed at relatively short time intervals. RSUs 
can be considered to be trusted anchor nodes as they will be in-
stalled and maintained by organisations that are responsible for 
the maintenance of the road networks. The information obtained 
from these trusted anchor nodes thus can be used together with 
traffic flow theory to determine the validity of the data that are 
being provided by each vehicle. The estimates of microscopic data 
provided by a vehicle once verified can be then combined with 
data from the trusted anchor nodes from specified small regions 
to form macro level views of regions, which can be used to further 
increase the provenance of the data of the vehicular network.

In this work, we demonstrate the viability of combining the 
information obtained from secure anchor nodes with traffic flow 
theory, for the detection of anomalous data in a vehicular net-
work. We do recognise that loop-detectors or camera-based sys-
tems might not be available throughout the network to provide 
ground truth. In this case, we also propose a localised method, 
in which a vehicle uses its own sensor data to identify the local 
traffic conditions to assess abnormality in vehicular information 
being transmitted via BSMs. In addition, the evaluation of the BSM 
data is done in a decentralised manner by the vehicle receiving 
the data, which also makes it computationally efficient. Therefore, 
our method is robust as it infers ground-truth data either through 
RSUs or through the sensor system of the vehicle assessing the ab-
normality itself.

We derive the average generalised traffic flow quantities from 
an RSU, namely loop detectors. Then use the traffic flow parame-
ters, namely the mean space-headway and speed calculated, and 
the fact that they are bounded by the physics of traffic flow un-
der steady-state conditions, to identify vehicles that are generating 
anomalous data. The simulations of the proposed system show that 
by using only the data from only one type of RSU: loop detectors, 
it is possible to detect anomalies reliably, across different traffic 
states in different traffic scenarios and thus make the following 
contributions:

• We propose a new method to detect microscopic anomalous 
data using a ground truth based on macroscopic views of a 
system and traffic flow theory.

• The method detects anomalies irrespective of the intent of the 
sources which does not rely on an honest majority, and

• We show that the detection method provides similar results 
using a localised ground truth when a global ground truth can-
not be established.

The rest of the paper has been organised as follows. Section 2
reviews the background in the literature, and the methodology 
used is described in Section 3. Section 4 elaborates the numerical 
experiments. Section 5 discusses the results and evaluates the ap-
plications of the proposed methodology, while Section 6 concludes 
the work.

2. Background

In vehicular networks, either defective nodes (due to sensor and 
communication errors) or malicious nodes can transmit anoma-
lous data. The objective of this work is to implement a mechanism 
to detect anomalous data independent of the intent of its source. 
Therefore, we use the term anomalous data broadly.
2

In VANETs security, the existing literature for anomalous nodes 
detection can be divided into two major categories, namely node 
centric and data centric detection [19]. Node centric approaches 
examine data sources by observing their behaviour, attributes (e.g. 
packet frequency and message format etc.) and security mecha-
nisms they utilise such as authentication. Data centric approaches 
evaluate the consistency and plausibility of the content of the mes-
sage received to determine their validity. The consistency-based 
methods rely on comparing data obtained from different data 
sources (e.g. other nodes in the neighbourhood and self-sensors 
etc.), whereas the plausibility-based methods use models of data 
(e.g. kinematic models, the relation between time, distance, signal 
speed and rules of physics etc.) [8].

The early study by Golle et al. [7] looked at detecting and cor-
recting malicious data. They assessed and scored the data being 
received according to a consistency-based model. The proposed 
scheme relies mainly on the distinguishability of individual nodes 
and the connectivity with other vehicular nodes to detect mali-
cious data in a distributed manner. However, they have not evalu-
ated the performance of their methodology.

A method for cooperative detection of malicious nodes was 
proposed in [14] to detect attackers on the roadside via position 
verification. This research presumes that longer the time a vehicle 
is found to be trustworthy, the higher the likelihood of the vehi-
cle is not exhibiting an abnormality in its data. They determined 
a minimum threshold distance (dmin) a vehicle should travel in 
a plausible manner to be accepted as being reliable. The recom-
mended minimum value for dmin was twice the expected com-
munication range of a node. Even though a higher dmin provides 
better reliability, it increases the amount of time needed to assess 
the trustworthiness of vehicles, and thus large values of dmin was 
discouraged. They then enforce a mechanism (described as tran-
sitive trust) for broadcasting the determined trustworthiness of a 
vehicle to its neighbours to make the trust establishment more ef-
ficient. Consequently, a vehicle outside a vehicle’s communication 
range knows the trustworthiness of the vehicle without having to 
assess it by itself and thus makes the inference faster. However, 
this method works only when a majority of vehicular nodes are 
trustworthy and at least there is a vehicle in front and behind of a 
considered vehicle.

Leinmüller et al. [13] [16] [15], developed a method to enhance 
VANET security via vehicle position verification using geographic 
ad-hoc routing information. They used several sensors both au-
tonomously and cooperatively to assess the consistency and plau-
sibility of the data received. For autonomous detection, they used 
a set of techniques including maximum density threshold, over-
hearing, acceptance range threshold, mobility grade threshold and 
map-based verification. Maximum density threshold is based on the 
idea that its physical dimensions restrict the number of vehicles in 
a given location. By looking at the packets sent by the same vehicle 
to the other nodes in the neighbourhood, vehicles determine the 
possibility of a vehicle faking its position in over hearing. Acceptance 
range threshold is based on the rule that nodes can send pack-
ets only within a specified communication range, whereas mobility 
grade threshold sets a pre-defined a maximum speed for vehicles 
and verifies whether a vehicle exceeds it or not. Map-based ver-
ification filters unrealistic off-street coordinates using maps. They 
further improved their detection using cooperative techniques in-
volving proactive and reactive cross checking with the neighbour 
vehicles. The vehicles share information about their local neigh-
bourhood to verify the consistency of the information.

Schmidt et al. [23] argued that since vehicles respond to their 
local conditions, each vehicle should be able to assess their traffic 
environment independently. Therefore anomalous node detection 
should be performed in a distributed manner. They use beacon 
data to classify vehicular nodes as honest, malicious and neutral. 
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That information is then communicated to the other vehicles. To 
determine the trustworthiness of a vehicle, they used the mini-
mum threshold distance mechanism from their previous studies 
[14]. They also used vehicle movement information, sensor read-
ings, acceptable ranges of beacons, and realistic positions (e.g. ve-
hicle coordinates must be on the road). Their approach involved 
individual modules for each feature, which as a collective pro-
vided a reputation index for the vehicles. Using consistency and 
plausibility-based models [8], this work provides a complete sys-
tem covering both node centric and data centric detection criteria.

Ruj et al. [22] take advantage of the fact that even though a 
malicious sender can manipulate timestamps and provide faulty 
locations to a vehicle, the receiving vehicle requires the relation-
ship between the timestamp of the message, their position and 
the time of arrival of the message to adhere to the laws of physics. 
Their assumption is that since a malicious node cannot know the 
exact position of a targeted vehicle, the parameter manipulations 
are erroneous, and therefore it is easy to detect. This might not be 
a valid assumption since vehicles broadcast their positions period-
ically via CAMs (Cooperate Awareness Messages).

Bißmeyer et al. [3] proposed a method for identifying intrusions 
into a vehicle network with a focus on denial of service for exist-
ing traffic and creating illusionary traffic, through the verification 
of vehicle movement data. Together with the implausibility detec-
tors implemented in [16] [15] they apply a verification mechanism 
based on the prediction of vehicle movement adopted from [28]
which uses a Kalman filter to track vehicles. They further enhanced 
the detection by taking GPS positional errors into consideration.

Bißmeyer et al. [2] expanded on their work by performing con-
sistency and plausibility checks via verifying vehicles’ identities 
and positions at the application layers of both the sender and the 
receiver. They adopt the detection methods used in [15] [3] [28]. 
The work was evaluated using a test attack scenario with real-
world vehicles that misuse emergency electronic brake lights.

Sedjelmaci et al. [24] have proposed an efficient light-weighted 
intrusion detection mechanism, namely ELDV, to secure vehicular 
networks. Similar to the watchdog model proposed by Wahab et 
al. [29], they also rely on guard vehicles to protect the network. 
First, they determine how many guard vehicles should be utilised 
within a given region and then use a set of specific rules to de-
tect Blackhole, Sybil and False alarm attacks. Further, they develop 
a vehicle behaviour evaluation method (VBE) by integrating these 
modules to determine the trustworthiness of the vehicles. Though 
the method provides a high detection rate and low false-positive 
rate, its applicability might be limited to the specific scenarios for 
the rules were defined.

Similar to [5] Lai et al. [12] proposed another vehicular cluster 
based approach for secure communication in VANET. The proposed 
system is a software defined network architecture for 5G VANET. 
Their architecture consists of two components, namely forming 
a localised vehicular cluster for group communication and facil-
itating communication to the formed groups to connect to the 
internet. The first component ensures the integrity of the content 
shared among the vehicles, while the second component handles 
the authentication. Although they claim that their method outper-
forms the other methods, their work lacks an in depth comparison.

Recently a number of machine learning-based approaches have 
been proposed to detect anomalies. Singh et al. [25] used SVM 
(Support Vector Machine) and Logistic Regression to detect BSMs 
that contain falsified locations. The authors trained and tested 
their models using the VeReMi dataset [9]. They modelled five 
different types of position faking behaviours and used different 
combinations of position, relative position and speed as the fea-
ture vector. They claim that the detection performance of the SVM 
classifier is relatively better and that removing the speed param-
eter from the features yield better training times. So et al. [26]
3

combined a number of data-centric plausibility metrics such as 
position and movement plausibility as the feature vectors to two 
machine-learning models, KNN (K-Nearest Neighbors) and SVM to 
detect fake positions. They also used the VeReMi dataset to train 
the models and the same types of position faking behaviours to 
evaluate their models. They claim significant improvements in the 
detection precision and further deliver a dataset specifically for 
ML-based methods. Although these findings are interesting, the ex-
periments themselves are specific and dependent on an accurately 
labelled dataset, making these methods sensitive to the training 
data sets.

Liang et al. [18] also proposed another machine-learning 
method which utilises traffic flow dynamics and data from a ve-
hicle’s neighbourhood to detect anomalies reliably. They have im-
plemented a feature extraction algorithm and a classifier based 
on self-organising maps. The feature extraction algorithm first cal-
culates a vehicle flow value and estimates the sender’s position 
upon receiving of messages, then uses the trained self-organising 
map to classify the received message. They also rely on the notion 
that traffic flow is similar for vehicles in the same neighbour-
hood. Though their method demonstrated improvements in the 
detection accuracy, their proposed method as all other machine-
learning techniques is sensitive to the training data and requires a 
pre-selected trustworthy training dataset.

Although most of these works use plausibility and consistency 
techniques to detect malicious nodes, they are often limited by 
their reliance on an honest majority, as well as bandwidth con-
straints and hardcoded thresholds. Furthermore, they have all re-
lied on the fundamental laws of motion and communication.

However, there is a rich set of literature which describes the 
fundamental physical laws of traffic that can add immense value 
to detect anomalous data which have not been considered in any 
of these studies.

Our detection method is unique because it is based on a uni-
versal theory of traffic flow physics, and it is not attack or scenario 
specific. Therefore, it has a wide range of applications as far as 
traffic theory goes. To the best of our knowledge, this has not been 
done before.

Unlike the other methods described above based on kinematics 
laws of motion and vehicular physics, we do not rely on a sequence 
of past data from a vehicle or relationships between parameters 
in the same message. Instead, we use macroscopic views derived 
from a single RSU type, loop detector data, to analyse the parame-
ters separately.

The method we propose does not rely on a trustworthy pre-
labelled data set and does not require computationally extensive 
training like other machine learning-based methods that have been 
proposed. It is not financially or computationally expensive be-
cause it does not require sophisticated sensors that monitor a traf-
fic network with a high resolution. Moreover, providing a ground 
truth to vehicles to detect anomalies at a vehicle level reduces pro-
cessing overhead at RSUs and avoid the potential single point of 
failures.

Further, our method is robust to failures and unavailability of 
external data sources. It detects anomalies using a vehicle’s own 
sensor data, by establishing ground truth locally even when the 
external sources fail to provide information.

Our method does not rely on any specific model but uses the 
fundamental relationships and assumptions of traffic flow theory 
which makes it more generic. We analyse speed and density pa-
rameters separately. Therefore, instances reporting accurate flow 
conditions with faulty speed and space-headway [32] values can 
be detected.

Further, we show that the detections based on microscopic and 
macroscopic views of traffic are consistent with each other and 
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Fig. 1. Schematic illustration of the proposed framework.

Fig. 2. Flow-density diagram.

microscopic ground truth can be used when a macroscopic ground 
truth cannot be established.

In our work, we make use of traffic flow theory to develop 
a method which discerns anomalous data reported by vehicular 
nodes. The method exploits the consistency of the reported data to 
cluster them and uses deviations from ground truth to classify the 
clusters. We do not rely on any prior knowledge of the environ-
ment and do not assume an honest majority. The establishment of 
ground truth and all the classifications are based on the data and 
fundamental physical laws dictated by traffic flow theory that can 
be collected in real time.

Fig. 1 summarizes the contribution of this work.

3. Model for detection of anomalous data

VANETs consist of two types of communication channels, 
namely control channel (CCH) and service channel (SCH) [10]. 
CCH facilitates the transmission of safety critical information in-
cluding vehicular speed, position, space-headway, acceleration and 
timestamps etc., by broadcasting Basic Safety Messages (BSMs) aka. 
Beacons. SCH broadcasts Decentralised Environmental Notification 
Messages (DENMs) to share specific event-related information such 
as accidents, weather conditions etc. In this work, we propose a 
methodology for identifying vehicles that transmit invalid BSMs 
using only space-headways and speeds, without loss of generality. 
The purpose of the study is to evaluate the applicability of traffic 
flow theory [4] [17] to identify anomalous BSM data. The relation-
ships are further described below.

Traffic flow theory describes the physics of vehicular traffic. It 
describes the spatio-temporal evolution of traffic flow. Therefore, 
any information contained in the VANET messages can be substan-
tiated by traffic flow theory as it must comply with this physics. 
The theory describes vehicular traffic flow using three fundamental 
parameters, namely speed (v), density (k) and flow (q).

When a vehicle travels on an uncongested lane, it can move at
free-flow speeds. As the number of vehicles on a lane increases, 
density increases and reaches a state of maximum flow (qm), 
known as its capacity (see Fig. 2). After this point, the lane starts 
getting congested and speed drops as density increases. When den-
sity reaches its maximum, called the jam density (k j ), flow and 
speed become zero.
4

We define anomalous data as deviations from the actual value. 
For instance, if a vehicle claims that its speed is 60 kmh−1 though 
its actual speed is 80 kmh−1, it is regarded as anomalous. There-
fore, any vehicle claiming a false space-headway or a speed is 
anomalous as per our definition. We are not concerned with the 
intent of the vehicle producing anomalous data.

The detection criteria utilise space-headway (s) and speed (v)
parameters in the BSM message for a given time period. Space-
headway is defined as the distance between the front of the fol-
lowing vehicle and the front of its leader. Measures of density and 
speed collected by RSUs (e.g. Loop detectors) are used to evaluate 
the validity of this data retrieved from BSMs. When such external 
traffic flow information sources cannot infer a global ground truth, 
a vehicle can establish a localised ground truth using its own sen-
sor data about density and speed. In this work, both global ground 
truth and local ground are considered.

Steady-state conditions are useful assumptions used in traffic 
flow theory to analyse and understand real-world traffic phenom-
ena. Under steady-state conditions the average space-headway (s̄) 
between vehicles should be equal to the inverse of the density (k)
[17], and the vehicle speeds should be equal to the speeds ob-
served by the roadside units. We argue that anomalous data can 
be detected for a given evaluation period using the deviation of 
the localised space-headways and speeds from the density (k) and 
the average speed (v̄) acquired from roadside units or vehicular 
sensors.

Therefore, we define a ground truth during a given time win-
dow as, Ground Truth = ( 1

k̄
, ̄v); where, 1

k̄
: is the space-headway 

estimated from the density (k̄) and v̄: is the average speed either 
estimated from the road side units or collected from the sensors 
of a vehicle.

The detection methodology can be formulated as follows. Let N
be a set of vehicular nodes on a given lane communicating over 
time window T = [t1, t2]. ni is the ith node, where i ≤ k j .L. k j is 
jam density and L is lane length.

Each vehicle broadcasts its space-headway periodically, with a 
period of times (t) to its neighbours. Averaging the values during 
the time window T , each node maintains a history for each of its 
neighbours which can be represented by a vector Hi(t) as

Hi(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑t+T
t s1(t)

T∑t+T
t s2(t)

T

...
∑t+T

t si−1(t)
T∑t+T

t si+1(t)
T

...
∑t+T

t sN (t)
T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

∃(k̄, v̄) ∈ P where P is the set of traffic states across traffic flow 
fundamental diagram and nr ∈ N s.t . either nr ∈ A or nr /∈ A, where 
A is the set of anomalous nodes.

Assuming a set of observers collecting traffic flow information 
and producing generalised traffic flow quantities, for example, den-
sity (k̄) and speed (v̄) for a lane of length L over the time window 
T are

k̄ =
∑

ni∈N ti

LT
(2)

v̄ =
∑

ni∈N di∑
t

(3)

ni∈N i
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Algorithm 1: Anomalous space-headway detection.
Input : N Set of vehicular nodes, s̄n∀n ∈ N Average claimed vehicular 

headways and 1/k̄ Ground Truth headway derived from traffic 
flow theory

Output : Anomalous space-headways
1 KMNS ← kmeans(s̄n, 2) ;
2 (c1, c2) ← centroids ∈ KMNS;
3 (L1, L2) ← labels ∈ KMNS;

4 if |c1 − 1
k̄
| < |c2 − 1

k̄
| then

5 return CorrespondingHeadways(∀s̄n, L1);
6 else
7 return CorrespondingHeadways(∀s̄n, L2);
8 end
9 /*CorrespondingHeadways returns the relevant average space-headways given the 

label inputs*/

where t is the time a vehicle spends on the lane and where d is 
the distance it travels on the lane.
Otherwise using localised definitions,

k̄ = 1

s̄i
(4)

v̄ = v̄ i (5)

where s̄i is the average space-headway of the vehicle and where 
v̄ i is the average speed of the vehicle.

We assume that the whole vehicular group consists of two 
distinct clusters (i.e. anomalous and non-anomalous). As the non-
anomalous cluster is one homogeneous cluster which cannot be 
clustered further meaningfully, there cannot be multiple honest 
clusters. Therefore applying univariate kmeans [30] clustering al-
gorithm where K = 2 to minimize the sum-of-squares criterion,

minimize
K∑

k=1

∑
j∈ck

||s̄ j − mk||2 (6)

where mk is the centroid of ck , divides Hi(t) into two clusters with 
centroids m1 and m2 with corresponding sets of vehicular nodes 
N1 and N2. N = N1 ∪ N2 and N1 ∩ N2 = ∅.

nr is predicted to be anomalous (i.e. nr ∈ Ã where Ã is the 
set of predicted anomalous nodes) if it belongs to a cluster whose 
centroid deviates the most from the ground truth value. This is 
represented as,

nr ∈

⎧⎪⎪⎨
⎪⎪⎩

Ã, if((|m1 − 1/k̄| > |m2 − 1/k̄|) ∧ nr ∈ N1) ∨
((|m1 − 1/k̄| < |m2 − 1/k̄|) ∧ nr ∈ N2); k̄ ∈ P

¯̃A, otherwise

(7)

Applying the same methodology, a vehicle disseminating anom-
alous speeds can be detected as

nr ∈

⎧⎪⎪⎨
⎪⎪⎩

Ã, if((|m1 − v̄| > |m2 − v̄|) ∧ nr ∈ N1) ∨
((|m1 − v̄| < |m2 − v̄|) ∧ nr ∈ N2); v̄ ∈ P

¯̃A, otherwise

(8)

As described in Algorithm 1, anomalous space-headways broad-
casted by vehicles can be detected.

In simple terms, we cluster the averaged values of space-
headways, and recognise the cluster with the centroid closest to 
the ground truth as non-anomalous to label the corresponding 
nodes as honest. Note that, to classify data, we use the distance 
from ground truth to the centroid of each cluster. The ground truth 
is not determined by what other vehicles report but by the data 
reported by RSUs and data obtained via a vehicle’s own sensors. 
5

Fig. 3. Distinguishing clusters (m1 and m2 are centroids of the clusters and GT is 
the ground truth).

Table 1
Notation definitions.

Notation Definition

s space headway
v speed
k density
q flow
k j jam density
T considered time interval
GT ground truth

Fig. 4. The detection flow chart.

Therefore, the system does not rely on an honest majority. For ex-
ample, as in Fig. 3, as the distance between GT and m1 is less 
than the distance between GT and m2, the cluster with centroid 
m1 is recognised as non-anomalous. Thus, space-headways are cat-
egorised as anomalous and non-anomalous. This detection method 
is used to identify anomalous speed information as well (see Ta-
ble 1 for the notations and the definitions).

We assume that information collected by RSUs (e.g. loop detec-
tors) is disseminated to other vehicles and entities in short time 
intervals. On receiving this information, centralised entities such as 
Certification Authorities can use it for global verification, whereas 
vehicular nodes can use it for local verification at an individual ve-
hicle level.

The proposed method analyses systematic deviations between 
the BSM parameters broadcasted by a vehicle and the ground truth 
to identify anomalies. The larger the deviation, the higher the like-
lihood that the source is anomalous. In this way, anomalies can be 
detected independently.

The entire procedure for the anomalies detection can be sum-
marised as in Fig. 4.

4. Numerical experiments

The design of the experiments and data are elaborated in this 
section.
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Fig. 5. The networks studied: The left hand driving is enforced as per Australian 
driving rules.

4.1. Experimental design

We describe the simulation networks, the vehicular demand 
and the traffic states studied here.

4.1.1. Simulation networks
The performance of the proposed method was evaluated by 

simulating realistic traffic environments using Simulation of Urban 
Mobility (SUMO) [1]. We test the method using two different sim-
ulation networks, namely a schematic two-lane test network with 
a bottleneck (see Fig. 5a) [20] and a network comprising motor-
way, the M4 in Sydney (see Fig. 5b), under real-world traffic flow 
conditions.

4.1.2. Vehicle demand
A demand of 3750 of vehicles was simulated on the schematic 

test network over 235 minutes. We increased the flow rate over 
time. Similarly, a total demand of 2000 vehicles over a period of 
60 minutes and 5000 vehicles over a period of 200 minutes were 
simulated to generate the range of traffic states in the Sydney M4 
network to analyse free flow and congested conditions. The data 
we collected was shown to represent realistic operational condi-
tions (see Fig. 6 and Fig. 7). The networks simulated and their 
output are provided in Appendix.

4.1.3. Studied traffic conditions
The simulations were designed to assess the performance of 

the proposed method across free-flow and congested conditions. 
As shown in Fig. 6, the average speed and density of the traffic sys-
tem change over time. The speed and density values are averaged 
over 10 second (T=10 s) periods. During some time periods, these 
traffic flow parameters are fairly constant, indicated as steady state 
in Fig. 6 representing free flow conditions and congested states. 
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For example, in the schematic two lane network, traffic flow pa-
rameters are relatively constant between 20-90T, 110-180T, and 
200-270T (see Fig. 6a and 6b) which correspond to the free flow 
state, whereas 400-470T corresponds to the congested state.

The fundamental relationship between traffic flow and density 
is shown in Fig. 7. These plots highlight the traffic states at which 
the model was evaluated. For instance, in Fig. 7a, 20-90T and 110-
180T represent free flow states, 200-270T represents a capacity 
state and 400-470T represents a congested state. The time peri-
ods during which the states shown in Fig. 7a were simulated are 
shown in Fig. 6a.

4.2. Anomalous data

To emulate anomalous data, a percentage of the total number 
of vehicles in the simulation are categorised as producing erro-
neous data. These vehicles generate data that deviate from their 
true value as described below.

In every simulated scenario, the anomalous vehicles may claim 
a space-headway with an error that is uniformly distributed be-
tween [-0.9, 0.9] at increments of 0.1, and a speed (vc) with in the 
range of vc = va ± rva; r ∈ [0.1, 0.9], where va is its actual speed.

5. Results

We compare the predicted and actual anomalous vehicles to 
interpret the results of the anomalous space-headway and speed 
detection. We calculate precision, recall, f-measure and false pos-
itive rates for different scenarios and traffic states under different 
percentages of anomalous vehicles.

5.1. Evaluation

Evaluation metrics for these experiments are defined as fol-
lows. As defined in the section 3, A is the set of anomalous nodes 
and Ã is the predicted set of anomalous nodes. Therefore, pre-
cision is the proportion of the predicted anomalous nodes that 
are actually anomalous = n( Ã ∩ A)/n( Ã) and recall is the propor-
tion of the total relevant anomalous nodes correctly predicted = 
n( Ã ∩ A)/n(A). False positive rate is the proportion of incorrectly 
predicted anomalous nodes = n( Ã ∩ Ā)/n( Ā) and f-measure is the 
harmonic mean of precision and recall.

We further perform a sensitivity analysis with 10%, 20% and 
40% of the total number of vehicles being anomalous to evaluate 
the performance of our method.

The results (generated using the global ground truth) for the 
networks when 40% of the total vehicles are anomalous are shown 
in Fig. 8 (For the complete set of results see the Appendix). The 
figure contains the detection results for different traffic conditions 
(i.e. free-flow, at capacity and congested) per considered BSM pa-
rameter (i.e. space-headway and speed). Each plot shows, how 
precision, recall, f-measure and false positive rate vary over the 
considered range of anomalous factor (r).

5.2. Schematic network

Lane changes were found to have an adverse impact on the 
performance of detection of anomalous space-headway data (see 
Fig. 8a). Because of the left lane merges into the right lane, there 
is a considerable amount of vehicles moving out of the left lane 
during free flow and congested conditions. This makes anomalous 
space-headway detection difficult in the left lane as lane changes 
cause large variances in the left lane space-headways.

Although lane changes do not pose a problem in the detec-
tion on the right lane during free-flow conditions, the efficiency of 
the space-headway detection deteriorates at capacity due to lane 
changes. This can be observed in Fig. 8a, where precision, recall 
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Fig. 6. Density (� y-axis left) and speed (— y-axis right) overtime.
and f-measure are relatively low for the space-headway detection 
during capacity conditions. However, in congested conditions, the 
performance of detecting anomalous space-headway data on both 
lanes is good. The impact of lane changes is minimal hence does 
not pose a problem.

In contrast, for the anomalous speed detection precision, recall, 
f-score are greater than 0.7, 0.9, 0.8 respectively and false posi-
tive ratio is less than 0.04 across all traffic states. The efficiency 
of anomalous speed detection in congested conditions is slightly 
degraded due to stop-start events (see Fig. 8a).

5.3. Motorway: Sydney M4 network

Results were similar to those found in the schematic network. 
The performance of the anomalous space-headway detection has 
a precision above 0.86, recall above 0.99, f-score above 0.92 and 
false positive ratio below 0.01 for the anomalies outside the range 
of [+0.4,-0.4] during congested conditions (see the Appendix). The 
anomalous speed detection worked reasonably well providing a 
minimum of 0.89 for precision, 0.89 for recall, 0.94 for f-score and 
0.01 for false positive ratio for the anomalies outside the range of 
[+0.6,-0.6] across traffic states. A similar pattern can be observed in 
the experiment results done with localised ground truth (see the 
Appendix).
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In the weaving sections (see Fig. 5b) the anomalous space-
headway and speed detection deteriorated due to lane changes.

As observed in Fig. 8a and b, the false positive rates are rea-
sonably low across different traffic conditions in both speed and 
space-headway detections.

Further, in both networks, the detections get better when the 
percentage of anomalous nodes increases as it raises cluster densi-
ties.

As anticipated, the detection accuracy is improved as the de-
viation of the anomalous data from the real values increases. The 
proposed method for anomalous speed detection worked reason-
ably well under all the different traffic conditions (freeflow, at 
capacity and congested as shown in the Appendix).

The anomalous space-headways detection performed well only 
during congested conditions (see the Appendix). Lane-changing 
was the main reason for the poor performance during free-flow 
and capacity conditions. In a steady state, when a vehicle changes 
its lane, its follower on the previous lane experiences an abrupt 
increase in the space-headway, whereas the new follower’s space-
headway drops instantly.

Overall, the results can be summarised as in the following Ta-
ble 2.

The models discussed in the literature to date are fundamen-
tally different from that proposed in this study. Essentially, most 
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Fig. 7. Fundamental traffic flow diagrams for each lane (• indicates the states studied).
methods rely on finding inconsistencies in the data sent in the 
BSM message, for instance, using kinematic theory. However, a 
smart malicious vehicle can intelligently bias the data to ensure 
that the BSM message is wrong while adhering to the consistency 
check of the kinematic data (see [22][28]). Similarly, reputational 
methods only work if a large number of vehicles are not anoma-
lous. Finally, machine learning methods are sensitive to the train-
ing data and are not easily generalizable to new situations and 
datasets.

The method proposed in this study uses “traffic flow theory” 
on the data collected from its own sensors as a litmus to evaluate 
the BSM data. The fact that they are two separate sources of data, 
but are required by the physics of traffic to be consistent, is what 
is used to evaluate the integrity of the data. This method is not 
susceptible to the weaknesses of the kinematic theory, as it uses 
to separate data sources. It also does not have the failings of the 
reputation-based methods that require a large number of vehicles 
to be good. Finally, due to the reliance on fundamental principles 
of traffic flow theory, it is more generalizable and transferable than 
8

Table 2
Results summary.

Free flow Capacity Congested

space-headway ✗ ✗ ✓

speed ✓ ✓ ✓

The performance of the detection during free flow and capacity is affected by lane 
changes and varying safety distances kept by drivers, and the performance during 
the congested states is affected by brakes. ✓ and ✗ represent the reliability and 
unreliability of the detection method.

machine learning methods. Table 3 summarises how our method 
stands out.

6. Conclusion

This work evaluates the applicability of traffic flow fundamen-
tals to detect anomalous nodes in vehicular networks. Unlike the 
previous studies focused on kinematic models, reputation systems 
and machine learning approaches, we recognise that anomalous 
vehicles are a traffic problem. Our method evaluates the trust-
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Fig. 8. Precision, recall, f-measure and false positive ratio behaviour when 40% of the vehicles are anomalous. The complete set of results is in the Appendix available at 
https://github .com /malithrana /dav-using -tp.
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https://github.com/malithrana/dav-using-tp
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Table 3
Results comparison.

Rely on internal 
consistency of messages

Rely on an honest 
majority

Sensitive to training 
data sets

Kinematic models ✓ ✗ ✗

Reputation-based models ✗ ✓ ✗

Machine Learning models ✗ ✗ ✓

Traffic flow theory models ✗ ✗ ✗
worthiness of space-headway and speed parameters of beacons 
independently using traffic flow theory.

However, establishing a global ground truth is challenging when 
the required infrastructure is not present. Although we assume the 
accessibility to the ground truth, there can be occasions where this 
information is not available. In such circumstances, vehicles can 
establish a localised ground truth using the data received via their 
own sensor systems. According to the experiments, the results are 
similar for the detections performed using both local and global 
ground truths (see the Appendix).

In our work, we propose the use of a parsimonious traffic flow 
model based on steady state conditions. Though lane changing is 
an integral part of traffic dynamics, the steady state traffic flow re-
lationships and phenomena have been shown to be fundamentally 
enduring with lane changing. In the micro-simulation experiments 
that were performed, lane changes did exist and were observed. 
We demonstrate that the steady-state traffic flow theory does pre-
dict anomalies reasonably well. In fact, speed detection was found 
to perform robustly well with lane changes. However, lane changes 
do have a significant detrimental impact on space-headway de-
tection in free-flow conditions; it however performs robustly well 
where it matters, in congested conditions. Therefore, we can rely 
more on the speed detection model to discern anomalies in free 
flow conditions, where the headway detection might not perform 
well.

The method developed in this research only deals with being 
able to identify whether data received through the CCH channel 
are anomalous or not. To assess this, we only rely on macroscopic 
traffic flow information such as average flow, density and speed 
in the local area of the vehicle assessing a BSM message. This 
data can be received either through RSUs (such as loop detec-
tors, cameras etc.) or the vehicle’s own sensor systems that infer 
these traffic flow parameters. The method proposed then evalu-
ated the consistency of the BSM message with these macroscopic 
traffic flow parameters. We do not assume that 100% of vehicles 
are connected, or that we are receiving data regularly and reli-
ably; we are only evaluating the correctness of the data when 
they are received. To provide additional realism, we have used a 
test schematic network and an actual network of Sydney. We will 
test the current work with data from different networks in future 
work.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Appendix A. Simulation results, networks and data

The complete set of results is available at:
https://github .com /malithrana /dav-using -tp

The studied traffic networks and simulated dataset are available 
at:
https://github .com /malithrana /dav-using -tp /tree /master /data
10
References

[1] M. Behrisch, L. Bieker, J. Erdmann, D. Krajzewicz, Sumo–simulation of urban 
mobility: an overview, in: Proceedings of SIMUL 2011, The Third International 
Conference on Advances in System Simulation, ThinkMind, 2011.

[2] N. Bißmeyer, K.H. Schröder, J. Petit, S. Mauthofer, K.M. Bayarou, Short paper: 
experimental analysis of misbehavior detection and prevention in vanets, in: 
2013 IEEE Vehicular Networking Conference, IEEE, 2013, pp. 198–201.

[3] N. Bißmeyer, C. Stresing, K.M. Bayarou, Intrusion detection in vanets through 
verification of vehicle movement data, in: 2010 IEEE Vehicular Networking 
Conference, IEEE, 2010, pp. 166–173.

[4] C. Daganzo, C. Daganzo, Fundamentals of Transportation and Traffic Operations, 
vol. 30, Pergamon, Oxford, 1997.

[5] W. Farooq, M. Ali Khan, S. Rehman, A novel real time framework for cluster 
based multicast communication in vehicular ad hoc networks, Int. J. Distrib. 
Sens. Netw. 12 (2016) 8064908.

[6] M. Gerla, E.K. Lee, G. Pau, U. Lee, Internet of vehicles: from intelligent grid to 
autonomous cars and vehicular clouds, in: 2014 IEEE World Forum on Internet 
of Things, WF-IoT, IEEE, 2014, pp. 241–246.

[7] P. Golle, D. Greene, J. Staddon, Detecting and correcting malicious data in 
vanets, in: Proceedings of the 1st ACM International Workshop on Vehicular 
Ad Hoc Networks, 2004, pp. 29–37.

[8] R.W. van der Heijden, S. Dietzel, T. Leinmüller, F. Kargl, Survey on misbehavior 
detection in cooperative intelligent transportation systems, IEEE Commun. Surv. 
Tutor. 21 (2018) 779–811.

[9] R.W. van der Heijden, T. Lukaseder, F. Kargl, Veremi: a dataset for comparable 
evaluation of misbehavior detection in vanets, in: International Conference on 
Security and Privacy in Communication Systems, Springer, 2018, pp. 318–337.

[10] D. Jiang, L. Delgrossi, Ieee 802.11 p: towards an international standard for 
wireless access in vehicular environments, in: VTC Spring 2008-IEEE Vehicu-
lar Technology Conference, IEEE, 2008, pp. 2036–2040.

[11] I. Kantzavelou, P.F. Tzikopoulos, S.K. Katsikas, Detecting intrusive activities from 
insiders in a wireless sensor network using game theory, in: Proceedings of 
the 6th International Conference on PErvasive Technologies Related to Assistive 
Environments, 2013, pp. 1–8.

[12] C. Lai, H. Zhou, N. Cheng, X.S. Shen, Secure group communications in vehicular 
networks: a software-defined network-enabled architecture and solution, IEEE 
Veh. Technol. Mag. 12 (2017) 40–49.

[13] T. Leinmüller, C. Maihöfer, E. Schoch, F. Kargl, Improved security in geo-
graphic ad hoc routing through autonomous position verification, in: Proceed-
ings of the 3rd International Workshop on Vehicular Ad Hoc Networks, 2006, 
pp. 57–66.

[14] T. Leinmüller, R.K. Schmidt, A. Held, Cooperative position verification-defending 
against roadside attackers 2.0, in: Proceedings of 17th ITS World Congress, 
2010, pp. 1–8.

[15] T. Leinmuller, E. Schoch, F. Kargl, Position verification approaches for vehicular 
ad hoc networks, IEEE Wirel. Commun. 13 (2006) 16–21.

[16] T. Leinmüller, E. Schoch, F. Kargl, C. Maihöfer, Decentralized position verifica-
tion in geographic ad hoc routing, Secur. Commun. Netw. 3 (2010) 289–302.

[17] X. Li, S. Jian, J. Monteil, V. Dixit, A probe vehicle-based technique to estimate 
fundamental diagrams on freeways and arterials, Technical Report, 2016.

[18] J. Liang, J. Chen, Y. Zhu, R. Yu, A novel intrusion detection system for vehicu-
lar ad hoc networks (vanets) based on differences of traffic flow and position, 
Appl. Soft Comput. 75 (2019) 712–727.

[19] D. Manivannan, S.S. Moni, S. Zeadally, Secure authentication and privacy-
preserving techniques in vehicular ad-hoc networks (vanets), Veh. Commun. 
100247 (2020).

[20] M. Ranaweera, A. Seneviratne, D. Rey, M. Saberi, V.V. Dixit, Anomalous data 
detection in vehicular networks using traffic flow theory, in: 2019 IEEE 90th 
Vehicular Technology Conference, VTC2019-Fall, IEEE, 2019, pp. 1–5.

[21] M. Raya, P. Papadimitratos, V.D. Gligor, J.P. Hubaux, On data-centric trust es-
tablishment in ephemeral ad hoc networks, in: IEEE INFOCOM 2008-The 27th 
Conference on Computer Communications, IEEE, 2008, pp. 1238–1246.

[22] S. Ruj, M.A. Cavenaghi, Z. Huang, A. Nayak, I. Stojmenovic, On data-centric mis-
behavior detection in vanets, in: 2011 IEEE Vehicular Technology Conference, 
VTC Fall, IEEE, 2011, pp. 1–5.

[23] R.K. Schmidt, T. Leinmüller, E. Schoch, A. Held, G. Schäfer, Vehicle behavior 
analysis to enhance security in vanets, in: Proceedings of the 4th IEEE Vehicle-
to-Vehicle Communications Workshop, V2VCOM2008, Citeseer, 2008.

https://github.com/malithrana/dav-using-tp
https://github.com/malithrana/dav-using-tp/tree/master/data
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib041751185F818226ED14422EA8E82134s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib041751185F818226ED14422EA8E82134s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib041751185F818226ED14422EA8E82134s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib0C1FE9785579438A310F81A8FB1F173Fs1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib0C1FE9785579438A310F81A8FB1F173Fs1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib0C1FE9785579438A310F81A8FB1F173Fs1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib0B8083D6099D85CD4DE32CB68405C5D1s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib0B8083D6099D85CD4DE32CB68405C5D1s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib0B8083D6099D85CD4DE32CB68405C5D1s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib87D04F612EC000BF0EE0F7315E830C3Ds1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib87D04F612EC000BF0EE0F7315E830C3Ds1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib697E3773469CDFB32EE3F7E69DC8E053s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib697E3773469CDFB32EE3F7E69DC8E053s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib697E3773469CDFB32EE3F7E69DC8E053s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bibF5EDE9A0AA02CAA4240235D0645D4240s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bibF5EDE9A0AA02CAA4240235D0645D4240s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bibF5EDE9A0AA02CAA4240235D0645D4240s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib9B4FAA0BA373D45F42197E378873B291s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib9B4FAA0BA373D45F42197E378873B291s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib9B4FAA0BA373D45F42197E378873B291s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib13BFABDB32E0C27B13341BC84168201Fs1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib13BFABDB32E0C27B13341BC84168201Fs1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib13BFABDB32E0C27B13341BC84168201Fs1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib0E1B4ACE471067D7A72632F8A4600C88s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib0E1B4ACE471067D7A72632F8A4600C88s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib0E1B4ACE471067D7A72632F8A4600C88s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib3B808401E5E6A3DCF0579C554603520Ds1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib3B808401E5E6A3DCF0579C554603520Ds1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib3B808401E5E6A3DCF0579C554603520Ds1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib389E786F5F4C2AB8CE16EE448CDA5D1As1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib389E786F5F4C2AB8CE16EE448CDA5D1As1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib389E786F5F4C2AB8CE16EE448CDA5D1As1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib389E786F5F4C2AB8CE16EE448CDA5D1As1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bibD38737DC66D1835E799AA3FB1637A548s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bibD38737DC66D1835E799AA3FB1637A548s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bibD38737DC66D1835E799AA3FB1637A548s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib0B9AC482ECC472AF96DF07D1F3C89F5Ds1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib0B9AC482ECC472AF96DF07D1F3C89F5Ds1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib0B9AC482ECC472AF96DF07D1F3C89F5Ds1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib0B9AC482ECC472AF96DF07D1F3C89F5Ds1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib0A1DA9DACD0B89EB8D2FE8DF24583EE7s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib0A1DA9DACD0B89EB8D2FE8DF24583EE7s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib0A1DA9DACD0B89EB8D2FE8DF24583EE7s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bibD64A69A94CF959404ADBA45DD17A1530s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bibD64A69A94CF959404ADBA45DD17A1530s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib2B0FD96F1A9388BB691C6C49CD1FE25Fs1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib2B0FD96F1A9388BB691C6C49CD1FE25Fs1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bibBEC3E6B6CBC3B42D95B276ECCB0DE47As1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bibBEC3E6B6CBC3B42D95B276ECCB0DE47As1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib398C16277E6C2D8139A4F0D926658D5Ds1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib398C16277E6C2D8139A4F0D926658D5Ds1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib398C16277E6C2D8139A4F0D926658D5Ds1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib69B7251086EBC907FBFDA8949D1855B6s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib69B7251086EBC907FBFDA8949D1855B6s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib69B7251086EBC907FBFDA8949D1855B6s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bibEE2133267FCE17C4CF03DDAA4DDA74D5s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bibEE2133267FCE17C4CF03DDAA4DDA74D5s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bibEE2133267FCE17C4CF03DDAA4DDA74D5s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib04F6E15EF8A130B7BEEC5F5813F346F8s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib04F6E15EF8A130B7BEEC5F5813F346F8s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib04F6E15EF8A130B7BEEC5F5813F346F8s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bibC77F924ACA22A6526DC97D3F7ECF9C3Fs1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bibC77F924ACA22A6526DC97D3F7ECF9C3Fs1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bibC77F924ACA22A6526DC97D3F7ECF9C3Fs1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bibBB3ADDA5ADC43C431DF3F612B206759Fs1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bibBB3ADDA5ADC43C431DF3F612B206759Fs1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bibBB3ADDA5ADC43C431DF3F612B206759Fs1


M. Ranaweera, A. Seneviratne, D. Rey et al. Vehicular Communications 27 (2021) 100304
[24] H. Sedjelmaci, S.M. Senouci, M.A. Abu-Rgheff, An efficient and lightweight in-
trusion detection mechanism for service-oriented vehicular networks, IEEE Int. 
Things J. 1 (2014) 570–577.

[25] P.K. Singh, S. Gupta, R. Vashistha, S.K. Nandi, S. Nandi, Machine learning based 
approach to detect position falsification attack in vanets, in: International Con-
ference on Security & Privacy, Springer, 2019, pp. 166–178.

[26] S. So, P. Sharma, J. Petit, Integrating plausibility checks and machine learning 
for misbehavior detection in vanet, in: 2018 17th IEEE International Conference 
on Machine Learning and Applications, ICMLA, IEEE, 2018, pp. 564–571.

[27] K.F. Ssu, C.H. Ou, H.C. Jiau, Localization with mobile anchor points in wireless 
sensor networks, IEEE Trans. Veh. Technol. 54 (2005) 1187–1197.

[28] H. Stubing, A. Jaeger, C. Schmidt, S.A. Huss, Verifying mobility data under pri-
vacy considerations in car-to-x communication, in: 17th ITS World CongressITS 
JapanITS AmericaERTICO, 2010.

[29] O.A. Wahab, H. Otrok, A. Mourad, A cooperative watchdog model based on 
Dempster–Shafer for detecting misbehaving vehicles, Comput. Commun. 41 
(2014) 43–54.

[30] H. Wang, M. Song, Ckmeans. 1d. dp: optimal k-means clustering in one dimen-
sion by dynamic programming, R J. 3 (2011) 29.

[31] M. Yue, L. Fan, C. Shahabi, Inferring traffic incident start time with loop sensor 
data, in: Proceedings of the 25th ACM International on Conference on Informa-
tion and Knowledge Management, 2016, pp. 2481–2484.

[32] K. Zaidi, M.B. Milojevic, V. Rakocevic, A. Nallanathan, M. Rajarajan, Host-based 
intrusion detection for vanets: a statistical approach to rogue node detection, 
IEEE Trans. Veh. Technol. 65 (2015) 6703–6714.
11

http://refhub.elsevier.com/S2214-2096(20)30075-9/bib1B1ADD6D78C4D2A6C9966A71D65AC532s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib1B1ADD6D78C4D2A6C9966A71D65AC532s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib1B1ADD6D78C4D2A6C9966A71D65AC532s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib64D39006BDDDA5CA2EEE05C8D873A80Fs1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib64D39006BDDDA5CA2EEE05C8D873A80Fs1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib64D39006BDDDA5CA2EEE05C8D873A80Fs1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib5DAC15B1EA2353CCD39F0497C4F5906As1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib5DAC15B1EA2353CCD39F0497C4F5906As1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib5DAC15B1EA2353CCD39F0497C4F5906As1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bibAE8B2CCD6E6D1076B21147D06D200223s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bibAE8B2CCD6E6D1076B21147D06D200223s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bibB03CC3AB0A9324E1C6EBC83DC203D2EFs1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bibB03CC3AB0A9324E1C6EBC83DC203D2EFs1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bibB03CC3AB0A9324E1C6EBC83DC203D2EFs1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib1851C474B0BB6F38133B588AE0D8D020s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib1851C474B0BB6F38133B588AE0D8D020s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bib1851C474B0BB6F38133B588AE0D8D020s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bibE04ADE7A2060A5027265C58467BF6D41s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bibE04ADE7A2060A5027265C58467BF6D41s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bibCA182AFFAA988DBE34428A3537FFD900s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bibCA182AFFAA988DBE34428A3537FFD900s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bibCA182AFFAA988DBE34428A3537FFD900s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bibEFB4FE2CA744AEC89458C26F0C74E838s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bibEFB4FE2CA744AEC89458C26F0C74E838s1
http://refhub.elsevier.com/S2214-2096(20)30075-9/bibEFB4FE2CA744AEC89458C26F0C74E838s1

	Detection of anomalous vehicles using physics of traffic
	1 Introduction
	2 Background
	3 Model for detection of anomalous data
	4 Numerical experiments
	4.1 Experimental design
	4.1.1 Simulation networks
	4.1.2 Vehicle demand
	4.1.3 Studied traffic conditions

	4.2 Anomalous data

	5 Results
	5.1 Evaluation
	5.2 Schematic network
	5.3 Motorway: Sydney M4 network

	6 Conclusion
	Declaration of competing interest
	Appendix A Simulation results, networks and data
	References


