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Measurement-based VLC channel characterization
for I2V communications in a real urban scenario

S. Caputo, L. Mucchi, F. S. Cataliotti, M. Seminara, T. Nawaz and J. Catani

Abstract—Visible light communication (VLC) is nowadays
envisaged as a promising technology to enable new classes of
services in intelligent transportation systems ranging, e.g., from
assisted driving to autonomous vehicles. The assessment of the
performance of VLC for automotive applications requires as a
basic step a model of the transmission pattern and propagation
of the VLC signal when real traffic-lights and road scenarios are
involved. In this paper an experimental measurement campaign
has been carried out by using a regular traffic-light as source (red
light) and a photoreceiver positioned, statically, at different dis-
tances and heights along the road. A linear regression technique is
used to come up with different propagation models. The proposed
models have been compared, in terms of accuracy and complexity,
to the conventional Lambertian model to describe the VLC
channel in a real urban scenario. The proposed models provides
a significant higher accuracy with comparable complexity.

Index Terms— Visible light communications, experimental
measurements, channel modeling, vehicular communications.

I. INTRODUCTION

The ongoing substitution of conventional light sources with
light emitting diodes (LEDs) has recently fuelled scientific
and industrial activity in visible light communication (VLC)
technology [1], [2], [3]. Such an interest stems from the
possibility offered by LEDs for fast modulation of light. In
the context of automotive and vehicular networks [4], [5],
where low latency and reliability are of crucial importance,
VLC can offer significant advantages [6], [7]. In addition,
VLC is an inherently energy-efficient interconnection since
the energy is, in any case, already needed to illuminate
the road or for road signaling (e.g., traffic lights) [8]. VLC
could therefore be significant for vehicle-to-vehicle (V2V)
or infrastructure-to-vehicle (I2V) communications, both issues
of decisive importance for road safety, in particular in the
context of assisted- or unmanned-driving [9], [10]. A reliable
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assessment of suitability of VLC technology for V2V or I2V
communications [11], [12] requires an accurate characteri-
zation of the VLC channel. In literature, the approaches to
this problem has been theoretical or empirical. The theoretical
approach aims at a mathematical reduction of the problem with
approximations, such as Lambertian emission and reflection
pattern [8]. Ray tracing is another method of investigation,
allowing for a software-based physical simulation [13]. This
kind of approaches is usually characterized by a simplified
scenario, aimed at reducing the computational complexity.
On the other hand, the empirical approach typically involves
a measurement campaign followed by the extraction of a
mathematical model of the channel as in [14]. However,
whilst the optical wireless channel has been characterized in
literature for infrared (IR) communication [15], and recently
a comparison between IR and VLC appeared [16], in order to
enable the use of VLC technology for safety-critical / smart
driving applications [17], [18], it is mandatory to test and
analyze the VLC-based V2V and I2V communication channel
in a real urban environment, with regulatory LED sources and
infrastructures. As for today, however, despite recent works
demonstrating fast and efficient I2V communications up to
50 m using regulatory traffic lights [19][20], a comprehensive
characterization of the VLC channel in a realistic outdoor
scenario is still lacking, due to intrinsic difficulties mainly
represented by the influence of non-ideal external factors, such
as ambient light and irregularities of the emission pattern
of the LED-based traffic lights or headlights [21], [22]. In
this paper we present an outdoor measurement campaign,
aimed at the extensive characterization of the VLC channel
in a real urban scenario, carried out in the city of Prato
(Italy) in collaboration with ILES srl, a private company
which develops urban signaling systems. The measurements
have been taken in a real urban road, with regulatory traffic
light emitting a VLC signal to the receiver located along
the same road. The measurement grid has been replicated
setting the receiver at three different heights corresponding,
respectively, to car headlights, dashboard and internal mirror.
Measurements have been performed also in the presence of
stray light sources such as sunlight or other cars’ headlights.
The data has been used to extract a mathematical model of
the VLC signal propagation. In particular, the optical source
plus propagation transfer function is modeled. We will show
that the Lambertian model is far from being accurate when
real traffic-light lamps are considered for VLC transmission.
A linear regression technique is used to come up with a
more accurate model of the transmission-propagation pattern.
The results of the measurement campaign highligts attainable
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Fig. 1: The VLC system model. The red dotted line indicates
the blocks we are aiming to model.

distances of several tens of meters, mainly limited by the direc-
tional emission pattern of the semaphore lamps, optimized for
maximum visibility at ' 15 m for typical dashboard heights.
The key contributions of this paper can be summarized as
follows:
• a specific hardware for feeding and modulating the cur-

rent flowing into a red LEDs array of a regular traffic-
light has been designed and implemented, along with a
physically AC-coupled RX stage for DC, high-intensity
stray components rejection;

• a measurement campaign of a VLC link between a
traffic-light and a receiving unit has been carried out
in a real urban road, with regulatory traffic-light and
environmental conditions; three different heights have
been taken into account, corresponding to headlights,
dashboard and internal mirror heights in a standard car;

• a linear regression technique has been used to derive a
mathematical model of the VLC transmission pattern plus
propagation;

• The bit error rate (BER) of the I2V VLC system has been
estimated from the measured signal-noise-ratio (SNR) at
the receiver.

The rest of the paper is organized as follows. Sec. II in-
troduces the complete system model, while Sec. III shows the
measurements campaign set up, including the hardware equip-
ment. In the following Sec. IV different propagation models
are discussed, derived from the experimental measurements.
Sec. V comments the results and Sec. VI concludes the paper.

II. SYSTEM MODEL

The VLC channel can be decomposed in three elements: two
corresponding to the electronic circuits, i.e., the transmitter and
the receiver, and an optical channel. The optical channel can
again be decomposed in three elements: two corresponding
to the optics installed on the transmitter and on the receiver,
respectively, and one corresponding to propagation in free
space. Our model for the VLC channel is shown in Fig. 1.
Every single element of the scheme can be represented math-
ematically by its transfer function H(f), corresponding to
the Fourier Transform of the impulse response h(t). In our
implementation, the signal transmitted by the LED lamp is
represented by a time-dependent rectangular function

s(t) =

∞∑
j=0

sj(t− jNbT ) (1)

where

sj(t) = A

7∑
i=0

sk · rect
(
t− T/2 + kT

T

)
(2)

and A is the amplitude, T is the duration of the single
rectangular pulse, sk is the transmitted symbol and Nb is
the number of transmitted symbol sequences. The symbol
sequence is s = {1,−1, 1,−1, 1, 1,−1,−1}, chosen in order
to encompass all of the possible logic transitions appearing
in Manchester encoding, where no more than two consecutive
symbols can be of the same sign [23] (see Fig. 2).

Fig. 2: The blue curve represents the transmitted signal (TX),
modulated with OOK Manchester NRZ scheme, as indicated
in standard IEEE 802.15.7 for outdoor VLCs. The red curve
represents the signal received (RX) at the reference position
indicated in Fig. 3, averaged over 4 acquisition periods. The
comparison highlights a small delay, ∼ 2 µs, related to the
finite bandwidth of the TX-RX chain.

The received signal, in each point on the grid, is the con-
volution of the transmitted signal with four impulse responses

sRX(t) = sTX(t)∗hel
TX(t)∗hop

TX∗hP(t)∗hop
RX∗h

el
RX(t)+n(t) (3)

where
• n(t) is the (white Gaussian) thermal noise at the receiver,
• hel

TX(t) takes into account the electronic at the transmitter,
• hop

TX the effects of the optics at the transmitter,
• hP(t) the light propagation,
• hop

RX the optics at the receiver, and
• hel

RX(t) the electronic conversion at the receiver.
In the frequency domain, Eq. (3) becomes

SRX(f) = STX(f)Hel
TX(f)Hop

TXHP(f)Hop
RXH

el
RX(f)︸ ︷︷ ︸

H(f)

+N(f)

(4)

It is important to note that hP(t) does not actually depend
on time as well, since during the measurements both TX
and RX were static, and no variations in the environment
occurred. In our study, we aim at the characterization of
ultimate performance of our system in a real scenario. For
this motivation, for each point of the grid, we chose to align
the optical axis of the receiver towards the lamp, adjusting
its horizontal and vertical alignment angles. The benefits of
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such setting are mainly two. First, with our set of focal length
and detector size, the image of the lamp falls entirely into
the active area of the detector for all points on the grid, so
that the reconstructed intensity pattern coincides with the lamp
pattern. Secondly, this configuration avoids any interference
effect given by reflections of the lamp’s signal from tarmac,
as no reflected beam falls into the field of view (FOV) of our
receiver. A demonstration of this is given in Appendix B.

For the above consderations, under our configuration we can
assume hop

RX to be nearly constant into the whole measurement
grid. The impact of different collecting optics and angles on
the overall system performances, as well as possible effects of
reflections on the optical channel quality will be addressed in
future work.

In this paper we focus on the modelling of hop
TX ∗ hP(t). It

is common in literature to model this as Lambertian, but we
will demonstrate that the Lambertian model does not provide
for an accurate description when the source is a real LED-
based traffic-light, equipped with regulatory shaping optical
lens, in an urban scenario. We then propose a linear regression
method to come up with a mathematical model that better fits
the propagation of VLC signals from traffic-light to vehicles.

III. MEASUREMENT CAMPAIGN IN URBAN SCENARIO

The on-field measurements campaign have been carried out
in the city of Prato (Italy) in collaboration with ILES srl, a
company producing and installing road signaling infrastruc-
tures. The company has installed one traffic light in a real
urban scenario consisting of a two-lane road with buildings on
both sides (see Fig. 3). The traffic light has been positioned on
the right side of the rightmost lane, with 0.75 m indentation,
at the height of 2.83 m, in accordance to Italian regulations
UNI11248 [24] and UNI13201-2 [25]. The measurements have
been carried out during one entire day (sunny conditions).
The red lamp of the traffic light has been modulated with
the information signal (see Fig. 3). In particular, the red LED
lamp has been controlled by our driver circuit (see Sec. III-A1)
which, besides controlling and supplying the DC nominal
operating current, allows for the insertion of the bit sequence
via an external function generator (see Sec. III-A1). The LED
driver is the only component that has been replaced in the
commercial traffic light .

The photodetector has been positioned in a grid on points
in front of the emitting traffic light (Fig. 3). The grid has
been centered at the position of the traffic light, with the x-
axis along the road length, the y-axis along the road width
and a vertical z-axis. The grid points along the x-axis ranges
from 3 to 30 m, with more density in the first 10 m: [3 m, 4 m,
5 m, 7 m, 10 m, 15 m, 20 m, 25 m, 30 m]. Along the y-axis we
included an offset of 0.75 m since the traffic light has this
indentation on the sidewalk. The step between measurement
points is fixed to 1 m: [0.75 m, 1.75 m, 2.75 m, 3.75 m, 4.75 m,
5.75 m]. This two-dimensional grid is repeated for three dif-
ferent heights (z-axis) to simulate where the receiver could
be placed on the vehicle: car headlights (0.75 m), dashboard
(1 m) or rear-view inside mirror (1.35 m). The photodetector
is connected to an oscilloscope to display and record the

Fig. 3: Experimental setup for the measurement campaign in
a real urban scenario. Several different conditions has been
tackled. The AC coupling of the photodetector washes the
contribution of ambient and artificial stray lights out during
all the day and the evening, even in the case of direct stray
sunlight and/or headlight illumination. In the lower panel, a
sketch of the measurement grid is reported. Measurements
have been repeated in the grid-area for three different receiver
heights (see main text). The reference (0 dB) point is located
at (4, 0.75) m, for a height of 1.35 m.

VLC signal coming from the traffic light. The oscilloscope
is triggered by a sync output of the function generator whose
period, highlighted in Fig 2, corresponds to a full Manchester
modulation cycle. The record length is 200 kpts at a sampling
rate of 0.5 GHz, encompassing 10 full modulation periods.
For each measurement we acquired both a single shot and the
average of 4 traces.

A. TX-RX Hardware Design

The VLC TX and RX stages have been designed in order to
feature analog bandwidths above 150 kHz and to reject low-
frequency high-intensity components coming from sunlight or
traffic illumination without saturating the first amplification
stage.

1) Transmitter: The schematic block diagram of TX hard-
ware is reported in Fig. 4. TX hardware is composed by the
LED light source, and its current driver. Our implementation
allows to generate the required current (' 0.7 A) for the traffic
light LEDs to provide the nominal luminous flux, as well
as to insert a current modulation proportional to an external
signal, which in turn allows for insertion of data streams into
the optical carrier using any kind of protocol based on light
intensity modulation. The modulator section (cyan shaded area
of Fig. 4) is placed after a P-I regulation stage (purple shaded
area), stabilizing the supply current, which is sensed by a
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precision resistor, from direct current (DC) to ' 1.5 kHz, given
by a proper adjustment of the servo resistor-capacitor (RC)
constant (see Fig. 4). In such configuration, any modulation
above the PI servo cut frequency fTX = 1/2πRC ' 1.5 kHz
will not be compensated by the P-I loop, and will be added
as a current modulation through the MOSFET transistor. The
open loop bandwidth of the op-amp chain can virtually exceed
several MHz, whereas, on the other hand, the large parasitic
capacitance of the large-area LED module embedded in the
traffic light lamp, as well as the presence of non linearity
of the actuation chain in the open-loop response, affect the
maximum achievable transmission bandwidth. We have limited
the relative modulation amplitude to 30% of the average DC
value of 700 mA, in order to avoid a possible overburden of the
LED sources due to excessive currents in the positive periods
of the modulation pattern of the nominal DC value. A function
generator (Tektronix AFG1022) has been used to provide
the modulation circuit with the modulation waveform (see
Fig. 2). The transmitted waveform has been chosen to match
a OOK Manchester encoding, according to PHY I of standard
IEEE 802.15.7 for Outdoor VLC [26]. In order to embed
all possible bit configurations of the Manchester encoding,
the data package is constructed by attaching two square-wave
blocks with frequencies of 50 kHz and 100 kHz, respectively,
with a global periodicity of 40 µs, corresponding to the packet
duration. The Manchester encoding grants a constant average
signal (Fig. 2), leading to a constant illumination intensity
emitted by the traffic light lamp.

The (red) LED emitter (Lux Potentia OJ200-R07, 1A 12V)
is composed a series of 3 high-power LEDs. In our scheme,
the original power supply has been bypassed by our MOSFET-
based current driver/modulator, while preserving the original
case of the LED series, so that the global features of the traffic
light illumination pattern are unaltered. We also checked that
different colour lamps do not have a significantly different
frequency response to modulation, as the LED substrates have
similar parasitic capacitance, so the bandwidth of the system
is the same and the temporal dependence of Eq. 1 is unaltered.
A red-coloured Fresnel lens shapes the beam according to
the standards [24], [25] and increases the visibility at large
distances.

2) Receiver: The receiver hardware is implemented by
modifying a Thorlabs PDA36-A active photodiode with a
physical AC decoupling of the photodiode chip from the
first transimpedance amplification stage. The time constant
fRX ' 5 kHz of such decoupling is realized through a
multielement RLC network, with parameters chosen in such
a way to filter out all of the unwanted low-frequency light
variations (headlights, sunlight ecc.), still allowing for the
modulation signal to pass through the first stage of the
receiving electronics. Such configuration allowed for high
RX gains without the risk of saturating the amplifier by a
large light background, and practically avoids the need for
any coloured filter at receiver. The photoreceiver gain has
been chosen as the highest still preserving a bandwidth >
150 kHz. The concentrator used in this RX setup (rightmost
part of RX panel) is the shortest focal, low-cost, plastic lens
we had available, i.e. a 25 mm diameter, F = 30 mm focal

Fig. 4: Sketch of the TX-RX hardware. TX panel: A PI
regulation stage (purple area) stabilized the DC current value
in the RC bandwidth for LED to provide the required nom-
inal light intensity, whereas a modulation stage (cyan area)
inserts a high-frequency current modulation in the LED source
(rightmost panel). RX panel: a Thorlabs PDA36-A is modified
through the physical insertion of a high-pass RCL network
among the photo-diode and the first stage of transimpendance
amplification, to provide for beneficial AC decoupling of
photo-current and avoid saturation due to stray ambient lights.

length uncoated aspheric singlet. The choice of short-focal,
aberration-corrected optical concentrators is crucial in order
to keep a good trade-off between reasonably high acceptance
angle and global optical gain when the solution to increase
the input optics diameter beyond 1” is unaffordable. The data
collection is accomplished by recording both the transmitted
and received waveforms through a 70 MHz, 1Gs/s digital
oscilloscope (Tektronix TBS2074).

IV. PROPAGATION MODEL

The experimental (raw) data, recorded in each point of the
3D grid, has been processed to reduce the high-frequency
noise effects and estimate the received amplitude in the
frequency domain. The processing steps on the raw data can
be summarized as follows:
• Data Binning;
• Fast Fourier Transform, normalized to a reference value

chosen as maximum signal obtained in the “reference
point” (see Fig. 3);

• Reconstruction of the amplitude of the received signal in
each position (x, y, z) of the grid.

Each step is detailed in the following.
We have observed that the frequency components of the

received signal over 500 kHz show a negligible amplitude,
thus we applied a data binning, equivalent to a downsampling
procedure, to reduce the frequency observation interval hence
filtering out unnecessary high-frequency components, laying
above our electronic system bandwidth. The binning procedure
takes a cluster of consecutive (time) samples and replaces the
cluster with the average value of the samples.

The binning value can be defined as

Nbin =
fc

2fmax
(5)
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where fc is the initial sampling frequency of the received
signal and fmax is the highest frequency of the desired
observation window. In our experiment, Nbin = 250, since
the sampling frequency of the oscilloscope is 250 MHz.

The ratio between the transfer function1 (TF) of the whole
system calculated in each single point of the grid and the TF
calculated in the reference position can be used to define the
propagation model of the VLC signal from the traffic light to
the vehicle

∆Hi =
Hi(f)

Href(f)
(6)

with

Hi(f) =
SRXi

(f)

STXi(f)
; Href(f) =

SRXref(f)

STXref(f)
(7)

where STXi(f) and SRXi(f) is the Fast Fourier Transform
(FFT) of the transmitted and received signal, respectively,
at location i, Hi(f) represents the TF between the traffic
light and the ith point on the grid and Href(f) stands for
the TF between the traffic light and the reference point. All
measurements have been triggered on the same signal, and
thus the FFT of transmitted signal will be the same for each
point STXi

(f) = STXref(f). Thus, Eq. (6) can be then rewritten
as

∆Hi =
SRXi

(f)

SRXref(f)
(8)

From Eq. (8) we can deduce that ∆Hi depends only on the
spectrum of the received signal at the i-th location and at the
reference point2. In addition, we can safely assume that ∆Hi

does not depend on the carrier and modulation frequencies,
as the large spectral width of the optical carrier emitted by
the LED source makes the contribution of absorption lines
of air absolutely irrelevant for any channel loss, whilst the
large difference between modulation and carrier frequencies
avoids any frequency-dependent interference effect in line-of-
sight tests.

Fig. 5 shows the map of the amplitudes ∆Hi measured
in each point of the grid at different height [0.75, 1, 1.35] m.
Amplitudes are reported in logarithmic (dB) scale. We have
used the point on the grid that shows the maximum ampli-
tude (0 dB) as reference (”reference point” in Fig. 5). The
intensity is lower when the height is higher. In fact, at a
distance x = 20 m the intensity clearly decreases moving from
h = 0.75 m (I ≈ −15 dB) to h = 1.35 m (I ≈ −20 dB). This
difference is then reflected in the accuracy map in Fig. 8.

It is worth to point out that the ratio in Eq. (8) makes us to
neglect the effects of the electronic components, Hel

TX(f) and
Hel

RX(f), of the i-th received signal. We also note that spatial-
dependent contributions of collecting optics can be neglected
at the receiver, and hence the TF of the optical part at the
receiver can be considered as constant for every point of the
grid. This is due to the fact that the focused image of lamp
is fully contained into the active area of the photodiode for
all points in the measurement grid (see Sec. II). Due to the

1The ratio
SRX(f)

STX(f)
is usually defined as the transfer function of a generic

system (black box) that has sTX(t) as input and sRX(t) as output.
2The effect of the thermal noise at the receiver has been neglected.
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Fig. 5: Amplitude map (dB) of the VLC signal ∆Hi measured
over the grid for three different heights [0.75, 1, 1.35] m cor-
responding to car headlights, can desk and car internal mirror,
respectively. The map reports the measurement data (intensity)
over the field test grid shown in Fig. 3.

operations described above, ∆Hi in Eq. (8) does not depend
on the frequency.

A. Lambertian Model

In the Lambertian model [8], the path loss is given by

I =
I0 cos

ν(φ)

d2
(9)

where I0 is the intensity in the axis of irradiance, φ is the
irradiance angle, ν is a parameter for taking into account the
influence of an optical lens in the LED emission, and d is a
distance between the transmitter and the receiver. The angle φ
is is referred to the optical axis of traffic light lens, identified
as the line of maximum irradiance of the source (in our case,
this is found to coincide with a line connecting the center of
the LED lamp and the point (14, 0, 0) m, i.e. located at 14 m
on the ground in front of the traffic light). Assuming rotational
symmetry around the optical axis, the angle φ is illustrated in
Fig. 6.

B. Proposed models for Intensity

To mathematically characterize the propagation of the VLC
signal, we aim to model the amplitude ∆Hi of the received
signal over the grid, which in turn is quantified by its intensity.
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The intensity of the received signal depends on the position
of the receiver in spherical coordinates

I(α, β, d)

where α is the elevation, β is the azimuth and d is the distance
between the transmitter and the receiver. Angles α and β are
shown in Fig. 6.

Fig. 6: [Left side] Angle φ of the Lambertian model (9). [Right
side] Angles α and β of the proposed models (10), (11). The
horizontal axis is parallel to the road axis.

The first model proposed here (10) is derived by modifying
the well-known Lambertian propagation model [8]. Here the
optical intensity is taken as:

I1(α, β, d) =
f(α, β)

d2
, (10)

scaling as inversely proportional to the square of the distance.
Differently from Lambert’s law, the numerator has been gen-
eralized as a function of α and β.

The Lambert’s cosine propagation law assumes that the
source of light is a homogeneous diffuser. Whilst remaining a
valid approximation in the analysis of emission of many direct
sources as LEDs, this hypothesis can be highly inaccurate in
case of shaped beam patterns, i.e. in presence of lenses (as in
traffic lights). Thus, the second propagation model proposed
here only preserves a global 1/d2 dependence of radiated
optical intensity:

I2(α, β, d) =
f(α, β, d)

d2
. (11)

The numerator is instead a generic polynomial function of (α,
β, d).

A more general approach can consider the optical intensity
as a polynomial function of (α, β, d) (with a given order)
without an explicit 1/d2 weight, i.e.,

I3 = f(α, β, d) (12)

Depending on the specific needs and applications, one can
choose a general or a more specific model which in general
will feature very different convergence performances as a
function of the number of parameters employed in the fitting
procedure.

The multiple generalized linear regression (MGLR) method
has been used to find the best fitting parameters for the
three models I1, I2 and I3. Multiple linear regression is
a generalization of simple linear regression to the case of
more than one independent variable, and a special case of
general linear models, restricted to one dependent variable.

The generalized linear model (GLM) is typically used to model
an irregular emission pattern [27], [28], [29] as it is a flexible
generalization of ordinary linear regression that allows for re-
sponse variables that have error distribution models other than
a normal distribution. The GLM generalizes linear regression
by allowing the linear model to be related to the response
variable via a link function and by allowing the magnitude
of the variance of each measurement to be a function of its
predicted value. The output of the MGLR method is a set of
polynomial coefficients of the function that fits the intensity.

In our procedure, the inputs of the MGLR method are
the following parameters: the model under evaluation (I1,
I2, I3), the maximum order of the polynomial function for
each variable (α, β, d), the statistical distribution of the error
(Normal, Poisson, Gamma)3

Let y1, · · · , yn denote n independent observations on a
response. We treat yi as a realization of a random variable Yi.
In the general linear model we assume that Yi has a normal
distribution with mean µi and variance σ. We further assume
that the expected value µi is a linear function of p predictors
that take values xi = (xi1, xi2, · · · , xip) for the i-th case, so
that

E[Yi] = µi = xTi b (13)

where b is a vector of unknown parameters. Once found b
from (13) we can write

µi = b0 + b1xi1 + b2xi2 + · · ·+ bpxip (14)

Different (from Normal) statistical distribution of the error
can be used by taking into account the generalized linear
model. In a generalized linear model, the outcome Yi of
the dependent variables is assumed to be generated from
a particular distribution in the exponential family (Normal,
Poisson and Gamma). The vector of the mean µi of the
distribution depends on the independent variables xi through

µi = g−1
(
xTi b

)
(15)

where g(·) is the link function.
To find the highest polynomial order for each of the

variables (α, β, d) to be inserted into the MGLR method still
avoiding the overfitting problem, a k-fold method is used
[31], [32], [33]. The k-fold has been applied to every model
(I1, I2, I3) for each one of the error distribution (Normal,
Poisson, Gamma). Thus, nine models have been evaluated.
The polynomial order of α and d ranges from 1 to 9, while
the order of β can assume only even values, from 2 to 8,
because of azimuthal-symmetric nature of the emitted pattern.

Incidentally, by assuming that Fresnel lenses provide the
same beam shape for the three LED lamps (red, orange and

3Linear regression models describe a linear relationship between a response
and one or more predictive terms. Many times, however, a nonlinear rela-
tionship exists. Nonlinear Regression describes general nonlinear models. A
special class of nonlinear models, called generalized linear models, uses linear
methods. Ordinary linear regression can be used to fit a straight line, or any
function that is linear in its parameters, to data with normally distributed
errors. This is the most commonly used regression model; however, it is not
always a realistic one. Generalized linear models extend the linear model
in two ways. First, assumption of linearity in the parameters is relaxed, by
introducing the link function. Second, error distributions other than the normal
can be modeled [30].
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green), we remark that our model allows to directly retrieve
intensity maps for all of them, as the only difference among the
three is given by the different height with respect to ground and
by the relative position of the emission wavelength peak with
respect to the responsivity curve of Silicon photodiode. This
can be simply taken into account with a different attenuation
factor (depending on the specific colour) for all of the three
models given by Eqs. (10), (11) and (12).

V. RESULTS

The percentage error for each of the proposed models
I1(α, β, d), I2(α, β, d), I3(α, β, d) as a function of the number
of polynomial terms with a Normal (Fig. 7a), Gamma (Fig. 7b)
e Poisson (Fig. 7c) distribution of the error in the MGLR
method. Each point corresponds to a specific parameter con-
figuration. For example, one red square in Fig. 7a represents
the error produced by the model I3(α, β, d) with a specific
number of polynomial terms for α, β and d coming out from
the application of the k-fold and MGLR procedures. The error
is calculated as the RMSE between the original measured
data and the corresponding values of the polynomial fitting
function over the whole grid. Solid lines are a guide to the
eye connecting the best parameter configuration minimizing
the error for a specific number of terms. Given a specific error
threshold, it is possible to reach it with the lowest number
of polynomial terms, after which the minimization procedure
looses efficiency.

As it can be seen in Fig. 7a, the error decreases faster
for model I1(α, β, d). The other two models can get more
accurate, at the expenses of introducing a high number of
polynomial terms. Hence depending on the particular needs
one can either choose a more “efficient” or a more “accurate”
model for the VLC system.

If a Gamma or Poisson distribution is used in the MGLR
method, the error decreases faster than using the Normal
distribution. The I2 model with Poisson distribution reaches
the lowest error, but it requires a high number of polyno-
mial terms (80) for the fitting function. If a low number of
polynomial terms is desired, the model I1 with Gamma or
Poisson distribution reaches a lower error. A low number of
polynomial terms is useful for extending the model to an area
larger than the one where the measurements are taken. The
k-fold method is used to avoid the overfitting problem in the
area of the measurements.

Only two models have been compared to define a propaga-
tion model which is valid for distances out of measurement’s
range. The first one is I1 with Gamma distribution, while the
second is I2 with Poisson distribution. The first one has been
selected because the error decreases more rapidly, the second
one has been selected because it reaches the lowest error.

In case of I1(α, β, d) with Gamma distribution, the vector
y of the intensity measured over the grid is

y = (∆H1d
2
1,∆H2d

2
2, · · · ,∆Hnd

2
n) (16)

where n is the number of points over the grid of the measure-
ments, ∆Hi is the intensity (in dB) in the i-th point of the
grid and di is the distance of the i-th point of the grid from
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(c) Poisson distribution.

Fig. 7: Percentage error for each of the proposed models
I1(α, β, d), I2(α, β, d), I3(α, β, d) as a function of the number
of polynomial terms with a different distributions of the error
in the MGLR method. Solid lines are a guide to the eye
connecting the best parameter configuration minimizing the
error for a specific number of terms.

the source of the VLC signal (the traffic light ). The predictor
matrix is composed by

X = [x1 x2 · · · xn]T (17)

with

xi = [1 αi βi αi ⊗ βi] (18)

where ⊗ stands for the element-by-element product operator,
αi = (αi, α

2
i , · · · , α

p
i ) is the vector of the elevation angles

and βi = (β2
i , β

4
i · · · , β

2q
i ) is the vector of the azimuth

(squared) angles. The parameters p and 2q represent the
maximum polynomial order for the elevation parameter α and
the azimuth parameter β, respectively.
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In case of I3(α, β, d) with Poisson distribution, the vector
y of the intensity measured over the grid is the same (16),
while

xi = [1 αi βi di αi ⊗ βi ⊗ di] (19)

where di = (di, d
2
i , · · · , dri ). The parameter r is the maximum

polynomial order for the distance parameter d.
The objective is to find the coefficients b = (b1, · · · , bm)T

(with m = pq + 1) so that

E[y]−1 = Xb (20)

in case of model I1(α, β, d) with Gamma distribution, and

log (E[y]) = Xb (21)

in case of model I2(α, β, d) with Poisson distribution (with
m = pqr + 1).

Table I and II show the different solutions for (20) and
(21), respectively, increasing the order of the polynomial
function. The error associated to each model compared with
the measurements is reported as average percentage error

εperc =
1

n

n∑
i=1

|yi − Ili|
yi

× 100 (22)

as well as root mean squared error (RMSE)

εRMSE =

√∑n
i=1(yi − Ili)2

n
(23)

with i = 1, · · · , n and l = 1, 2, 3.

TABLE I: Number of terms, orders of the variables and
error for the solution (20) of model I1(α, β, d) with Gamma
distribution. Only values of (α, β) that minimize the error are
reported (see the curve min I1 in Fig. 7b).

No. of terms Order of α Order for β Error (%) RMSE
30 8 6 3.7307 0.014001
25 6 8 4.3831 0.017496
22 6 6 4.5449 0.018839
14 4 6 6.5972 0.02563
12 4 4 8.3422 0.030691
9 2 6 16.002 0.061841
6 2 4 20.056 0.084346
5 2 2 30.182 0.10461

TABLE II: Number of terms, orders of the variables and
error for the solution (21) of model I2(α, β, d) with Poisson
distribution. Only values of (α, β, d) that minimize the error
are reported (see the curve min I2 in Fig. 7c).

No. terms Order α Order β Order d Error (%) RMSE
90 8 8 2 0.8221 0.0016
66 7 6 2 1.9923 0.0049
60 6 4 4 2.5728 0.006811
48 5 6 3 3.0709 0.010701
40 6 6 1 3.3717 0.010796
20 5 2 1 5.9458 0.014649
12 3 2 1 8.5654 0.029661
4 1 2 1 31.776 0.056186

The polynomial function for the model I1(α, β, d) (10) with
Gamma distribution with 12 terms is

I1(α, β, d) =
1

d2
(b1 + b2α+ b3β

2 + b4α
2 + b5αβ

2 + b6β
4

+ b7α
3 + b8α

2β2 + b9αβ
4 + b10α

4 + b11α
3β2

+ b12α
2β4)−1

(24)

while for the model I2(α, β, d) (11) with Poisson distribution
with 12 terms is

I2(α, β, d) =
1

d2
exp{b1 + b2α+ b3β

2 + b4d+ b5α
2

+ b6αβ
2 + b7αd+ b8β

2d+ b9α
3 + b10α

2β2

+ b11α
2d+ b12αβ

2d}
(25)

and the value of the coefficients is reported in Table III. We
selected the 12 terms since this choice provides in both models
a fair tradeoff between performance (error below 10%) and
complexity.

It is important to note that the element bj of vector b is set
to zero if the corresponding order of the associated variables
(α, β, d) exceeds the maximum between the selected order of
α, β or d. The models are represented in spherical coordinates,
so the effect of the heights is included.

TABLE III: Values of the coefficient b for the models
I1(α, β, d) with Gamma distribution and I2(α, β, d) with
Poisson distribution.

Coefficient Value for I1 model Value for I2 model
b1 0.088395 6.1107
b2 1.8365 20.436
b3 0.53823 -9.8384
b4 14.718 -0.09868
b5 6.3874 47.629
b6 0.92338 -12.142
b7 46.406 -1.0858
b8 26.178 -0.08044
b9 -7.8413 52.16
b10 52.665 13.944
b11 39.219 -1.4756
b12 -1.3364 0.90893

The proposed models have been compared to the conven-
tional Lambertian model [1], widely used in literature. Fig. 8
shows the accuracy of the Lambertian model as well as of the
proposed new models, over the experimental measurements
grid. It is important to note that the accuracy has been
calculated only over the points where we had the value
corresponding to a real measurement. We could not measure
the intensity on the other side of the traffic-light since there
was no lane available, as in a typical urban road.

The accuracy is calculated as the difference between the
measured intensity in a point of the grid and the corresponding
intensity of the fitting polynomial function of the model.

As it can be seen the conventional model shows a significant
higher error compared to the models proposed in this paper.
The average RMSE of the conventional Lambertian is 0.097,
while the one of the two proposed models (with, e.g., 12
parameters) is 0.030 and 0.029 (see Table I and II).

Fig. 9 shows the intensity of the propagation models
I1(α, β, d) model with Gamma distribution and I2(α, β, d)
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(a) Accuracy of the conventional Lambertian model.
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(c) Accuracy of the I2 model.

Fig. 8: Comparison of the propagation models I1 and I2 with
the conventional Lambertian model.

with Poisson distribution. Figs. 9a and 9b report the intensity
of the propagation models described above, extended to an
area (100× 50 m) larger than the measurements grid.

The two models shown in Fig. 9 have the same complexity
(12 terms) and the same accuracy (see Table I and II). The
accuracy panels (right part of Fig. 9) show local deviations

from data not exceeding 20%. These accuracy maps allow for
eventual selection of one model depending on distance and/or
height of the receiver. For example, in case of receiver placed
at a distance of 20 m and height of 1.35 m model I1 is more
accurate than model I2 as depicted in Fig. 9. The behaviour
of the accuracy seems not to have a direct dependence on the
distance, but this is rather dominated by numerical fluctuations
of the polynomial functions involved. The computational cost
to obtain the Lambertian model is O(ν+3), where ν is defined
in Eq. (9). It is important to note that the index ν is usually
high. In our case, the value of ν that minimizes the error of
the Lambertian model is ≈ 22. Concerning the two proposed
models, Eq. (20), which derives the polynomial coefficients of
the model I1, and Eq. (21), which derives the model I2, show a
computational cost of O(m5). In the paper we have evaluated
the two models with m = 12 coefficients, since this assured an
average error below 10%. The accuracy-complexity tradeoff
of the proposed models should be selected based on the
application scenario. Assume to have an urban scenario with,
e.g., tens/hundreds of traffic-lights in a specific perimeter of a
modern city. In order to have a global model of propagations
in a reasonable time, we could choose to limit the number of
parameters in the regression model, although this implies a
lower accuracy.

Importantly, although we have not measured directly the
bit error rate (BER) of the VLC communication link, the
performance can be analytically derived from the intensity
measurements. The results show that a probability of error
of 10−3 can be provided up to 30 m away from the source.
Mathematical details are shown in Appendix A.

VI. CONCLUSION

This paper presents an extensive measurement campaign
aimed at VLC channel characterization for I2V communi-
cation, carried out by using a real traffic-light in a typical
urban road. The receiver has been located at three different
heights corresponding to car headlights, dashboard and internal
mirror, respectively. A specific hardware for modulating the
LED of the traffic light has been designed and implemented.
The data have been then used to mathematically model the
transmission patter and the propagation channel. Three models
have been proposed and compared in terms of complexity and
accuracy, together with the conventional Lambertian model.
The results show that the Lambertian model is less accurate
in describing the VLC transmission-propagation from traffic-
light to vehicles when real lamps are considered. The proposed
models provide for a a more accurate description of the
transmission channel, and can be extended to distances wider
than those considered during the measurements campaign. In
particular, the Lambertian model provides an average error
of 25%, while the two proposed polynomial models obtain
8% with 12 coefficients. Anyway, the regression process to
calculate the coefficients of the two proposed polynomial
models has a computational cost higher than the Lambertian
model.

The models can be reliably used to evaluate the performance
of VLC technology for automotive applications. In addition,
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(a) Intensity of the propagation model I1(α, β, d) with
Gamma distribution in an area 100 × 50m. The pho-
todetector heights are {0.75, 1, 1.35}m. The polynomial
order for α an β is 4.
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(b) Intensity of the propagation model I2(α, β, d) with
Poisson distribution in an area 100 × 50m. The pho-
todetector heights are {0.75, 1, 1.35}m. The polynomial
order for α is 3, for β is 2 and for d is 1.
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(c) Intensity of the Lambertian model in an area 100 × 50m. The
photodetector heights are {0.75, 1, 1.35}m.

Fig. 9: Comparison of the propagation models I1 and I2 with the conventional Lambertian model.

the theoretical error probability of the VLC signal has been
derived by using the experimental data. The results highlight

that an uncoded error probability of 10−3 is achievable at 30 m
distance, showing that our implementation can be safely used
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for data service in I2V applications. Furthermore, our work
can be a valuable starting point to assess the impact of more
generic weather scenarios on I2V VLC links, such as those in
presence of fog and/or rain.
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APPENDIX

A. Performance analysis

To evaluate the performance in terms of probability of
error and maximum achievable bit-rate, we first estimate the
noise level in each point of the measurements grid. The error
probability of digital signalling in wireless channels is given
by

Pe ≤ (S − 1)Q

√a2ρ2min
4N0

 (26)

where S is the number of symbols in the digital constellation,
a is the fading coefficient, ρmin is the minimum distance
between the symbols and N0 is the noise spectrum density
power.

Supposing than an AWGN model holds, the relation be-
tween the probability of error and the noise level becomes

Pe = Q

√ρ2min
2N0

 (27)

http://www.ilessrl.com
http://books.google.com/books?id=h9kFH2_FfBkC
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The distance ρmin depends on the specific constellation that
has been transmitted. In our experiments, an antipodal (BPSK)
constellation was used, thus the Pe can be written as

Pe = Q

(√
PR
σ2
N

)
= Q

(√
SNR

)
(28)

where PR is the received power and σ2
N is the noise variance.

To estimate the noise variance the following procedure has
been carried out. Let us first remind that the received signal
vector at location i is

si = [si1 · · · siNb
] (29)

where sij is the vector coming from the sampling of the
waveform in (2). The received vector at the reference location
(i = ref) is averaged over the repetition periods

sref =
1

Nb

Nb∑
j=1

sref j (30)

Now, the estimated noise vector at location i

wi = [wi1 · · · wiNb
] (31)

is calculated as the difference between the received signal
vector at location i and the averaged vector at reference
location multiplied by ∆Hi (6)

wij = sij − (sref∆Hi) j = 1, · · · , Nb (32)

The noise vector in (31) is then used to estimate the noise
variance σ2

wi
at location i. An example of histogram of the

noise vector wi is reported in Fig. 10, where the grid point i is
(x = 30, y = 1.75, z = 0.75) m. Fig. 10 shows the occurrences

Fig. 10: Histogram of the noise vector at the grid point i is
(x = 30, y = 1.75, z = 0.75) m.

(y-axis) of the noise samples (x-axis) as in (32).
The signal-to-noise ratio (SNR) can thus be calculated as

SNRi =
E[s2ref]∆H

2
i

σ2
wi

(33)

This result can be used to calculate the error probability (28)
in every point of the measurement grid. The map of the
error probability is reported in Fig. 11 for the height 0.75 m.
A probability of error of 10−3 (uncoded) can be provided
even at 30 m away from the traffic light. The map shows the

Fig. 11: Map of the error probability over the measurements
grid.

error probability over the perimeter where the experimental
measurements have been carried on. The intensity models
proposed in this paper can be anyway used to calculate the
performance of a VLC system in different perimeters.

B. FOV and reflections form tarmac

Here we show that in our configuration reflections of lamp’s
light from tarmac are never collected by receiver as they
fall out of the Field of View (FOV) of the receiver anywere
on the measurements grid. Without loss of generality we
restrict our analysis to the case of receiver placed along the
optical axis of the traffic light lens (β = 0). With reference
to Fig. 12-a, the FOV θ of a receiver is given by θ/2 =
arctan(l/2F ), where l and F are the detector width and lens
focal length, respectively. As shown in Fig. 12-b, one can see
that reflections from tarmac (red line) cannot geometrically
enter the detector FOV when θ/2 ≤ γ + δ. After easy
trigonometric considerations, the above expression reads as:

arctan

(
l

2F

)
≤ arctan

(
Z + S

D

)
+ arctan

(
Z − S
D

)
,

(34)
where the parameters are described in Fig. 12). The above
expression, given our parameters set (F = 30 mm, l = 6 mm)
is always verified in our measurement grid (D < 35 m) and
for all of the three receiver heights, and turns false only at very
large distances (D & 50 m, see Fig. 12-c), where the detector’s
optical axis progressively leans towards a horizontal plane as
the distance D grows, hence letting to reflected beams the
possibility to enter the FOV cone.
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Fig. 12: a) Field of View for a given detector of size l and
focal length F ; b) reflections form tarmac (red line) in relation
to parameters used in the text; c) the merit function θ/2−γ−
δ gets positive when reflections can geometrically enter the
detector’s FOV.
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