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ABSTRACT
The number of Connected and Autonomous Vehicles (CAVs) is increasing rapidly in various smart
transportation services and applications, considering many benefits to society, people, and the envi-
ronment. Several research surveys for CAVs were conducted by primarily focusing on various secu-
rity threats and vulnerabilities in the domain of CAVs to classify different types of attacks, impacts of
attacks, attack features, cyber-risk, defense methodologies against attacks, and safety standards. How-
ever, the importance of attack detection and prevention approaches for CAVs has not been discussed
extensively in the state-of-the-art surveys, and there is a clear gap in the existing literature on such
methodologies to detect new and conventional threats and protect the CAV systems from unexpected
hazards on the road. Some surveys have a limited discussion on Attacks Detection and Prevention Sys-
tems (ADPS), but such surveys provide only partial coverage of different types of ADPS for CAVs.
Furthermore, there is a scope for discussing security, privacy, and efficiency challenges in ADPS that
can give an overview of important security and performance attributes.

This survey paper, therefore, presents the significance of CAVs in the market, potential challenges
in CAVs, key requirements of essential security and privacy properties, various capabilities of ad-
versaries, possible attacks in CAVs, and performance evaluation parameters for ADPS. An exten-
sive analysis is discussed of different ADPS categories for CAVs and state-of-the-art research works
based on each ADPS category that gives the latest findings in this research domain. This survey also
discusses crucial and open security research problems that are required to be focused on the secure
deployment of CAVs in the market.

1. Introduction
Connected and Autonomous Vehicle (CAV) is an au-

tomotive entity configured with revolutionary technologies
such as sensors, robotics, and complex software. It automat-
ically executes different automotive system operations (like
computation and communication) for Vehicle-to-Everything
(V2X) communications and In-Vehicle Network (IVN) data
transmission throughwireless technology, i.e., Dedicated Short-
RangeCommunications (DSRC), Long-TermEvolution (LTE,
i.e., 5G/6G), or Wireless Fidelity (Wi-Fi). The integration
of such modern technologies with Intelligent Transportation
Systems (ITS) is a powerful tool that can gather meaningful
information for data analytics and provide real-time infor-
mation and effective services to the end users, thereby ben-
efiting society, vehicle passengers, other people, industrial-
ists, governments in the development of a sustainable world
[1], [2]. Therefore, CAVs are widely practiced in various
applications, i.e., advanced road safety, business and human
productivity, traffic flow and congestion management, data-
driven mobility, sustainability, and transport accessibility.
Hence, CAVs provide new business opportunities through
next-generation automotive applications and services.
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CAVs are mainly developed to offer effective productiv-
ity while commuting on the road. Thus, the control of var-
ious CAV components is primarily managed by the vehicle
rather than the driver. To make it more straightforward for
the implementation purpose, different automation levels for
a vehicle are categorized while considering the level of vehi-
cle and driver controls. A range of these levels starts at level
0 (no automation) and ends at level 5 (full automation). They
are classified as (i) level 0: no driving automation, (ii) level
1: driver assistance, (iii) level 2: partial driving automation,
(iv) level 3: conditional driving automation, (v) level 4: high
driving automation, and (vi) level 5: full driving automation.
In this classification, the first three levels are categorized as
the driving environment based on human driver monitoring,
whereas the automated systemmonitors the driving environ-
ment in the other three levels [3].
1.1. Introduction of IVN and CAN

IVN is the backbone of CAVs in today’s modern vehicles
for data computation and communication among different
installed sensors and mechanical components within a ve-
hicle [4]. CAVs consist of several Electronic Control Units
(ECUs) that are connected over the Controller Area Network
(CAN) to transmit meaningful automotive instructions for
further action(s). There are different communication proto-
cols for IVNs, i.e., CAN, FlexRay, Media-Oriented System
Transport (MOST), and Local Interconnect Network (LIN).
Among these protocols, CAN is mainly practiced in an auto-
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Figure 1: The Overview of Connected and Autonomous Vehicle with Different Components.

motive network due to the effective data rate comparatively
and bus topology to connect critical ECUs to a high-speed
CAN bus and less-critical ECUs to a low-speed CAN bus
for critical real-time data exchanges in the IVN. Such con-
nections facilitate the quick broadcasting of crucial automo-
tive messages with a higher priority. Moreover, high-speed
CAN, i.e., ISO 11898-2 is particularly resistant to electri-
cal interference and offers design flexibility while consider-
ing the cost of implementation. Moreover, the CAN pro-
tocol significantly manages arbitration and collision avoid-
ance while messages are sent simultaneously, thereby solv-
ing the problem of message re-transmission [5]. Figure 1
displays the outline of a CAV [6], [7], [8] that connects with
different types of ECUs, Telematics and Infotainment Sys-
tem (TIS) and On-Board Diagnostic (OBD) II through IVN
to broadcast automated operational messages, whereas the
outside world is connected via DSRC, LTE, or Wi-Fi for
better services. Figure 1 also presents an outline of adver-
saries’ target CAV components to perform illegal activities
by launching impersonation, modification, injection, CAN
bus-off, and side-channel attacks.

The CAN bus bit rate varies from 125 kbps to 1 Mbps
with a payload up to 8 bytes, whereas the maximum bit rate
for CAN Flexible Data (FD) is 8 Mbps, and the payload size
is 64 bytes in CAN-FD. The third generation, CAN eXtra
Long (CAN-XL) can provide a bit rate of up to 10 Mbps
with a payload size of up to 2048 bytes, and it is imple-
mented through Internet protocol-based services [9]. CAN
in CAVs is responsible for the overall behavior of differ-
ent system functionalities, such as steering, engine manage-
ment, braking system, navigation, lane/parking assistance,
indicator panel, cruise control, and power window. Techno-
logical developments in recent years have allowed modern
vehicles to access cloud services and to communicate with
other vehicles usingmobile cellular connections, thereby pro-
viding valuable services. However, they may also introduce
new attack surfaces, leading to advanced security vulnera-
bilities that can be launched to disturb CAV components.

Through the compromised ECU, the attacker can take con-
trol of the vehicle, which may result in severe consequences,
e.g., the attacker can alter the speed of the vehicle or stop the
vehicle altogether [1], [10].
1.2. Market Scope of CAVs

Automotive applications and services are used in various
industries, such as transportation, retail, autonomous vehi-
cles, financial, insurance, energy, health services, and media
for multiple purposes that lead to a huge market scope of
automotive businesses in the present and future world. Ac-
cording to a survey [11], the automotive industry sector’s
total annual revenue in 2014 was around 2 trillion USD in
the United States (US) only, which was 11.5% of US Gross
Domestic Product (GDP) in the year of 2014. Around USD
735 billion (of the total annual revenue) was explicitly gen-
erated from autonomous vehicles [11]. While looking at the
roadmap of the New South Wales region of Australia [12],
CAVs will be adopted at a large scale in a service environ-
ment for different usages, aiming for new economic opportu-
nities, great connectivity in customers’ lives, and better ac-
cessibility of places through data analytics, new technolo-
gies, and strong collaborations. Moreover, autonomous ve-
hicles provide functionality and services that are beneficial
to decrease energy requirements and achieve sustainablemo-
bility development. Such functionality and services include:
(i) vehicle lightweight and rightsizing, (ii) powertrain elec-
trification, (iii) platooning, and (iv) eco-driving [13].

Worldwide, e-commerce sales extensively grew to around
USD 3.5 trillion fromUSD 572 billion in the period of 2010-
2019 [14], and even more people have become E-commerce
customers due to the Covid-19 pandemic for multiple indi-
viduals and societal benefits. The demand for last-mile de-
livery has therefore increased exponentially, resulting into
higher delivery costs, longer delivery times, and fixed time
slots due to limited human resources. Moreover, the envi-
ronment will have negative impacts as delivery traffic con-
tinuously increases. Therefore, it is necessary to mitigate
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adverse effects for a sustainable development. To deal with
these challenges, Autonomous Vehicles (AVs) can play a
significant role in delivering various products to customers
effectively and quickly to fulfill customer preferences, lead-
ing to a new delivery concept asAnything to Consumer (X2C).
Considering the trend in shopping (for any products), the
X2C delivery market will dominate regular parcel delivery
in the near future that can be possible through Automated
Guided Vehicles (AGVs) to deliver products in urban areas
and Unmanned Aerial Vehicles (UAVs) for rural or hilly ar-
eas delivery, benefiting customers, businesses, and govern-
ment [15]. Considering the significant intentions of gov-
ernment agencies, automotive industries, and researchers,
many economic opportunities extensively open various ways
to develop and commercialize new components and systems
through future mobility technologies.
1.3. Security, Privacy, and Efficiency Challenges

The market of CAVs is exponentially increasing for dif-
ferent automotive services and applications due to various
benefits of CAN bus system-based CAVs that integrate the
outside world and the IVN for better real-time data analyt-
ics. For example, CAVs interact with different components
(via an available central gateway in IVN), such as wireless
sensors, other vehicles, network infrastructures, pedestrians,
and other smart devices over LTE, DSRC, and Wi-Fi tech-
nologies for sustainable mobility. However, the nature of
messages broadcast in CAN opens the opportunity for the at-
tackers to penetrate the CAN for susceptible activities in the
system. Moreover, CAN does not provide in-built authenti-
cation and encryption facilities to protect the system from
potential security attacks. Thus, CAVs are vulnerable to
many security threats in the exposure of IVNs to the remote
attackers [7], [8], [16], [17], [18], [79]. It is also demon-
strated through experiments on a Jeep Cherokee that com-
promised electronic control units (ECUs) can be remotely
accessed to broadcast forged or bogus messages on the CAN
bus system [19], [20]. The discussed experimental results [21]
revealed the possibility of security threats in different Bay-
erische Motoren Werke (BMW) car models, thereby the re-
mote attacker can control the IVN of CAVs where various
types of ECUs, OBD-II, and TIS are connected over the
CAN bus. CAN is eventually susceptible to different secu-
rity and privacy attacks due to the unavailability of encryp-
tion mechanisms and poor management of access control.

CAVs communicate with heterogeneous devices to de-
livermeaningful information timely and provide the best avail-
able content that enables decision-making systems to offer
better efficiency and effective results. CAVs are also capable
of gathering movement and location-based data of travelers
through the installed sensors, and this captured data can be
saved into the database (by using cloud-assisted systems) to
analyze it based on available software, providing meaning-
ful information to end users [22], [23], [24]. The automotive
system in CAVs is also linked with different user accounts to
provide relevant services effectually. However, the exposure
of IVN also directly reveals the users’ personal and confiden-

tial data (i.e., private conversations, user activities, vehicle
locations, payment details, etc.). Since the design and im-
plementation of privacy protection regulations are compre-
hensively pending for the collected data from CAVs, the col-
lected data is shared among different stakeholders, such as
the government, private industries (as the third-party service
provider), and people [18], [25]. Consequently, privacy pro-
tection in CAVs is essential to avert the disclosure of identi-
fiable information, vehicle tracking, and personal activities.

ECUs are resource-constrained components, and they are
connected over the CAN bus to regularly broadcast mes-
sages for delivering different automotive instructions to the
receiver entities so the automotive system can make better
decisions in CAVs, where the human intervention is signif-
icantly less or null. However, the broadcast nature also in-
creases the computation and communication overheads on
the CAN bus and receiver end. Besides, security mecha-
nisms need resources during the implementation stage to ver-
ify the authenticity and integrity of the sender and trans-
ferred messages [16], [79], [87]. Therefore, it is vital to min-
imize the requirement of computational resources in attack
detection and prevention solutions to quickly identify intru-
sions and provide protection against crucial threats in CAVs.
1.4. Motivation towards a New Survey Article

Several survey articles [2], [10], [17], [26], [27] on the
cyber security of CAVs are presented by discussing various
security threats and vulnerabilities in the domain of CAVs.
Such articles have focused on the classification of attacks, at-
tack features, impacts of attacks, cyber-risk, defense strate-
gies against attacks, and safety standards. CAVs perform dif-
ferent IVN operations based on the automotive control sys-
tem for effective services, but there is remarkably less or null
human interference [3]. To offer effective productivity and
comfortable journey to vehicle passengers, CAVs are con-
nected with the outside world via DSRC, LTE, or Wi-Fi [2].
As a result, attackers can perform adversarial activities to
disrupt IVN functionalities by launching different attacks re-
motely. This may lead to a major disaster on the road [7], [8],
[16], [17], [18]. It is hence necessary to effectively identify
vulnerable activities, detect defective components, protect
the automotive system, and recover from unexpected situa-
tions to avert infrastructure and human life damages.

An Intrusion Detection System (IDS) is a software-based
procedure or tool to monitor the system/network to capture
any adversarial incidents or activities that infringe the sys-
tem’s normal functionalities [28]. Attack Detection and Pre-
vention Systems (ADPSs) are software-based approaches,
developed to detect anomalies in the system and protect it
from malicious activities to continue its operations. Though
it is vital to timely detect incidents and prevent the automo-
tive system, the importance on attack detection and preven-
tion approaches for CAVs has not been covered extensively
in earlier surveys [2], [17], [26], [27]. There are some sur-
veys [1], [7], [10], [26], [29] with a limited discussion on
attacks detection and prevention, but all different types of
ADPSs for CAVs are unexplored that can indeed improve the

Limbasiya et al.: Preprint submitted to Elsevier Page 3 of 28



A Systematic Survey of Attack Detection and Prevention in Connected and Autonomous Vehicles

Table 1
Subject Coverage Comparison of Related Survey Articles on Connected/Autonomous Ve-
hicles Security

Subject [1] [2] [7] [10] [17] [26] [27] [29] This Paper
IVN security and privacy properties AU; ℙℝ AU; Iℕ; ℙℝ; AU; ℂO; Iℕ; AU; AU; ℙℝ AU; AU; Iℕ; ℙℝ; — AU; AV ; ℂO; Iℕ; ℙℝ;
Attack scenarios and feasible attacks ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ADPS categories overview × × × ✓ × ✓ × ✓ ✓

Analysis of state-of-the-art ADPS methods Partial × Partial Partial × Partial × Partial Extensive
ADPS performance evaluation parameters × × × × × ✓ × × ✓

AU ∶ authentication; AV ∶ availability; ℂO ∶ confidentiality; Iℕ ∶ integrity; ℙℝ ∶ privacy;

automotive system of CAVs. We have summarized the cov-
erage (based on important subjects) of relevant recent survey
articles in Table 1 to understand the status of existing secu-
rity survey articles in CAVs. We also notice that the signif-
icance of key requirements for CAVs (in terms of security,
privacy, and efficiency) are not discussed substantially. This
motivated us to extensively discuss all ADPS categories for
CAVs that can help detect security problems in IVN and re-
duce the damage cost through CAVs on the road. Focusing
on the aforementioned requirements, we write a detailed sur-
vey on different categories of ADPS and potential challenges
in these ADPSs.
1.5. Organization of Paper

The remaining part of the paper is organized as follows:
Section 2 provides an overview of important security and
privacy properties, attack scenarios, possible attacks in CAV,
and performance evaluation parameters for ADPS. Section 3
described the considered approach to include the most rel-
evant articles in preparing a survey paper. Section 4 dis-
cusses the overview of different ADPS categories and state-
of-the-art research works based on each ADPS category that
gives the latest findings in this research domain. In Section
5, we suggest important and open security research problems
that are required to be focused on for novel contributions in
CAVs. Section 6 gives our concluding remarks on the survey
article and intended fuzzing approaches for intrusion detec-
tion.

2. Key Requirements for CAVs: Security,
Privacy, and Efficiency
This section discusses essential security and privacy prop-

erties for IVN.We explain crucial security and privacy threats
that can significantly impact the IVN. We also discuss vari-
ous malevolent ways, used for adversarial activities in IVN.
Therefore, it may lead to security and privacy challenges
that need to be addressed to protect the IVN from illegal
actions. Moreover, different performance parameters are ex-
plained that are useful to measure the performance efficiency
of CAN-based ADPS and to understand the performance re-
sults of future ADPS universally.
2.1. Security and Privacy Properties

We explain relevant security and privacy properties that
are more important in IVN as the exposures of private data
and the system may lead to various issues in CAVs [30].

2.1.1. Authentication
When messages are exchanged over a common commu-

nication channel, the receiver entity should confirm the sender
and data exactness of transferred messages to prevent mis-
leading information and forgery. Furthermore, confirming
both entities (sender and receiver) through mutual authen-
tication and key agreement mechanisms in two-way mes-
sage communications that confirm data exchanges between
legitimate entities is necessary. Otherwise, it may lead to
impersonation and data modification attacks, resulting into
infrastructure damage and/or life threats to vehicle travel-
ers. ECUs are connected over the CAN bus to send rele-
vant messages to execute different operations in the automo-
tive systems, and it thus becomes necessary to authenticate
the sender in CAVs to avoid counterfeit information. If the
sender is not authenticated, then there is a possibility that
adversaries can perform malicious actions to interrupt IVN
functionality, aiming to damage the automotive system in
CAVs [1], [2], [7], [10], [17], [26], [27]. To satisfy authen-
ticity in the CAN, various security solutions that are mainly
designed using MACs and digital signatures can be prac-
ticed.
2.1.2. Availability

It refers to the reliability of obtained information at the
receiver side within a stipulated time to consider as the in-
put in further actions. If imperative information is unavail-
able to the authorized entity at the required time, it may
lead to unfortunate events that can put the entire automo-
tive system in impairment situations [111]. CAVs are con-
figured with the CAN to perform different automated oper-
ations based on the collected/given vehicular data through
IVN functionality. Crucial automotive components (i.e., en-
gine, power train, tire pressure monitoring, etc.) should re-
ceive instructions without any delay to execute related oper-
ations successively for providing an impeccable experience
in autonomous vehicles. If exigent data is unavailable to cru-
cial automotive components, it may lead to vehicle accidents
on the road that might also have direct risks to human life.
Moreover, it is also required to send appropriate messages
if data delivery fails for some reason. Therefore, data avail-
ability is a crucial requirement in CAN-based CAVs.
2.1.3. Confidentiality

When messages are transferred over a public channel, it
is essential to ensure that only legitimate receivers under-
stand such information from the sent messages to satisfy the
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secrecy of data. Data confidentiality is lost if adversaries or
other entities can extract meaningful information by inter-
cepting exchanged messages. A compromised device can
then disclose confidential information while sending data
into the system. IVN messages are sent over the CAN bus
and include automotive instructions used as input to perform
further operations. Further, transmitted messages are avail-
able to all connected ECUs due to the broadcast nature of
the CAN. Thereby, suppose any compromised ECU is con-
nected over the CAN bus (and there is no guarantee that
other ECUs know the connectivity of compromised ECUs
over the CAN bus). In that case, an adversary can use con-
fidential information of CAVs during malevolent activities
[7]. Thus, encryption of CAN messages has become essen-
tial during data transmission, but it is also vital to consider
the resource-constraint problem in CAN while applying en-
cryption techniques to satisfy data confidentiality.
2.1.4. Integrity

When messages are transferred from the sender to the
receiver side, information should be available at the receiver
entity the same as the sender sent it. If the receiver obtains
modified information, then transmitted messages are tam-
pered, resulting in the loss of data integrity. Thereby, the
receiver should discard such altered messages without con-
sidering them. If the receiver accepts amended information,
it may lead to different decisions, as the received information
is used as input values for further operations. The function-
alities in CAVs are operated based on automatic operations,
and the intervention of humans is highly less or completely
null in an automated system-monitored driving environment.
Therefore, data integrity requirement becomes more signif-
icant in CAVs to verify the exactness of obtained messages
from various senders. If adversaries can alter the CAN mes-
sage, it creates data integrity problems in the system. It is
also challenging to identify the sender in CAN to report ma-
licious actions (performed by the specific entity) due to the
unavailability of sender information in CAN messages [2],
[7], [27]. One-way hash-based authentication techniques are
effective to avoid data tampering in CAN messages. Conse-
quently, integrity is also vital in knowing whether exchange
messages are altered or not.
2.1.5. User Privacy

CAN is highly useful in automotive systems to execute
various automated operations in CAVs, UAVs, AGVs, the
health sector, and other related application areas, reducing/removing
human monitoring for rich experience during the usage. In
such applications, the system is connected to different de-
vices for effective data analytics by exchanging meaningful
communications. Furthermore, data is particularly crucial,
so it has substantial inhibitive impacts on the system and
its users if it does not have adequate data protection mech-
anisms. Thus, if data leakage is possible in CAVs, it can
expose vehicle users’ activities, previously visited places,
vehicle movements, and related actions [2], [17], [27]. In
order to avert illegal data access, it is required to ensure that

only legitimate entities should know vehicle users’ activities.
Therefore, it is necessary to satisfy user privacy in CAVs.
2.2. Attacks Vector

The attack vector is the way to enter the system to launch
a diversity of attacks. We describe different possible ways
for adversarial activities in CAVs based on the CAN bus ar-
chitecture, OBD-II, wireless interface, physical ports, and
ECUs components [7], [8], [10], [18], [27].
2.2.1. External and Internal Adversaries

The external adversary is an outsider entity that is ca-
pable to receive public channel parameters (transferred over
the TIS). However, the system parameters (given to the reg-
istered entities during the registration/initial phase) are not
available to such adversaries as the external adversary is not
registered with the system for legally executing various op-
erations and communications in the future. Therefore, this
type of adversary has limited capabilities to launch various
attacks on the IVN components of CAVs. However, ex-
ternal adversaries can monitor exchanged messages (trans-
ferred over the public communication channel) to eavesdrop
on such messages and then use such information to intercept
future communications through adversarial actions.

An internal adversary (also known as an insider attacker)
can be an authorized entity (who is registered with the cen-
tral authority) to communicate with other registered entities.
Thus, an internal adversary has own credentials, system pa-
rameters, and public channel parameters, enabling the ad-
versary to perform malicious activities (launching diverse
attacks) on the IVN components, i.e., ECU, CAN bus net-
work, and infotainment system. Since internal adversaries
aim to execute illegal actions on the system as a registered
entity to avoid identification and detection. It is indeed chal-
lenging to identify inside attackers.
2.2.2. Active and Passive Adversaries

An active adversary aims to interrupt prevailing func-
tionalities of the AV systems by generating/sending pack-
ets with deceitful intents to the system. Thereby, it has a
direct impact on the AV systems which may persist impor-
tant components of CAVs (i.e., engine/power train/chassis
ECUs, CAN bus, gateway ECU) to perform abnormal ac-
tions, e.g., stop/delay messages, do changes in communica-
tions, overwhelm CAN packets, etc. Since CAVs enabled
with the automation level 3/4/5 have very less or no human
intervention, it becomes more crucial to manage CAVs dur-
ing unexpected events (due to adversarial activities on the
IVN). Therefore, malicious actions by active adversaries are
more precarious comparatively thatmay lead tomassive dam-
age to the system infrastructure and/or humans.

A passive adversary mainly targets to eavesdrop on ex-
changedmessages over the CANbus and TIS to capture/learn
meaningful information/communications from the collected
data. An adversary then uses such eavesdropped data later
for illegal purposes (i.e., forgemessage communications, mod-
ify messages, impersonate data transmissions, etc.) to dis-
turb the IVN components of CAVs. This type of adversary
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is not easily identifiable as passive adversaries do not inter-
cept the AV systems’ functionalities directly.
2.2.3. Local and Remote Adversaries

When the manufacturers/service providers install tam-
pered/vulnerable hardware equipment during the device in-
stallation or upgrading procedures, adversaries have an op-
portunity to connect with the automotive system devices (i.e.,
OBD-II, TIS, and ECUs) to understand on-going operations
and other functionalities. Since such entities are overtly in-
volved with the direct access of physical devices, they play
a crucial role in the initialization/upgradation. An adver-
sary can thus become more powerful to covertly perform
harmful actions in the system, making it difficult to iden-
tify such compromises. The risk level in CAVs is therefore
disastrous in the presence of compromised hardware com-
ponents. Hence, it is important to protect CAVs from such
local entities to minimize the system exposure.

Malicious code can be implemented in CAV equipments
remotely to create backdoor vulnerabilities. This, in turn,
enables the adversary to gain unauthorized remote control
of the system/device [105], [106]. The remote attacker can
then give commands through malware to execute damaging
operations in CAVs and extend the scope of affecting areas
through various malware vulnerabilities. Thus, adversaries
can disrupt the functionalities of the CAN bus system archi-
tecture, software programs, and hardware devices/designs.
2.3. Possible Attacks in CAV

The conventional CAN and CAN-FD bus architectures
are mostly used for real-time IVN communications due to
the reduced cost, better efficiency, and simplified installa-
tion. However, they are exposed to various security attacks
due to system vulnerability possibilities through the com-
mon CAN/CAN-FD communication bus, lack of authenti-
cation mechanisms, data encryption methods, and wide net-
work connectivity over DSRC, Wi-Fi, LTE, and Bluetooth.
As a result, the adversary can launch a variety of attacks
over the CAN bus, ECUs, OBD-II, and keyless entry sys-
tems [7], [8], [10], [18], [27]. We have considered important
attacks based on the significant impact on the IVN. Thereby,
the explanation of pivotal attacks is limited to the CAN bus
architecture, OBD-II, and ECUs, but we have not consid-
ered Light Detection And Ranging (LiDAR), Radio Detec-
tion and Ranging (Radar), and Global Positioning System
(GPS)-based attacks in the following discussion.
2.3.1. Impersonation

When the adversary gets the CAN bus network access,
s/he can obtain all transferred messages due to the broad-
cast nature. Adversaries can learn the way of ECU behav-
ior, i.e., CAN identity (ID), transmission rate, and payload
range. The sender’s information is not involved in CANmes-
sages, making it easier to imitate ECU behavior by including
the same information with an identical frequency. However,
there is a possibility of a Denial of Service (DoS) attack due
to the increment in the number of CAN messages, but an
adversary can appropriately manage the timings for sending

data over the CAN bus and disabling a particular ECU to
launch an impersonation attack [2], [7].
2.3.2. Modification/Fabrication

This attack is performed to alter the CAN message pay-
load with bogus information as CAN is enabled with the lim-
ited security features [8]. The erroneous data is then sent to
the receiver ECUs for misleading and to perform faulty op-
erations in CAVs. Attackers can get a CAN ID of exchanged
messages through the CAN bus connectivity, as well as the
authentication and integrity properties are not implemented
effectively in the CAN bus protocol. Therefore, adversaries
can easily launch a modification attack to deliver fallacious
information to disrupt vehicle functionalities by obstruct-
ing ECUs, TIS, and the CAN bus system. Since the adver-
sary can broadcast incorrect data by injectingmaliciousmes-
sages, it is also difficult to correctly identify a modification
attack due to a small amount of payload in CAN messages
[2], [7], [27].
2.3.3. Sybil

CAN does not offer robust security features, resulting
into the exposure of IVN to the attackers [8]. Authentica-
tion mechanisms are thus developed to protect illegal activ-
ities over the CAN bus architecture while exchanging CAN
messages. However, the system requires computational re-
sources to complete all the verification procedures before
proceeding with the received data. All ECUs are connected
over the CAN bus to continuously broadcast messages, but
such ECUs are resource-constrained in nature [16], [79], [87].
Thus, authentication schemes should be cost-effective; oth-
erwise, theymay requiremore computational resources. More-
over, the receiver ECU takes more time to confirm the legal-
ity of received CAN messages, and it is overburdened with
many remaining messages (which are required to be veri-
fied), including high-priority data, leading to a Sybil attack
in IVN. Therefore, minimizing the impact of a Sybil attack is
important by designing lightweight authentication protocols
for CAN.
2.3.4. Replay

Messages are sent over the common CAN bus and are
accessible to all the connected ECUs due to the broadcast
nature of data transmission. The purpose of a replay attack
is to stop transferred messages and re-transmit them (with
or without modifications in data payload) later. Thus, the re-
ceiver ECUs cannot receive essential data timely, impacting
vehicle services and functionalities provided through an au-
tomated vehicle system. Since CAN messages include cru-
cial and real-time information which are used as an input
in other operations to perform further executions, the un-
availability of CAN messages to the receiver ECUs signif-
icantly impacts the overall IVN system. Besides, when ad-
versaries broadcast CAN messages (already captured from
the CAN bus) again, it increases the communication over-
head on the CAN bus and the computation cost (to authen-
ticate delayed messages) at the receiver ECUs. CAN com-
ponents thus require more computational resources though
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ECUs have limited computing power to execute various op-
erations [1], [2]. Hence, detecting a replay attack quickly is
indispensable, reducing the additional requirement of com-
putational resources and delivering CANmessages timely to
make accurate decisions in CAVs.
2.3.5. Injection

An adversary aims to change the sequence of legal CAN
frames, message frequency, the number of CAN frames for
transmission on the bus, and message payload through an
injection attack. Since CAN has limited security features to
support authentication and encryption for transferred mes-
sages, adversaries can inject payload over the CAN bus (to
fabricate messages) at an abnormal rate with unusual CAN
traffic. This situation leads to the generation of simulated
events that direct CAV parts to implement automotive oper-
ations based on the given instructions by an adversary. Thus,
it directly interrupts the execution of crucial operations in
the CAN [1], [7], [10]. Therefore, adequate authentication
and integrity verification mechanisms are required to con-
firm exchanged CAN messages’ legitimacy and exactness to
protect from such attacks.
2.3.6. CAN Bus-off

Connected components to the CAN bus use the arbitra-
tion field to find the preference of CAN messages and then
decide the occupancy of the CAN bus for delivering pri-
ority data first to the receiver ECU(s) before sending less
important data to the destination. Since CAN messages are
mainly sent without encryption (due to the fixed size of data
fields), and a robust authentication mechanism is not avail-
able for CAN communications, adversaries can send many
CAN messages with the highest attribution identity to dom-
inate the CAN bus. Therefore, the communication link be-
comes unavailable to deliver crucial CANmessages for legit-
imate CAV components. Besides, the adversary can send the
same CAN messages with a high frequency to overwhelm
CAN resources to make the CAN bus unavailable for nor-
mal operations and functionalities of CAVs [1], [10].
2.3.7. Side-channel

Adversaries can easily connect with the TIS applications
and services and collect pertinent information (e.g., timing,
energy consumption, cache, etc.) through connected devices
(overwireless connectivity) with the IVN. In CAVs, in-vehicle
infotainment systems can provide information, i.e., location,
speed, access to related applications, and other data to make
better decisions. Adversaries first analyze target systems’ ac-
tivities based on the collected pertinent information and then
launch an attack on a specific system/user to disrupt normal
operations and functionalities of the CAN. The target sys-
tem is then exploited through analyzed data [31]. Since the
gathered data (based on various TIS applications and ser-
vices) may include personal information, visited location,
and other activities of vehicle users, it may lead to user pri-
vacy issues. Hence, protecting the IVN and avert from po-
tential side-channel attacks is also important.

2.3.8. Remote Sensor
Sensors support various functionalities to measure envi-

ronmental details, detect objects, and share information to
effectively perform automotive operations in CAVs. Such
delivered information is crucial in IVN as it is used as in-
put to make different decisions. There are vital sensors, i.e.,
camera, ultrasonic radar, LIDAR, vision, sonar, and GPS
[99], [100], which are used in crucial applications of CAVs.
When inaccurate values are measured and not sent correct
information to the receivers by the installed sensors, the au-
tomotive system may lead to spoofing and eavesdropping
attacks [1], [2], [7]. Since CAN has limited security fea-
tures, and demonstrations confirmed that adversaries could
remotely access the CAN [8], security risks are significant
in the automotive systems as CAVs have very less or no hu-
man intervention. Hence, t is essential to regularly check the
status of sensors (in terms of faulty, compromised, or dam-
aged) through intrusion detection mechanisms and protect
data exchanges between such sensors and other IVN devices
with encryption schemes.

Figure 2 displays CAV’s potential attack surface model.
Different CAV components (i.e., IVN, physical ports, wire-
less interfaces, keyless entry systems, infotainment system,
and perception sensors) can be targeted to perform adver-
sarial activities. The attackers can launch various attacks
(e.g., impersonation, Sybil, replay, injection, bus-off, side-
channel, and modification) on the automotive driving sys-
tem to interrupt vehicle operations, get control of CAVs, and
steal personal information. Essential security and privacy
requirements are thus not satisfied while offering more com-
fort and intelligent vehicle services, leading to the insecure
development of CAVs.
2.4. Performance Measurement Parameters in

ADPS
It is vital to develop ADPS approaches that can detect

abnormal events and seamlessly identify the sources of such
situations in real-time. Since designed approaches are used
in CAVs for robust results, it is important to measure the
performance efficiency of the developed approaches to find
anomalies. We describe significant performance parameters
as follows, understanding the effectiveness of various ADPS
approaches. It is considered that each occurrence O that be-
longs to normal/regular events is considered as the positive
sample, and other occurrences are considered as the negative
samples [64], [72]. We have used notations (for Equations
1, 2, 3, and 4) as TPO = the number of correctly identified
positive samples, TNO = the number of correctly identified
negative samples, FPO = the number of wrongly identified
positive samples, and FNO = the number of wrongly iden-
tified negative samples.
2.4.1. Accuracy

It is measured based on the average of faultless predic-
tions for abnormal and normal events or accurate and erro-
neous values (occurred in the system) from the total number
of occurrences. The accuracy performance parameter for-
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Figure 2: The Attack Surface Model for Connected and Automotive Driving System Operations.

mula is shown in Equation 1.

Accuracy =

∑

O
TPO+TNO

TPO+FPO+FNO+TNO

Number of Occurrences
(1)

2.4.2. Sensitivity
It evaluates the ratio of correctly found abnormal events

or erroneous values from the number of the same anoma-
lous/incorrect occurrences. Sensitivity is computed as per
Equation 2.

Sensitivity =

∑

O
TPO

TPO+FNO

Number of Occurrences
(2)

2.4.3. Precision
The proportion of erroneous values or abnormal events

(among the forecasted anomalous/erroneous) from the num-
ber of the same anomalous/incorrect occurrences is called
precision, and it is calculated based on Equation 3.

Precision =

∑

O
TPO

TPO+FPO
Number of Occurrences

(3)

2.4.4. F1 Score
It is the harmonic mean of precision and sensitivity, and

it can be calculated through Equation 4.

F1 Score = 2 ∗
Precision ∗ Sensitivity
P recision + Sensitivity

(4)

2.4.5. Specificity
It is the proportion of the number of correctly found in-

jected packets (represented as TN) to the total number of
actually injected packets (represented as TN +FP ), and its
formula is as written in Equation 5, where TN = true nega-
tive and FP = false positive.

Specif icity = TN
TN + FP

(5)

3. Articles Selection Methodology
We first describe the considered article collection ap-

proach to identify related research papers for this survey arti-
cle. After that, we discuss our results on a keyword searching
process (that is carried out to include the most relevant pa-
pers for a more comprehensive and precise survey) and then
explain how different research papers have been chosen for
clear discussions.
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3.1. Article Collection Approach
To collect relevant papers for the survey scope, we first

selected precise keywords that are appropriate for ADPSs in
connected and autonomous vehicles. Based on these chosen
keywords, we then started keyword searching for the time-
line of 2011-2021 on the topmost relevant scientific pub-
lication venues. The selected keywords for searching are
Autonomous Vehicles/Cars, Connected Vehicles/Cars, Con-
troller Area Networks, In-Vehicle Networks, Automotive Net-
works as domain keywords, whereas Intrusion Detection is
taken into the account as a method keyword. Domain key-
words mean the set of networks/services, which are based
on the application areas. If a solution-based approach, tech-
nique, or mechanism is proposed/introduced toward the spe-
cific problem, it is considered a method keyword. We con-
sidered the following scientific publication venues to search
for relevant papers. Conference proceedings: IEEE Sym-
posium on Security and Privacy; Network and Distributed
System Security Symposium; USENIX Security Symposium;
ACM Conference on Computer and Communications Secu-
rity; Annual Computer Security Applications Conference;
ACM ASIA Conference on Computer and Communications
Security; European Symposium on Research in Computer
Security; International Symposium on Research in Attacks,
Intrusions and Defenses; and IEEE European Symposium on
Security and Privacy; Journals: IEEE Transactions on Infor-
mation Forensics and Security; IEEE Transactions on De-
pendable and Secure Computing; ACM Transactions on Pri-
vacy and Security; IEEE Transactions on Intelligent Trans-
portation Systems; IEEE Transactions on Vehicular Tech-
nology; Elsevier Computers and Security; ACM Computing
Surveys; IEEE Communications Surveys & Tutorials; and
IEEE Access; We explicitly elucidate the method for select-
ing relevant papers and their results in the next section.
3.2. Article Selection Method and its Results

We follow certain criteria to include papers for more dis-
cussion in this survey article, and they are as follows:

• A paper is included if it introduces/discusses the gen-
eral concept of ADPS categories is included in it.

• A paper that proposes an ADPS approach, technique,
or mechanism for CAVs.

• A set of ADPS performance measurements for CAVs
are suggested/introduced.

• We have excluded poster/work-in-progress/demo pa-
pers in the process of relevant papers collection.

We performed keyword searching for the selected key-
words, and the results are shown in Table 2. While consid-
ering the above-stated criteria, all keyword hits resulted in
3295 papers from the chosen scientific publication venues.
We then studied all these papers based on their title/content
to find relevant papers to the survey scope, resulting in 519
papers. Finally, we did an in-depth study of these articles
to select papers for more discussions, and we found the most

Table 2
Keywords Query Results on Selected Scientific Publication
Venues

Keywords First Hits Paper Title/
Content

ADPS for CAVs

Autonomous Vehicles/Cars 1350 250

75

Connected Vehicles/Cars 840 174
Controller Area Networks 165 34
In-Vehicle Networks 245 39
Automotive Networks 295 14
Intrusion Detection 400 83
Total 3295 519 75

appropriate 75 papers for ADPSs for connected and autonomous
vehicles. Out of these 75 papers, variousADPS approaches/techniques/mechanisms
are proposed in 49 papers using different ADPS categories.
We also did a query for “Connected and Autonomous Vehi-
cles" and “Attack Detection and Prevention System" into the
Web of Science (WoS) database1, and it resulted in 2785 and
1500 articles, respectively. In [59], [88], [89], the consider-
ation of road context is taken into account to improve the
AV system efficiency. Here, the road context includes the
road conditions (i.e., bend/joint/fork of roads, traffic light,
and bump), nearby vehicles, pedestrians, weather conditions
(i.e., fog, rain, and snow), lights conditions (i.e., the sunrise,
sunset, and tunnel lights). Out of 75 papers are survey arti-
cles and other relevant papers in which the authors have dis-
cussed the ADPS for CAVs. Table 2 displays query results
for each keyword and the number of selected papers eventu-
ally for this survey, making it more straightforward for better
understanding.

Based on our literature study of various research articles,
we have listed different ADPS categories, such as finger-
prints, parametersmonitoring, information-theoretic, machine
learning, and message authentication. Attack detection and
prevention solutions are mainly proposed based on these cat-
egories to find security threats and attacks in CAVs. After
selecting 49 papers (that proposedADPS approaches/techniques/mechanisms
for CAVs), we have classified each paper under the specific
ADPS category to understand their solution methodology to
detect intrusions in CAVs. Figure 3 shows the number of
papers for each ADPS category. These papers are consid-
ered for the literature in this survey for a detailed discussion,
providing extensive information to the readers.

4. Attacks Detection and Prevention Systems
(ADPS) in CAVs
An IDS is a software application or device that can find

real-time incidents (performed by attackers to disrupt rou-
tine functionalities of the system) for any policy violations
or suspicious actions by monitoring network traffic. An IDS
can also act as a resilient protection technology for system
security once standard technologies fail in the system [28].
CAVs are enabled with many automated functionalities for a
safe, more intelligent, and comfortable journey on the road.
However, it is also essential to provide a high level of secu-

1https://www.webofscience.com/wos
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Figure 3: ADPS Categories Distribution with the Number of
Papers in Selected Scientific Publication Venues

rity in CAVs to avert infrastructure damages, human losses,
and business crises and provide trustworthy services to the
users. Thus, it is required to have an ADPS in CAVs that
can offer effective identification and protection against at-
tacks using either signature or anomaly-based solutions.

The automotive system architecture includes four stages
to perform various activities in CAVs, i.e., (i) perception,
(ii) prediction, (iii) planning, and (iv) decision making and
control, as shown in Figure 4. The first two stages are clas-
sified as data acquisition and modeling, whereas the third
and the fourth stages are categorized as action parts. The
first stage is to collect meaningful data from the camera,
RADAR, LIDAR, and V2X/IVN connections. The second
stage performs the detection, prediction, and classification of
objects based on the given input data. The planning stage de-
termines behavior and route direction for the classified data
and manages the automotive system based on the available
resources. The decision-making and control stage provides
appropriate automotive instructions to the system to execute
them adequately and manage the connected system compo-
nents [90].

Perception Prediction Planning
Decision making 

and control

• Camera, LIDAR, 
RADAR, …

• V2X and in-vehicle 
connectivity

• Detection/prediction 
of objects

• Classification

• Behaviour/route 
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• Network topology 
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Data acquisition and modelling Actions

Figure 4: The Architecture Overview of Different Automotive
System Implementation Stages in CAVs

CAN is very limited in protecting various system compo-
nents due to the unavailability of sufficient security features
[7], [10], [76]. CAVs are enabled with the outside world
connectivity [16], [17], [18] that allows adversaries for the
execution of vulnerable activities in IVN remotely [8]. Since
CAVs have considerably less or null human intervention [3],
the failure of IVN operations may significantly impact the
road infrastructures and people. Thereby, it is important to

effectively identify possible security and privacy threats over
the IVN that can reduce/avert damages in CAVs. Developing
appropriate attack prevention solutions is also necessary to
protect the automotive systems against such threats. A lim-
ited analysis has been presented on different types of ADPSs
for CAVs and analyzed some of related researchworks in [1],
[7], [10], [26], [29]. We thus discuss various ADPSmethods
that are useful to detect intrusions in CAVs and to defend the
automotive systems in such situations. Moreover, an exten-
sive investigation is explicitly discussed on state-of-the-art
research works for each ADPS category.
4.1. Introduction and Analysis to ADPS Methods

Attack detection and prevention solutions are proposed
to detect security attacks to find vulnerabilities and protect
the system from various attacks so that the security flaws are
identified before they do real damage. In CAVs, there are
mainly six types of ADPS categories, i.e., (i) fingerprints,
(ii) parameters monitoring, (iii) information-theoretic, (iv)
machine learning, (v) message authentication, and (vi) other
approaches. We explicitly describe each ADPS category, as
they are mainly used in designing attack detection and pre-
vention solutions for CAVs.
4.1.1. Fingerprints

A fingerprint is a group of specific and unique configu-
ration information that can identify devices, just as human
fingerprints uniquely identify people. Data analysis can be
applied to datasets such as network traffic and device config-
uration to extract the devices’ fingerprints. In general, de-
vice fingerprinting can be classified into active or passive
techniques; active techniques send specially crafted pack-
ets to probe the device, while passive techniques monitor
the network traffic to detect patterns in the network traffic.
Fingerprint-based IDS performs at the physical layer of the
CAN bus, taking advantage of differences in physical prop-
erties, such as manufacturing variations, cabling, and ag-
ing, which allow ECU to be fingerprinted [26]. The digital
fingerprints of the ECUs are then used to uniquely identify
the sender of the CAN message. When the IDS detects an
anomaly between the observed fingerprint of a CAN mes-
sage and the profiled fingerprint of the sender’s ECU, an
alert is raised, and unauthorized or unknown nodes will be
flagged.

As the characteristics of CAN signals are hardware-defined,
the impersonation of CAN signals is difficult to tamper ECUs
for an attackerwithout physical access. However, fingerprint-
based IDS is ineffective against masquerade attacks [38], but
this problem can be solved using a behavior-based IDS by
analyzing the network traffic to create a signature. Attack-
ers can compromise ECUs and use them to send malicious
messages with the same physical fingerprint and remains un-
detected by fingerprint-based IDS. Although physical prop-
erties make excellent fingerprints, they vary with time due
to changing environmental factors, especially the tempera-
ture and equipment aging of equipment [34]. It will reduce
the model’s accuracy, which means that the IDS needs to
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be constantly updated with the latest fingerprints via peri-
odic model retraining. Also, fingerprint-based IDS has a
high computational demand due to the high sampling rates
required to achieve accurate identification of devices by fin-
gerprinting [35].

Driver style and behavior are affected by individual ex-
periences and habits. In contrast, CAVs’ driving behavior
depends on the road conditions and drivingmodel and should
be less varied, more consistent, and more stable. Therefore,
device fingerprinting should better identify devices due to
the regularity of CAN traffic patterns and higher device iden-
tification accuracy. We describe related fingerprint-based
solutions as follows.

A Clock-based IDS (CIDS) [32] is developed to find the
intervals of recurring in-vehicle instructional messages, and
this helps to estimate the clock skews of ECU transmitters
for fingerprinting details of ECUs. Fingerprints are then
used to construct a baseline of ECUs’ clock behaviors us-
ing the Recursive Least Squares (RLS) algorithm. Based on
this baseline, CIDS performs a cumulative sum analysis to
detect masquerade, fabrication, and suspension attacks over
the CAN protocol, enabling fast identification of IVN intru-
sions (at a low false-positive rate of 0.055%) and not missing
any anomalies.

An attacker identification scheme, Viden (Voltage-based
attacker identification), is proposed in [33] that finds the ad-
versary ECU in the IVN based on the measurement and uti-
lization of the voltage. Viden first determines the genuine-
ness of the measured voltage signals during the ACK learn-
ing phase by checking whether the origin (of these signals)
is from the legal message transmitter or not. The transmit-
ter ECUs’ voltage profiles are then updated as fingerprints
based on the construction of the voltage measurements. Fi-
nally, an adversary ECU is detected in the IVN using the
voltage profiles of an ECU. Based on the shown results on
two actual vehicles and a CAN bus prototype, it is feasible to
fingerprint ECUs through voltage measurements by Viden,
thereby achieving a low false identification rate (of 0.2%) to
detect the adversary ECU in the system.

VoltageIDS is proposed in [34] that aims to secure in-
vehicle CANnetworks through unique characteristics of CAN
signals as fingerprints of ECUs. Taking masquerade and
bus-off attacks for IVN into account, VoltageIDS is designed
by observing two ECUs (one legitimate and another mali-
cious) based on the sent identical signals to recognize the
electrical characteristics of their messages, which is inher-
ently challenging for the attackers tomanipulate fingerprints.
Further, VoltageIDS can also distinguish between a bus-off
attack and errors in the system. The elevation of VoltageIDS
is performed through actual vehicles and a CAN bus proto-
type setup that confirms the detection of intrusions in the
in-vehicle CAN networks.

Scission [35] is proposed using fingerprint details (that
can be extracted fromCAN frames) to know the sender ECU’s
identification. Immutable physical characteristics from ana-
log values are used to confirm the authorization of a sender
ECU (to send evaluatedmessages), enabling to detect anoma-

lies and the identification of compromised ECUs in the sys-
tem. Scission’s sender identification rate is 99.85 % on av-
erage on two series production cars and a prototype setup.
The results show that Scission can detect ECU-based attacks
from compromised, unmonitored, and other added devices.

CAN is enabled with limited resources, and thereby, the
high implementation costs or infringement of backward com-
patibility inhibits the deployment of CAN protocols in IVN
to execute different functions properly. Thus, it has been
found through an analysis in [36] that the state-of-the-art
CAN ADPSs depend on multiple frames that are used to
identify misbehavior of a certain ECU, but these frames are
susceptible to a Hill-Climbing-style attack. Therefore, real-
time intrusion detection and identification system, SIMPLE
is developed to exploit the physical layer features of ECUs
through a single frame, and ECUs can be effectively nulli-
fied. The results of the real-time vehicle and lab experiments
with automotive-grade CAN transceivers show that the av-
erage equal error rates in SIMPLE are around 0.8985% and
0%.

The existing approaches offer good results to avert pos-
sible security challenges in CAN, but they require high com-
putational effort and sampling rates. EASI [8] is proposed
by generating the fingerprint from a single symbol that im-
proves the frame identification rate (of 99.98%) with less
computation effort. Further, it is demonstrated that compre-
hensive signal characteristics can be processed for voltage-
based sender identification usingmachine learning algorithms.
The results show that the computational requirements and
the memory footprint are reduced by 142 and 168, respec-
tively. Moreover, the classification problem is solved within
100 �s with a training time of 2.61 seconds.

The exposure of various real-world attack scenarios is
designed to spoof the AV in [37] so that it is possible to co-
erce the victim to make hazardous driving decisions, leading
to a fatal crash. Based on the field experiments, the impacts
of different attack scenarios are analyzed through a Lincoln
MKZ-based AV testbed, and it confirms the access feasibil-
ity of the victim AV that enables the attacker to compromise
the security and safety of the AV system. To address these
challenges, challenge-response authentication and radio fre-
quency fingerprinting schemes are developed to detect the
above-discussed spoofing attacks, and the spoofing detection
accuracy is achieved at a higher rate, 98.9%.

A Voltage-based IDS (VIDS) effectively detects mas-
querade attacks that are launched based on a single attacker.
The prior approaches can overcome single attacker-based
masquerade attacks. However, a new voltage corruption strat-
egy [38] (based on a novelmasquerade attack, namedDUET)
can be performed using two compromised ECUs to corrupt
the bus voltages recorded by the VIDS: it is launched in a
two-stage process (i) VIDS retraining mode: manipulate a
victim ECU’s voltage fingerprint and (ii) VIDS operation
mode: impersonate the manipulated fingerprint. The execu-
tion of DUET shows the possibility of a novel masquerade
attack in VIDS. To avert DUET in addition to other ECU
masquerade attacks, a lightweightmitigationmechanism, RAn-
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Table 3
Comparison of State-of-the-art Fingerprints-based ADPS for Different Attributes

Scheme Year Objective(s) Detection of Attacks Impact on False Positive Limitations/Scope of Enhancement
System/Device Detection

Cho and Shin [32] 2016 Find the intervals of recurring in-vehicle
messages;

Masquerade,
Fabrication, Suspension;

ECU; Low Ineffective during the injection of irreg-
ular messages;

Cho and Shin [33] 2017 Identify the attacker ECU; Impersonation,
Fabrication;

ECU; Low Ineffective for passive attacks by com-
promised ECUs;

Choi et al. [34] 2018 Detect intrusions without involving any
modifications in the system;

Bus-off, Masquerade; ECU, CAN; Low Possibility of potential attacks due to
the usage of frequent learning to under-
stand power source condition variations;

Kneib et al. [35] 2018 Identify the sender ECUs to assess its le-
gality and detect attacks from additional
and unmonitored devices;

Modification; ECU, CAN bus; Low Detection of compromised sender ECU
for sent frames;

Foruhandeh et al.
[36]

2019 Attack detection through a single frame
with low computational and data acquisi-
tion costs;

Impersonation; ECU; Low Analysis of other crucial security
threats;

Kneib et al. [8] 2020 Determine attacks (based on compro-
mised ECUs) with less computing re-
sources;

Impersonation; ECU; Low Management of corrupt electrical sig-
nals, Detect attacks from malicious
ECU only;

Sun et al. [37] 2021 Identify security vulnerabilities and en-
hance the security and reliability in CAVs;

Replay, Impersonation; Sensors; — Management of corrupt electrical sig-
nals;

Bhatia et al. [38] 2021 Propose a novel masquerade attack and
identify the source of messages;

Masquerade,
Modification, Replay;

ECU; Low Identification of benign and malicious
bimodal distributions of voltage sam-
ples;

domized Identifier Defense (RAID) is proposed in [38] using
a unique protocol dialect (spoken by all ECUs on the CAN
during the VIDS retrainingmode). RAID is compatible with
each ECU in frame format generation during VIDS retrain-
ing mode and protects against the corruption of ECUs’ volt-
age fingerprints.

Table 3 shows a comparative study of state-of-the-art
fingerprints-based ADPS based on different attributes that
give a better overview to understand the current scenario for
attacks detection and protection using fingerprints.
4.1.2. Parameters Monitoring

Parameters Monitoring-Based ADPSs detect attacks by
monitoring parameters at the network and message levels in
the IVN. It is a two-step process: First, baseline traffic is
established to learn how the system behaves based on the
parameters and to understand the regular traffic. Monitored
traffic is then compared against the baseline, and the IDS
flags for any abnormal traffic using anomaly-based detec-
tion. Some potential network-based detection sensors pre-
sented in [91] are frequency, formality, location, range, cor-
relation, protocol, plausibility, and consistency. Among the
sensors, frequency is commonly used because most ECUs
broadcast CAN frames regularly, and their transmission in-
tervals can be easily observed [49].

Frequency-based IDSs are simple to apply and easy to
analyze as an intrusion will disrupt the regularity of the CAN
network and the frequency of the system [49]. Besides, Pa-
rametersMonitoring-based IDSs have low computational re-
quirements as they monitor parameters for abnormal flow or
irregular traffic in the real-time network. However, an IDS
that uses frequency as a parameter relies on the cyclic na-
ture of CANmessages and is ineffective against non-periodic
communications such as the locking and unlocking of door
[49]. In addition, the timing information of CAN traffic de-
pends on the priority scheme of CAN, which may signifi-
cantly change and affect the accuracy of the IDS [48]. Lastly,
fingerprint-based IDSs and parametersmonitoring-based IDSs

are vulnerable to masquerade attacks. The driving style of
CAVs is determined by self-driving models and produces a
standard network traffic pattern compared to human-monitored
vehicles. Disruptions to the regularity of the CAV’s CAN
network will have a noticeable change from the baseline traf-
fic, and it can be easily detected by parameters monitoring-
based IDSs. We discuss relevant parameters monitoring so-
lutions as follows.

The proliferation of ECUs and a wireless connectivity
feature in present-day vehicles enable different functions and
services, but it also opens the possibility of different secu-
rity threats in CAN. In [39], the bus-off attack, a new type of
DoS, is proposed over the de facto standard IVN protocol,
which exploits the error-handling scheme of IVNs aiming to
shut down or disconnect uncompromised ECUs. The execu-
tion of a bus-off attack over actual IVN traffic on a CAN bus
prototype and two real vehicles shows that this attack can
be launched with the objectives of making uncompromised
ECUs into defective ECUs and/or cessation of the complete
automotive network. To address this challenge in IVN, a new
defensemechanism is designedwith two countermeasures as
(i) indication of a bus-off attack: look for consecutive error
frames with an active error flag, and (ii) confirmation of a
bus-off attack: successful transmission of another message
with the same ID. Another countermeasure can also be con-
sidered consecutive errors at the same bit position instead of
frames.

IVN is enabled with many ECUs for various functions
with Internet connectivity, and thereby, it has become a top-
priority target point to launch automotive network system
attacks. Thus, it is required to have compatible networkmap-
ping tools to report present securityweaknesses and strengths
of automotive networks. An automotive network mapping
tool is developed in [40] that supports finding vehicle ECUs
and their communications with each other. However, there
is a significant challenge in CAN, as CAN messages do not
include the sender’s information. Therefore, an automotive
network mapper tool, CANvas, is designed to know the in-
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formation of sender ECUs based on a pairwise clock off-
set tracking algorithm and finds the receiver ECUs using a
forced ECU isolation technique. The results confirm that
CANvas can precisely identify ECUs in the network and the
senders and receivers of CAN messages on the open-source
Arduino Due microcontroller.

ADynamic Identifier Virtualization (VID)mechanism is
developed in [41] using random number sharing and substi-
tution tablemethods to avert the analysis of CAN logs. Thus,
generating valid messages by the adversary becomes more
difficult. Thus, it reduces the possibility of spurious mes-
sages over the CAN bus. Implementing VID on real-time
vehicles provides better results and identifies the adversary
(attempting reverse engineering) through imposed time con-
straints.

Attackers should know the CANmessage format to carry
out suspicious activities in IVN, but this format is owned by
Original Equipment Manufacturers (OEMs) and cannot be
uniform even in different models of the same vehicle manu-
facture. Thereby, it is required to manually reverse-engineer
the message format of each target vehicle, leading to inap-
propriate and time-taking procedures. A tool, LibreCAN
[42] is developed that automatically translates most CAN
messages with the least effort for reverse-engineering a com-
plete CAN communication matrix for any vehicle. Libre-
CAN is designed with a three-phase procedure in which the
first and second phases use two algorithms (i) signal extrac-
tion and alignment and (ii) defining the cut-off point for keep-
ing pertinent signals with a high correlation value. The third
phase is executed for snippeting recorded CAN data while
performing body-related events. The achieved results through
the third phase are highly accurate, and the second phase
outcomes relatively outperform. In [42], they also discussed
recent steps taken to avert such attacks in IVNs.

An attacker manipulates the transmission time of mes-
sages, aiming to spoof CAN messages by adding delays and
thereby averting attack detection while launching cloaking
attacks on the CAN bus. To combat this new type of mas-
querade attack, the execution of a cloaking attack is ana-
lyzed, and it is then systematically modeled to understand
its success probability on the State-Of-The-Art (SOTA) and
Network Time Protocol (NTP) IDSs [43]. The evaluation of
testbed setup and in an actual vehicle (i.e., UW EcoCAR)
shows that the NTP-based IDS is comparatively effectual
than the SOTA IDS in detecting masquerade attacks, and the
cloaking attack is successful in NTP and SOTA IDSs. Ex-
perimental results on the collected data from UW EcoCAR
verify that the average area deviation error (ADE) is 3.0%
for SOTA IDS and 5.7% for NTP-based IDS.

The evaluation on an actual vehicle is performed in [44]
for understanding the capability of the pearson correlation
(due to popularity for data exploration) and unsupervised
learning techniques, i.e., k-means clustering (as they do not
need extended time for the implementation of attack detec-
tionmechanisms andmay not rely on the context of the data.)
as well as hidden Markov model (commonly used for better
results). Vehicle’s speed and Revolutions PerMinute (RPM)

are mainly considered as reading parameters in [44] due to
easy observation and safe injection of bogus speed/RPM read-
ing messages on the CAN bus.

The possibility of physical and cyber attacks is highly
increased in IVN due to not having security features in wire-
less connectivity enabled CAN. To tackle these problems, a
mechanism is first designed to extract real-time model val-
ues by observing the behavior of CAN bus messages. A
specification-based automotive IDS based on CAN timing,
SAIDuCANT [45] is then developed using anomaly-based
supervised learning techniqueswith the real-timemodel. Two
new metrics, time to detection and false positives before the
attack, are introduced to measure the performance of an IDS
in terms of timeliness and classifier accuracy. Real-time ve-
hicle implementation results of SAIDuCANT confirm the
effective detection of data injection attacks with a low false-
positive rate.

Human interactionmodules are installed in CAVs for dif-
ferent functions, e.g., vehicle voice control systems, but the
Automatic Speech Recognition (ASR) module may not de-
tect accurate/correct voice commands or may proceed fur-
ther through forged voice inputs, thereby leading to unex-
pected consequences. It is a considerable challenge to pro-
tect ASR systems from adversarial voice inputs in a hostile
driving environment for driverless vehicles [46]. To address
this problem, a three steps-based secure in-vehicleASRmech-
anism, SIEVE [46] is developed that effectually identifies
voice inputs given by the driver, passengers, or electronic
speakers. SIEVE first does filtering of voice commands to
distinguish the case of receiving the same signal multiple
times in a short period from various sources, and it is done
through autocorrelation analysis to find out the overlap of
signals. In the second step, SIEVE checks whether a single-
source voice input is from electronic speakers or humans
based on a dual-domain identification technique through fre-
quency domain-based acoustic characteristic, i.e., low-frequency
energy attenuation. However, adversaries may attempt mod-
ulated voice inputs to disturb the ASR module. SIEVE uses
time-domain parameters to detect non-human voice inputs
effectively to detect modulated voice commands. The third
step differentiates voice inputs whether given by the driver
or the passengers, as it is required to prioritize the driver’s
voice command over the passengers for the smooth moving
of a car. For this, SIEVE is developed by leveraging the di-
rections of voice sources by calculating the time difference
of arrivals on a pair of close-coupled microphones. Also, a
spectrum-based detection technique is developed for better
voice distinction between the driver and passengers.

Localization of spiteful nodes during the node replace-
ment/installation process is a remarkable challenge in CAN-
based communicationmechanisms, and the existing schemes
are vulnerable to this issue [47]. New intrusion detection
and localization system, TIDAL-CAN [47] is proposed by
monitoring the propagation time of physical signals in which
the time differences during signal propagation are calculated
from the transmission point to the bus end. Furthermore,
this variance is used as a location-based characteristic of the
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sender node to find malicious node installation/replacement
and compromised nodes. The implementation results are
mainly measured on the testbed setup by taking differen-
tial propagation delays into account, and they confirm that
TIDAL-CAN can perform correct node classification with-
out false positives even in attacks execution by compromised
nodes. TIDAL-CANcan also identify transmitter nodes based
on the attack method.

Conventional IDS methods are designed using time and
frequency threshold values, and thereby they may result in
higher false alert rates [49]. A wavelet-based IDS, WINDS
[49] is designed through continuous wavelet transform to get
the exact location of frequency components over the time
axis, leveraging to first detect anomalies on the CAN bus.
The analysis is then performed based on the scale domain
to capture long-time and immediate short-time duration at-
tacks. WINDS was evaluated on two datasets (generated
through three commercial vehicles). The implementation re-
sults confirm that WINDS can reasonably achieve the attack
detection rate even if an attack is immediately launched on
the system.

Timing parameters of CAN frames can be used to create
a secure channel that satisfies authentication, directly avert-
ing the requirement of cryptographicmechanisms in resource-
constrained IVN for data transmission. However, this way
can achieve a limited security level; thus, an adversary can
launch different attacks on the CAN bus. In [50], an im-
proved protocol is proposed through optimization algorithms
(binary symmetric, randomized, greedy, and greatest com-
mon divisor) to schedule CAN frames cyclically and estab-
lish a covert channel for CAN traffic. Moreover, the pro-
posed protocol can achieve higher data rates relatively on the
covert channel due to the optimization of CAN traffic, en-
abling a 24-bit security level with six frames. The effective
results can be achieved based on the proposed algorithms,
i.e., a minimum inter-frame distance of 500 �s and an ex-
pected arrival time in the range of ± 5 �s.

When aCAN identifier (ID) sequence is configured through
the IDs of CAN signals based on their order of occurrence, it
will have a definite pattern. However, it is hard to identify the
change in the corresponding pattern with a minimal number
of attack IDs in a CAN ID sequence. In such cases, conven-
tional IDSs are not effective. In [51], an IDS is developed
using two bidirectional Generative Pre-trained Transformer
(GPT) networks that allow using past and future CAN IDs.
To reduce the Negative Log-Likelihood (NLL) value of the
bidirectional GPT network, the proposedmechanismwas in-
culcated for a typical ID sequence that detects an intrusion
when the NLL value for a CAN ID sequence is larger than a
pre-specified threshold.

Determining spoofingmessages is a significant challenge
due to the lack of sender identification and authentication in
CAN. Thus, a delay-time-based technique, Divider, is previ-
ously proposed to find the sender ECU over the CAN bus.
However, it is an ineffective solution while having ECUs
with similar variations due to coarse time-resolution in Di-
vider’s measurement clock, making it challenging to distin-

guish ECUs. Moreover, another problem is the adaptability
of a delay-time drift, caused by the temperature drift at the
ambient buses [52]. To deal with these challenges, a sender
identification mechanism, PLI-TDC [52] is developed us-
ing a super fine delay-time based Physical-Layer Identifica-
tion (PLI) with Time-to-Digital Converter (TDC). PLI-TDC
accurately identifies launched attacks on unmonitored and
compromised ECUs. An accuracy rate of PLI-TDC is effec-
tive on a CAN bus prototype (of 99.67%) and in a real vehi-
cle (of 97.04%), whereas a mean accuracy can be achieved
around 99% in PLI-TDC.

While considering the number of transferred messages
and the importance of on-time message delivery in IVN,
CAN-FD is better to satisfy high bandwidth and low latency
requirements. However, CAN-FD is susceptible to masquer-
ade attacks due to the unavailability of authentication proto-
cols and adequate defense measures. In [53], a dual-pointer
solution, forward-backward exploration is proposed based
on three methods, i.e., combination enumeration, forward
exploration, and backward exploration for secure transfer of
independent CAN-FDmessages in IVN. In this solution, the
Message Authentication Code (MAC) size of each message
is dynamically balanced through dual-pointermovement rules
until the total payload no longer increases, providing en-
hanced security by increasing the total MAC size of CAN
messages, and the forward-backward exploration achieves
better time efficiency by completing the exploration process.
Thereby, this solution can be applied for trustworthy CAN-
FD message transmission in IVN.

Table 4 displays a comparison outline of state-of-the-art
parameters monitoring-based ADPS based on different at-
tributes, making it easier to understand the security severity
in CAVs through parameters detail.
4.1.3. Information-Theoretic

Information theory is the mathematical treatment of the
concepts, parameters, and rules governing the transmission
of messages through communication systems. Entropy is a
crucial measure in information theory, which relates to the
measure of disorder and the uncertainty associated with a
random variable. In computer networks, IDS has applied
entropy to detect threats based on anomalous patterns in the
network. Entropy-based anomaly detection algorithms char-
acterize the expected behavior of a set of data based on their
level of statistical entropy [54]. The two key underlying as-
sumptions of entropy-based anomaly detection are that the
entropy of messages generated by the information source
exhibits stable statistical characteristics and the anomalies
introduce significant deviations in the statistical character-
istics of the entropy. Traffic in IVN is mainly cyclic, and
the information entropy is low and stable [55], [56], making
entropy-based anomaly detection suitable.

Since Information-Theoretic-based IDSs depend on the
data information and flow, they are independent of CAN
messages’ content. Hence, it can be applied to any traffic,
even proprietary messages. However, they are ineffective
against attacks that target the content of CANmessages, i.e.,
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Table 4
Comparison of State-of-the-art Parameters Monitoring-based Systems in Different At-
tributes

Scheme Year Objective(s) Detection of
Attacks

Impact on
System/Device

False Positive
Detection

Limitations/Scope of Enhancement

Cho et al. [39] 2016 Expose possible vulnerabilities based on a
bus-off attack in IVN and propose a scheme
to detect and protect this attack;

Bus-off, Injection; ECU, CAN bus; Low Detection of other important security
threats;

Kulandaivel et al.
[40]

2019 Develop a network mapping tool to identify
the senders and receivers of messages;

Modification,
Bus-off,

Fabrication;

ECU; Low Identification of itentions of transferred
messages;

Sun et al. [41] 2019 Make CAN logs complex to avoid genera-
tion of valid messages illegally;

Injection, Replay; CAN bus; — Requirement of high computational re-
sources, Less complexity in the data
field of messages to ;

Pese et al. [42] 2019 Develop a message format translation tool
of most CAN messages with minimal effort
to exploit vulnerabilities faster;

— CAN messages; Average Require involvement of vehicle OEMs to
mutually agree on specific attributes;

Ying et al. [43] 2019 Detect masquerade and time-based attacks; Replay,
Masquerade;

CAN; Low More noise in the IDS for messages;

Othmane et al. [44] 2020 Identification of injection attacks in the
given vehicle status, i.e., "under attack" or
"no attack";

Injection,
Modification;

CAN bus; Average Not conclusive results for in-motion ve-
hicle messages;

Olufowobi et al. [45] 2020 Detect threats using real-time schedulability
response time analysis;

Injection,
Impersonation,

Replay;

ECU, CAN bus; Low Ineffective in attacks classification;

Wang et al. [46] 2020 Detect vulnerabilities in the ASR module
and provide protection against such threats;

Impersonation,
Replay;

ASR module; Low Better results in different scenarios, i.e.,
input methods, accuracy in noisy en-
vironment, and overlapping input com-
mands;

Murvay et al. [47] 2020 Estimation the relative location of a trans-
mitter node on the CAN bus;

Bus-off, Replay,
Modification;

CAN; Low in specific
conditions

Better results in different circum-
stances;

Bozdal et al. [49] 2021 Identify the behavior change location in the
CAN traffic;

Impersonation,
Replay, Bus-off;

CAN bus; Low in certain
conditions

Effective when message frequency is
used in the attack scenario;

Groza et al. [50] 2021 Design efficient attacks detection and au-
thentication scheme using optimization al-
gorithms;

Replay, Bus-off; ECU, CAN bus; Low Detection of other important security
threats;

Nam et al. [51] 2021 Detect security threats using past and fu-
ture CAN IDs for better attack pattern iden-
tification;

Replay, Injection; CAN bus; Low Ineffective to detect manipulated mes-
sages, sent by compromised ECUs;

Ohira et al. [52] 2021 Improve the identification accuracy of mes-
sage senders using super fine delay-time
with time-to-digital converter method;

Impersonation; ECU; Low Detection of other important security
threats;

Xie at al. [53] 2021 Detection of masquerade attacks in real-
time transmitted CAN-FD messages;

Masquerade; CAN bus; — Need more computational resources;

masquerade attacks. The main limitation of Information-
Theoretic-based IDSs that it is ineffective against low-volume
attacks, in which the attackers inject only a few packets per
second and avoid increasing the entropy of the system [55].
Entropy-based IDS is ineffective against CANmessageswith
high entropy even during normal operations. Due to CAVs’
consistent driving style, the IVN traffic of CAVs should have
lower randomness and higher entropy stability than that of
human intervention vehicles. Disruptions to the IVN traf-
fic’s entropy should be more noticeable and significantly in-
crease the system’s entropy. We describe information-theoretic-
Based solutions as follows.

To detect the feasibility of modification and replay at-
tacks in CAN, an IDS solution in [57] is designed using
Bloom filters (considering its efficient time memory trade-
off) that verifies frame periodicity through message identi-
fiers and contents of the data field. Thus, it effectively de-
tects modified frames by testing the frame’s content. In con-
trast, duplicate frames are identified through an IDS even an
attacker attempts to replay frames in the optimal time frame.
This work mainly shows the possibility of using Bloom fil-
ters in developing CAN-based IDSs to achieve better results
in detecting intrusions in the system.

The issues of random cable connectivity for a short du-
ration and the Intermittent Connection (IC) fault are directly

linked to the system performance. Therefore, the possibility
of system-level failures and system performance degradation
can be increased if these problems are not addressed effec-
tively in CAN. Thus, it is essential to precisely detect and
localize the IC fault for better health management of CAN-
based network systems. To address this problem, a system-
atic and practical IC fault diagnosis framework [58] is devel-
oped for CAN-based on the collected error event pairs from
the data link layer. The scheme extracts the positive and
negative information from these error event pairs to com-
bine them for diagnosing the IC faults. The results of the
proposed framework in [58] can be used as insights into the
characteristics of IC faults for quick diagnosing during dif-
ferent circumstances that provide better systemmaintenance,
improving the system reliability.

Considering only color/textural information of images
is valuable for semantic reasoning. However, combining
semantic information and depth information of images can
substantially enhance scene parsing performance, especially
in wrongly categorized based on only RGB features. There-
fore, the Built-in Depth-Semantic Coupled Encoding (BD-
SCE) [59]module is proposed by integratingRedGreenBlue
(RGB) and depth features that present important depth-discriminative
features selectively. The BDSCE is congruent with exist-
ing CNN-based mechanisms and can offer better scene pars-
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Table 5
Comparison of State-of-the-art Information Theoretic-based Systems in Different At-
tributes

Scheme Year Objective(s) Detection of
Attacks

Impact on
System/Device

False Positive
Detection

Limitations/Scope of Enhancement

Groza and Murvay
[57]

2018 Effective detection of replay or modification
attacks;

Replay,
Modification;

CAN bus; Average Requirement of advanced security fea-
tures for threats protection;

Zhang et al. [58] 2019 Effective detection and accurate localiza-
tion of the intermittent connection (IC)
fault;

— CAN; — Requirement of a better method to sat-
isfy the objective in a complex network;

Liu et al. [59] 2020 Enhance scene parsing performance results
especially for clear depth distinction and
misclassified through RGB-only features;

— CAN; — Advancement of performance results;

Xie et al. [62] 2021 Provide signal packing in the context of ex-
tensibility for CAN-FD;

— Network
bandwidth
utilization;

— Improvement in performance results;

ing results to addressmisclassification. TheDepth-Semantic
Coupled Encoding Network (CEncNet) framework is devel-
oped using the BDSCE module to extend the conventional
deep scene parsing. The implementation results on the datasets,
Cityscape [60] andKITTIVisionBenchmark Suite [61], con-
firm that CEncNet achieves better performance than the tra-
ditional mechanisms. The extensive experiments also show
the effectuality of the BDSCE module for vehicle detection
and road segmentation in city areas.

Extensibility plays a significant factor in the automotive
network, as it is developed based on the Electrical/Electronic
(E/E) architectures. However, this optimization objective
should be extensively considered in the design of IVN for
the implementation of new functionality or modification in
the existing functionality. To consider this problem in IVN,
a new extensibility model [62] is developed for CAN using
the Mixed-Integer Linear Programming (MILP) algorithm
for mid-sized signal sets and the simulated annealing-based
heuristic algorithm for industry-sized signal sets. Moreover,
the corresponding extensibility metric for CAN-FD is de-
signed. The results (extensive implementations through syn-
thetic signal sets) show the effectiveness of the proposed ap-
proaches in [62].

A comparative description of state-of-the-art informa-
tion theoretic-based ADPS is given in Table 5 that makes
it easier to understand the importance and effectiveness of
using information-theoretic approaches in CAVs.
4.1.4. Machine Learning

Machine Learning (ML)-based IDSs have been deployed
extensively in network security due to their ability to detect
unknown attacks via anomaly detection through Artificial
Intelligence (AI). The learning process starts by analyzing
provided data set to identify patterns, learn automatically
using mathematical models, and extract useful information
to make better predictions. Machine learning can be classi-
fiedmainly into supervised and unsupervisedmachine learn-
ing. Unsupervised learning algorithms can understand and
model the typical profiles of the network and report anoma-
lies without any labeled data set [7]. On the other hand, su-
pervised learning algorithms learn from labeled training data
and predict future events based on the past.

Most machine learning-Based IVN IDSs can be classi-
fied into themachine learning techniques applied; traditional

machine learning and deep learning. Traditional machine
learning techniques, including Support VectorMachine (SVM),
Decision Tree (DT), Random Forest (RF), and Multi-Layer
Perceptron (MLP), can be applied to IVN IDSs for under-
standing the pattern of CAN network data to learn the ex-
pected behavior of the system [71]. Deep learning tech-
niques use artificial or deep neural networks, algorithms in-
spired by the human brain. It works by repeatedly learning,
understanding, and tweaking the model to achieve the best
outcome, similar to how a human would conclude. A multi-
layered structure of algorithms is applied to identify patterns
and classify different types of information. The individual
layer of the neural networks acts as a filter that increases
the likelihood of detecting and predicting a correct outcome
[63].

Themain advantage ofML-based IVN IDSs is their strength
in detecting unknown attacks by reviewing large volumes
of data and discovering trends and patterns that would not
be apparent to humans. Furthermore, the model continu-
ously improves accuracy and efficiency as more data is fed
into the model. Deep learning also avoids the complex fea-
ture extraction step compared to traditional ML. The main
disadvantage of ML-based IVN IDSs is the high computa-
tional requirement compared to the previous categories of
IDSs [71]. In addition, a large data set is required to train
the model and valuable data set is rare, especially those with
attacks or abnormal traffic. The ensemble method is a tech-
nique that combines several base models in order to produce
one optimal predictive model. It has been shown to achieve
the desired accuracy and robustness [65] and to overcome
the limitation of machine learning techniques.

Compared to a typical vehicle, CAV relies on multiple
sensors, including cameras, radars, and LIDARs. These CAV
sensors and ECUs produce large quantities of highly relevant
data for analysis with machine learning techniques. It also
helps to enhance the accuracy and performance of the exist-
ing training models. In addition, data could be collected re-
motely for CAVs, which increases the ease of data collection
and the volume of available training data. Related machine
learning-based solutions are discussed as follows.

The number of CAVswill increase in the near future, and
it is vital to detect abnormalities and discern their sources to
provide a seamless experience for driverless vehicles in real-
time. Therefore, anomaly detection and identification tech-
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niques are developed by effectively integrating a Convolu-
tional Neural Network (CNN) and Kalman Filtering (KF) to
find CAV systems’ abnormal activities. CNN is first applied
to time-series data (acquired from various sensors), and im-
ages are then generated from real-time raw sensor data to
classify them as abnormal. After that, a general framework
is proposed using CNN and KF with a �2-detector (named
CNN-KF) to detect anomalies in CAVs. The experimen-
tal results of proposed approaches (only CNN, only KF, and
CNN-KF) are evaluated based on accuracy, sensitivity, pre-
cision, and F1 score. CNN-KF framework collectively out-
performs in these performance parameters for anomaly de-
tection and identification [64].

For a compelling and comfortable journey, CAN is used
in automotive systems (e.g., CAVs) to execute different func-
tions without/less human interaction. However, such auto-
mated systems are vulnerable to known and unidentified se-
curity threats, so it is necessary to detect such incidents early
to avert infrastructure damage and loss of human life on the
road. A Dynamic Ensemble Selection System (DESS) [65]
is developed for anomaly detection in which the system in-
cludes two-class and one-class classifiers to identify fault
types (from the training data set) and unknown fault types.
Moreover, the network features are extracted from the physical-
layer information, and the base classifiers are then trained
based on these network features. The implementation was
carried out on the data set, and the analysis confirms that
anomaly detection robustness and adequate accuracy can be
achieved through DESS with better results than other meth-
ods, even in different fault types.

Different types of sensors inmodern vehicles collect data
from a vehicle and nearby objects to provide meaningful in-
formation to the vehicular communication system, enabling
it to make better decisions while moving. However, this
collected data from sensors are susceptible to different in-
consistencies (caused by errors, cyberattacks, and/or faults),
and thereby, the direct usage of sensor-generated data may
lead to accidents on the road [66]. A Multi-Stage Atten-
tion scheme with a Long Short-Term Memory-based CNN
(MSALSTM-CNN) [66] is developed to detect anomalies
from sensor-generated data, helping to avoid fatal casualties
by CAVs. In MSALSTM-CNN, multi-source sensor read-
ings are first classified as either ordinary or abnormal data,
and it then concentrates on different values of streaming read-
ings to understand their importance. A weight-adjusted fine-
tuned ensemble, WAVED, is also proposed through the opti-
mal weight vector of classifiers to set a unique voting weight
to anticipate each classifier and identify anomalous actions.
The experimental results demonstrate that the MSALSTM-
CNN can achieve a better anomaly detection rate in the case
of single and mixed anomaly types. Thus, fatal casualties
(caused due to anomalous data) can be reduced throughMSALSTM-
CNN.

A communication network in CAVs is vulnerable due to
the unavailability of security features in CAN and connectiv-
ity with the outside network for meaningful data exchanges,
resulting in different types of suspicious activities. To deal

with such a situation, a deep learning-based IDS is designed
in [67] to find out malicious network activities from IVN,
V2V, and V2I networks of autonomous vehicles. A Long-
Short Term Memory (LSTM) autoencoder algorithm is de-
veloped using deep learning architecture to detect intrusive
incidents from the gateways of AVs. On the UNSW-NB15
dataset [68], the proposed IDS can achieve 98% accuracy in
detecting different types of attacks, whereas 99% accuracy is
achieved on the database of car hacking for in-vehicle com-
munications.

IVN is susceptible to various network-based attacks due
to the lack of security features in CAN andV2X connectivity
with associated ECUs through the gateway ECU. Therefore,
a CAN Bus message Attack Detection Framework (CAN-
ADF) [69] is proposed to generate abnormality, detect anoma-
lies, and validate the system performance for the CAN bus
architecture. A rule-based method is designed from differ-
ent network traffic characteristics and Recurrent Neural Net-
works (RNNs) for anomaly detection. A large number of
CAN packets are collected from different vehicles to ana-
lyze the performance of CAN-ADF, showing an average ac-
curacy of 99.45%. A visualization tool is designed to mon-
itor the CAN bus traffic status, and it displays found attacks
in the IVN system. CAN-ADF can be combined with other
attack detection methods to identify a range of anomalies ef-
fectively.

The automotive system should have a trustworthy envi-
ronment for reliable communications, as information plays
a significant role in CAVs. In [70], a graph-based four-stage
IDS is proposed to detect various attacks in CAN in which
a graph-based technique first finds abnormal patterns in the
dataset. After that, the median test and chi-squared methods
are applied to differentiate the two data distributions. The
experiments exhibit that the misclassification rate is com-
paratively low for the proposed IDS in [70], i.e., 4.76% for
replay, 5.26% for DoS, and 10% for fuzzy attacks detection.
All spoofing attacks can accurately be detected through the
proposed method in [70], and it can achieve better accuracy
up to 13.73%.

To deal with the problem of unavailability of sender in-
formation (in sent messages over the CAN bus), an IDS is
developed by using various machine learning approaches,
i.e., Support Vector Machine (SVM), Decision Tree (DT),
Random Forest (RF), andMulti-Layer Perceptron (MLP) for
CAN [71]. The proposed IDS is applied to the KIA Soul
car dataset to detect intrusions and the type of attacks based
on a set of classifiers. The implementation results state that
the RF classifier can achieve better results than DT, SVM,
Recurrent Neural Network (RNN), Hierarchical Temporal
Memory (HTM), and Hidden Markov Model (HMM) clas-
sifiers in the same context. Moreover, the precision result of
SVM, MLP, RF, and DT is superior to HMM and RNN, but
it is moderately poor than HTM.

In [72], a Histogram-based Intrusion Detection and Fil-
tering (HIDF)mechanism is developed by combining awindow-
based IDS and filtering approach to identify intrusions based
on windows and do the filtration of regular CAN packets

Limbasiya et al.: Preprint submitted to Elsevier Page 17 of 28



A Systematic Survey of Attack Detection and Prevention in Connected and Autonomous Vehicles

Table 6
Comparison of State-of-the-art Machine Learning-based Systems in Various Features

Scheme Year Objective(s) Detection of At-
tacks

Impact on
System/Device

False Positive
Detection

Limitations/Scope of Enhancement

VanWyk et al. [64] 2019 Detection of abnormalities and source iden-
tification of attackers;

Injection and imper-
sonation attacks;

Sensors Low Provided results in certain conditions;

Yang et al. [65] 2019 Identify abnormality in advance and develop
an accurate and stable anomaly detector;

Delayed operations; CAN communi-
cations;

Average Detection of transient faults;

Javed et al. [66] 2020 On-time detection of anomalies in CAVs; System damage; Automotive
system;

Low Requirement of the prediction votes
above 50%

Ashraf et al. [67] 2020 Discover susceptible actions over IVN, V2V,
and V2I networks;

DoS, replay, and im-
personation attacks;

V2X and IVN
connectivity;

Low Require to improve an IDS for accurate
attacks categorization;

Tariq et al. [69] 2020 Detect CAN bus attacks; Replay, injection,
and bus-off attacks;

CAN bus; Low Able to detect specific attacks;

Islam et al. [70] 2020 Detect attacks in CAN; Replay, imperson-
ation, injection, and
bus-off attacks;

CAN; Low Possibility to reduce the misclassifica-
tion of attacks;

Moulahi et al. [71] 2021 Comparative study of machine learning ap-
proaches for attacks detection;

Replay, injection,
and impersonation
attacks;

CAN; — High computational resources and
enough data;

Derhab et al. [72] 2021 Find intrusions by assembling the CAN
packets into windows to classify the traffic;

Impersonation, re-
play, and injection
attacks;

CAN; Low More efficient and lightweight IDS;

Liu et al. [73] 2021 Protect CAVs against perception error at-
tacks;

Impersonation and
injection attacks;

Sensors; Low Need to improve for optimization re-
sults;

Han et al. [74] 2021 Detection and identification of anomalies
through the periodic event-triggered inter-
val;

Modification, replay,
injection, bus-off at-
tacks;

ECU, CAN bus; Low Required to design a method for better
intrusion detection time;

from an attack window. An intrusion detection model is first
developed using histograms of CAN traffic to understand a
distinctive structure for different CAN traffic classes. Fur-
thermore, a one-class SVM attack model is developed us-
ing regular CAN traffic and implemented with four attack
variants, i.e., Gear, RPM, Fuzzy, and DoS. The experimen-
tal results based on two datasets demonstrate that the HIDF
can accurately classify through a window, and the filtering
system is capable of filtering out standard packets from ab-
normal windows with more than 95% correctness.

CAVs are enabled with multiple sensors to collect rel-
evant data and use it as inputs in various vehicle driving
decisions. Thus, it is vital to ensure the reliability of this
sensory information for errorless execution of different op-
erations in CAVs. A Perception Error Attack (PEA) can
fail sensors to perceive the surrounding driving environment
accurately, and thereby, captured data may be faulty, lead-
ing to unexpected consequences. To address this issue for
AVs, a countermeasure approach is proposed, LIDAR and
Image data Fusion for detecting perception Errors (LIFE)
[73] that identifies PEAs by evaluating the data consistency
between LIDAR and camera image through object matching
and corresponding point techniques. Thus, LIFE can detect
various sensory data anomalies, i.e., LIDAR spoofing, cam-
era blinding, false positives/negatives during object identi-
fication, LIDAR/camera rotation error, and LIDAR satura-
tion/distance measurement error. Since anomalies are de-
tected through LIFE, they can be forwarded to the driving
system to make appropriate decisions. The evaluation re-
sults on the KITTI dataset show that LIFE provides aver-
age performance. However, LIFE can be improved for better
performance results, i.e., reduce the number of false alarm
instances for high intrusion detection efficiency and mini-
mize the requirement of additional settings in existing au-
tonomous vehicles.

To protect against maleficent packet attacks in CAVs, it

is required to find anomalies effectively; otherwise, the auto-
mated systemmay lead to unexpected situations, resulting in
risky commute and infrastructure damages. Thus, an event-
triggered interval-based mechanism is proposed using ma-
chine learning to identify abnormalities and detect attacks
in IVN [74]. Four attack scenarios are first defined based on
CAN messages to understand normal and malicious driving
data in the context of IVN. The event-triggered interval of
CAN identities is then analyzed and measured in their sta-
tistical instants by considering the fixed time window. The
results of the experiment over actual driving data demon-
strate that the proposed method in [74] can quickly iden-
tify anomalies and achieve better performance in attack type
identification, time, and anomaly detection.

Table 6 shows an analogical study of state-of-the-art ma-
chine learning-based ADPS. It compares recent ADPS solu-
tions to know their efficacy in various attributes.
4.1.5. Message Authentication

Message authentication is used widely in information se-
curity to ensure that data integrity and authenticity are pre-
served while in transit and allow the receiver to verify the
source ofmessages. Commonmessage authenticationmech-
anisms include MACs, Authenticated Encryption (AE), and
digital signatures. CAN does not have a built-in authenti-
cation process, making it vulnerable to masquerade attacks.
However, the deployment of cryptographic methods is com-
plex due to the CAN protocol’s low throughput and limited
bandwidth. Researchers have looked into several ways, in-
cluding message authentication and covert channels, to meet
the specific deployment criteria in IVNs.

The most important benefit of message authentication
is the protection against masquerade attacks, as CAN is a
broadcast protocol without authentication. However, most
message authentication solutions requiremodifications of the
CAN protocol or the introduction of additional information
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on the CAN frame. In addition, generatingMACs and check-
sums increases the computational workload of the already
resource-constrained ECUs. As compared to IDSs, message
authentication is harder to deploy on existing vehicles as it
requires either the manipulation of the CAN hardware or the
addition of new hardware such as key server and Trusted
Platform Module (TPM). We discuss relevant message au-
thentication mechanisms as follows.

CAN control messages are crucial in IVN, but the sender
information is unavailable in CAN messages, leading to de-
nial of service, impersonation, and data alteration challenges.
A security protocol is proposed in [16] to deal with such
challenges using authentication and data encryption mech-
anisms. The proposed scheme is designed with a MAC (to
remedy the fixed data payload size of CAN data frames) and
key management approach to provide secure exchanges be-
tween in-vehicle ECUs and external devices. The experi-
mental results based on a manufactured ECU demonstrate
the possibility of an attack overwireless connectivity through
a malicious smartphone app. Performance analysis shows
that the proposed protocol in [16] takes less computational
resources, but it is susceptible to encryption key compromis-
ing, authentication attacks, and session key leakage.

A compromised Compact Disk (CD) player can execute
crucial operations, i.e., accelerate in CAVs. A LIghtwEight
Authentication scheme for CAN, LEIA [75] is proposed to
verify ECUs and protect them from compromised vehicle
components. LEIA runs under the exact time and bandwidth
constraints of automotive applications, and it is designed us-
ing unidirectional authentication in which a method of sig-
naling technique is applied with the session key to check
whether any of the subscribed ECUs follows the synchro-
nization/authentication process or not. Security analysis of
LEIA confirms the protection against chosen-plaintext at-
tacks.

Present-day automobile systems are susceptible to vari-
ous security threats, compromising vehicle travelers’ physi-
cal safety. A new ECU architecture is proposed in [76] for
automotive cyber-physical systems to satisfy security and
performance attributes effectively. It is implemented on the
Xilinx Automotive Spartan-6 field-programmable gate array
and NXP iMX6Q SABRE automotive board. The results
confirm lower computation time and response time in [76].

Sharing a secret key in CAN is a challenging task due to
the broadcast nature of the CAN bus architecture. A proto-
col suite [77] is suggested for the secure exchange of keys
over the CAN bus, and it is a combination of time-triggered
mini-max and randomized delay key negotiation, which al-
lows piggybacking frames with the keys’ portions for se-
cure computation of a session key. Moreover, CAN frames
can be sent through the Diffie-Hellman (DH) version of the
Encrypted Key Exchange (EKE) and Simple Password Ex-
ponential Key Exchange (SPEKE) protocols. The imple-
mentation was carried out on high-end controllers over Infi-
neon Aurix cores (i.e., TC297 and TC277), and the outcome
achieves reasonable results based on simple bus-based key
negotiation and EKE/SPEKE-DH key sharing approaches.

A keyless entry system ismore convenient for CAVusers,
but it is susceptible to signal-relaying and network range at-
tacks, making it difficult to distinguish an authorized door
unlock request from a spiteful signal. An RF-fingerprinting
technique, HOld the DOoR (HODOR) [78] is proposed to
identify attacks in the keyless entry systems. HODOR is de-
veloped as a sub-authentication mechanism based on ultra-
high frequency band RF signals to implement on existing
authentication processes (of keyless entry systems) without
any modifications. The implementation results show that
HODOR provides satisfactory results as the average false
positive rate of 0.27% and the false-negative rate of 0%while
considering the detection of simulated attacks. HODORachieves
the false-positive rate of 1.32% to detect legal key determi-
nation under the non-line-of-sight conditions.

CAN communications are unprotected in IVN, leading
vehicles towards adversarial activities based onwired/wireless
attacks. An efficient authentication protocol suite is pro-
posed in [79] to provide a secure connection for transmitting
remote frame requests and updating session keys between in-
vehicle ECUs and external devices through entity authenti-
cation and key management using ECC. The proposed pro-
tocol in [79] achieves better security and performance results
than [16], but it is vulnerable to encryption key compromis-
ing and authentication attacks.

Modern cars are configured with different ECUs, includ-
ing safety-critical, and the possibility of remote access is
demonstrated to perform malicious activities in the CAN,
allowing an attacker to control a vehicle. The existing mes-
sage authentication protocols for CAN are either vulnerable
to masquerade attacks or require hardware modification to
protect against such attacks. A newMutual AUTHentication
scheme, MAuth-CAN [80] is proposed using a unique ses-
sion authentication key (computed through its seed value of
an ECU) for each ECU to resist masquerade and bus-off at-
tacks. The performance of MAuth-CAN was evaluated over
embedded devices and using the CANoe software tool for
simulation, and it is noticed that it relatively takesmore com-
putation time. However, it is required to reduce the computa-
tion time during the authentication process, as CAN is used
in CAVs and other safety-critical applications.

A significant problem of session key agreement overAU-
Tomotive Open System ARchitecture (AUTOSAR) compli-
ance is not resolved effectively, even though variousmessage
authentication protocols are proposed for CAN communi-
cations. An AUTOSAR-compliant key management archi-
tecture is proposed in [81] by considering practical require-
ments for the automotive system. Further, a baseline Session
Key Distribution protoCol (SKDC) is designed to provide
various security functionalities, and a new Secret Sharing
key Transfer (SSKT) protocol is proposed to achieve better
communication efficiency results. The implementation of
Arduino IDE and the CAN Bus Shield library confirms that
SSKT provides better computation and communication re-
sults.

CAN FD is advantageous for data transmission in IVN
because of its bit-rate capacity (of 8 Mbps) and payload size
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(of 64 bytes). However, it is vulnerable to masquerade at-
tacks due to the unavailability of adequate authentication
protocols. In [82], a two-stage scheme is proposed with two
algorithms for security improvements for CAN FD commu-
nications. The first stage is performed to get the lower bound
of an in-vehicle application by omittingmost sequences through
a quick sequence abandoning algorithm. Moreover, the lax-
ity interval values are obtained from the lower bound to the
deadline. In the second stage, the round accumulation algo-
rithm is executed to improve the security by using MACs to
CAN FD messages. The performance analysis results show
that the proposed scheme is suitable for enhancing IVN com-
munications security.

In CAVs, it is necessary to protect the TIS, ECUs, and
OBD-II ports against message spoofing attacks due to their
importance in IVN. A CAN bus authentication scheme is
proposed in [83] that uses message physical layer features,
i.e., message arrival intervals and signal voltages, applying
a reinforcement learning approach to select the authentica-
tion mode and parameter. The proposed scheme achieves
better authentication accuracy without modifying the CAN
bus protocol’s ECU parts. Moreover, a deep learning-based
authentication scheme is proposed using a hierarchical struc-
ture and two deep neural networks, reducing the exploration
time and compressing the high-dimensional state space with
fully exploiting physical layer features. Thus, it provides su-
perior authentication efficiency over the CAN bus, as it is
verified through a test-bed setup with embedded devices.

Recent security experiments demonstrated the possibil-
ity of illegal access to car functionalities and vehicle theft,
making modern vehicles vulnerable in different ways. To
deal with these challenges, secure access and feature acti-
vation scheme is proposed in [84] based on TPM 2.0 (act-
ing as a trust anchor in a vehicle), and thereby, it provides a
fine-granular authorization mechanism. Moreover, this pro-
posed system can protect against potential security attacks
in automotive scenarios. The experimental results on Rasp-
berry Pi show that it can achieve good performance results,
but it could be improved for better performance efficiency to
enable superior performance in automotive systems.

The secure exchange of cryptographic keys between ECUs
is a significant challenge for secure IVN communications.
In [85], authors evaluated the key exchange protocol based
on a standardized National Institute of Standards and Tech-
nology (NIST) elliptic curve and FourQ curve of the Diffie-
Hellman. The implementation results of these protocols over
Infineon and ARM core processor platforms show effective
performance for CAN and CAN FD. It is also noticed that
the computation time is more crucial than bandwidth, as the
execution time of the elliptic curve is relatively high.

Attackers can launch masquerade, suspension, and in-
jection attacks on the CAN bus architecture due to the lack
of appropriate built-in authentication and encryption mech-
anisms, resulting in life-damaging consequences. A Trans-
mitter Authentication scheme in CAN (TACAN) is proposed
in [86] to offer secure authentication between deployed ECUs
over the CAN bus architecture through three different covert

channels (inter-arrival time-based, least significant bit-based,
and hybrid). Further, TACAN can be implemented with-
out CAN protocol modifications and communication over-
heads. The extensive experimental results on Chevrolet Ca-
maro 2016 and Toyota Camry 2010 datasets demonstrate
that TACANeffectively detects CANbus attacks and achieves
better results when evaluating bit error and throughput per-
formance parameters.

Table 7 presents a comparative study of state-of-the-art
message authentication-based ADPS. This table gives a bet-
ter overview of relevant ADPS solutions to understand their
efficacy in various features.
4.1.6. Other Approaches

Some other approaches are helpful in detecting various
security attacks and providing protection against them.
Anti Analysis: Attestation is the mechanism in which soft-
ware verifies the authenticity and integrity of the hardware
and software of a device. In today’s CAVs, ECUs use flash
memory that allows authorized entities to update or flash a
new version of the firmware. Although firmware updates,
especially common in CAVs, fix known bugs and security
holes in the software, it increases the attack surface. There-
fore, knowing when the system’s integrity has been com-
promised is crucial, which can be achieved by using crypto-
graphically secure techniques such as firmware attestation,
MAC, and hash-value authentication. The firmware attes-
tation scheme is a challenge and response type of protocol.
Two main entities are involved in the attestation process, a
challenger (the attester) and a respondent (the ECU being
attested) [92].

The most important feature of anti-analysis-based ADPS
is the integrity of the firmware, which allows each ECU to
learn about the security stance of other ECUs in the vehicle.
Furthermore, a decentralized attestation process is more ro-
bust and can independently attest to the state of the whole ve-
hicle. However, anti-analysis-based IDS is ineffective against
attacks on the programwithout affecting the state of the firmware.
It includes attacks in the current memory program and on the
trusted hardware, affecting the attestation process’s trustabil-
ity.
Post Protection: Firmware Over-The-Air (FOTA) update is
the process of distributing new firmware via the wireless
medium (i.e., Wi-Fi and cellular network) to update the ap-
plication that runs on top of the operating system. The up-
dates usually comewith software fixes, new features, and en-
hancements for the vehicles. This process updates the whole
software stack and replaces the operating system and appli-
cation. FOTA is especially critical for CAVs, as they are
constantly connected to the external networks and need to
be updated fast to deal with new threats and environments
regularly. A secure firmware over-the-air update can prevent
the firmware from compromising [10].
Fuzzing: Fuzzing is a security testing technique that attempts
to find software bugs by injecting randomly generated valid
and invalid inputs into a program. A fuzzer software is usu-
ally used to automatically create a set of test values. A nor-
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Table 7
Comparison of State-of-the-art Message Authentication-based Protocols among Different
Attributes

Scheme Year Objective(s) Protection for
Attacks

Impact on
System/Device

Computational
Resource

Requirement

Limitations/Scope of Enhancement

Woo et al. [16] 2014 Provide protection against long-range wire-
less attacks;

Replay, Injection; ECUs; High; Weak against authentication attacks;

Radu and Garcia [75] 2016 To provide mutual authentication between
ECUs

Modification,
Impersonation,
Chosen message,

Injection;

ECUs, CAN
bus;

— Require to analyze performance results
in addition to security analysis;

Poudel and Munir [76] 2018 Design an ECU architecture by integrating
security and dependability attributes with
low computational resources overhead;

Injection,
Eavesdropping;

ECUs; Low Secure storage/generation/distribution
of keys, authentication of ECUs, and
privacy regulations;

Groza et al. [77] 2019 Provide secure key exchanges between two
CAN components;

Impersonation; ECUs, CAN; Average Not enough security strength to resist
current cyberattacks;

Joo et al. [78] 2020 Attacks detection on keyless entry systems,
exploiting the RF-fingerprint technique;

Relay, Injection; Keyless entry
systems;

Average Identification of a variety of security
threats in keyless entry systems;

Palaniswamy et al.
[79]

2020 Provide secure key computations and up-
date for IVN operations;

Impersonation,
replay, and

man-in-the-middle;

ECUs, CAN; Average Session key availability to compromised
ECUs;

Jo et al. [80] 2020 Provide authentication protocol to resist
masquerade attacks without utilizing fully
network capacity and requiring hardware
changes

Masquerade,
Bus-off, Replay,
Fabrication;

CAN; Average Require to improve performance in dif-
ferent parameters, i.e., the waiting time;

Xiao et al. [81] 2020 Effective session key establishment and se-
cure distribution;

Impersonation,
Replay;

CAN/CAN-FD
bus;

Average Possibility to minimize the resource re-
quirement;

Xie et al. [82] 2020 Enhancement of security in CAN-FD; Masquerade; CAN; Low New designs for non-parallel IVN appli-
cations with security enhancements;

Xiao et al. [83] 2021 Enhance authentication accuracy without
changing the CAN bus protocol or the ECUs
and requiring knowledge of the spoofing
model;

Impersonation,
Replay, Bus-off,

Man-in-the-middle;

ECUs, CAN
bus;

— Need to improve performance results
and provide protection for the monitor
and ECUs;

Plappert et al. [84] 2021 Provide a secure access and feature acti-
vation system to protect potential security
threats;

Injection,
Modification,

Replay,
Eavesdropping,

Man-in-the-middle;

Trusted Trusted
Module
(TPM);

Average Possibility to minimize the overhead and
improve TPM 2.0-inherent policy;

Musuroi et al. [85] 2021 To securely exchange cryptographic keys
between ECUs with fast computations;

Impersonation,
Replay;

CAN bus; Average; Require to give attention on the group
key exchange method for high perfor-
mance results;

Ying et al. [86] 2021 Provides secure authentication for con-
nected ECUs over CAN;

Injection,
Impersonation;

ECUs, CAN; Average; Possibility to improve performance re-
sults for quick and better protection
against attacks;

mal program would expect to receive structured inputs, and
fuzzing stress tests the application to create unexpected be-
havior or crashes. CAN can expose unknown vulnerabilities
in the ECU software while fuzzing is applied on CAN traffic
[93].

Fuzzing on ECUs is more challenging due to car man-
ufacturers’ different proprietary CAN databases. The CAN
database is specified in the Database Container (DBC) for-
mat file, a text file containing information for decoding raw
CAN bus data to "physical values." While black-box meth-
ods such as brute-force and random search can work with-
out the CAN database, they are inefficient due to the infi-
nite number of possible inputs. Fuzzing detects loopholes in
software reliably without false positives, increasing the ro-
bustness of car software. With the advent of CAVs, fuzzing
will be more important as more software is deployed and the
connected vehicles suffer similar security vulnerabilities to
other computer-based network systems. In addition, fuzzing
can help discover vehicle system functions that car manufac-
turers may not know [94].

Figure 5 displays potential adversarial activities (at the
first level) that can be carried out to damage CAVs. Various
attack detection and prevention categories are linked to spe-
cific malicious exploits that help to understand their effec-
tiveness in identifying intrusions and prevent against them.

Different autonomous vehicle components are presented un-
der each ADPS category to protect them from system dam-
age. This graphical presentation gives a better understanding
of the association among adversary interests, ADPS, and rel-
evant vehicle components. This, in turn, helps researchers in
developing security solutions. Researchers have developed
various security solutions using different ADPS categories
to improve the automotive system’s strengths against vul-
nerable activities. However, technological development im-
poses advanced threats on the automotive systems, leading
to new security and performance challenges.

5. Research Directions for CAVs
Modern vehicles are connected with external interfaces,

several software modules, and many ECUs via OBD-II. That
exposes CAVs to malicious activities with conventional and
new security threats. The market for CAVs is rapidly in-
creasing to provide more advanced transportation services
and comfortable journeys. Hence, it has become essential to
detect security vulnerabilities and faults in CAVs; otherwise,
it can create chaos on the road, causing undesired conse-
quences, human life risk, or infrastructure damage. Besides,
there are other approaches (i.e., keyless entry system, telem-
atics, DSRC/Bluetooth/LTE/Wi-Fi communication technolo-
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Potential Adversarial Activities in CAVs
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Figure 5: Correlation of Different ADPS Methods with Various Affecting IVN Components

gies, and Global Positioning System) through which adver-
saries can target the automotive system for susceptible ac-
tivities in CAVs. The keyless entry system has received the
highest attention from adversaries for malicious actions by
performing signal relay attacks. We, therefore, discuss key
research problems and open challenges for ADPS of CAVs.
5.1. Systematic Fuzz Testing Methodologies

Datasets with normal and attack scenarios are commonly
used to identify security threats and validate novel attack
detection techniques. However, limited research works are
available on the collection and validation of the attacks data
[7]. Such realistic datasets are valuable assets to the research
community to continuously improve the resilience of secu-
rity assessment solutions for CAVs and accurately measure
the performance of attack detection strategies. Since the
market of CAVs is increasing rapidly to enable society with
advanced transportation services and applications, there is
an immediate need to develop systematic fuzzing-based se-
curity testing techniques. Such fuzz testing methodologies
may facilitate continuous testing for a variety of attacks to
realize the resilience of CAV systems and evaluate the ef-
fectiveness of attack detection and prevention approaches
in a real-time environment based on different performance
measurement parameters, e.g., accuracy, timing, sensitivity,
etc. Moreover, the progress in fuzzing methodologies has
opened new avenues to discover unforeseen (zero-day) at-
tacks on CAVs. Such is crucial to fine-tune the automotive
security systems before deployment.

Fuzzing approaches can be classified into Blackbox, Grey-
box, and Whitebox. It is not feasible to use any form of
Greybox fuzzing approaches [95], as such approaches re-
quire instrumenting the ECU code. Whitebox approaches,
e.g., symbolic execution [96] is also not applicable for fuzzing
commercial ECUs, as commercial ECUs are closed source.
Existing Blackbox fuzzing approaches [97], [98] are unlikely
to be effective, as such techniques (i) do not learn from previ-

ous fuzzing campaigns, or (ii) are limited in terms of struc-
tured input generation, and these are important aspects for
effective protocol fuzzing. Systematic Blackbox fuzzing, which
will generate structured inputs according to the targeted pro-
tocol and learn from the fuzzing campaigns to automatically
evolve the fuzzing process, is likely to be effective and prac-
tical for fuzzing components of CAVs. This can be accom-
plished by maximizing the explored protocol features to un-
cover new vulnerabilities.
5.2. Device-based Novel Attack Detection

Mechanisms
CAV relies on a large number of multiple sensors, in-

cluding cameras, radars, and LIDARs, enabling more ac-
curate data results for worry-free journeys. However, these
sensors enable adversaries for additional attack surfaces to
launch sensor-based attacks (such as spoofing, eavesdrop-
ping, and jamming) on the vehicle’s self-driving automated
control system [27]. Such additional attack surfaces may
lead to information leakage, false sensory data injection, DoS,
and transmission of malicious commands in the IVN [99].
Since CAVs are highly mobile nodes and gather data from
various sensors to perform different operations with limited
resources, detecting malicious or faulty sensor nodes is chal-
lenging. Advanced attack detection systems that combine
groundbreaking techniques (such as sensor fusion and ma-
chine learning with the abundance of information generated
byCAVs) should be developed to detect sensor-based attacks
effectively.
5.3. Compromised ECU Identification

Current security solutions can provide a specific level of
security robustness over the CAN bus architecture to pro-
tect from forgery attacks (that are launched to disrupt the
communication channel or automotive data). Available so-
lutions are limited in scope (for data protection and com-
munication channel) and can withstand specific security at-
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tacks only. Thus, it is difficult to identify susceptible activ-
ities when a compromised part (i.e., ECU) launches attacks
on the CAN bus architecture. To find the source of attacks,
protocols based on electrical signal characteristics of ECUs
are proposed [8], [33], [34], [42], [46]. Such solutions may
not realize whether the source is already compromised or
not due to the change in IVN environmental circumstances.
ECUs can be compromised in two ways: (i) exposed ECU
is mounted, and (ii) ECU is compromised after the installa-
tion. Zero-trust-based multi-factor authentication protocols
should be implemented by involving multiple entities dur-
ing the deployment of ECUs to avert the first possibility of
ECU compromising. For effective attack identification from
compromised ECUs, lightweight security protocols should
be developed to protect the system from compromised ECUs
quickly.
5.4. Lightweight Security Protocols for IVN

CAN is not enabled with an in-built authentication and
encryption mechanism to protect from forgery attacks over
the CAN bus architecture. Therefore, researchers have fo-
cused on addressing the issue of forged communications by
developing cryptographic-based security solutions. Hardware-
based cryptography methods can improve the security level
to meet the real-time needs of CAVs. However, the high im-
plementation cost, the compatibility with the existing infras-
tructure, and system modifications are important challenges
in satisfying security requirements. Software-based cryp-
tography methods can be applied and do not require changes
in the CAN bus architecture. However, the computation and
communication overhead on the payload increase the require-
ment of additional computing capabilities on resource-constrained
automotive systems, leading to a time-consuming process [7],
[8], [16], [79]. Researchers have developed various security
schemes to provide security using different cryptographic
primitives, but most of them require more computation cost
and communication overhead. To reduce the network de-
lay in ITS applications and services, it is required to up-
grade the vehicular network with the latest communication
technology. 6G-enabled vehicular networks can offer bet-
ter network connectivity to minimize the communication la-
tency, but the system consumes more energy in perform-
ing computing and communication operations [101], [102].
Therefore, the key challenge is to design lightweight secu-
rity protocols for CAN-based communications with low la-
tency. This is to perform necessary operations quickly with
limited computing power and provide an adequate level of
security to protect the automated system from various secu-
rity attacks.
5.5. Malware Code Resilient CAVs

CAVs are configured with IoT and embedded devices to
execute in-vehicle and outside network operations to make
better decisions. These devices are very limited in security
features to avert various threats [103], and thereby they are
the major targets of adversaries to launch traditional and new
security attacks through malware codes [104]. Since ECUs

are connected to external sources through a gateway, real-
time malware scanning can be applied at the gateway. How-
ever, the need for excessive computing power is raised for a
gateway, which might not detect all malware codes with its
limited on-board resources. Furthermore, it is tough to iden-
tify malware amongst the high number of associated ECUs
in CAVs [105], [106]. Thus, it opens an opportunity for
adversaries to send malicious payloads (through SQL injec-
tion vulnerability) to perform susceptible activities over the
IVN, leading the automotive system to unanticipated situa-
tions and severe consequences. Hence, it is adequate to de-
sign the automotive systemwith malware code detection and
protection to reduce the impact of security exposures and
vulnerabilities.
5.6. Control-Oriented Techniques for 6G-enabled

Infrastructure
CAVs communicate and transfer high-cost computations

to the infrastructure through V2X communication technol-
ogy for rich data inputs and minimizing the requirement of
computational resources at the CAV level, thus improving
the effectiveness of CAVswithmore accurate operations. In-
tegrating 6G communication technology with the vehicular
network for high throughput, better decision-making abili-
ties, and reduced latency is necessary to exchange various
computations productively and their outcomes between the
infrastructure and vehicles [102]. Vehicular infrastructure is
susceptible to cyber threats, including malware, weak access
control, and limited security features over the firmware pro-
cess [107]. Blockchain, molecular/Terahertz/quantum/Visible
light communications, and AI technologies are important in
6G communications. However, they are vulnerable to ma-
licious behavior, access control/authentication/integrity at-
tacks, eavesdropping, and data transmission exposure, cre-
ating security and privacy issues [108]. Thus, an adversary
can launch replay, bogus message, modification, blackhole,
and wormhole attacks in the IVN. Thus, automated driv-
ing system operations are significantly impacted, disrupting
the overall performance of a platoon of CAVs. To improve
the safety and security of autonomous driving systems, ad-
vanced and robust vehicular control frameworks should be
developed to withstand traditional and new cyberattacks [7].
Current research has mainly focused on the prevention and
defense techniques for CAVs, but it is also required to em-
phasize control and recovery strategies that can support dam-
aged infrastructure (i.e., RSUs and cloud servers) to recover
from unexpected incidents effectively and security vulnera-
bilities [109]. CAVs automatically execute various vehicle
operations (considering the available information (from in-
vehicle components) or obtained data from the infrastruc-
ture) without (or minor) human intervention while on the
move. It is thereby necessary to quickly restore the system
from damaged conditions and perform different operations
by following legal system procedures. Control-oriented tech-
niques manage the automated control and recovery from at-
tacks that can reduce the damage level in CAVs. Hence,
the research area of control-oriented techniques should be
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explored to create effective resilient and recovery strategies
that can mitigate such network attacks in the IVN.
5.7. Recognition of Adversarial AI Attacks

Researchers suggested various machine learning-based
models to detect security attacks in CAVs, and these models
mainly work based on the collected data through installed
devices. However, there are demonstrations that if pixel val-
ues of an input image are altered, then themodel can produce
erroneous results, and the understanding of images is suc-
cessful under certain conditions only [110], [111]. Besides,
various mechanisms are trained to understand "patches", and
they can be imposed on an object to mislead detectors and
classifiers [112], [113], [114], [115]. In such cases, the trained
model cannot detect objects even though they are available
on the way to CAVs, or they can come closer to CAVs [116].
Thus, an attackermay cause significant damage by launching
adversarial attacks on reinforcement learning mechanisms.
Therefore, it is essential to develop reliablemachine learning-
based attack detection systems for CAVs.
5.8. Trustworthy Fog-enabled Vehicular Networks

Autonomous vehicles produce around 20 GB of data per
hour, and they are required to collect, analyze, process, and
aggregate the gathered data before using relevant informa-
tion in vehicular applications and services that may delay
emergency and navigation services [117]. The concept of
vehicular fog computing was introduced to reduce the com-
putational overhead at resource-constrained devices (i.e., ve-
hicles) by executing high-cost operations at fog devices (i.e.,
edge servers and/or RSUs). In this, vehicles collect rele-
vant data from sensors (installed in a vehicle) and transfer
gathered data to the fog devices for data analysis (to pro-
vide better ITS services to vehicle travelers). Fog devices
can then deliver such information to CAVs, which can be
used tomake timely, on-road decisions [118], [119]. Though
fog-enabled vehicular frameworks minimize the computa-
tional resource requirements at CAVs, there are still signifi-
cant security and privacy challenges: trustworthiness of de-
livered data (from vehicles to fog devices), secure data trans-
fer, off-loading of tasks, and on-time information availabil-
ity (to CAVs) in highly mobile environments [120], [121],
[122]. Connected vehicle technology is focused to enable
CAVs safer, faster, and more efficient, but the availability
of erroneous information to CAVs may lead to accidental
consequences [123], [124], [125]. Therefore, developing re-
liable and efficient attack detection and prevention mecha-
nisms for fog-based vehicular networks is vital.
5.9. Dependable Digital Twin-based Automated

Driving Systems
Digital Twin (DT) is one of the most cutting-edge tech-

nologies of Industry 4.0 that is developed as a virtual rep-
resentation of physical entities with simulation proficiency
to predict and optimize states, functionality, and configura-
tions. DT synchronizes the mapping with the physical object
that is useful in real-time monitoring, object management,
data analytics, maintenance strategies, and risk estimation

[126]. Therefore, the integration of DT with CAVs is worth-
while to identify potential issues in automotive driving sys-
tems, get real-time feedback on automated operations, con-
trol vehicles in uncertain situations, and realize performance
improvements [127], [128], which is beneficial in the devel-
opment of accurate attacks detection and prevention systems
for CAVs. As DT modeling depends on the data (received
from the synchronized physical object over V2X connectiv-
ity), it is important to securely and efficiently deliver data
between digital and physical spaces [129]. However, pro-
viding security over V2X technology is challenging due to
the shared communication link [104]. Besides, the commu-
nication delay is a vital factor for DT-enabled CAVs as the
unavailability of necessary data on-time can put CAVs in
unexpected situations, creating user and road safety issues
[130]. It is essential to develop dependable DT-based mech-
anisms for CAVs for effective services on the road.

Figure 6 shows a graphical presentation of important se-
curity and privacy research directions in connected and au-
tomated driving systems. As these research gaps are crucial
in the development of reliable CAVs for the benefit of soci-
ety, it is required to focus on these challenges to enable vehi-
cle travelers with safe, secure, and intelligent vehicles in the
near future. Figure 6 also displays that developing adequate
solutions for these research problems can offer various fea-
tures to improve the states, operations, and functionality of
CAVs.

6. Conclusions
This survey article gives an overview of CAVs in differ-

ent aspects. Considering the significance, important applica-
tions, and mobility nature of CAVs, we have discussed vital
security and privacy properties as well as performance eval-
uation parameters to understand their importance in CAVs.
Moreover, a variety of attacks are briefly explained, and their
possible countermeasures are discussed. Such potential at-
tacks significantly impact the automotive system of CAVs
and can produce unexpected consequences. We have ex-
tensively reviewed different categories of ADPS and have
systematically studied recent IVN solutions to classify them
under the category of attack detection and protection. To
quickly provide in-depth knowledge about the current re-
search status on ADPS approaches, we present a compar-
ative summary of relevant methods under each category by
providing their key contributions, features, and scope for en-
hancement. We hope this survey will provide a strong base
to study recent ADPS solutions and research directions for
new and more appropriate techniques to achieve better secu-
rity and performance efficiency.
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