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Abstract

The Message Passing Interface (MPI) is a widely used standard for interprocessor communications in parallel computers and PC

clusters. Its functions are normally implemented in software due to their enormity and complexity, thus resulting in large communication

latencies. Limited hardware support for MPI is sometimes available in expensive systems. Reconfigurable computing has recently

reached rewarding levels that enable the embedding of programmable parallel systems of respectable size inside one or more Field-

Programmable Gate Arrays (FPGAs). Nevertheless, specialized components must be built to support interprocessor communications in

these FPGA-based designs, and the resulting code may be difficult to port to other reconfigurable platforms. In addition, performance

comparison with conventional parallel computers and PC clusters is very cumbersome or impossible since the latter often employ MPI or

similar communication libraries. The introduction of a hardware design to implement directly MPI primitives in configurable

multiprocessor computing creates a framework for efficient parallel code development involving data exchanges independently of the

underlying hardware implementation. This process also supports the portability of MPI-based code developed for more conventional

platforms. This paper takes advantage of the effectiveness and efficiency of one-sided Remote Memory Access (RMA) communications,

and presents the design and evaluation of a coprocessor that implements a set of MPI primitives for RMA. These primitives form a

universal and orthogonal set that can be used to implement any other MPI function. To evaluate the coprocessor, a router of low latency

was designed as well to enable the direct interconnection of several coprocessors in cluster-on-a-chip systems. Experimental results justify

the implementation of the MPI primitives in hardware to support parallel programming in reconfigurable computing. Under continuous

traffic, results for a Xilinx XC2V6000 FPGA show that the average transmission time per 32-bit word is about 1.35 clock cycles.

Although other computing platforms, such as PC clusters, could benefit as well from our design methodology, our focus is exclusively

reconfigurable multiprocessing that has recently received tremendous attention in academia and industry.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Overview of MPI

To facilitate parallel program development, the hardware
can be abstracted as a collection of homogeneous proces-
sors, each with its own memory and support for inter-
processor communications and synchronization. Such a
distributed memory view is the default for PC clusters and
e front matter r 2006 Elsevier B.V. All rights reserved.
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the type of configurable architectures we envisage in Section
1.2. Parallel programming often follows the Single Program
Multiple Data (SPMD) paradigm, where all processors run
the same program on their own data sets. On top of the
underlying hardware, software-based interprocessor com-
munications can be realized via either shared memory or
distributed memory concepts; the former leads to ease in
programming whereas the latter to more optimized
programming that focuses on program locality.
Interprocessor communications in distributed memory

systems, such as PC clusters, come in two-sided and one-
sided variants. The first variant employs an extensive
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collection of message-passing alternatives to realize two-
way interprocessor communications. This variant first
included the Parallel Virtual Machine (PVM) [1], and later
various incarnations of Message Passing Interface (MPI)
[2], such as LAM/MPI [3], MPICH, WMPI [4], that
implement hundreds of functions, and some lesser known
BSP (Bulk-Synchronous Parallel) libraries comprised of a
few dozen functions, such as the Oxford BSP Toolset [5]
and the Paderborn University PUB-Library [6]. Due to
their size, these libraries are normally implemented in
software, thus resulting in large communication latencies.
A comprehensive study of the effects of these latencies on
the performance of cluster architectures was presented
by Martin et al. [7]. Significant improvements could be
gained from a hardware implementation that can reduce
communication latencies significantly, thereby increasing
the overall bandwidth. However, the large number of
functions in standard MPI makes any such implementation
infeasible.

The one-sided Remote Memory Access (RMA) variant,
on the other hand, is an effective way to program a
distributed-memory parallel computer [8]. In this case, a
single process puts data directly into another process’s
memory space. One-sided communication employs each
time only a PUT or its symmetric GET instruction to
communicate information. In contrast, message-passing
implementation in MPI has more than eight choices. Thus,
under RMA, the programmer does not have to choose
among numerous alternatives for interprocessor commu-
nication as there is only one method to do so. Moreover, an
optimized implementation of its communication library
(in either software or hardware) is feasible due to its small
size. RMA has actually been available since the introduc-
tion of the Cray SHMEM primitives [9] and more recently
with the GASNet Extended Application Programming
Interface (API) [10-12]. Despite the SHMEM implication
in the name, RMA has been used widely for interpro-
cessor communications in distributed memory systems.
Table 1

Primitives to support RMA

Primitive Short description

BEGIN (nprocs) Initiate an SPMD program on nprocs p

END ( ) Terminate the current SPMD run

ABORT ( ) Abort

NPROCS ( ) How many processors?

PID ( ) ID of issuing processor

PUT (dpid, srcaddr, desaddr,

off, len)

The processor, say with ID spid, sends th

address srcaddr of size len words to the

into its memory starting at address desa

GET (dpid, srcaddr, desaddr,

off, len)

Processor, say with ID spid, gets the con

starting at address srcaddr+off of size len

memory starting at address desaddr

REGISTER (desaddr) Register desaddr as a globally available

DEREGISTER (desaddr) Deregister desaddr

BARRIER( ) Stalls the calling processor until all othe

barriers as well
The simplicity of the RMA interface, and the elegance and
efficiency of its primitives [13–17] led to its adoption,
originally by some model-specific programming libraries,
such as the Oxford BSP Toolset and PUB libraries, and
subsequently by MPI-2 [8]. The current support of RMA in
MPI libraries varies. Some freely available libraries, such as
LAM/MPI and more recently MPICH, support it.
Table 1 shows a universal set of primitives required by

the RMA framework we are proposing along with their
MPI-2 equivalent functions [13]. Any other communica-
tions-related MPI function can be implemented using these
primitives; operations such as gather, scatter, broadcast
and scan can be implemented using PUT and potentially
GET operations. BEGIN (nprocs), END ( ) and ABORT
( ) are the functions used to start, end and abort an SPMD
program. NPROCS ( ) returns the number of processors in
the present SPMD run. Each processor in the system has
an identification number and PID ( ) returns that number
locally. PUT ( ) and GET ( ) are the only functions used for
data transfers. PUT (dpid, srcaddr, desaddr, off, len) is used
by a given processor spid to send len words of data to
processor dpid. The data are stored in location srcaddr in
spid, while it is to be written starting at location desaddr+

off (off is an offset) in dpid. Symmetric to PUT ( ) is the
GET ( ) operation. REGISTER (desaddr) and DEREG-
ISTER (desaddr) provide a unique reference mechanism to
address a remote (i.e., globally available) variable. In an
SPMD program, the address of a variable that exists on
multiple processors may not be the same across the
distributed memories. If information is to be communi-
cated from/into such a remote variable, a unique reference
mechanism must be devised independently of the physical
memory address of the variable; otherwise, each processor
must maintain a collection of (local memory address,
processor ID) pairs for the globally available variable.
BARRIER ( ) is a synchronization operation that stalls the
issuing processor until all processors in the system have
also executed their BARRIER ( ) instruction.
MPI-2 equivalent function

rocessors MPI_Init

MPI_Finalize

MPI_Abort

MPI_Comm_Size

MPI_Comm_rank

e contents of its memory starting at

processor with ID dpid to be stored

ddr+off.

MPI_Put

tents of processor dpid ’s memory

words and copies them into its own

MPI_Get

variable MPI_Win_create

MPI_Win_free

r processors have executed their MPI_Barrier
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1.2. Overview of configurable computing systems and

motivation

Classical parallel computer systems based on multiple
commercial-off-the-shelf (COTS) microprocessors cannot
satisfy the high-performance requirements of numerous
applications; not only are these requirements increasing at
a rate faster than Moore’s Law but the cost of these
systems is prohibitively high. To bridge the performance
gap but at a very high cost, Application-Specific Integrated
Circuit (ASIC) implementations are often employed.
However, ASIC designs are not flexible, require prohibi-
tively high development costs and take very long time to
market. FPGAs were once used in ASIC prototyping and
glue logic realization for digital designs. In addition to the
Xilinx and Altera companies, the most famous in FPGA
production, virtually every chipmaker is pursuing reconfi-
gurable computing nowadays, such as Hewlett-Packard,
Intel, NEC, Texas Instruments, Philips Electronics and
several startups. We use the general term configurable in
our research to denote systems that are configured at static
time and/or reconfigured at run time. Cray and SGI
supercomputers engulfing FPGAs have recently become
available as well. Each chassis in the Cray XD1 super-
computer contains six boards, each containing several
processors and an FPGA [18].

Similarly, the experimental BEE2 system contains FPGAs
for computations, and COTS components for memory and
network interfaces [19]. Although an earlier BEE version
targeted wireless communications simulation, BEE2 targets
numerous high-performance applications. Finally, the
FPGA High Performance Computing Alliance was launched
in Edinburgh, UK, on May 25, 2005 [20]. Its purpose is to
design and build a 64-node FPGA-based supercomputer
capable of 1 TeraFlop performance; it will be located at the
Edinburgh Parallel Computing Centre. The alliance mem-
bers acknowledge the Herculean task of making this machine
easy to program. The other members are Algotronix, Alpha
Data, Institute for System Level Integration, Nallatech and
Xilinx. To demonstrate its effectiveness, the alliance will port
three supercomputer applications from science and industry.
The alliance claims that this system will be up to 100 times
more energy efficient than supercomputers of comparable
performance and will occupy space equivalent to that of just
four PCs. Of course, coprocessors of low-cost that could be
embedded in FPGAs in the form of soft core IPs for
implementing RMA primitives could benefit tremendously
the latter two projects as well.

Parallel system implementations on a single FPGA were
until recently exclusive for special-purpose, low-cost de-
signs (e.g., systolic-array or data-parallel configurations)
primarily due to resource constraints. However, it has been
shown recently that FPGAs can now facilitate the
implementation of programmable parallel systems inside
one or more chips [21–24]. High versatility in programming
is possible by often employing Intellectual Property (IP)
soft processor cores, such as Nios from Altera Corp. and
MicroBlaze from Xilinx Inc. Also, the implementation of
floating-point units (FPUs) for processors embedded in
FPGAs has been a recent trend due to the available higher
resource density, as evidenced by Underwood [25] and
Wang and Ziavras [24] and the introduction of MicroBlaze
4.00 in May 2005. The latter contains a 32-bit single-
precision, IEEE-754 FPU which is part of the Xilinx EDK
(Embedded Development Kit). FPGAs have relatively low
cost so they can be used either to prototype or build the
final product for parallel platforms. An FPGA-based
evaluation board can cost from less than $500 to about
$5000. The most advanced FPGA device costs a few
hundred dollars, whereas a board with half a dozen to a
dozen FPGAs may cost up to $100K; it is normally the
software environment for the system that costs much more
than the hardware. Due to the high cost of this software
and the associated burdensome experience, any means of
facilitating code portability across FPGA platforms in
multiprocessor implementations (which are even more
difficult to deal with) is absolutely essential.
To conclude, multi-million gate FPGAs make it now

feasible to implement cluster-on-a-chip (multiprocessor)
systems, thus providing reduced-cost platforms to utilize
previously done research in parallel processing. Many
dozens of specialized or a few dozen of semi-customized
(i.e., programmable) computing processors may be em-
bedded into a single FPGA using point-to-point networks
such as those presented in [26,27]. Dally and Towles [26]
introduced the concept of packet-transmitting on-chip
networks to reduce the latency and increase the bandwidth
in high-performance circuits. A methodology to design the
interconnection network for multiprocessor systems on
chips (MPSoCs) was presented by Benini and DeMicheli
[27]. For example, we have embedded our own program-
mable processors in our HERA machine which was
designed for matrix operations [23]; HERA implements
partial reconfiguration at run time, where different groups
of processors can execute simultaneously different pieces of
Single Instruction Multiple Data (SIMD) or Multiple
Instruction Multiple Data (MIMD) code, or a combination
of these types of code. Despite HERA’s wide versatility,
each of the two target Xilinx XC2V6000 FPGAs contains
about 20 processors. This number will increase significantly
if this design is ported to more recently introduced FPGAs.
Current FPGAs also have substantial support for I/O,
which is crucial to parallelism. For example, not only does
the Xilinx Virtex-4 FPGA also contain up to two PowerPC
processors with interface for user coprocessors but it
facilitates 1Gb/s Ethernet interconnectivity as well. Since
intra-FPGA and on-board inter-FPGA direct communica-
tions are fast, communication overheads are drastically
reduced when compared to PC clusters, the most popular
parallel platforms. Additionally, these overheads could be
reduced further by tailoring the configurable architecture
to suit the communication patterns in the application.
Our main motivation is to support the portability of

parallel code across FPGA-based systems embedded with
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multiple soft microprocessor cores interconnected via on-
chip direct networks. This has led us to the design of the
communications coprocessor proposed in the current
paper. This coprocessor implements the aforementioned
MPI primitives (presented in Section 1.1) and, for the
purpose of compatibility, communicates with any attached
main processor via memory mapping techniques. There-
fore, this coprocessor can support the data exchange
requests of its attached processor as long as either RMA-
based parallel programs are run or MPI function calls are
converted by a compiler to use exclusively these primitives.
Another advantage of this approach is that MPI-based
code written for a PC cluster or a supercomputer could be
potentially ported in a straightforward manner to such an
FPGA-based parallel computing platform in an effort to
provide portability across diverse architectures.

1.3. Related work

A few publications related to partial hardware support for
MPI in cluster environments have appeared recently.
However, such environments are not characterized by
limited resources, so these solutions do not apply easily to
FPGA-based designs. Despite this fact, a review of these
projects follows and suitable performance comparisons with
our design are presented in the experimental analysis section
of this paper. An FPGA-based implementation of SunMPI-
2 APIs for the Sun Clint network is reported by Fugier et al.
[28]. Clint was developed based on the observation that
network traffic is often bimodal containing large and small
packets requiring high throughput and low latency,
respectively; it employs two physically separate channels
for these two distinct types of packets. To improve the
performance, new specifications for the implementation of
MPI functions were provided. Gigabit Ethernet constitutes a
low-cost solution in high-speed interconnects. On the other
hand, advanced solutions, such as Scalable Coherent
Interface (SCI), Myrinet, Quadrics and the Gigabyte System
Network, improve the performance by integrating commu-
nication processors in the Network Interface Cards (NICs),
realizing various user-level communication protocols and
introducing programmability. Quadrics [29] goes one step
further by integrating each node’s local virtual memory into
a globally shared virtual space; its Elan programmable
network interface can deal with several communication
protocols as well as fault detection and tolerance, whereas its
Elite communication switches can be interconnected to form
a fat tree. The complexity of Quadrics is such that it involves
several layers of communications libraries. Quadrics is
advertised to improve the performance of systems developed
from high-complexity commodity server parts. In contrast,
our target is configurable systems.

All complete implementations of MPI are software
based. One such implementation over Infiniband is
described by Liu et al. in [30], and a comparison of MPI
implementations over Infiniband, Myricom and Quadrics
is presented by Liu et al. [31]. A message-passing
coprocessor is implemented by Hsu and Banerjee in [32]
but it does not employ MPI. Our main objective is to
enable the main CPU to offload all of its communication
tasks to the coprocessor and not waste valuable CPU cycles
in communication activities. A similar scheme is used in the
IBM Blue Gene/L supercomputer, where the second
processor in each node can act as a communications
coprocessor [33]. The 1/2-roundtrip latencies on BlueGene
are approximately 6 ms [34]. Myrinet was chosen by
Tipparaju et al. [35] for an RMA-based study, despite its
limited support for RMA (only the PUT operation is
implemented in hardware); nevertheless, the results demon-
strated performance improvement over MPI. Even this
result justifies our effort.
Although modern network interfaces often offload work

related to MPI processing, the time required to service
requests stored in the receive queue may grow very
substantially. Efforts to solve the problem through hashing
do not provide good results because of increases in list
insertion times and frequent wildcarded calls of two-sided
MPI communication [36]. Based on this observation, a
processing-in-memory (PIM) enhancement to an NIC that
contains a PowerPC 440 embedded processor is proposed by
Rodrigues et al. [36]. The PIM design decreases the search
time for a linked list by carrying out multiple searches
simultaneously. Realizing such a design with current silicon
technology is not easy. Therefore, a theoretical analysis was
presented of the required resources in the PIM design for a
subset of 11 MPI functions. The design was simulated with a
component-based discrete event simulator that integrated
the SimpleScalar tool suite. The simulation involved a
simple point-to-point, two-node network with fixed latency.
An associative list matching structure to speedup the
processing of moderate length queues under MPI is
presented by Underwood et al. [37]. Simulations compared
the performance of the resulting embedded processor to a
baseline system. On the negative side, the pipeline in their
FPGA-based prototype does not allow execution overlaps,
therefore a new match is processed for every six or seven
clock cycles. These two mentioned studies further intensify
the importance of an RMA-based approach because of its
reduced complexity and implementation efficiency [13].
This paper is organized as follows. The coprocessor

design is presented in Section 2. It is implemented on a
Virtex-II XC2V6000 FPGA. For the purpose of evaluating
our approach, Section 3 shows the design of a fast router to
which several coprocessors with their associated main
CPUs can be attached to implement multiprocessor
systems. Experimental results are covered in Section 4,
while conclusions are presented in Section 5.

2. Coprocessor design

2.1. Registration Table (RT)

In a multiprocessor system, a globally available variable
via which data can be communicated may reside in
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different memory addresses of member processors. To
make programming easy and efficient, this detail should be
hidden from the user. Registration via MPI_Win_create in
MPI-2 and Register( ) in our approach is a process that
establishes a common name/referencing mechanism to a
variable having multiple instances in an SPMD program.
This local–global relationship is established through
registration and can be handled by our coprocessor.
Deregister( ) in our approach is a process opposite to
registration, where information for a globally available
variable is removed from all the local coprocessor tables.
We use eight bits to represent desaddr in the registration
process. Hence, information for up to 28 ¼ 256 globally
shared variables may be present simultaneously. The local
memory address is 32 bits wide, allowing the CPU to index
4Gbytes of local memory; this space is more than enough
for configurable multiprocessor designs. The registration
operation stores the 32-bit local address of the globally
available variable in the next vacant position of the local
RT of every coprocessor in the multiprocessor; this
position is the same in all the RTs. The 8-bit index to
access the stored 32-bit address in the RT serves as the
variable’s global address and the deregistration operation
removes the 32-bit local address from all the RTs in the
multiprocessor.

The RT in our design is used to realize normal RAM
lookup, Content Addressable Memory (CAM) lookup, and
address register and deregister. In normal RAM lookup,
given the 8-bit address of a globally available variable, the
RT returns locally the 32-bit local address; this operation is
applied when a packet is received from another coproces-
sor so that the requested local access can be accomplished
with the correct address for the variable. In CAM lookup,
given the 32-bit local address of a globally available
variable, the RT returns the 8-bit index where the former
address is stored; this operation is needed when the
coprocessor executes a PUT or GET to a remote processor,
and needs the 8-bit address of the former variable to form a
packet. Thus, a combined CAM/RAM structure with very
efficient read, write and delete operations is needed to
implement the RT. The chosen building block for the RT is
a 32-word deep, 9-bit wide CAM32� 9 [38]. This design
takes advantage of the dual-port nature of block Selec-
tRAM+(BRAM) memories in Virtex-II devices. In addi-
tion to the distributed SelectRAM+ memory that offers
shallow RAM memories implemented in Xilinx Configur-
able Logic Blocks (CLBs), Virtex-II FPGAs also contain
large BRAM blocks. There are 144 18Kbit BRAM blocks
in the XC2V6000 FPGA that we used to implement the
coprocessor; they can store 2592Kbits or 81K 32-bit
words. The two ports A and B can be configured
independently, anywhere from 16K-word� 1-bit to 512-
word� 32-bit. These ports have separate clock inputs and
control signals, and access the same 16Kbits of memory
space with an addressing scheme based on the port width.
Ports A and B are for write and read/match operations,
respectively.
The unique feature of the CAM32� 9 is that it decodes
the 9-bit word in the input before storage (one input bit is
connected permanently to 0 in our implementation since
the index for RT access is 8 bits). As the input can assume
the values 0–511, the input with value m can be represented
with 511 zero bits and a single 1 bit in the mth binary
position [38]. For example, for the binary input 000000101
(or 5 in decimal) the stored 512 bits are 000....000100000;
the index of the least-significant bit is zero. M 512-bit
words are then needed to store M decoded 9-bit words.
Fig. 1 shows a 32� 512 CAM array, for M ¼ 32. When the
9-bit input is searched for in the CAM, the 32-bit port B
displays the match(es). For our example in the figure,
where the word 0000 00101 was previously written in
column 2 of the CAM32� 9, the match operation for the
input with value 5 will return the 32-bit value 0000 0000
0000 0000 0000 0000 0000 0100 stored in row 5; it
represents a match found in column 2 (the output is the
decoded representation of 2). If no match is found, the
output at port B is 0000 0000 0000 0000 0000 0000 0000
0000. For several matches, a 1 is returned for each
corresponding column; of course, our RT design never
needs to return more than one match.
For the write operation, the memory is viewed as a

special type of RAM. The inputs to the CAM32� 9 write
port are the 9-bit data and a 5-bit address to access one of
the 32 locations. Writing data into the corresponding
location assumes first the transformation of the 9-bit input
value into its 512-bit equivalent. However, the initialization
to all zeros in the CAM32� 9 macro allows to easily toggle
just one bit in the 512-bit stored word for a change to 1.
The 1-bit data and 14-bit address inputs are used by port A
for writing; it is configured as 16384� 1. For the write
operation, the data input is asserted to 1, and the 9-bit data
and 5-bit address inputs are merged to form the upper and
lower fields in the 14-bit applied address. For the single-
cycle erase of a CAM entry, we can use a write operation
but with a 0 forced into storage instead of a 1. As earlier,
the port A address input combines the 9-bit data to be
erased and the 5-bit address. The CAM data are also stored
in RAM32� 1 primitives in an ERASE_RAM; these data
are read back to erase the CAM. Nine RAM32� 1 blocks
are used to implement the ERASE_RAM. This RT design
implements the read/match in one clock cycle, while two
clock cycles are consumed by the write and erase
operations.
Four CAM32� 9 s can be cascaded to obtain the 32-bit

wide CAM32� 32 used for the RT; a match is possible
only when all four CAMs match their data [38]. The RT
table that was designed with the CAM32� 32 block is
shown in Fig. 2. The 32-bit STATUS register keeps a
record of whether each position is filled or empty in the
CAM32� 32. A priority encoder generates the next
address for a registration (i.e., write) operation by encoding
the STATUS register. The output of the priority encoder is
the index of the vacant position in the RT to be filled next
time. The RT controller block is responsible for generating
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Fig. 2. Registration table.

ADDR[4:0] 

31 30 29 … ... … ... ... … ... … ... 05 04 03 02 01 00 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 … ... … ... ... … ... … ... 0 0 0 0 0 0 

3 0 0 0 … ... … ... ... … ... … ... 0 0 0 0 0 0 

4 0 0 0 … ... … ... ... … ... … ... 0 0 0 0 0 0 

5 0 0 0 … ... … ... ... … ... … ... 0 0 0 1 0 0 

. … ... … … ... … ... ... … ... … ... 0 0 0 0 0 0 

. … ... … … ... … ... ... … ... … ... 0 0 0 0 0 0 

. … ... … … ... … ... ... … ... … ... 0 0 0 0 0 0 

. … ... … … ... … ... ... … ... … ... 0 0 0 0 0 0 

. … ... … … ... … ... ... … ... … ... 0 0 0 0 0 0 

. 0 0 0 … ... … ... ... … ... … ... 0 0 0 0 0 0 

. 0 0 0 … ... … ... ... … ... … ... 0 0 0 0 0 0 

. 0 0 0 … ... … ... ... … ... … ... 0 0 0 0 0 0 

. 0 0 0 … ... … ... ... … ... … ... 0 0 0 0 0 0 

510 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

511 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Fig. 1. CAM32� 9 lookup example.
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the control signals for the two multiplexers and the
CAM32� 32, and also for asserting the BUSY signal
during the multicycle register and deregister operations.
Whereas registration is a write operation into the CAM,
deregistration first requires a match operation to get the 5-
bit globally available address, which is then used to
perform an erase operation (by writing a 0) into the
CAM. Table 2 summarizes all possible operations that
involve the RT.

2.2. Coprocessor design

2.2.1. Coprocessor interface and architecture

The coprocessor architecture is shown in Fig. 3. The five
stages in its pipeline are Instruction Fetch (IF), Instruction
Decode (ID), Operand Read (OR), Execute1 (EX1) and
Execute2 (EX2). The execution of PUT through the
pipeline consists basically of forming the PUT packet
header and then loading the transfer task information into
the MM Interface FIFO. The execution of GET consists of
forming the two-word GET packet header; the packet
formats are presented in Section 2.2.3. The PUT and GET
instructions consume two cycles in this process, whereas all
the others consume a single cycle.
Using a Chip Select (CS) signal, which is produced by

decoding the upper part of the CPU-issued address, the
system designer can map the coprocessor to a desired
address in the system memory map. The two least-
significant bits A0 and A1 of the address bus along with
the correct CS signal select a resource inside the
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Table 2

Registration table operations

Mode Operation Input port Output port Clock cycles

00 NOP — — 1

01 RAM_lookupa RT_ADDR[4:0] RT_DATA_OUT[31:0] 1

CAM_lookupa RT_DATA_IN[31:0] RT_MATCH_ADDR[4:0]

10 Registration RT_DATA_IN[31:0] — 2

11 Deregistration RT_DATA_IN[31:0] — 3

aThe RAM_lookup and CAM_lookup operations can be performed simultaneously in mode 01.
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FIFO 
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FIFO 

Data8 
FIFO 

Registra-
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Interface 

FIFO Head 
FIFO

Out 
FIFO 

In  
FIFO
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IF ID OR
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ler 

EX1 EX2

 MMIC 

Main Memory
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Fig. 3. Coprocessor architecture (MMIC: MM Interface Controller).
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coprocessor. The processor can use simple MOVE com-
mands to transfer data to three coprocessor FIFO buffers,
namely the Instruction FIFO, Data FIFO and Data8
FIF0. An asynchronous FIFO is one where data are
written into it from one clock domain and data are read
from it using another clock domain. All the FIFOs in our
design are asynchronous. This scheme makes the copro-
cessor portable and easy to interface to any CPU, a feature
of paramount importance in configurable multiprocessor
designs. In relation to CPU-coprocessor communication, it
requires neither a change in the main CPU design nor in
the compiler for programs utilizing the coprocessor. The
compiler only has the trivial task of mapping each RMA
instruction to one or more MOVE instructions. The
coprocessor’s direct access to the system’s main memory
enables it to do RMA transfers for which it is intended.
The aforementioned FIFO structures serve as the instruc-
tion and data memories of the coprocessor and ensure that
all the instructions can be smoothly pipelined in the
coprocessor; this will become clear when the workings of
the coprocessor pipeline are discussed. The decoding that
selects the coprocessor FIFOs as well as the NPROC and
PID registers is shown in Fig. 4. The latter two registers are
also part of the coprocessor. The former register is written
with the result of the NPROCS( ) primitive in Table 1. The
latter register is written by the attached CPU with the
node/processor ID. For the sake of simplicity, these two
registers are ignored in the remaining figures.
With 32-bit address and data buses, to be able to transfer

simultaneously to the coprocessor 32 bits of data and an
opcode, part of the address bus should carry the opcode.
The chosen encoding of coprocessor instructions is shown
in Fig. 5. The two versions of PUT, namely PUT-1 and
PUT-n, are for transferring one and n words, respectively,
where n41. This distinction makes possible a more
efficient implementation of PUT-1. Based on this instruc-
tion encoding, Table 3 lists the operands sent to the
coprocessor by its attached CPU for each RMA instruc-
tion. An individual MOVE instruction is needed to transfer
each operand to the coprocessor. The opcodes, 32-bit
operands and 8-bit operands are written into the Instruc-
tion FIFO, Data FIFO and Data8 FIFO, respectively (see
Fig. 3).
All the RMA transfers to/from the main memory MM

are handled by the Main Memory Interface Controller
(MMIC) of Fig. 3. All the data to be written into the MM
by the coprocessor are present in the In FIFO, while all the
data that are copied from the MM into the coprocessor are
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written into the Out FIFO. The fact that both the In FIFO
and Out FIFO can be read and written asynchronously
isolates this MM interface from the rest of the coprocessor
pipeline. The MMIC is granted MM access by requesting it
from the main CPU. Once it gets access, it executes each
task stored as a triplet (direction of transfer, length of data,
32-bit starting address) in the MM interface FIFO. It
continues executing tasks until there are no tasks pending
or the main CPU requires its own MM access. This
interface ensures that the coprocessor carries out MM
transfers in the burst mode and does not try to get access to
the MM on a per packet or instruction basis.

The packet controller in Fig. 3 handles the packets
received from other coprocessors in the system. It either
loads the MM Interface FIFO with an MM transfer task
for a received PUT packet or causes the execution of a
PUT into a remote processor for a received GET packet.
The size of all the FIFOs in the coprocessor is user
configurable. In our experiments, each of the Instruction
FIFO, Data FIFO and Data8 FIFO is 64 words long; the
In FIFO and Out FIFO are 512 words each, whereas the
Head FIFO and MM Interface FIFO are 16 words each.
Each word is 32 bits long. These choices represent a total of
just 39Kbits and do not affect the latencies inadvertently.
The choice should, of course, be based each time on the
overall parallel system size. The FPGA-based realization of
the router in the VHDL language makes plausible such an
adaptation.

2.2.2. Barrier synchronization

Whenever the main CPU encounters a barrier instruc-
tion, the coprocessor must complete all of its pending
communication tasks and suspend operation until all the
other coprocessors in the parallel system have done the
same. In our design, the barrier instruction in the execution
stage of the coprocessor pipeline activates the barrier
mechanism. Due to the implicit in-order servicing of
communication instructions by the coprocessor, all the
instructions before the barrier synchronization have
already gone through the pipeline. However, this does
not imply that these instructions have been executed
completely because of any of the following two reasons:
requests related to these instructions may be waiting in the
MM interface FIFO for data to be fetched from the main
memory or may be queued in the Out FIFO for outgoing
transmission. There may also be packets received from
other coprocessors that are enqueued in the In FIFO
waiting to be handled by the coprocessor’s packet
controller. Thus, for effective barrier synchronization, all
coprocessor FIFOs must be empty and the packet
controller must be idle. Naturally, the attached CPU does
not load any instructions into the coprocessor after the
barrier instruction until the coprocessor has signaled
successful completion of the barrier. Once the coprocessor
executes the barrier successfully, it asserts the Executed_-
barrier signal and waits for the HAVE_OTHERS_DONE
signal to be asserted. The latter indicates that all the other
coprocessors have reached their barrier as well and the
system wide barrier is complete. In this barrier scheme, not
only the coprocessors but the interconnection network
participates as well. This is because of the simple reason
that a packet might still be in the network while all the
coprocessors have reached their barrier temporarily. So the
barrier at the system level must take the network into
consideration; a wait period of four clock cycles was
implemented in our experiments because of the high
efficiency and relatively small size of the networks in our
experiments of Section 4. Each coprocessor now informs its
attached CPU that the barrier has been reached by making
the BARRIER_DONE signal true, which is acknowledged
by the CPU by the BARRIER_DONE_ACK signal.

2.2.3. Packet formats for communication

The transmitted PUT-1 and PUT-n packets contain
data, while the GET packet contains only information to
enable the destination coprocessor to execute a PUT to the
sending processor’s main memory. The corresponding
packet formats are shown in Fig. 6. The second word in
the header of the GET packet is the header of the PUT
packet that the receiving coprocessor has to create. The
only change that the coprocessor has to make to produce
the header of the PUT packet for a received GET packet is
to increment the data length by one. The dpid field
represents the destination processor’s address, whereas
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Fig. 5. Instruction encoding (x stands for ‘‘don’t care’’ bits). 1This field forces the opcode and the corresponding 32-bit data to be written into the

Instruction FIFO and Data FIFO, respectively. 2Opcode1 enables Data8 FIFO addressing where the 8-bit data is written temporarily into the Data8

Interface register. After every three writes into this register, a write is performed to the Data8 FIFO for the three 8-bit operands dpid, len and off.
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the myid field in the GET packet is the address of the
processor making the request. The 8-bit source and
destination address fields are for globally available data,
the packet length field represents the number of 32-bit
words in the packet and the offset field follows the
description of the PUT and GET primitives in Table 1.
For compact packet encoding, the maximum packet length
was chosen to be 31 words and, hence, the maximum data
payload can be 30 words. Although a 2-bit field is sufficient
to encode the packet type, a 3-bit field has been chosen
instead to allow the possible addition of more packet types
in the future. The encoding of the packet type is shown in
Table 4.

3. Router design

To evaluate our coprocessor design, we have also
implemented a very versatile network router that can be
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used to interconnect coprocessors together for the forma-
tion of multiprocessor systems. Our router implementation
basically consists of a packet switch having a crossbar
architecture. The crossbar is the most rational choice
because it can minimize the number of hops in packet
transmission and, therefore, the actual performance of the
coprocessor can be evaluated directly. In addition, the
crossbar is a natural choice for on-chip configurable
multiprocessor designs that may contain a few general-
purpose or up to a few dozen specialized processors; they
are the ultimate targets of our proposed approach. This
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Table 3

Coprocessor operands

Instruction Operands sent to the coprocessor

PUT-n, GET Destination address, source address (both 32

bits); destination PID, length of data, offset (all 8

bits)

pUT-1 Destination address, actual data (both 32 bits);

Destination PID, length of data, offset (all 8 bits)

Register/Deregister Address (32 bits)

Set PID/NPROCS Value (8 bits)

Begin, End, Abort,

Barrier

None
choice is justified further by the reported consumed
resources for its implementation, as described later in this
section.
There are three kinds of queuing in high-performance

packet switches: input queuing, crosspoint queuing and
output queuing. Golota and Ziavras [21] presented a
crossbar router for parallel computers with unbuffered
crosspoints, but buffered inputs and outputs. Virtual
Output Queuing (VOQ) can be used to avoid blocking of
the input queue because the receiving port for the head of
the queue packet is full; separate queues are maintained in
the input for different output ports. Rojas-Cessa et al. [39]
proposed the Combined-Input-Crosspoint-Output Buf-
fered (CIXOB-k) switch model where the crosspoint buffer
has k-cell size, with VOQs at the inputs; simple round-
robin is used for input and output arbitration. CIXOB-k
with round-robin arbitration provides 100% throughput
under uniform and unbalanced traffic.
We have implemented a crossbar router consisting of

input VOQ ports as shown in Fig. 7. For an N-processor
system, the crossbar consists of N2 crosspoints arranged in
N rows by N columns. Crosspoint CP (i, j) connects input i

to output j. Each crosspoint in our implementation
contains an asynchronous FIFO. The input VOQ port
transmits the destination/output port number along with
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the packet to the crossbar. This selects the crosspoint to
which the packet is to be delivered. The status of the
receiving crosspoint FIFO is sent back to the input VOQ
port to aid the scheduler in that port in its task. A round-
robin output scheduler selects one crosspoint from all the
non-empty crosspoints on a column to transmit a packet to
the corresponding output. The crosspoint FIFOs and the
output memory FIFOs can be configured by the user; all
are 32 words long in our implementation. In addition to the
32-bit data bus that connects a coprocessor to the router,
two additional signals are included for handshaking.
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Fig. 7. Router architecture.
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Table 4

Packet type encoding

Packet Encoding

PUT-1 001

PUT-n 010

GET 011
The basic organization of the input VOQ port is shown
in Fig. 8. The incoming packets are queued in the Input
Memory FIFO, and the part of the header consisting of the
destination address and the length of the packet is queued
in the Header Q FIFO. The VOQ controller employs an
asynchronous request-grant mechanism to read the desti-
nation port for a packet from the routing table using the
destination address stored in the Header Q FIFO. A packet
destined for output i gets buffered in VOQ(i). Round-robin
arbitration is used to select one VOQ from all the eligible
VOQs to send a packet to the crosspoint buffer. An eligible
VOQ is one which is not empty and for which the
corresponding crosspoint buffer is not full. The status of
the crosspoint buffers is determined by a feedback
mechanism. The size of the Input Memory, Header Q
and VOQ FIFOs is user configurable and equal to 512, 16
and 32 words, respectively, in our implementation.
In order to implement system-wide barriers as outlined

earlier, a mechanism must be built to indicate the presence
of packets in the router. The packets in the router can be
either in one of the VOQ ports or in the crossbar. A packet
in a VOQ port can be either in the INPUT MEMORY or
in one of the N VOQ FIFOs. The ALL_FIFOs_EMPTY
signal indicates whether all these FIFOs are empty.
Similarly, the crossbar output ALL_FIFOs_EMPTY
signal indicates that no packet is enqueued in the crossbar.
Finally, a simple hardwired AND operation on these two
signals generates the ROUTER_BARRIER signal which is
used in the system-level implementation of barrier syn-
chronization.

4. Implementation and experimental results

4.1. Target system for the experiments

The WILDSTAR II development board from Annapolis
Micro Systems was used in our VHDL-based implementa-
tion of the coprocessor and router [40]. This board contains
two Xilinx XC2V6000 speed grade 5 FPGAs with 128 MB
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of SDRAM distributed in two banks and accessed at
1.6GBytes/s, and 24MB of DDR II SRAM distributed in
12 banks and accessed at approximately 11GBytes/s. The
host PC communicates with the board via a 133MHz PCI
interface having a 64-bit wide data path. Each FPGA
contains six million equivalent system gates. The
XC2V6000 FPGA contains a 96� 88 array of Configurable
Logic Blocks (CLBs). Each CLB contains four slices, for a
total of 33,792 slices. Each slice contains, among others,
two 4-input function generators. Each generator is
programmable as a 4-input Look Up Table (LUT), 16
bits of distributed SelectRAM+ (DI-RAM) or a 16-bit
variable-tap shift register. Therefore, the maximum size of
the DI-RAM can be 1.056Mbits. Actually, single- or dual-
port RAMs can be implemented using the DI-RAM. In the
dual-port configuration, DI-RAM memory uses one port
for synchronous writes and asynchronous reads, and the
other port for asynchronous reads. The dual-port 16� 1,
32� 1 and 64� 1 configurations consume 2, 4 and 8 LUTs,
respectively. As mentioned in Section 2, the FPGA also
contains 144 18Kbit SelectRAM+ blocks (BRAMs).

A brief summary of our FPGA design flow follows.
Coding and compilation were done using ModelSim from
Mentor Graphics. The functional simulation was per-
formed in Modelsim. The VHDL files were the input to the
Synplify Pro synthesis tool. During synthesis, the beha-
vioral description in the VHDL file was translated into a
structural netlist and the design was optimized for the
Xilinx XC2V6000 device. This generates a netlist in the
Electronic Design Interchange Format (EDIF) and VHDL
formats. The output VHDL file from the synthesis tool was
used to verify the functionality by doing post synthesis
simulation in Modelsim. The netlist EDIF file was given to
the implementation tools of the Xilinx ISE 6.3i. This step
consists of translation, mapping, placing and routing, and
bit stream generation. The design implementation begins
with the mapping or fitting of the logical design file to a
specific device, and is complete when the physical design is
completely routed and a bitstream is generated. Timing
and static simulations were carried out to verify the
functionality. This tool generates an X86 file which was
used to program the FPGA. Then a C program was used;
various standard API functions available by Annapolis
Micro systems were used for communication between the
host system and the board. During execution of this
program, the host CPU programs the FPGA using the
available X86 format file, writes the program data to the
coprocessor(s) in the system, and after a given delay reads
the results back.

4.2. FIFO implementation and resource consumption

Our coprocessor implementation consumes only about
2% of an FPGA’s resources; indicatively, it consumes 1379
out of the 67,584 available LUTs and six out of the 144
available BRAM blocks (these numbers include the 284
LUTs and four BRAM blocks consumed by the CAM
memory). The percentage of consumed resources should be
much smaller than 2% for a more recent Xilinx Virtex-4
FPGA; for example, the XC4VLX200 contains 178,176
LUTs and 336 BRAM blocks. For a comparison, the
design in [37] uses from 9025 to 18,045 LUTs. Even if we
integrate the BRAM block space into the DI-RAM space,
the maximum space consumed by our design is equivalent
to 8291 LUTs.
The various FIFO queues in our design have been

synthesized in one of two ways depending on their size; we
use either DI-RAM or BRAM memory. Fig. 9 shows the
space required for both styles of FIFO implementation
with 32-bit words. In the case of BRAM, each FIFO queue
also requires minor DI-RAM space. Fig. 10 shows the
maximum frequency of the write (wclk) and read (rclk)
clocks for each style of synthesis. DI-RAM FIFOs of more
than 128 words deep use more than 1000 LUTs which is
very high, and also their read clock frequency drops
sharply below 150MHz. Using BRAM for FIFOs of size
less than 128 words wastes many resources since a single
BRAM has 576 32-bit words capacity, and therefore, is
partially used; there is only a small increase in the LUTs
used that implement the read and write counters. There-
fore, FIFOs of size less than 128 words are implemented
with DI-RAM. In contrast, FIFOs of size equal to or
greater than 128 words are implemented with BRAM.
Tables 5 and 6 summarize the related choices.
A BRAM was used as the main memory with one port

connected to the coprocessor via the coprocessor address
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and data (CAD) bus, and the other port connected to the
host CPU via the local address and data (LAD) bus. The
main memory size is 512 words and is mapped to the CAD
bus addresses 0 to 511. In our experiments, the bus
interface logic consists of two FIFOs, the address bus
FIFO and the data bus FIFO, each 512 words in size, as
shown in the coprocessor test module (CTM) of the two-
coprocessor system in Fig. 11. These two FIFOs are used
to emulate the execution of MOVE commands that
transfers opcodes to the coprocessor. The host program
preloads the 32-bit MOVE destination address into the
address bus FIFO and the corresponding data into the data
bus FIFO. The control logic (not shown in the figure) reads
both these FIFOs simultaneously via the CAD bus and
A
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Memory 

D
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BR 
AM 
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Memory 
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Host PC Interfa
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Fig. 11. A two-coprocessor test system (TCTS). AB: Address bus FIFO; DB:

data bus; CAD: coprocessor address and data bus. IFG: interface logic.

Table 5

Coprocessor memory configuration

Module Size (32-bit words) Implementation type

Instruction FIFO 64 DI-RAM

Data FIFO 64 DI-RAM

Data8 FIFO 64 DI-RAM

Head FIFO 16 DI-RAM

MM Interface FIFO 16 DI-RAM

In FIFO 512 BRAM

Out FIFO 512 BRAM

Table 6

Router memory configuration

Module Number Size (32-bit

words)

Implementation

type

Input VOQ N2 16 DI-RAM

Crosspoint

Buffer

N2 16 DI-RAM

Input Memory N 512 BRAM

Output

Memory

N 16 DI-RAM
generates the necessary write signal, thus emulating the
execution of a MOVE. The control logic also serves as an
arbiter for the CAD bus because this bus is used for two
purposes—the execution of ‘‘virtual’’ MOVEs from the
interface FIFOs to the coprocessor, and data transfer
between the main memory and the coprocessor. A global
system enable controls the interface logic. This global
system ensures that all the coprocessors in a system start
their program execution simultaneously. A 10-bit system
counter (not shown in Fig. 11) is used for debugging and
timing analysis purposes. The address bus FIFO, the data
bus FIFO, the main memory and the system counter are
memory mapped into the LAD bus memory.
4.3. Two-coprocessor test system

Fig. 11 shows a two-coprocessor test system that we have
implemented on the Annapolis board. Each CTM consists
of the coprocessor, a BRAM as the node main memory and
the interface logic that emulates the MOVE commands as
described earlier. The packets being sent and received are
monitored using Debug Memory 1 and 2. The system
frequency is 50MHz. The host C program loads the
‘‘application’’ program into the interface logic of each
CTM and then triggers the System Enable signal that
begins the execution of the ‘‘application’’ program on both
coprocessors simultaneously. The 10-bit system counter
starts counting at the same time and stops when the barrier
is reached, thus giving the total time required for the run.
Each instruction was run many times to calculate the
average time required for the completion of an individual
instruction. In each case, a single instruction was executed
on coprocessor-1 followed by a barrier, while only a barrier
was executed on coprocessor-2. Table 7 shows the
measured execution time of instructions. Since the barrier
instruction consumes eight clock cycles, to get a good
approximation of the actual execution time for each of the
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Table 8

GET and PUT execution times

n PUT-n GET-n PUT-n GET-n

Clock cycles

to barrier

(measured)

Clock cycles

to barrier

(measured)

Max.

calculated

clock cycles

per

instruction

without

barrier

Max.

calculated

clock cycles

per

instruction

without

barrier

1 31 44 18 31

2 32 46 19 33

4 34 48 21 35

8 38 52 25 39

16 46 60 33 47

30a 59 73 46 60

aThe maximum data that can be sent in one packet is 30 words.

Table 7

Measured instruction execution times (f ¼ 50MHz)

Instruction Clock cycles to

barrier

Time to barrier (ms)

Barrier 8 0.16

Registration 10 0.20

Deregistration 11 0.22

PUT-8a 38 0.76

GET-8a 52 1.04

aGET-8 and PUT-8 refer to transfers of eight words of data.
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remaining instructions, eight clock cycles should be
subtracted from the values listed in the table. In our
experiments, transfer requests are injected into the copro-
cessor practically in every clock cycle as long as there is
space in the data bus FIFO. A real CPU cannot make
communication requests that often. Consider also the fact
that application benchmarks as well make data transfer
requests at a much lower rate. This implies that the
coprocessors and interconnection network receive service
requests in our experiments that correspond to much larger
(than 2–4 node) systems.

To determine the execution time of GET and PUT for
other message sizes, more work is needed. These instruc-
tions involve both processors. The first two columns in
Table 8 show that GETs are much more expensive than
PUTs due to their two-way nature. The last two columns in
the table show the calculated execution time of individual
instructions without barrier synchronization. To derive the
calculated values corresponding to the involvement of the
coprocessor fabric in the execution, we subtract from each
measured entry one clock cycle consumed by the interface
logic in Fig. 11, eight clock cycles needed for barrier
synchronization inside a coprocessor, two clock cycles
needed to combine the barrier results from the two
coprocessors and the router (this is the minimum), and
two clock cycles to transfer the data inside the crossbar
(minimum as well). Therefore, the minimum of 13 clock
cycles is subtracted from the entries in the first two columns
of Table 8 in order to derive the execution time of
individual instructions (for the involvement of the copro-
cessor fabric and without the barrier implementation).
Table 8 indicates that the one-word message transfer

latency in our system is 31 and 44 clock cycles for a PUT-1
and a GET-1 instruction, respectively; it rises to 59 and 73
cycles for a PUT-30 and a GET-30 instruction, respec-
tively. Although these figures include barrier synchroniza-
tion as well, they represent much less than 1 ms delay for the
first pair and no more than 1.50 ms for the second pair. This
is also despite the fact that the chosen FPGA was
introduced several years ago and does not have the higher
speed of recent FPGAs. Our results compare favorably to
the latency figures of 2.7–6.5 ms cited for Myrinet with GM
drivers that bypass the operating system in the process of
sending messages [41]. Pure latency figures in ([42], p. 12)
for Quadrics/Elan and GASNet range from 3 to 8 ms. In
([42], p. 13) pure latency figures for Myrinet 2000 cards and
GASNet range from 10 to 20 ms. Times of 20 and 33 ms are
reported in ([42], p. 7) for the MPI-2 PUT and GET
instructions on Myrinet, 8 ms for the PUT and GET
instructions on QSNet Quadrics/Elan in [29], and 25 ms for
PUT and GET with the Scalable Coherent Interface (SCI)
in [43]. In addition, [43] cites 40–50 ms for Myrinet latencies
of two-sided send/recv MPI communications, and also
40–50 ms latencies for the same two-sided primitives under
Gigabit Ethernet. Therefore, our PUT and GET latency
figures are much better than those reported in [42] for a
variety of interconnects and one-sided instructions, and
those reported in [44] for two-sided instructions. Very
recent figures for the GASNet-based PUT and GET
instructions [11] range from around 20 to 12–15 ms for
MPI and GM on Myrinet, 20 and 10–14 ms for MPI and
VAPI over Infiniband, 6–8 and 1–2 ms for MPI and Elan
over Quadrics/QSNet2, 73–75 and 0.25–0.27 ms for MPI
and SHMEM on a Cray X1, 12–13 and 0.02–0.04 ms for
MPI and SHMEM on an SGI Altix, 82–83 and 38–43 ms
for MPI and LAPI on an IBM Colony cluster, and 18–19
and 8–9 ms for MPI and LAPI on an IBM Federation
cluster; LAPI is a low-level one-sided communication API
library for IBM SP systems. Therefore, with perhaps the
exception of a few dedicated hardware platforms, our
figures are superior to the other interconnects. If we also
consider that our implementation was done on an FPGA
running at just 50MHz, our design is of tremendous
importance primarily in the configurable multiprocessors
field. A 4GHz ASIC implementation of our coprocessor
could improve our reported latency figures 80-fold!

4.3.1. Total data exchange results

We further evaluated the coprocessor’s performance
using total data exchanges. In this test pattern, each
processor sends H words of data to each other processor
(including itself in our study). From the total time
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Table 9

Measured total exchange performance (including barrier synchronization)

and calculated effective bandwidth for the 2� 2 system

H Time for total exchange g (ms/32-bits)

Clock cycles ms

1 53 1.06 0.530

2 54 1.08 0.270

4 55 1.1 0.138

8 60 1.2 0.075

16 76 1.52 0.048

32 121 2.42 0.038

64 198 3.96 0.031

128 372 7.44 0.029

256 701 14.02 0.027

512 1396 27.92 0.027

1024 2771 55.42 0.027

Table 10

BSP-based analysis of the results

H max{L, gh} Clock cycles

(column 2 of

Table 9)

Lþ gh

1 52 53 55

2 52 54 58

4 52 55 63

8 52 60 74

16 52 76 96

32 87 121 139

64 173 198 225

128 346 372 398

256 692 701 744

512 1383 1396 1435

1024 2765 2771 2817
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measured, an estimate of the effective communication
bandwidth is made. A total exchange was realized by a
series of PUT-n instructions followed by barrier synchro-
nization at the end. The total time required is denoted here
by t. For the sake of simplicity, H is chosen to be a power
of two and ranges in value from 1 to 1024 words. The
parameter g ¼ t=ð2�HÞ is then calculated to find the
average time required to transfer one 32-bit word in this
hungry for resources communication pattern. The recipro-
cal of g approximates the effective bandwidth of the
system. Increases in the value of H diminish the overall
effect of the overheads corresponding to transmitting the
header information and carrying out barrier synchroniza-
tion at the end. We can deduce from Table 9 that for large
values of H, the value of g converges to about 0.027 ms per
32-bit word transmission, which is very close to the ideal
bandwidth since the system clock period is 0.02 ms (for
50MHz). This shows that our coprocessor guarantees
outstanding bandwidth.

4.3.2. Analysis of total exchange results

A BSP-based analysis is appropriate here as the results in
Table 9 also include the barrier-synchronization time which
is omnipresent in the model. The indicated parameter g is
one of the BSP model [45]. Under the BSP model, a parallel
platform is modeled as the triplet ðp;L; gÞ, where p is the
number of processors, L is the synchronization periodicity
of the system (the program is assumed to run in supersteps
inside which processors compute without any communica-
tion and finally all synchronize via a barrier), and g is the
cost of communication per word of data (i.e., the inverse of
the router throughput). More formally, g is defined so that
the cost of realizing a total exchange of size h (with each
processor sending and receiving at most h words) in
continuous message usage (i.e., for large h) is gh; for
smaller values of h, the communication latency is bound
and absorbed in parameter L that also includes the cost
of barrier-style synchronization. Thus, one can assign
the cost max{L, gh} to a total exchange, where for the first
term h corresponds to the maximum amount of informa-
tion sent or received by any processor, and for the latter
term 2 h reflects the maximum amount of data sent or
received. An alternative for the cost expression can be
L+gh.
We will use both expressions in our BSP-based analysis,

that is max{L, gh} and L+gh (an upper bound), to model
our coprocessor. We claim that an analysis of Table 9
results under the BSP model implies L ¼ 52 clock cycles
(after subtracting one cycle from the first entry in Table 9
representing injection of the transfer request by the
emulator) and g ¼ 1:35 cycles per word (since g converges
to about 0.027 ms and the clock cycle is 0.02 ms). Consider-
ing the H values in Table 9, the suggested L and g values,
and noting that h ¼ 2 H, we obtain Table 10. The results in
this table demonstrate that either of the two proposed BSP
costs is quite close to the measured time, and in all cases the
observed time is between the two BSP costs. Thus, this
analysis proves that g ¼ 1.35 clock cycles which is a very
good value.
Benchmark programs for the total exchange operation

based on the MPI primitives of Table 1 were developed by
one of the coauthors [13]; some experimental results
involving other benchmark programs were reported as
well. The total exchange benchmark programs were run on
a nine-node dual-processor cluster consisting of 1.2GHz
AMD Athlon CPUs, each one having 64K L1 and 256K
L2 caches; the nodes were connected by a 1Gbit/s Ethernet
switch [13]. Similarly to our presented experiments, the
results on the PC cluster involved two nodes, utilizing one
CPU in each node. Fig. 12 compares the g parameter of the
PC cluster and the two-coprocessor system. The results
prove that our coprocessor implements the MPI primitives
much more efficiently. The 1Gbit/s Ethernet switch in the
cluster and the crossbar in our 2� 2 system do not have
any significant negative effect on the performance, so the
results in the figure show real node performance in
implementing the MPI primitives.
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Fig. 12. (a) Comparison of g for the two-coprocessor (2� 2) system and the PC cluster; (b) g for the 2� 2 system plotted separately for higher precision.

0

50

100

150

200

250

4 8 16 32 64 128 256 512

H

g
 (

u
s)

4x4 Cluster

0

0.05

0.1

0.15

0.2

4 8 16 32 64 128 256 512

H

g
 (

u
s)

4x4

(a) (b)
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4.4. Four-coprocessor test system

Four-coprocessor test modules (CTMs) were intercon-
nected as well using a 4� 4 crossbar switch for total data
exchange operations. A comparison in Fig. 13 with similar
runs on the aforementioned PC cluster (results published in
[13]) demonstrates the outstanding performance of the
coprocessor. Fig. 14 shows a comparison of total exchange
times for the 2� 2 and 4� 4 systems. The time for 4� 4 is
slightly larger than that for 2� 2 primarily due to increased
communication latencies in the larger crossbar and the
larger probability of having simultaneously multiple
messages in queues. The results prove once more the
superiority of our design and its good scalability. The
crossbar is often a good choice for on-chip systems
containing up to a few dozen processors. To build even
larger systems, such chips may be interconnected via a
second-level network of the same or another type.
5. Conclusions

This paper demonstrated the design and implementation
of a coprocessor for communicating messages in multi-
processor systems under the RMA model. A universal and
orthogonal set of RMA primitives were implemented
directly in hardware targeting a low-cost hardware design
of low latency. Our research applies primarily to multi-
processor on-chip designs embedded in FPGAs. However,
comparisons with other advanced approaches targeting
more conventional computer platforms were presented as
well. We also implemented a crossbar router that was used
to build parallel systems for an experimental analysis of
performance. The latencies for the studied one-sided
communications are reduced dramatically as compared to
those in a typical cluster environment. A 32-bit word
transfer requires about 1.35 clock cycles on a Xilinx
XC2V6000 FPGA running at 50MHz. Introducing these
RMA primitives in configurable computing creates a
framework for efficient code development involving data
exchanges independently of the underlying hardware
implementation. A direct comparison with conventional
parallel platforms without program rewriting is then also
possible.
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