
ARTICLE IN PRESS
0167-9260/$ - se

doi:10.1016/j.vl

�Correspond
Switzerland. Te

E-mail addr

(D. Atienza), fe

(F. Angiolini),

antonio.pullini@

giovanni.demic
1This work i

20021-109450/1

and a grant by
INTEGRATION, the VLSI journal 41 (2008) 340–359

www.elsevier.com/locate/vlsi
Invited paper

Network-on-Chip design and synthesis outlook

David Atienzaa,b,�,1, Federico Angiolinic,a, Srinivasan Muralia, Antonio Pullinid,
Luca Beninic, Giovanni De Michelia

aLSI-EPFL, Station 14, 1015 Lausanne, Switzerland
bDACYA-Complutense University, Avda. Complutense s/n, 28040 Madrid, Spain

cDEIS-University of Bologna, viale Risorgimento 2, 40136 Bologna, Italy
dDAUIN-Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Torino, Italy

Received 26 November 2007; received in revised form 23 December 2007; accepted 27 December 2007
Abstract

With the growing complexity in consumer embedded products, new tendencies forecast heterogeneous Multi-Processor Systems-

On-Chip (MPSoCs) consisting of complex integrated components communicating with each other at very high-speed rates.

Intercommunication requirements of MPSoCs made of hundreds of cores will not be feasible using a single shared bus or a hierarchy

of buses due to their poor scalability with system size, their shared bandwidth between all the attached cores and the energy efficiency

requirements of final products.

To overcome these problems of scalability and complexity, Networks-On-Chip (NoCs) have been proposed as a promising replacement

to eliminate many of the overheads of buses and MPSoCs connected by means of general-purpose communication architectures.

However, the development of application-specific NoCs for MPSoCs is a complex engineering process that involves the definition of

suitable protocols and topologies of switches, and which demands adequate design flows to minimize design time and effort. In fact, the

development of suitable high-level design and synthesis tools for NoC-based interconnects is a key element to benefit from NoC-based

interconnect design in nanometer-scale CMOS technologies.

In this article we overview the benefits of state-of-the-art NoCs using a complete NoC synthesis flow, and a detailed scalability analysis

of different NoC implementations for the latest nanometer-scale technology nodes. We present NoC-based solutions for the on-chip

interconnects of MPSoCs that illustrate the benefits of competitive application-specific NoCs with respect to more regular NoC

topologies regarding performance, area and power. Moreover, we show that it is currently feasible to synthesize in an automatic way a

complete custom NoC interconnect from a high-level specification in few hours. Finally, we summarize future research challenges in the

area of NoC interconnect design automation.

r 2008 Elsevier B.V. All rights reserved.

Keywords: Network-on-chip; System-on-chip; Design automation; Wires
e front matter r 2008 Elsevier B.V. All rights reserved.

si.2007.12.002

ing author at: LSI-EPFL, Station 14, 1015 Lausanne,

l.: +4121 69 30 915; fax: +41 21 69 30 909.

esses: david.atienza@epfl.ch, datienza@dacya.ucm.es

derico.angiolini@epfl.ch, federico.angiolini@unibo.it

srinivasan.murali@epfl.ch (S. Murali),

polito.it (A. Pullini), luca.benini@unibo.it (L. Benini),

heli@epfl.ch (G. De Micheli).

s partially supported by the Swiss FNS Research Grant

, the Spanish Government Research Grant TIN2005-5619,

STMicroelectronics for University of Bologna.
1. Introduction

In the last years there has been an increase in
computation requirements for embedded systems due to
the increasing complexity of new communication and
multimedia standards. This has fostered the development
of high-performance embedded platforms that can handle
the computational requirements of recent complex algo-
rithms, which cannot be executed in traditional embedded
mono-processor architectures.
In addition, the continuous time-to-market pressure for

consumer embedded devices has made it impossible for a

www.elsevier.com/locate/vlsi
dx.doi.org/10.1016/j.vlsi.2007.12.002
mailto:david.atienza@epfl.ch,
mailto:datienza@dacya.ucm.es
mailto:datienza@dacya.ucm.es
mailto:federico.angiolini@epfl.ch,
mailto:federico.angiolini@unibo.it
mailto:federico.angiolini@unibo.it
mailto:srinivasan.murali@epfl.ch
mailto:antonio.pullini@polito.it
mailto:luca.benini@unibo.it
mailto:giovanni.demicheli@epfl.ch


ARTICLE IN PRESS
D. Atienza et al. / INTEGRATION, the VLSI journal 41 (2008) 340–359 341
design group to perform a complete redesign each time a
new product needs to be developed. Due to all these
requirements, Multi-Processor System-on-Chip (MPSoC)
architectures have become a very attractive solution for the
new consumer multimedia embedded market [1]. As a
matter of fact, some platforms from the major semicon-
ductor vendors (e.g., Philips Nexperia [2], TI OMAP [3] or
ST Nomadik [4]) are already available today exemplifying
these paradigms in heterogeneous platforms.

Although MPSoCs promise to significantly improve the
processing capabilities and versatility of embedded sys-
tems, one major problem in their current and future design
is the effectiveness of the interconnection mechanisms
between the internal components, as the amount of
components grows with each new technological node.
Bus-based designs are not able to cope with the hetero-
geneous and demanding communication requirements of
MPSoCs. Moreover, as the semiconductor industry reaches
deep sub-micron technologies [5], power density and
process variations become critical design concerns for
embedded systems as well; thus, predictability in the design
of on-chip interconnects is becoming as important as the
provided bandwidth. Hence, new paradigms and meth-
odologies that can design power-effective and reliable
interconnects for MPSoCs are a must nowadays.

Networks-on-Chip (NoCs) have been suggested as a
promising solution to the aforementioned scalability
problem of forthcoming MPSoCs [6,7]. NoCs build on
top of the latest evolutions of bus architectures in terms of
advanced protocols and topology design, and, by bringing
packet-based communication paradigms to the on-chip
domain, they address many of the upcoming issues of
interconnect fabric design better than buses [8]. For
example, wire lengths can be controlled by matching
network topology with physical constraints; bandwidth
can be boosted simply by increasing the number of links
and switches. Furthermore, compared to irregular, bridge-
based assemblies of clusters of processing elements, NoCs
also help in tackling design complexity and verification
issues [9,10].

Using NoCs the interconnect structure and wiring
complexity can be controlled well. When the interconnect
is structured, the number of timing violations that occur
during the physical design (floorplanning and wire routing)
phase are minimal. Such design predictability is critical for
today’s MPSoCs to achieve timing closure. It leads to
faster design cycle, reduction in the number of design
re-spins and faster time-to-market. As the wire delay as a
fraction of gate delay is increasing with each technological
generation, having shorter wires is even more important for
future MPSoCs. Early works on NoC topology design
assumed that using regular topologies, such as meshes, like
those that have been used in macro-networks, would lead
to regular and predictable layouts [10,11]. While this may
be true for designs with homogeneous processing cores and
memories, it is not true for most MPSoCs as they are
typically composed of heterogeneous cores and regular
topologies result in poor performance, with large power
and area overhead. This is due to the fact that the core sizes
of the MPSoC are highly non-uniform and the floorplan of
the design does not match the regular, tile-based floorplan
of standard topologies [10]. Moreover, for most state-of-
the-art MPSoCs (like the Cell-Playstation III [12], Philips
Nexperia [13] or TI OMAP [3]) the system is designed with
static (or semi-static) mapping of tasks to processors and
hardware cores, and hence the communication traffic
characteristics of the MPSoC can be obtained statically.
Thus, an application-specific NoC with a custom topology,
which satisfies the design objectives and constraints, is
critical to have efficient on-chip interconnects for MPSoCs.
When designing an efficient NoC architecture, satisfying

the application performance constraints is a complex
process. The design issues span several abstraction levels,
ranging from the high-level application modeling to the
physical layout-level implementation. Some of the most
important phases in designing NoCs include modeling the
application traffic characteristics, synthesizing the topology
or structure of the network, setting various design
parameters (such as frequency of operation or link width),
generating the Register Transfer Level (RTL) code for the
network components and performing the physical design.
To handle the design complexity and meet the tight time-
to-market constraints, it is important to automate most of
these NoC design phases. To achieve design closure, the
different phases should also be integrated in a seamless
manner, which is not an easy challenge and opens many
commercial opportunities. In fact, three companies already
exist in this space that have started bringing the NoC
technology to commercial product, namely, Arteris [14],
Silistix [15] and iNoCs [16], and more start-ups are likely to
appear in the growing market of MPSoC on-chip inter-
connect design.
This paper tries to provide an overview of the currently

available NoC-based interconnects for next generations of
MPSoC platforms. Thus, to take into account as many key
effects as possible in our studies of NoC interconnects, we
establish a flow in this work that takes our MPSoC test
platforms down to placed&routed layouts. This flow allows
us to derive final frequency, area and power figures for the
NoC blocks to perform complete studies of different
overall NoC interconnects. In our analyses and study of
on-chip interconnects we cover NoCs implemented with
the proposed design flow using three different technology
libraries (130, 90 and 65 nm), such that we can provide
conclusions for a very representative part of the design
spectrum. Finally, according to our conclusions we suggest
a number of future research challenges in the area of NoC
technologies and interconnect design automation for
forthcoming MPSoC embedded platforms.
The remainder of the paper is structured in the following

way. In Section 2, we present an overview of state-of-
the-art in the area of on-chip interconnect architectures
and NoC design methods for MPSoCs. Then, Section 3
presents the architectural foundations of NoCs. Next, in



ARTICLE IN PRESS
D. Atienza et al. / INTEGRATION, the VLSI journal 41 (2008) 340–359342
Section 4 we describe the proposed design flow and
exploration front-end to build reliable NoC-based inter-
connects for MPSoCs and Section 5 covers in detail the
back-end process necessary for suitable NoC synthesis in
latest process technologies. After this, in Section 6 we
review the characteristics of state-of-the-art NoCs using the
proposed NoC synthesis flow, and perform a complete
scalability analysis of different NoC implementations for
several real-life MPSoC case studies using the latest
nanometer-scale technology nodes. Then, in Section 7 we
present an overview of possible future research challenges
that still need to be addressed in NoC interconnects to be
valid for future MPSoC designs and 3D integration
technologies. Finally, Section 8 summarizes the major
conclusions obtained from this work.

2. Related work

A significant number of different communication fabrics
have been described in the literature. The different versions
of the ARM Advanced Microcontroller Bus Architecture

(AMBA) [17], including the latest AXI [18] standard, and
the ST Microelectronics STBus [19] and Sonics MicroNet-
works [20] are examples of advanced buses that attempt to
overcome the limitations of classical shared bus architec-
tures and bridge-based assemblies of clusters of processing
elements by different methods. For instance, multiple
STBus channels can be deployed, leading to crossbars in
the extreme solution. In fact, most of these bus solutions
are getting very similar in their parallel multi-channel
architectures for shared on-chip communication to the
packet-based interconnects promoted by the NoC para-
digm. Thus, making the differentiation between both
paradigms for on-chip interconnects, traditionally differ-
entiated, become almost inexistent.

Up to today several researchers have motivated the need
for NoC-based designs as a way to tackle design complex-
ity issues [6,7,9,21,22]. Research on NoC architectures has
fostered the proposal of different flow control protocols
[10,21,23], Quality of Service (QoS) provisions [24–26], and
asynchronous implementations of NoCs [27,28]. Moreover,
several start-ups already exist today that are bringing NoC
technologies into commercial products [14–16], thus, the
application of NoCs into real-life MPSoCs is already
becoming a reality.

In addition, various works in the literature exist that
explore the implications of the NoC paradigm at different
design levels trying to propose efficient synthesis methods
for NoC-based interconnects and to provide coherent
comparisons with bus-based MPSoCs [8,11,29]. NoC
layouts for Application Specific Integrated Circuits (ASICs)
are presented in [30–33], a test chip is shown in [34], and
different implementations of NoCs on Field Programmable

Gate Arrays (FPGAs) are provided by [35,36].
Moreover, the design of application-specific NoC

architectures for known communication patterns has been
addressed in [37–41]. Also, several researchers have
developed tool chains for designing application-specific
NoCs [21,42], while a complete Computer-Aided Design

(CAD) tool for NoC instantiation and optimization for
both regular and custom topologies can be found in [43].
Synthesis and layout results for the � pipes library of
component blocks that we leverage upon for our study of
NoC architectures are shown in [31].

3. Basic building blocks of NoC architectures

Several architectures have been proposed in the NoC
literature. However, all NoCs have three fundamental
building blocks, namely, switches (also called routers),
Network Interfaces (NIs) (also called network adapters)
and links [7,9,10]. The NoC is instantiated by deploying a
set of these components to form a topology and by
configuring them in terms of buffer depth, etc. The
backbone of the NoC consists of switches, whose main
function is to route packets from sources to destinations.
Some NoCs rely on specific topological connectivity,
such as octagon [44] or ring [45], to simplify the control
logic, while others allow for arbitrary connectivity [31],
providing more flexible matching to the target application.
NoCs can be based on circuit or packet switching, or a mix
of both; the former is aimed at providing hard QoS
guarantees, while the latter optimizes the efficiency for the
average case. When packet switching is chosen, switches
provide buffering resources to lower congestion and
improve performance. They also handle flow control [10]
issues, and resolve conflicts among packets when they
overlap in requesting access to the same physical links.
Two of the most usual flow control protocols involve
switch-to-switch communication and are retransmission-
based (i.e., packets are optimistically sent but a copy of
them is also stored by the sender, and, if the receiver is
busy, a feedback wire to request retransmission is raised) or
credit-based (i.e., the receiver constantly informs the sender
about its ability to accept data, and data are only sent when
resources are certainly available). End-to-end flow control
schemes [10], where peripheral NIs directly exchange flow
control information with each other, are more rarely used
because of their buffering requirements; the most common
usage scenario involves NoCs that implement circuit-
switching [21].
An NI is needed to connect each core to the NoC. NIs

convert transaction requests/responses into packets and
vice versa. Packets are then split into a sequence of FLow

control unITS (FLITS) before transmission, to decrease the
physical wire parallelism requirements. NIs are associated
in NoCs to system masters and system slaves. Many
current NoC solutions leverage static source routing, which
means that dedicated NI Look-Up Tables (LUTs) specify
the path that packets will follow in the network to reach
their final destination. This type of routing minimizes the
complexity of the routing logic in the NoC. As an alter-
native, routing can be performed within the topology itself,
normally in an adaptive manner; however, performance



ARTICLE IN PRESS

Fig. 1. �pipes NoC architectural blocks: switch (a), NI (b) and pipelined link (c).

D. Atienza et al. / INTEGRATION, the VLSI journal 41 (2008) 340–359 343
advantages, in-order delivery and deadlock/livelock free-
dom are still issues to be studied in the latter case.

In general, two different clock signals can be attached to
NIs: the first one drives the NI front-end, the side to which
the external core is attached, and the second one drives the
NI back-end, the internal NoC side. These clocks can, in
general, be independent. This arrangement enables the
NoC to run at a different (and potentially faster) clock
than the attached cores, which is crucial to keep transac-
tion latency low.

In this work we employ the � pipes NoC library, as a
state-of-the-art NoC solution that incorporates most of the
features and effective architectural solutions that have been
proposed in NoC designs; thus, it is representative of
various reasonable design points. The � pipes NoC [31] is
an example of a highly flexible library of component blocks
(see Fig. 1). The � pipes NoC can employ either ACK/
NACK (retransmission-based) or STALL/GO (credit-
based) flow control protocols, using output or input
buffering, respectively, for maximum efficiency. Links can
be pipelined and no virtual channels are implemented, as
this allows for a much leaner implementation. Deadlocks
are avoided by construction in the definition of the routing
tables included in the NIs. Two separate NIs are defined,
i.e., an initiator one (for the master cores) and a target one
(for the slave cores); a master/slave device requires an NI of
each type to be attached to it. The interface among cores
and NIs is point-to-point as defined by the Open Core

Protocol (OCP) 2.0 [46] specification used as public
interface of the NoC, guaranteeing maximum reusability
for different cores and MPSoCs. � pipes NIs support two
different clock signals, one for the OCP interface and
another one for the � pipes internal interface; the �pipes
clock frequency must be an integer multiple of the OCP
one, to greatly simplify the hardware and performance
overhead of clock synchronization. Since each core can run
at a different divider of the �pipes frequency, mixed-clock
platforms are possible, which provides large flexibility.

4. NoC-based interconnect design flow

As explained in the previous section, a NoC consists of
three main blocks (switches, NIs and links). Then,
leveraging the �pipes NoC architecture, we propose in
this section a complete design flow to instantiate these
blocks and generate complete NoC topologies that can
allow us to study the large NoC implementation spectrum.
The proposed complete flow for designing NoCs is

presented in Fig. 2. The tool flow has three main phases
and several tools integrated together. In the first phase or
Front-End Phase, several key NoC architectural features
are determined, such as the interconnect structure
(or topology), routing tables or path widths for each traffic
flow. We have developed the SunFloor tool to automate
this phase. In the intermediate phase or Architectural
Design Phase, the RTL code of the NoC architecture is
instantiated. Finally, in the Back-End Phase, the NoC is
implemented on FPGA or ASIC back-ends, and simulated
or emulated accordingly. These three phases are explained
in detail in the subsequent sections.
Before going into the methods used in the proposed flow,

we present some background on NoC topology synthesis,
deadlock issues and area-power modeling aspects.

4.1. Background on NoC topology synthesis

The standard topologies (mesh, torus, etc.) that have
been used in macro-networks can result in poor perfor-
mance and have large power and area overhead when used
for heterogeneous MPSoCs. As we illustrate in this section,



ARTICLE IN PRESS

Fig. 2. Our complete NoC design flow.

Table 1

Topology comparisons

Parameter Mesh Application-specific Gain

Power (mW) 301.78 79.64 74%

Hop count 2.58 1.67 35%

Total wire length (mm) 185.72 145.37 1.28�

Design area (mm2) 51.0 47.68 1%

D. Atienza et al. / INTEGRATION, the VLSI journal 41 (2008) 340–359344
when the interconnect can be designed in a structured
manner, like in regular topologies, the number of timing
violations that occur during the physical design (floor-
planning and wire routing) phase tend to be reduced (see
Section 5). However, the actual features of the switches
(e.g., input/output connectivity or target frequency) are key
elements to define the final topology, and very important
additional benefits in power savings and performance can
be achieved by customizing the NoCs for the actual
application patterns of each final MPSoC. These additional
power savings and performance improvements are critical
to achieve suitable interconnects for today’s and forth-
coming MPSoCs.

As a motivating example, the network power consump-
tion (switch and link power consumption), hop count, wire
length and design area of two different NoC topologies for
a video processor MPSoC with 42 cores [43] are presented
in Table 1. The first topology is a standard mesh, while the
second is a custom topology generated using the metho-
dology presented in this paper. The wire lengths and design
area are obtained from floorplanning of the NoC designs.
The detailed explanation of the topologies and the floor-
planning process are described later in Section 5. The
custom topology leads to a 74% reduction in network
power consumption, a 35% reduction in average hop
count, a 1:28� reduction in total length of wires, and a 1%
reduction in design area when compared to the mesh,
illustrating the potential benefits of application-specific
NoC designs with respect to regular topologies.

4.2. Deadlock-free NoC design

The deadlocks that can occur in NoCs can be broadly
categorized into two classes: routing-dependent deadlocks
and message-dependent deadlocks [10,38,47]. Routing-
dependent deadlocks occur when there is a cyclic depen-
dency of resources created by the packets on the various
paths in the network.
Message-dependent deadlocks occur when interactions

and dependencies are created between different message
types (e.g., requests and responses) at network endpoints,
when they share resources in the network. Even when the
underlying network is designed to be free from routing-
dependent deadlocks, the message-level deadlocks can



ARTICLE IN PRESS
D. Atienza et al. / INTEGRATION, the VLSI journal 41 (2008) 340–359 345
block the network indefinitely, thereby affecting the proper
system operation.

For proper system operation, it is critical to remove both
routing and message-dependent deadlocks in the network.
It is also important to achieve deadlock freedom with
minimum NoC area and power overhead. In the proposed
topology synthesis process (Section 4.4), we integrate
methods to find paths that are free from both routing
and message-dependent deadlocks.

4.3. Area, power models for NoC components

We have built accurate analytical models for calculating
the power consumption, area and delay of the �pipes
network components [48]. To get an accurate estimate of
these parameters, they are extracted from real pla-
ced&routed NoC designs. Then, the switching activity
in the network components is varied by injecting functional
traffic. The capacitance, resistance and switching activity
report are combined to estimate power consumption
using Synopsys PrimeTime [49] (see Section 5 for further
details).
3 4 5 6 7 8 9 10

600

700

800

900

1000

1100

Switch Size (Number of I/O ports)

M
ax

im
um

 F
re

qu
en

cy
 (

in
 M

H
z)

Fig. 3. Maximum frequency variation with switch size.

0 250 500 750 1000

0.0519

0.052

0.0521

0.0522

0.0523

Targeted Frequency (in MHz)

Sw
itc

h 
A

re
a 

(i
n 

sq
ua

re
−

m
m

)

Sw
itc

h 
Po

w
er

 C
on

su
m

pt
io

n

Fig. 4. Impact of frequency on area and energy of a 5� 5 switch for 1
A large number of implementation runs were performed,
varying several parameters, such as, the number of input/
output ports, link width and amount of switching activity
at the layout level for the NoC switches. When the size of a
NoC switch increases, the size of the arbiter and the
crossbar matrix inside the switch also increases, thereby
increasing the critical path of the switch. To have accurate
delay estimates of the switches, we model the maximum
frequency that can be supported by the switches, as a
function of the switch size, presented in Fig. 3 for 130 nm
process technology.
We use linear regression to build analytical models for

the area and power consumption of the components as
a function of these parameters. Due to the intrinsic
modularity and symmetry of NoC components, the models
are very accurate (with maximum and mean error of less
than 7% and 5%, respectively) when compared to the
actual values. Power consumption on the wires is also
obtained at the layout level. As in the � pipes architecture
each core is connected to a separate NI [50], we consider
the power consumption of the NI to be part of the power
consumption of the core.
The impact of the target frequency of operation on the

area and energy consumption of an example 5� 5 switch
obtained from layout-level estimates for 130 nm is pre-
sented in Fig. 4. Note that we plot the energy values
(in power/MHz) instead of the total power, so that the
inherent increase in power consumption due to an increase
in frequency is observed in the plot. When the targeted
frequency of operation is below a certain frequency,
referred to as the nominal operating frequency (around
250MHz in the plots), the area and energy values for the
switch remains the same because the switch implementa-
tion with minimal area and energy supports operation
until the nominal operating frequency. However, as the
targeted frequency increases beyond the nominal fre-
quency, the area and energy values are modeled as
increasing linearly with frequency. This is because the
synthesis tool (such as Synopsys DC [51]) tries to match the
desired high operating frequency by utilizing faster
components that have large area and energy overheads.
When performing the area and power estimates, we also
0 250 500 750 1000
0.026

0.028

0.03

0.032

0.034

Target Frequency (in MHz)

(i
n 

m
W

)

30nm. (a) Impact on switch area and (b) impact on switch energy.



ARTICLE IN PRESS

Vary NoC frequency from a range

Vary link−width from a range

Vary the number of switches from one to number of cores

Synthesize the best topology with the particular

frequency, link−width, switch−count

Perform floorplan of synthesized topology, get
link power consumption, detect timing violations 

Choose topology that best optimizes user objectives 
satisfying all design constraints

Fig. 5. NoC architecture synthesis (phase 2 of design flow).

Fig. 6. The MPARM SystemC virtual platform.

D. Atienza et al. / INTEGRATION, the VLSI journal 41 (2008) 340–359346
model this impact of desired operating frequency on the
switch area, power consumption.

4.4. Front-end: the SunFloor tool and platform simulation

The SunFloor tool handles the front-end design of NoCs
in the proposed flow (see Fig. 2). In the first phase of the
flow, the user specifies the objectives and constraints that
should be satisfied by the NoC. The application traffic
characteristics and the area and power models for the NoC
components are also taken as inputs. The SunFloor tool
automatically derives the NoC architecture that optimizes
the user objectives while satisfying the design constraints.
The different steps in this phase are presented in detail in
Fig. 5. In the outer iterations, the key NoC architectural
parameters (frequency of operation and link width) are
varied within a set of suitable values. The bandwidth
available on each NoC link is the product of the NoC
frequency and the link width. During the topology
generation step, the algorithm ensures that the traffic on
each link is less than or equal to its available bandwidth.
The topology generation step is performed once for each
set of architectural parameters of the target design space.
Several topologies with different numbers of switches are
explored, starting from a topology where all the cores are
connected to one switch, to one where each core is
connected to a separate switch. The analysis of each
topology includes finding the size of the switches, establish-
ing the connectivity between the switches and connectivity
with the cores, and finding deadlock-free routes for the
different traffic flows. Subsequently, to have an accurate
estimate of the design area and wire lengths, the floor-
planning of each candidate topology is automatically
performed, based on the NoC area models and user-
specified values for the area demands of the other cores in
the design. The floorplanning process thus determines the
2D position of the cores and network components. For this
purpose, we use Parquet [52], a fast and accurate floor-
planner. Based on the frequency point and the obtained
wire lengths, any timing violation on the wires is detected
and the power consumption on the links is obtained.
Eventually, from the set of all synthesized topologies and
architectural parameter design points, the topology and the
architectural configuration that optimize the user’s objec-
tives, while satisfying all the design constraints, are chosen.
As shown in Fig. 2, the next step of the flow is based on
the �pipesCompiler tool [50]. � pipesCompiler takes care
of generating the RTL SystemC code of the complete
platform, by configuring and interconnecting the � pipes
soft macros based on the specifications of SunFloor. This
includes the automatic generation of routing tables, based
on the actual communication flows required by the
application.
Once the SystemC code is available, it can be used in

multiple ways. To get accurate simulation in a flexible
environment, we integrate the NoC in MPARM (Fig. 6), a
SystemC cycle-accurate virtual platform [53]. MPARM
allows for accurate injection of functional traffic patterns
as generated by real cores (processors, DMA engines, etc.)
during a benchmark run. Further, it provides facilities for
debugging, statistics collection and tracing.

4.5. Achieving design closure

The flow outlined in Fig. 2 is composed of several steps.
Therefore, quickly achieving the design closure is not
trivial. We tackle the problem in several ways. First, we try
to make sure as early as possible, i.e., during the topology
generation phase itself, that the timing constraints after the
place&route phase will not be violated. This is a key
property of SunFloor and a must in other similar tools
developed to bring NoCs to state-of-the-art MPSoC design
flows. The use of accurate area, power and timing models
for the NoC components further bridges the gap between
the topology design phase and the back-end physical-
design phase.
In addition, to bridge the gap between the initial traffic

models (application task graph) and the actual observed
traffic after simulating the designed NoC, we introduce the
use of a mismatch parameter. If the performance con-
straints are not met during simulation, the input traffic



ARTICLE IN PRESS
D. Atienza et al. / INTEGRATION, the VLSI journal 41 (2008) 340–359 347
models can be scaled using this parameter and the design
process is repeated. This parameter is read as part of the
input specifications by the topology selection engine. The
user can manually tune the parameter; conservative values
will guarantee very fast design closure, while aggressive
settings may need redesign iterations but will very closely
tailor the NoC to the actual traffic characteristics (see
Section 6.4). Several other options are also supported by
the topology generation engine, such as support for cores
with fixed locations in the layout (due to pin/pad
constraints).

5. Back-end of a NoC implementation flow

Due to the quick pace of lithographic miniaturization, it
is nowadays well known that a number of physical-level
process issues related to deep sub-micron fabrication (such
as wire delays and leakage power) are affecting designs.
Understanding these issues is clearly key to tackling them,
for example, by compensating for them at the architectural
and tooling level.

In the case of NoCs, the relationship among back-end
flows and architectural design is even stricter due to several
factors. First, NoCs are intended to be large structures,
spread across a whole chip. As such, several design issues,
such as clock tree distribution, wire delays and variability,
play a key role in NoCs. Second, NoCs are also designed to
interconnect a large number of heterogeneous components
and devices, each of which could come as a pre-built, pre-
characterized core macro. Thus, it is key to be able to
leverage standard back-end industrial toolchains for NoC
Fig. 7. The synthesis
design; otherwise, the effort of developing customized
infrastructure would be impossible to afford.
In the following, we present an outline of the proposed

back-end flow for NoCs, subsequently focusing our
attention on specific portions of the flow that have
particular relevance to tackle NoC synthesis in latest
technology nodes, and the insights we gain from our study
of NoC implementations.

5.1. The � pipes back-end infrastructure

In the proposed NoC design and synthesis framework
for �pipes, we provide a complete back-end flow (see
Fig. 7). As a main assumption of the NoC designs studied
in this paper, without any loss of generality in our
conclusions, we focus on standard cell-based physical
implementations. In fact, although full custom design does
certainly improve results, it does also greatly decrease
flexibility and largely increases design time; thus, it is not a
desirable practise for the design of current (and specially
forthcoming) MPSoC interconnects. First, we perform
logic synthesis by utilizing standard Synopsys tools;
however, this step must be augmented with placement
awareness, as will be discussed in Section 5.2. We support
this procedure both on 90 and 65 nm technology libraries
by a partner foundry, tuned for different performance/
power trade-offs, with different threshold and supply
voltages.
During synthesis, we can optionally instruct the tools to

save power when buffers are inactive by applying clock
gating to NoC blocks. The gating logic can be instantiated
flow for �pipes.



ARTICLE IN PRESS
D. Atienza et al. / INTEGRATION, the VLSI journal 41 (2008) 340–359348
only for sequential cells that feature an input enable pin,
which are a large majority of the datapath flip–flops of
� pipes.
We subsequently perform the detailed placement&rout-

ing step within Synopsys Astro [54]. First, we feed Astro
with a coarse floorplan, generated either manually or by
SunFloor. This floorplan contains hard macros and soft

macros, separated by fences. The hard macros represent
cores and memories and are modeled as black boxes. Hard
macros are defined with a Library Exchange Format (LEF)
file and a Verilog Interface Logical Model, and obstruct an
area of choice. These boxes also obstruct some of the metal
layers laying directly above; the exact number of ob-
structed levels is configurable, depending on how many
metal layers the cores are supposed to require and on
whether over-the-cell routing should be allowed for the
NoC wires vs. between-the-cell. Soft macros are also boxes;
they enclose the modules of �pipes, and the placement
tool is allowed to operate within them as long as the fences
are not trespassed. By constraining the placement tool to
operate on a ‘‘tile’’ at a time, the solution space is
dramatically pruned, and relatively fast runtimes can be
achieved. For proper results, however, it becomes neces-
sary to specify rough timing constraints at the soft macro
boundaries; we achieve this by pre-characterization of the
links (Section 5.4).

The next step in the flow is clock tree insertion. We
instantiate a clock tree within each soft macro, to minimize
the memory requirements and runtime of this operation;
the clock trees are then attached to a common source and
balanced at the global level. The clock tree can leverage
clock borrowing algorithms in the tools. In other words,
instead of trying to fully erase clock skews (an impossible
task anyway), the skews are exploited to accommodate the
delay properties of the circuits, by supplying wider clock
periods where the logic paths are most critical. Once the
clock tree has been generated, its wires are kept untouched
within the tool, to prevent further skews from appearing.

At this point, the power supply nets are added. Two
main schemes are available. Traditionally, power rings

(metal lines carrying the power supply voltages) are laid
around the die; as an alternative, a power grid can be laid
across the chip in the topmost metal layers. The latter
choice requires more metal resources, but minimizes IR

drops (voltage drops and fluctuations due to resistive effects
in the supply networks and to the current draw). Therefore,
we choose power grids, so as to maximize voltage stability.

Finally, the routing tool begins to route the logic wires.
An initial heuristic mapping lays the wires; this initial
solution is semi-random and almost certainly violates
essential constraints, such as that of not shorting different
wires. Therefore, Search&Repair (SR) loops are executed to
fix any violations, including those regarding excessive
propagation delays.

As a final step, post-routing optimizations are
performed. This stage includes crosstalk minimization,
antenna effect minimization, and insertion of filler cells.
A sign-off procedure can be run by using Synopsys
PrimeTime [49] to accurately validate the timing properties
of the resulting design.
Post-layout verification and power estimation is

achieved as follows. First, the netlist representing the final
placed&routed topology, including accurate delay models,
is simulated by injecting functional traffic through the OCP
ports of the NIs. This simulation is aimed both at verifying
the functionality of the placed fabric and at collecting a
switching activity report. At this point, accurate wire
capacitance and resistance information, as back-annotated
from the placed&routed layout, is combined with the
switching activity report using Synopsys PrimeTime [49].
The output is a layout-aware power/energy estimation of
the simulation.

5.2. Wireload models and placement-aware logic synthesis

The traditional flow for standard cell design features
logic synthesis and placement as two clearly decoupled
stages. While our in-house experience [8] shows that this
flow achieves reasonable results for 130 and 90 nm NoC
designs, we have found the situation to be substantially
different at the 65 nm node.
The origin of the problem lies in the decoupling of the

two steps. Synthesis and placement could be considered as
independent when wire delays were negligible; this is
unfortunately not the case anymore [55]. Since wire delays
can be comparable to logic delays, if not larger, it is crucial
to be able to estimate wire delays already during synthesis.
Since wire delays depend directly on wire length, it is clear
that placement algorithms are also unfortunately affecting
the solution space of synthesis algorithms.
To alleviate the problem, wireload models have been

introduced. Wireload models are pre-characterized equa-
tions, supplied within technology libraries, that attempt to
predict the capacitive load that a gate will have to drive
based on its fan-out and on the overall design area.
Unfortunately, wireload models remain a statistical repre-
sentation of the physical reality, and are therefore an
inaccurate tool to predict delays on a single net basis, given
that each net could exhibit a different behavior. In our
65 nm tests, we experience unacceptable performance
degradation due to either under- or over-estimations of
wire loads. Even when synthesizing single NoC modules
(i.e., even without considering long links), the logic
synthesis tools generate a netlist with the expectation of
some operating frequency; however, after placement, the
actually reachable frequency is often up to 30% worse
(and even lower after the routing phase). Furthermore,
sometimes placement and routing tools simply do not
converge towards any solution at all, trying in vain to
match the expectations set by the logic synthesis step.
To address this issue NoC synthesis in 65 nm requires

placement-aware logic synthesis tools, such as Synopsys
Physical Compiler [56]. Therefore, in the proposed NoC
back-end flow, after a very quick initial logic synthesis



ARTICLE IN PRESS
D. Atienza et al. / INTEGRATION, the VLSI journal 41 (2008) 340–359 349
based on wireload models, the tool internally attempts a
coarse placement of the current netlist. Next, it iteratively
optimizes the netlist and the placement, based on the actual
wire loads implied by the current candidate placement.
The outcome is a placed netlist that is optimized also
accounting for wire delays.

We also observe in our study of NoC synthesis that other
issues may arise when placing gates into soft macros. For
example, in our test designs, placement tools perform
poorly when modules have to be placed within fences
which are either too small or too wide. While the former
case is clearly understandable, we attribute the unexpected
latter effect to the placement heuristics, which are probably
performing worse when the solution space becomes very
large. The problem must be solved by proper tuning of the
spacing among the soft macro fences and, consequently,
accurate area models of the NoC modules are required to
avoid very time-consuming iterations.
R
el

at
iv

e 
sw

itc
h 

po
w

er

R
el

at
iv

e 
sw

itc
h 

ar
ea

Fig. 8. Analysis of two representative �pipes switches in different technology

(a) Power, (b) operating frequency, and (c) area.
5.3. 65 nm technology libraries and their degrees of freedom

Fig. 8 shows how the power, speed and area of a
reference � pipes NoC switch vary, when synthesized
based on different technology libraries. The experiment
utilizes two 65 nm and two 90 nm libraries, labeled
LP-HVT and LP-LVT; while all of these libraries belong
to the Low Power (LP) family, the High V T (HVT) variant
strives for absolute minimum consumption, while the Low

VT (LVT) variant offers a more performance-oriented
setup. The switches are fully placed&routed, including the
addition of a clock tree.
A first observation is that, as hoped, synthesis in 65 nm

technologies indeed offers huge benefits compared to
90 nm; both area and power experience savings around
50% among comparable libraries, while the frequency of
the 65 nm design is higher (at least if the LP-LVT library
variant is chosen).
R
el

at
iv

e 
sw

itc
h 

fre
qu

en
cy

libraries. Figures normalized to the 4� 4 switch in the LP-HVT library.



ARTICLE IN PRESS

250 500 750 100012501500 1750 2000
0.5

1.5
2.5

5.0
9.0

0

5

10

15

20

25

30

35

40

45

N
or

m
al

iz
ed

 p
ow

er

Clock frequency (MHz)

Li
nk

 le
ng

th
 (m

m
)

250 500 750 1000125015001750 2000
0.5

1.5
2.5

5.0
9.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

N
or

m
al

iz
ed

 p
ow

er

Clock frequency (MHz)
Li

nk
 le

ng
th

 (m
m

)

Fig. 9. Power consumption of 38-bit links of varying lengths at different

operating frequencies. Values normalized to shortest link at slowest

frequency for confidentiality reasons. Missing columns represent infeasible

length/frequency combinations. (a) Performance/power oriented 65 nm

library (LP-LVT) and (b) very low-power 65 nm library (LP-HVT).

D. Atienza et al. / INTEGRATION, the VLSI journal 41 (2008) 340–359350
In addition, it is also relevant to observe that, consider-
ing for example the power results, already in 90 nm
technology, there is a factor of six difference among the
power consumption of the LP-LVT and LP-HVT imple-
mentations; in 65 nm, this gap increases to 11�. Similarly
for frequency, a gap of 3� in 90 nm becomes a gap of 6� in
65 nm. Therefore, when designing for next-generation
technologies, it is in fact impossible to identify a single
technological target. In fact, a very large set of trade-offs is
available, where, by several metrics, results can be up to
one order of magnitude different from one another. Then,
it is the designer’s responsibility to identify the best set
of technological choices in NoC synthesis for the given
project.

5.4. Link delay and power

To assess the impact of global wires, we have studied
65 nm NoC links in isolation from the NoC modules.
An overview of the results is shown in Fig. 9. Several
factors have to be considered in link design, including
obviously length and desired clock frequency. Short or
slow-clocked links do not pose problems. However,
as either length or target frequency is increased, an
undesired rise of power consumption is also observed.
The reason is that when links are pushed for high
performance, back-end tools automatically insert large
amounts of buffering gates, dramatically increasing the
energy cost of the links. If frequency or length are pushed
even further, the links become infeasible, either because
of timing violations or because of crosstalk concerns, i.e.,
the added buffers would be too large to be deployed
without affecting nearby wires. This kind of trade-off
among link performance, feasibility and power consump-
tion is crucial to the NoC designer.

Another extremely important dependency we observe
is on the specific technology library used. As seen in
Section 5.3, especially at the 65 nm node, a single
‘‘technology library’’ is no longer realistic for NoC designs
based on standard cells. In fact, manufacturing technolo-
gies are spreading across a variety of processes optimized
for specific uses, such as, LP or high performance, with
several intermediate levels featuring, for example, different
threshold voltage values. In this case, if very low-power
libraries are used, the size and speed of the buffers
interleaved along wires become dramatically inferior,
which results in much tighter constraints on frequency of
operation or length. Fig. 9(a) reports power consumption
for the 65 nm LP-LVT library, while Fig. 9(b) describes the
LP-HVT variant. These results show that NoC links
implemented using the LP-HVT library are substantially
more power-effective, but impose much tighter constraints
on link feasibility. Hence, the availability of floorplan-
aware and technology-aware high-level design automation
tools becomes key to pruning the NoC-based design space
and to identifying the best libraries for each design
according to its particular constraints.
A way to tackle the timing violations on long NoC links,
other than just inserting electrical buffers, is link pipelining.
Pipeline stages are clocked registers interleaved along the
links. By providing one or more extra clock periods to
traverse long distances, they solve the link infeasibility
problem at a much lower cost than, e.g., that of deploying
whole NoC switches in the middle of the links. In some
cases, pipelining may even produce more power-effective
solutions than regular wire buffering along particularly
critical links. However, it incurs a performance cost of one
extra cycle of latency. Another major drawback is that
NoC flow control must be extended to account for the fact
that feedback signals are now coming back after multiple
clock cycles instead of in the same clock period. This can be



ARTICLE IN PRESS

1200

Switch Radix

Fr
eq

ue
nc

y 
(M

H
z)

Fig. 10. Frequency achievable by switches of increasing cardinality.

D. Atienza et al. / INTEGRATION, the VLSI journal 41 (2008) 340–359 351
tackled by either deploying deeper buffers at the link
endpoints, and using plain registers as pipeline elements, or
by pipelining the link with flow control-aware elements,
without touching the buffers and logic at the endpoints.
The latter approach proves better in our experience [23]. In
all cases, since link pipelining affects both the RTL
description of the architecture and its latency, the need
for higher-level (but technology-aware) CAD tools able to
pro-actively accounting for them arises clearly.

5.5. Wire routability issues in NoCs

All the issues (e.g., crosstalk) applying to global wires in
NoCs also apply, to a smaller extent, to local wires. This
means that local wires are increasingly critical too in latest
and forthcoming technology nodes. As a result, in wire-
intensive components, such as, NoC switches, which are
essentially crossbars, it becomes difficult to simultaneously
achieve signal integrity, timing closure, and routability
(i.e., finding a wire layout in such a way that design rules
are respected). As tools automatically try to make wires as
straight and short as possible to improve timing, and insert
spacing among them to avoid crosstalk, a number of
Design Rule Check (DRC) violations may occur, including
overlapping/shorted wires. Routing tools automatically
try to remove DRC violations, for example, by means
of SR iterations; the design is virtually split into sub-
blocks, and the tools begin trying to resolve routing
violations one block at a time. If many violations occur, it
is unlikely that all will be automatically fixed in the NoC
synthesis flow, so designers have to resort to alternate
ways, including:
�
 Manual intervention on the layout, as in full custom
design. Of course this is extremely time-consuming and
non-reusable, and is normally only undertaken when the
violations in the NoC design are very few.

�
 Decreasing the row utilization, i.e., spreading the

module out into a larger area. Ideally this leaves more
space for wire routing, but since it may also affect the
output of placement (possibly causing the placement
algorithm to diverge from timing closure, as discussed
above), this alternative must be experimentally explored
in future research. In any case, this approach implies at
least an area cost.

�
 Decreasing the target frequency. Wires are allowed to

take less straight paths to their destinations without
violating timing constraints, and crosstalk is less of an
issue, allowing for tighter wire packing. This strategy is
very effective in removing DRC violations in NoC
synthesis, but its obvious cost is lower performance.

�
 Hierarchical floorplanning. This approach tries to better

direct the algorithms of the routing tool, by allowing
for pre-optimizations and by splitting the problem
complexity. Our experience shows that its effectiveness
in NoC synthesis depends on the specific module at
hand, and must be weighted against the extra design
effort at the tool scripting level (usually considerable).
Furthermore, hierarchical floorplanning prevents sev-
eral optimizations that tools can perform on flattened
designs. Thus, in the case of NoC switches, this strategy
seems to be of limited use in our experience. In fact, if
the designer has to manually position even the sub-
blocks of switches, just deploying more, smaller switches
would require much less effort.

In Fig. 10 we show how frequency scales when implement-
ing � pipes switches of increasing cardinality in a 65 nm
LP-MVT (medium V T ) technology.
The first observation we can draw is that placement-

aware synthesis is working as expected for the smaller
switches; there are no significant gaps among the timing
predictions of Physical Compiler and the timing actually
reached by Astro after placement&routing. The most
interesting result that we observe, however, concerns
switches larger than 10� 10 (in 65 nm process technology).
The logic synthesis tools are now aware of placement, but
not yet of routing. Starting from 14� 14, the wire density
in the switch crossbars becomes just too high to
simultaneously comply with timing objectives, guarantee
crosstalk freedom, and resolve DRC violations. Due to the
goal priorities we set in our scripts for � pipes switches, we
achieve the former two, but get an increasing amount of
the third, ranging from hundreds ð14� 14Þ to tens of
thousands ð30� 30Þ. This number of DRC violations in
NoC synthesis is clearly unacceptable for manual fixing,
and must be tackled automatically. The two possible
options for fixing are increasing the switch area or
decreasing the switch frequency. The former option proves
ineffective; for example, in the 30� 30 case, the violations
are not fixed even with a final row utilization of 60%
(i.e., by leaving 40% of the switch floorplan empty), which
is much below typical industrial rates of 85% [1,10].
The latter option gives somewhat better results, making
14� 14 and 18� 18 switches routable at a 25–30%
frequency cost, but still fails on larger switches, even after
more than halving the frequency targets. Therefore, our



ARTICLE IN PRESS

Fig. 11. VOPD custom topology floorplan and core graph.

Table 2

Comparisons with standard topologies

Application Topologies Power (mW) Avg. hops Area (mm2) Time (min)

VPROC Custom 79.64 1.67 47.68 68.45

Mesh 301.8 2.58 51.0

Opt-mesh 136.1 2.58 50.51

MPEG4 Custom 27.24 1.5 13.49 4.04

Mesh 96.82 2.17 15

Opt-mesh 60.97 2.17 15.01

VOPD Custom 30.0 1.33 23.56 4.47

Mesh 95.94 2.0 23.85

Opt-mesh 46.48 2.0 23.79

MWD Custom 20.53 1.15 15 3.21

Mesh 90.17 2.0 13.6

Opt-mesh 38.60 2.0 13.8

PIP Custom 11.71 1 8.95 2.07

Mesh 59.87 2.0 9.6

Opt-mesh 24.53 2.0 9.3

IMP Custom 52.13 1.44 29.66 31.52

Mesh 198.9 2.11 29.4

Opt-mesh 80.15 2.11 29.4

D. Atienza et al. / INTEGRATION, the VLSI journal 41 (2008) 340–359352
results show the unfeasibility of such NoC switches in latest
technology nodes.

As a consequence, even though the DRC violations for
some switches of intermediate radix can be fixed, our
studies suggest that avoiding large switches altogether may
be the best option for NoC implementations in latest
technology nodes. This is also due to system-level effects
that would result from using large centralized blocks. For
example, since many components (NIs or other switches)
would be connected to such large switches, floorplan-level
congestion would arise: some, if not all, of the other entities
would then need to be placed far away from the high-radix
switch. In turn, this would require several long links, which
would demand aggressive buffering or even pipelining, as
discussed above, and therefore bring further performance,
area and power costs.

6. Experiments and case studies

In this section we illustrate our analyses of NoC
architectures through the application of the proposed
NoC-based design flow to several case studies that
represent modern multimedia MPSoC architectures. In
addition, we compare custom NoC architectures with
respect to regular NoC-based solutions, such as different
types of mesh-based topologies.

6.1. Experiments on MPSoC benchmarks

We have applied the proposed topology design procedure
to six different MPSoC benchmarks, namely, a Video

PROCessor (VPROC) of 42 cores, an MPEG4 decoder

(MPEG4) of 12 cores, a Video Object Plane Decoder

(VOPD) of 12 cores, a Multi-Window Display (MWD)
application of 12 cores, a Picture-in-Picture (PIP) applica-
tion of 8 cores and an IMage Processing (IMP) application
of 23 cores. We refer the readers to [43] for the commu-
nication characteristics of some of these benchmarks.

For comparison, we generated both custom and mesh
topologies for the benchmarks, by modifying the design
procedure to synthesize NoCs based on mesh structure. To
obtain mesh topologies, we generated a design with each
core connected to a single switch and restrict the switch
sizes to have 5 input/output ports. We also generated a
variant of the basic mesh topology: optimized mesh

(opt-mesh), where those ports and links that are unused
by the traffic flows are removed.

The core graph and the floorplan for the custom
topology synthesized by our tool for one of the bench-
marks (VOPD) are shown in Fig. 11. The network power
consumption (power consumption across the switches and
links), average hop count and design area results for the
different benchmarks are also presented in Table 2. Note
that the average hop count is the same for mesh and
opt-mesh, as in the opt-mesh only the unused ports and
links of the mesh have been removed and the rest of the
connections are maintained. The custom topology results
in an average of 2:78� improvement in power consumption
and 1:59� improvement in hop count when compared to
the standard mesh topologies. The area of the designs with
the different topologies is similar, thanks to efficient
floorplanning of the designs. It can be seen from Fig. 11
that only very little slack area is left in the floorplan. This is
because we consider the area of the network elements
during the floorplanning process, and not after the floor-
planning of blocks. The total runtime of the topology
synthesis and architectural parameter setting process for
the different benchmarks is presented in Table 2. Given the
large problem sizes and very large solution space that is
explored (8 different frequency steps, 4 different link
widths, 42 cores for VPROC and several calls to the
floorplanner) and the fact that the NoC parameter setting
and topology synthesis are important phases, the runtime
of the engine is not large. This is mainly due to the use of
hierarchical tools for partitioning and floorplanning, and



ARTICLE IN PRESS

Mesh Tor Hyp Clos Bfly Cust
0

0.5

1

1.5

2

2.5

3

Av
er

ag
e 

H
op

 D
el

ay

Fig. 12. Performance comparisons of different NoC topologies.

D. Atienza et al. / INTEGRATION, the VLSI journal 41 (2008) 340–359 353
our development of fast heuristics to synthesize the
topology in the proposed NoC design flow. Hence, our
results illustrate that optimized application-specific NoC
synthesis for MPSoCs can be performed in a limited time.

In addition, we have performed comparisons of synthe-
sized topologies against several other standard topologies.
For mapping the cores onto the standard topologies, we
used the tool from [57]. We optimized the topologies for
performance, subject to the design and timing constraints
of the target application. The comparisons against 5
standard topologies (mesh, torus, hypercube, Clos and
butterfly) for an IMP benchmark with 25 cores are
presented in Fig. 12. The custom topology synthesized
by our method shows large performance improvements
(an average of 1:73�) over the standard topologies.

As an interesting observation, we found that prohibiting
certain turns to avoid deadlocks during routing has a
negligible impact on the power and performance results for
all of the benchmarks. This is because, even if some turns
are avoided, the path computation procedure could easily
find other paths with low cost, as several alternative low
cost paths exist between each source and destination.

6.2. Layout-level comparisons

Using the 130 nm technology library, we had earlier
manually developed a NoC design for an MPSoC that runs
multimedia benchmarks [8]. The design consists of 30
cores: 10 ARM7 processors with caches, 10 private
memories (a separate memory for each processor), 5
custom traffic generators, 5 shared memories and devices
to support inter-processor communication. The hand-
designed NoC has 15 switches connected in a 5� 3
quasi-mesh network (2 cores connected to each switch),
shown in Fig. 13(a). The design is highly optimized, with
the private memories being connected to the processors
across a single switch and the shared memories distributed
around the switches. The layout of the design is presented
in Fig. 13(b); as shown, the mesh structure was maintained
in the layout. Each of the cores has an area of 1mm2 [8] in
the design. The entire process, from topology specification
to layout generation took weeks because of several
feedback loops required to fix several timing and area
violations, and to optimize the final design according to the
required performance by target multimedia MPSoC. The
post-layout NoC could support a maximum frequency of
operation of 885MHz, which is determined by the critical
path in the switch pipeline. The power consumption of the
topology for functional traffic has been evaluated to be
368mW.
We applied our topology synthesis process with the

objective of minimizing power consumption, to automati-
cally synthesize the NoC for this application. We set the
design constraints and the required frequency of operation
to be the same (885MHz) as those of the hand-designed
topology. The synthesized NoC topology and the layout
are presented in Figs. 13(c) and (d). The synthesized
topology has fewer switches (8 switches) than the hand-
designed topology. It can support the same maximum
frequency of operation (885MHz), without any timing
violation on the wires. As we had taken into account the
wire lengths during the synthesis process to estimate the
frequency that could be supported, we could synthesize
the most power efficient topology that would still meet the
target frequency. Moreover, to reach such a design point
manually would require several iterations of topology
design and place&route phases, which would have been a
very time-consuming process.
Layout-level power consumption calculations on func-

tional traffic show that the synthesized topology has
277mW power consumption, which is 1:33� lower than
the hand-designed topology. Given the fact that the hand-
designed topology is highly optimized, with much of the
communicating traffic (which is between the ARM cores
and their private memories) traversing only one switch,
these savings are achieved entirely from efficiently spread-
ing the shared memories around the different switches. The
layout of the hand-designed NoC was manually optimized
to a large extent (by moving switches, NIs) to reduce the
area of the design. The layout of the synthesized topology
is obtained completely automatically, and still the area of
the design is close to that of the manual design (only a
marginal 4.3% increase in area).
We performed cycle-accurate simulations of the hand-

designed and the synthesized NoCs for two multimedia
benchmarks. The total application time for the benchmarks
(including computation time) and the average packet
latencies for read transactions for the topologies are
presented in Figs. 14(a) and (b). The custom topology
not only matches the performance of the hand-designed
topology, but provides an average of 10% reduction in
total execution time and of 11.3% in packet latency. Thus,
these results prove that suitable CAD and tooling support
can effectively enable competitive NoC synthesis for latest
MPSoCs.



ARTICLE IN PRESS

M0

T3

T2

T1

S14

S13

S12

S11

S10T0

M9

M8

M7

M6

P9

P8

P7

P6

P5

P4

P3

P2

P1

M5

M4

M3

M2

M1

P0

T4

6.
95

 m
m

5.1 mm

5.05 mm

1 mm2

P6

P5 P4

P3 P2

P1

M5 M4

M3 M2

M1

P0 M0

T4

T3

T2

T1

S14S13

S12

S11

S10

T0

M9

M8

M7

M6

P9

P8

P7

7.
32

 m
m

1 mm2

Fig. 13. (a), (b) Hand-designed topology and layout. M: ARM7 processors, T: traffic generators, P, S: private and shared slaves. (c), (d) Automatically

synthesized topology and layout. In (c), bi-directional links are solid and uni-directional links are dotted.

D. Atienza et al. / INTEGRATION, the VLSI journal 41 (2008) 340–359354
6.3. Impact of frequency constraints

The maximum frequency of operation that can be
supported by the NoC switches depends on the number of
switch I/O ports and process technology, as outlined earlier
in Fig. 3 for 130nm process technology and Fig. 10 for
65nm process technology. Thus, as the required NoC
operating frequency increases and the process technology
shrinks, the synthesized topologies tend to have switches of
lower cardinality. However, this trend needs to be experi-
mentally validated. Thus, in another set of experiments we
have studied the impact of the required NoC frequency on
the topology synthesis process. We have considered the
multimedia MPSoC considered in Section 6.2 and applied
the SunFloor tool to synthesize the most power-efficient
topology for different operating frequency constraints. The
number of switches used in the synthesized topologies for
different NoC frequencies is presented in Fig. 15. From this
plot we can infer that at low operating frequencies, a
topology with few, but large switches results in the most
power optimal design. This is due to the fact that the
increase in power consumption is mostly linear with the
increase in switch size [48]. Thus, in a design with fewer
switches, the traffic flows traverse shorter paths, thereby
leading to designs with better power consumption. Never-
theless, as the required NoC operating frequency increases,
the timing delay constraints cannot be met by large switches
(i.e., larger than 10� 10), as shown in Fig. 10 (especially for
65nm process technology), thereby the optimal design point
moves to topologies with more switches, with fewer ports.
As the proposed tool flow automatically considers the
frequency constraint of the switches as well, we are able to
prune the infeasible design points, violating timing con-
straints early in the design process.



ARTICLE IN PRESS

256B 1KB 4KB 256B 1KB 4KB
0

1

2

3

4

5

6
x 105

E
xe

cu
tio

n 
Ti

m
e 

(n
s)

hand−design

automatic

Benchmark 1

Benchmark 2

256B 1KB 4KB 256B 1KB 4KB
0

50

100

150

200

250

300

A
ve

ra
ge

 R
ea

d 
La

te
nc

y 
(n

s)

hand−design
automatic

Benchmark 1

Benchmark 2

Fig. 14. Runtime and latency of two multimedia benchmarks for different cache sizes. (a) Execution time and (b) average read latency.

450 550 650 750 850
2

3

4

5

6

7

8

NoC Frequency (in MHz)

N
um

be
r 

of
 S

w
itc

he
s

Fig. 15. Topology size variations with NoC frequency.

1 1.25 1.5 1.75 2.0
50

100

150

Mismatch parameter

Av
er

ag
e 

P
ac

ke
t L

at
en

cy
 (i

n 
ns

)

Fig. 16. Impact on latency of the adustment of the mismatch parameter to

cope with dynamically-observed congestion.

D. Atienza et al. / INTEGRATION, the VLSI journal 41 (2008) 340–359 355
6.4. Handling dynamic effects

When the designed NoC is simulated, there can be some
mismatch between the observed traffic patterns and the
initial traffic estimates. This may be either because of
inaccurate traffic models or because of dynamic effects,
such as congestion. Note that it would be too time
consuming to simulate each topology during the synthesis
process. Thus, in case the on-chip interconnect require-
ments are loosely known, to bridge the gap between
topology synthesis and simulation, we use the concept of a
mismatch parameter in the NoC design flow (see Section
4.5 for more details); in this case, the input traffic rates are
multiplied by the value of this parameter. The parameter
can be fed as an input to the synthesis engine by the
designer. In fact, it is initially set to 1 and the user can
manually tune the parameter and re-design the NoC if
necessary, until the simulations satisfy the required
performance level. The effect of increasing the parameter
on performance for the MPEG4 NoC is presented in
Fig. 16. These results illustrate that inaccurate estimations
of NoC traffic in final MPSoCs can significantly affect the



ARTICLE IN PRESS
D. Atienza et al. / INTEGRATION, the VLSI journal 41 (2008) 340–359356
average peak latency of the NoC (variations up to 2:5�).
Thus, extensions and suitable use of this new concept to
handle localized congestion effects in the NoC are a very
challenging problem in future NoC research.

7. Future challenges in NoC design

Despite the large body of research devoted to NoCs in
the last years, specially to achieve a mature CAD level to
integrate NoC-based interconnects in state-of-the-art de-
sign flows for MPSoCs, much remains to be done. Many of
the open challenges relate to the seamless integration of
physical-design considerations, architectural developments
and comprehensive tooling support. For example, several
synchronous, mesochronous and asynchronous implemen-
tations have been proposed in NoC literature. There is a
consensus on the system-level need of integrating blocks at
different operating frequencies, which is also often called
a Globally Asynchronous, Locally Synchronous (GALS)
paradigm [9]. However, as of today, the dilemma of which
NoC alternative to choose in this context has not been fully
cleared: synchronous choices (interspersed with a minimum
amount of clock converters) have been claiming rapid
development times and minimum overhead, while the
alternatives claim, for example, superior robustness to
process variance [21,27,28]. Furthermore, to the best of our
knowledge, none of the contending approaches has yet
comprehensively tackled the issue of dynamic frequency
(and possibly also voltage) scaling [1,10]; some open
questions in this research area include how to best devise
mechanisms for NoC partitioning, how to best control the
operating parameters of each NoC partition statically or at
runtime, etc.

A completely new research field revolves around 3D
NoCs [58–60], designed as the backbone for next-genera-
tion stacked chips. In this case, much work remains to be
done. Moreover, since the manufacturing technology is not
fully mature, many crucial design parameters (such as the
attainable density, yield and speed of vertical intercon-
nects) remain unclear. Depending on these parameters,
many different NoC architectures and topologies can be
envisioned. Some of the key upcoming challenges in this
field include the potential need for pervasive fault
tolerance, the design of a new generation of CAD tools
for NoC topology exploration, and the issue of clock
domain synchronization (if not even of bridging among
different signaling methods) across stack layers.

NoC reconfiguration is also a broad topic [10]. While
several approaches have been published to reconfiguring
NoCs (either completely, on FPGAs, or just with new
routing tables, in ASICs) [36,61], our impression is that
many links are missing before fully reconfigurable, hazard-
and deadlock-free, low-resource-overhead NoCs can be
available. Furthermore, even then, the larger problem of
efficiently deciding how to reconfigure NoCs at runtime,
based on changing application demands, will represent a
challenging problem to be solved.
8. Conclusions

Emerging consumer applications demand a very high
level of performance in the next generation of embedded
devices. Therefore, new techniques and interconnection
mechanisms that can provide solutions for an efficient
design of these complex forthcoming embedded archi-
tectures are greatly needed. NoCs have emerged as a
promising structured way of realizing interconnections on
silicon, overcoming the limitations of bus-based solutions.
In this paper, we have performed a thorough study of the
current state-of-the-art of NoC implementations using a
design flow targeting the new trends imposed by deep sub-
micron manufacturing processes. Also, we have presented a
comparative analysis of different NoC fabrics ranging from
regular topologies to highly tuned custom NoCs.
In this regard, we have illustrated that to have fewer

design re-spins and faster time-to-market, design flows for
NoC interconnects need to integrate the architectural
models with back-end physical design models, thereby
bridging a big design gap in NoC synthesis and creating
on-chip interconnects free from deadlocks. Moreover, to
handle the wiring complexity issue in NoC synthesis,
accurate estimations of the interconnect delay and power
consumption of the basic building blocks of NoCs early in
the design phase are key to produce suitable interconnects
for latest MPSoCs. We have also shown that custom NoC
topology design, where a NoC is tailored to fit the target
application, has noticeable potential benefits with respect
to regular topologies, such as, mesh-based NoCs. All in all,
the current NoC architectural blocks and design flows for
custom NoC topology design have reached a level of
maturity comparable to traditional bus-based on-chip
interconnects. In fact, the presented design flow is currently
able to synthesize a complete NoC-based custom inter-
connect for a certain MPSoC architecture, starting from a
high-level specification, in few hours.
Nevertheless, several research directions still exist to

make feasible efficient designs of NoC interconnects for
new nano-scale devices and technologies. First, efficient
support at the NoC level to handle blocks of MPSoCs
working at different operating frequencies or GALS is still
an open question. Also, mechanisms for NoC partitioning
to provide QoS for new downloaded applications is a very
challenging problem. Additionally, the possible benefits of
applying runtime dynamic control to NoCs (e.g., dynamic
routing schemes) to improve the efficiency of design-time
MPSoC configurations is an open question. All these
extensions to current NoC designs would require changes
in both the topology generation algorithm and architectur-
al implementations. Finally, a novel and very interesting
research avenue is the design of 3D NoCs, which target
next-generation stacked chips. In this regard, according to
the yield and speed of vertical interconnects, many
different NoC architectures and topologies can be envi-
sioned, as well as the possible inclusion of various fault
tolerant schemes, and the definition of suitable choices for



ARTICLE IN PRESS
D. Atienza et al. / INTEGRATION, the VLSI journal 41 (2008) 340–359 357
each case are still to be explored. Moreover, the CAD
support in this case would become even more critical and
we expect a large set of new research challenges for NoC
design in this area.
References

[1] W. Wolf, The future of multiprocessor systems-on-chips, in:

Proceedings of the 41st Design Automation Conference (DAC’04),

June 2004, pp. 681–685.

[2] Philips nexperia—highly integrated programmable system-on-chip

(mpsoc), 2004 hhttp://www.semiconductors.philips.com/products/

nexperiai.

[3] Texas instruments, TI’s omap platform, 2004 hhttp://focus.ti.com/

omap/docs/i.

[4] ST Microelectronics, ST nomadik multimedia processor, 2004 hhttp://

www.st.com/stonline/prodpres/dedicate/proc/proc.htmi.

[5] N.S. Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner, J. Hu, M.

Irwin, M. Kandemir, N. Vijaykrishnan, Leakage current: Moore’s

law meets static power, Computer 36 (12) (2003) 65–77.

[6] L. Benini, G. De Micheli, Networks on chip: a new SoC paradigm,

IEEE Comput. 35 (1) (2002) 70–78.

[7] W.J. Dally, B. Towles, Route packets not wires: on-chip interconnec-

tion networks, in: Proceedings of Design Automation Conference

(DAC’01), ACM, IEEE Press, New York, June 2001, pp. 648–689.

[8] F. Angiolini, P. Meloni, S. Carta, L. Benini, L. Raffo, Contrasting a

NoC and a traditional interconnect fabric with layout awareness, in:

Proceedings of Design, Automation and Test in Europe Conference

and Exhibition (DATE’06), Munich, Germany, ACM, IEEE Press,

New York, 2006, pp. 124–129.

[9] A. Jantsch, H. Tenhunen (Eds.), Networks on Chip, Kluwer

Academic Publishers, Hingham, MA, USA, 2003.

[10] L. Benini, G. De Micheli (Eds.), Networks on Chips: Technology and

Tools, Morgan Kaufmann Publishers, San Francisco, CA, USA,

2006.

[11] J. Hu, R. Marculescu, Exploiting the routing flexibility for energy/

performance aware mapping of regular noc architectures, in:

Proceedings of Design, Automation and Test in Europe Conference

and Exhibition (DATE’03), Washington, DC, USA, IEEE Computer

Society, Silver Spring, MD, 2003, p. 10688.

[12] O. Takahashi, S.R. Cottier, S.H. Dhong, B.K. Flachs, J. Silberman,

Power-conscious design of the cell processor’s synergistic processor

element, IEEE Micro 25 (5) (2005) 10–18.

[13] Nexperia media processing, 2003 hhttp://www.trimedia.com/products/

briefs/soc_arch.htmli.

[14] Arteris, The on Chip Company, Arteris: designing efficient and

scalable SoC interconnects, 2005 hhttp://www.arteris.comi.

[15] Silistix, Silistix: chainworks, 2006 hhttp://www.silistix.comi.

[16] iNoCs 2007 hhttp://www.inocs.comi.

[17] ARM Inc. Advanced Microcontroller Bus Architecture (AMBA),

AMBA specification, May 1999 hwww.arm.com/products/solutions/

AMBAHomePage.htmli.

[18] Amba 3 ahi overview, 2005 hhttp://www.arm.com/products/solutions/

AMBA3AXI.htmli.

[19] ST Microelectronics, The STBus interconnect, 2001 hhttp://www.

st.comi.

[20] D. Wingard, Micronetwork-based integration for socs: 673, in:

Proceedings of the 38th Design Automation Conference (DAC’01),

New York, NY, USA, ACM, New York, 2001, p. 677.

[21] K. Goossens, J. Dielissen, A. Radulescu, Aethereal network on chip:

concepts, architectures, and implementations, IEEE Design Test

Comput. 22 (5) (2005) 414–421.

[22] H.G. Lee, N. Chang, U.Y. Ogras, R. Marculescu, On-chip

communication architecture exploration: a quantitative evaluation

of point-to-point, bus, and network-on-chip approaches, ACM

Trans. Des. Autom. Electron. Syst. 12 (3) (2007) 23.
[23] A. Pullini, F. Angiolini, D. Bertozzi, L. Benini, Fault tolerance

overhead in network-on-chip flow control schemes, in: Proceedings of

the 18th Annual Symposium on Integrated Circuits and System

Design (SBCCI’05), New York, NY, USA, ACM, New York, 2005,

pp. 224–229.

[24] M.A.A. Faruque, G. Weiss, J. Henkel, Bounded arbitration

algorithm for qos-supported on-chip communication, in: Proceedings

of the 4th International Conference on Hardware/Software Codesign

and System Synthesis (CODESþ ISSS’06), New York, USA, ACM,

IEEE Press, New York, 2006, pp. 76–81.

[25] E. Bolotin, I. Cidon, R. Ginosar, A. Kolodny, QNoC: QoS

architecture and design process for network on chip, J. Syst. Archit.

(2004) 117.

[26] D. Wiklund, D. Liu, Socbus: switched network on chip for hard real

time embedded systems, in: Proceedings of the 17th International

Symposium on Parallel and Distributed Processing (IPDPS’03),

Washington, DC, USA, IEEE Computer Society, Silver Spring, MD,

2003, p. 78.1.

[27] T. Bjerregaard, J. Sparso, A scheduling discipline for latency and

bandwidth guarantees in asynchronous network-on-chip, in: Pro-

ceedings of the 11th IEEE International Symposium on Asynchro-

nous Circuits and Systems (ASYNC’05), Washington, DC, USA,

IEEE Computer Society, Silver Spring, MD, 2005, pp. 34–43.

[28] A. Sheibanyrad, I.M. Panades, A. Greiner, Systematic comparison

between the asynchronous and the multi-synchronous implementa-

tions of a network on chip architecture, in: Proceedings of Design,

Automation and Test in Europe Conference and Exhibition

(DATE’07), San Jose, CA, USA, EDA Consortium, 2007,

pp. 1090–1095.

[29] S. Murali, L. Benini, G. De Micheli, Mapping and physical planning

of networks-on-chip architectures with quality-of-service guarantees,

in: Proceedings of the 2005 Conference on Asia South Pacific Design

Automation (ASP-DAC ’05), New York, NY, USA, ACM Press,

New York, 2005, pp. 27–32.

[30] A. Pullini, F. Angiolini, S. Murali, D. Atienza, G. De Micheli,

L. Benini, Bringing nocs to 65 nm, IEEE Micro 27 (5) (2007)

75–85.

[31] F. Angiolini, P. Meloni, S. Carta, L. Raffo, L. Benini, A layout-

aware analysis of networks-on-chip and traditional interconnects for

mpsocs, IEEE Trans. Comput.-Aided Design Integrated Circuits

Syst. 26 (3) (2007) 421–434.

[32] A. Radulescu, J. Dielissen, K. Goossens, E. Rijpkema, P. Wielage,

An efficient on-chip network interface offering guaranteed services,

shared-memory abstraction, and flexible network configuration, in:

Proceedings of Design, Automation and Test in Europe Conference

and Exhibition (DATE’04), Washington, DC, USA, IEEE Computer

Society, Silver Spring, MD, 2004, p. 20878.

[33] A. Andriahantenaina, A. Greiner, Micro-network for soc: imple-

mentation of a 32-port spin network, in: Proceedings of Design,

Automation and Test in Europe Conference and Exhibition

(DATE’03), Washington, DC, USA, IEEE Computer Society, Silver

Spring, MD, 2003, p. 11128.

[34] K. Lee, S.J. Lee, S.-E. Kim, H.-M. Choi, D. Kim, S. Kim, M.-W.

Lee, H.-J. Yoo, 51MW 1.6GHz on-chip network for low-power

heterogeneous SoC platform, in: Digest of Technical Papers of the

IEEE International Solid-State Circuits Conference (ISSC’04), IEEE

Computer Society, Silver Spring, MD, 2004, pp. 152–158.

[35] C. Zeferino, A. Susin, Socin: a parametric and scalable network-on-

chip, in: Proceedings of the 16th Symposium on Integrated Circuits

and Systems Design (SBCCI), September 2003, pp. 169–174.

[36] T. Marescaux, J.-I. Mignolet, A. Bartic, W. Moffat, D. Verkest, S.

Vernalde, R. Lauwereins, Networks on chip as hardware components

of an os for reconfigurable systems, in: Proceedings of Field-

Programmable Logic and Applications Conference (FPL’03), IEEE

Press, New York, September 2003.

[37] A. Pinto, L. Carloni, A. Sangiovanni-Vincentelly, Efficient synthesis

of networks on chip, in: Proceedings of 21st International Conference

in Computer Design (ICCAD’03), October 2003, pp. 146–150.

http://www.semiconductors.philips.com/products/nexperia
http://www.semiconductors.philips.com/products/nexperia
http://www.focus.ti.com/omap/docs/
http://www.focus.ti.com/omap/docs/
http://www.st.com/stonline/prodpres/dedicate/proc/proc.htm
http://www.st.com/stonline/prodpres/dedicate/proc/proc.htm
http://www.trimedia.com/products/briefs/soc_arch.html
http://www.trimedia.com/products/briefs/soc_arch.html
http://www.arteris.com
http://www.silistix.com
http://www.inocs.com
http://www.arm.com/products/solutions/AMBAHomePage.html
http://www.arm.com/products/solutions/AMBAHomePage.html
http://www.arm.com/products/solutions/AMBA3AXI.html
http://www.arm.com/products/solutions/AMBA3AXI.html
http://www.st.com
http://www.st.com


ARTICLE IN PRESS
D. Atienza et al. / INTEGRATION, the VLSI journal 41 (2008) 340–359358
[38] W.H. Ho, T.M. Pinkston, A methodology for designing efficient

on-chip interconnects on well-behaved communication patterns,

in: Proceedings of the 9th International Symposium on High-

Performance Computer Architecture (HPCA ’03), Washington,

DC, USA, IEEE Computer Society, Silver Spring, MD, 2003,

p. 377.

[39] A. Hansson, K. Goossens, A. Radulescu, A unified approach to

constrained mapping and routing on network-on-chip architectures,

in: Proceedings of the 3rd IEEE/ACM/IFIP International Con-

ference on Hardware/Software Codesign and System Synthesis

(CODESþ ISSS ’05), New York, USA, ACM Press, New York,

2005, pp. 75–80.

[40] K. Srinivasan, K.S. Chatha, G. Konjevod, An automated technique

for topology and route generation of application specific on-chip

interconnection networks, in: Proceedings of the 2005 IEEE/ACM

International Conference on Computer-aided Design (ICCAD ’05),

Washington, DC, USA, IEEE Computer Society, Silver Spring, MD,

2005, pp. 231–237.

[41] T. Ahonen, D.A. Siguenza-Tortosa, H. Bin, J. Nurmi, Topology

optimization for application-specific networks-on-chip, in: Proceed-

ings of the 2004 International Workshop on System Level

Interconnect Prediction (SLIP ’04), New York, USA, ACM Press,

New York, 2004, pp. 53–60.

[42] S. Kolson, A. Jantsch, J.-P. Soininen, M. Forsell, M. Millberg, J.

Oberg, K. Tiensyrja, A. Hemani, A network on chip architecture and

design methodology, in: Proceedings of IEEE Annual Symposium on

VLSI (ISVLSI’02), IEEE Computer Society, Silver Spring, MD,

April 2002, pp. 105–112.

[43] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L.

Benini, G. De Micheli, Noc synthesis flow for customized domain

specific multiprocessor systems-on-chip, IEEE Trans. Parallel Dis-

trib. Syst. 16 (2) (2005) 113–129.

[44] G. Palermo, C. Silvano, G. Mariani, R. Locatelli, M. Coppola,

Application-specific topology design customization for stnoc, in:

Proceedings of the 10th Euromicro Conference on Digital System

Design Architectures, Methods and Tools (DSD’0707), Washington,

DC, USA, IEEE Computer Society, Silver Spring, MD, 2007,

pp. 547–550.

[45] D. Siguenza-Tortosa, J. Nurmi, Vhdl-based simulation envi-

ronment for proteo noc, in: Proceedings of High-Level

Design Validation and Test Workshop (HLDVT’02), October 2002,

pp. 1–6.

[46] OCP International Partnership (OCP-IP), Open core protocol

standard, 2003 hhttp://www.ocpip.org/homei.

[47] G.-M. Chiu, The odd–even turn model for adaptive routing, IEEE

Trans. Parallel Distrib. Syst. 11 (7) (2000) 729–738.

[48] P. Meloni, S. Carta, R. Argiolas, L. Raffo, F. Angiolini, Area and

power modeling methodologies for networks-on-chip, in: Proceedings

of 1st International Conference on Nano-Networks and Workshops,

2006 (NanoNet’06), IEEE Press, New York, September 2006.

[49] Synopsys, PrimeTime hhttp://www.synopsys.comi.

[50] A. Jalabert, S. Murali, L. Benini, G. De Micheli, �pipescompiler: a

tool for instantiating application specific networks on chip, in:

Proceedings of Design, Automation and Test in Europe Conference

and Exhibition (DATE’04), vol. 4, IEEE, New York, February 2004,

pp. 1–6.

[51] Synopsys, Design compiler hhttp://www.synopsys.comi.

[52] I.M. Saurabh Adya, Fixed-outline floorplanning: enabling hierarch-

ical design, IEEE Trans. VLSI 11 (6) (2003) 1120–1135.

[53] L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, M. Olivieri,

Mparm: exploring the multi-processor SoC design space with

SystemC, J. VLSI Signal Process. 41 (2) (2005) 169–182.

[54] Synopsys, Astro hhttp://www.synopsys.comi.

[55] S.S.I. Association, The international technology roadmap for

semiconductors, Technical Report, 2002 hhttp://public.itrs.net/i.

[56] Synopsys, Physical compiler hhttp://www.synopsys.comi.

[57] S. Murali, G. De Micheli, Sunmap: a tool for automatic topology

selection and generation for nocs, in: Proceedings of the 41st Design
Automation Conference (DAC’04), New York, USA, ACM Press,

New York, 2004, pp. 914–919.

[58] J. Kim, C. Nicopoulos, D. Park, R. Das, Y. Xie, V. Narayanan, M.S.

Yousif, C.R. Das, A novel dimensionally-decomposed router for on-

chip communication in 3d architectures, in: Proceedings of the 34th

Annual International Symposium on Computer Architecture (ISCA’07),

New York, USA, ACM Press, New York, 2007, pp. 138–149.

[59] F. Li, C. Nicopoulos, T. Richardson, Y. Xie, V. Narayanan, M.

Kandemir, Design and management of 3d chip multiprocessors using

network-in-memory, in: Proceedings of the 33rd Annual Interna-

tional Symposium on Computer Architecture (ISCA’06), Washing-

ton, DC, USA, IEEE Computer Society, Silver Spring, MD, 2006,

pp. 130–141.

[60] T. Kgil, S. D’Souza, A. Saidi, N. Binkert, R. Dreslinski, T. Mudge, S.

Reinhardt, K. Flautner, Picoserver: using 3d stacking technology to

enable a compact energy efficient chip multiprocessor, ACM

SIGPLAN Not. 41 (11) (2006) 117–128.

[61] G.M. Link, N. Vijaykrishnan, Hotspot prevention through runtime

reconfiguration in network-on-chip, in: Proceedings of Design,

Automation and Test in Europe Conference and Exhibition

(DATE’05), vol. 01, Los Alamitos, CA, USA, IEEE Computer

Society, Silver Spring, MD, 2005, pp. 648–649.

David Atienza is Associate Professor in the

Computer Architecture and Automation Depart-

ment of Complutense University of Madrid

(UCM), Spain, and Post-Doctoral Research

Associate at the Integrated Systems Laboratory

in EPFL, Switzerland. He received his M.Sc. and

Ph.D. degrees in Computer Science from Com-

plutense University of Madrid (UCM), Spain,

and Inter-University Micro-Electronics Center

(IMEC), Leuven, Belgium, in 2001 and 2005,
respectively. He is also Post-Doctoral Research

Associate at the Integrated Systems Laboratory in EPFL, Switzerland. His

research interests focus on design methodologies for integrated systems,

including novel architectures for logic and memories in forthcoming nano-

scale electronics, thermal management techniques for multiprocessors

system-on-chip, networks-on-chip (NoC) design, and dynamic memory

management for embedded systems. In these fields, he has published more

than 90 papers in prestigious journals and international conferences: ACM

Transactions on Design Automation of Electronic Systems (TODAES),

IEEE Micro, IEEE Transactions on VLSI Systems, Elsevier-Integration:

The VLSI Journal, Journal of Embedded Systems, Design Automation

Conference (DAC), International Conference on Computer-Aided Design

(ICCAD), Design, Automation and Test in Europe (DATE) Conference,

Asia and South Pacific Design Automation Conference (ASP-DAC), etc.

Also, he is Associate Editor of IEEE Transactions on Computer-Aided

Design of Circuits and Systems (TCAD), and part of the Technical

Program Committee of the DATE, ICCAD and VLSI-SoC conferences.

Dr. Atienza is an elected Executive Member of the IEEE Council of

Electronic Design Automation (CEDA) since 2008.

Federico Angiolini received the M.Sc. degree

(summa cum laude) in electronic engineering

from the University of Bologna, Italy, in 2003,

and is now a Ph.D. student in the Department of

Electronics and Computer Science at the same

university and a visiting student at the Ecole

Polytechnique Federale de Lausanne (EPFL),

Switzerland. His research interests are in the

domain of multiprocessor embedded systems, for

which he has been investigating memory hier-
archy optimizations, cycle-accurate simulation

environments and especially interconnection architectures, with a focus

on networks-on-chips, spanning from design tools to implementation and

physical design.

http://www.ocpip.org/home
http://www.synopsys.com
http://www.synopsys.com
http://www.synopsys.com
http://www.public.itrs.net/
http://www.synopsys.com


ARTICLE IN PRESS
D. Atienza et al. / INTEGRATION, the VLSI journal 41 (2008) 340–359 359
Srinivasan Murali is currently a post-doctoral

researcher at the LSI Lab, EPFL, Switzerland.

He received his Ph.D. and M.Sc. in Elec-

trical Engineering at Stanford University in

2007. He received his Bachelor’s degree in

Computer Science and Engineering from the

University of Madras, India, in 2002. His

research interests include reliable and efficient

design methods for networks-on-chips and

systems-on-chips. He has authored more than
30 technical articles in these fields. Dr. Murali

was a recipient of a Best Paper Award in the DATE Conference

in 2005.

Antonio Pullini is a research assistant with the

EDA group at the Politecnico di Torino, Italy.

He is currently also a visting student at EPFL,

Lausanne. His research interests include all

aspects of low-power digital design and net-

works-on-chip with particular emphasis on phy-

sical design and CAD methodologies. Pullini has

an M.Sc. degree in electrical engineering from the

University of Bologna, Italy.
Luca Benini received the B.S. degree (summa cum

laude) in electrical engineering from the Uni-

versity of Bologna, Italy, in 1991, and the M.S.

and Ph.D. degrees in electrical engineering from

Stanford University in 1994 and 1997, respec-

tively. He is currently a Full Professor in the

Department of Electronics and Computer Science

in the University of Bologna. He also holds a

visiting professor position at EPFL. Dr. Benini’s

research interests are in all aspects of computer-
aided design of digital circuits, with special

emphasis on low-power applications, and in the design of portable

systems. On these topics, he has published more than 200 papers in

international conferences and journals, and he is co-author of three books.

Dr. Benini is a member of the technical program committee for several

technical conferences, including the Design Automation Conference

(DAC), the International Symposium on Low Power Design (ISLPED)
and the International Symposium on Hardware–Software Codesign

(CODES/ISSS). He has been the General Chair of the 2008 Design,

Automation and Test in Europe (DATE) Conference and the Program

Chair of the 2005 DATE Conference. He is Associate Editor of the IEEE

Transactions on Computer-Aided Design of Circuits and Systems and of

the ACM Journal on Emerging Technologies in Computing Systems. He is

a Fellow of the IEEE.

Giovanni De Micheli is Professor and Director of

the Integrated Systems Centre at EPFL, Switzer-

land, and President of the Scientific Committee of

CSEM, Neuchatel, Switzerland. Previously, he

was Professor of Electrical Engineering at Stan-

ford University. He is author of Synthesis and

Optimization of Digital Circuits, McGraw-Hill,

1994, co-author and/or co-editor of six other

books and of over 300 technical articles. He is a

Fellow of the ACM and IEEE. Prof. De Micheli
is the recipient of the 2003 IEEE Emanuel Piore

Award for contributions to computer-aided synthesis of digital systems.

He received the 1987 D. Pederson Award for the best paper on the IEEE

Transactions on CAD/ICAS, two Best Paper Awards at the Design

Automation Conference, in 1983 and in 1993, and a Best Paper Award at

the DATE Conference in 2005. His research interests include several

aspects of design technologies for integrated circuits and systems, such as

synthesis, hardware/software codesign and low-power design, as well as

systems on heterogeneous platforms including electrical, optical, micro-

mechanical and biological components.


	Network-on-Chip design and synthesis outlook
	Introduction
	Related work
	Basic building blocks of NoC architectures
	NoC-based interconnect design flow
	Background on NoC topology synthesis
	Deadlock-free NoC design
	Area, power models for NoC components
	Front-end: the SunFloor tool and platform simulation
	Achieving design closure

	Back-end of a NoC implementation flow
	The timespipes back-end infrastructure
	Wireload models and placement-aware logic synthesis
	65nm technology libraries and their degrees of freedom
	Link delay and power
	Wire routability issues in NoCs

	Experiments and case studies
	Experiments on MPSoC benchmarks
	Layout-level comparisons
	Impact of frequency constraints
	Handling dynamic effects

	Future challenges in NoC design
	Conclusions
	References


