
SafeResynth: A New Technique for Physical Synthesis

Kai-hui Chang, Igor L. Markov and Valeria Bertacco

The University of Michigan, Department of EECS
2260 Hayward St., Ann Arbor, MI 48109-2121

January 9, 2008

Abstract

Physical synthesis is a relatively young field in Electronic Design Automation. Many
published optimizations for physical synthesis end up hurting the quality of the final design,
often because they neglect important physical aspects of the layout, such as long wires or
routing congestion. Our work defines and explores the concept of physical safeness and
evaluates empirically its impact on route length, via count and timing. In addition, we pro-
pose a new physically safe and logically sound optimization, called SafeResynth, which
provides immediately-measurable improvements without altering the design’s functional-
ity. SafeResynth can enhance circuit timing without detrimental effects on route length
and congestion. We achieve these improvements by performing a series of netlist trans-
formations and re-placements that are individually evaluated for logical soundness (that
is, they do not alter the logic functionality) and for physical safeness. When used alone,
SafeResynth improves circuit delay of IWLS’05 benchmarks by 11% on average after rout-
ing, while increasing route length by less than 0.2%. Since transistors are not affected by
SafeResynth, it can also be applied to post-silicon debugging, where only metal fixes are
possible. 1

Keywords: Circuit optimization, physical synthesis, post-silicon debugging, metal fix

1 Introduction

Circuit timing optimization of digital logic is gaining importance with each technology step, as
interconnect contributes a larger fraction of critical-path delay due to its poor scaling. Since ac-
curate timing information can only be obtained after the circuit has been placed, post-placement

1A preliminary version of this work has been presented at ASPDAC’07. New contributions in the current
manuscript include: (1) a thorough discussion of the concept of physical safeness; (2) experiments to explore
the factors that affect the safeness of a physical synthesis technique; and (3) a new application for post-silicon
debugging and metal fix.

1



timing optimization has been studied extensively. Most techniques either modify the logic or
change the physical aspects of the circuit [11]. Physical-level solutions include net buffering,
gate sizing [18] and gate relocation [1]. Logic-level solutions include gate replication [14],
rewiring [7, 9] and restructuring [6, 20, 23, 26]. Physical synthesis commonly encompasses
those techniques which strive to improve circuit timing using placement or routing information.

A number of previous publications on physical synthesis do not actually provide an overall
improvement because when optimizing one aspect of the design, they negatively impact other
aspects. For instance, logic replication may increase area and route length, which, in turn,
may generate critical-path nets longer than expected [14]. Indiscriminate buffering may also
create many gate overlaps, leading to potentially detrimental effects on circuit timing when
such overlaps are finally resolved [21]. A number of recent publications address precisely the
issue of stability in physical synthesis optimizations. For example, Li et al. [21] propose an
incremental placement algorithm which maintains the stability of placement for gate sizing and
buffer insertion, while Luo et al. [24] and Brenner et al. [4] address this same problem by
designing legalizer tools that seek to preserve performance metrics. However, these approaches
tend to break down in later stages of physical design, when circuits are heavily optimized. In
these stages, layout transformations are more likely to cause unexpected effects and destabilize
the previously performed optimizations.

In our work we address this stability problem using a novel approach: instead of applying
changes that may destabilize a layout and then correcting routing or overlap problems later, we
seek and pursue only transformations that preserve the original layout as much as possible. To
this end, we define and explore what we call physically safe netlist transformations — those
that do not create cell overlaps and thus provide immediately-measurable improvements at each
step. As indicated by our empirical results, these transformations produce more predictable
improvements and no detrimental effects on other circuit parameters. In addition, they do not
conflict with any other existing design flow and can be used before or after other transforma-
tions, including “unsafe” ones. In the past, safe transformations have been largely neglected
because they offered very little improvement [7]. However, we found that the extent of the
improvement depends entirely on the pool of transformations available. To find such transfor-
mations effectively, we propose a technique, called SafeResynth, which is based on simulation
and iterative equivalence checking. By broadening the set of transformations and applying them

2



in a safe way, we show that we can improve circuit timing with very little risk of destabilizing
an existing design flow or hampering timing closure, a common problem of traditional physical
synthesis techniques. As an illustrative example, Figure 1 shows two possible transformations
which SafeResynth would propose. In Figure 1(a), the signal that drives g8 is resynthesized
using gates located closer to it, and a new gate is added to replace the old g6, leading to shorter
connecting wires and hence better timing delay for g8. In Figure 1(b), the long connection from
g6 to g8 is removed and g8 is now driven by the new gate as before, however in this example g6
still drives gate g1. Note that none of the new gates overlap with old gates, and their placement
is located on previously unused locations. Empirical results, reported in Table 3, show that our
technique can improve delay by 11% on average while route length and via count increase by
less than 0.2%. To further investigate a broad range of aspects that may affect the safeness
of a physical synthesis technique, we conducted several experiments using SafeResynth with
various layout configurations and delay models. Our results show that delay improvement after
routing may be considerably different from the one estimated before routing. To alleviate this
problem, safe techniques should be used. Alternatively, more accurate delay models can also
improve the stability of a given optimization technique.

(a) (b)
Figure 1: Example transformations for row-based standard-cell layout: (a) resynthesized gate
new replaces g6 to drive g8, (b) gate cloning uses resynthesized gate new to drive g8, while the
original driver g6 continues to drive g1.

Another important application of safe physical synthesis techniques is post-silicon debug-
ging [16]. In post-silicon debugging, once the root cause of a bug has been identified, a Fo-
cused Ion Beam (FIB) edit can be performed to implement the fix on the metal layers of the
chip. Being able to implement the fix before the next tape-out allows engineers to validate the
correctness of the fix and can reduce the overall number of respins. However, FIB can only
change metal layers of a chip and cannot create any new transistors. As a result, this technique
is often called metal fix. Due to this limitation, spare cells (cells that are not used in the de-

3



sign) are usually pre-placed in a layout so that they can be connected through FIB to correct
a bug. Existing physical synthesis techniques, however, rarely focus on this application. To
this end, we observe that physically safe techniques are especially suitable for exploring metal
fix opportunities because they produce minimal perturbation of the layout, and, in particular,
SafeResynth can be applied to post-silicon debugging by using these spare cells.

The rest of this paper is organized as follows. In Section 2 we describe the concepts of
physical safeness, and then review previous work on physical synthesis. We then propose a new
powerful, safe and sound physical synthesis approach in Section 3. Experimental results are
reported in Section 4, and Section 5 concludes this paper.

2 Safeness of Physical Synthesis Techniques

Existing techniques for post-placement timing optimization vary in strength and differ in how
they affect gate locations [11]. We use the term “physical safeness” to describe their impact on
placement. In this section, we first describe safeness in detail. After that, we introduce several
physical synthesis techniques and analyze their optimization capabilities and safeness.

2.1 Physical Safeness

The concept of physical safeness is used to describe the impact of an optimization technique
on the placement of a circuit. Physically safe techniques only allow legal changes to a given
placement; therefore, accurate analysis such as timing and congestion can be performed. Such
changes are safe because they can be rejected immediately if the layout is not improved. On the
other hand, unsafe techniques allow changes that produce a temporarily illegal placement. As a
result, their evaluation is delayed, and it is not possible to reliably decide if the change can be
accepted or must be rejected until later. Therefore, the average quality of unsafe changes may
be worse than that of accepted safe changes. In addition, other physical parameters, such as via
count, may be impacted by unsafe transformations, as can be seen from Table 7.

2.2 Physically Safe Techniques

Symmetry-based rewiring is the only timing optimization technique that is physically safe in
nature. It exploits symmetries in logic functions, looking for pin reconnections that improve

4



timing [7]. For example, the inputs to an AND gate can be swapped without changing its logic
function. Since only wiring is changed in this technique, the placement is always preserved. An
example of symmetry-based rewiring is given in Figure 2(a).

The advantage of physically safe techniques is that the effects of any change are immediately
measurable, therefore the change can be accepted or rejected reliably. As a result, delay will
not deteriorate after optimization and no timing convergence problem will occur. However, the
improvement gained from these techniques is often limited because they cannot aggressively
modify the logic or use larger-scale optimizations. For example, in [7] timing improvement
measured before routing is typically less than 10%. To this end, our experimental results in
Section 4 show that post-routing timing improvements may not match pre-routing results and
must be evaluated directly.

2.3 Physically Unsafe Techniques

Traditional physical synthesis techniques are physically unsafe because they create cell overlaps
and thus prevent immediate evaluation of changes. Although some of these techniques can be
applied in a safe way, they may lose their strength. It follows that existing physical synthesis
tools usually rely on unsafe techniques, planning to correct potentially illegal changes after the
optimization phase is complete. A classification of these techniques and their impact on logic
are discussed below. Methods to make these techniques safe are also described.

Gate sizing and buffer insertion are two important techniques that are extensively used,
as shown in Figure 2(b) and Figure 2(d). Gate sizing chooses the sizes of the gates carefully so
that signal delay in wires can be balanced with gate delay, and gates have enough strength to
drive the wires. Buffer insertion adds buffers to drive long wires. The work by Kannan et al.
[18] is based on these techniques. To make buffer insertion physically safe, one would allow
inserting buffers only in overlap-free sites [3]. Similarly, gate sizing can be made physically
safe if it is performed only when the resized gate does not overlap any other gate.

Gate relocation moves gates on critical paths to better locations in order to shorten wire-
length and optimize timing. An example of gate relocation is given in Figure 2(c). Ajami et
al. [1] utilize this technique by performing timing-driven placement with global routing infor-
mation using the notion of movable Steiner points. They formulate the simultaneous placement
and routing problem as a mathematical program. The program is then solved by Han-Powell

5



method. To make gate relocation physically safe, one must place the relocated gate on unused
sites.

Gate replication is another technique that can improve circuit timing. Consider Figure
2(e) for example, by duplicating g5, the delay to g1 and g9 can be reduced. Hrkic et al. [14]
propose a placement-coupled approach based on such technique. Given a placed circuit, they
first extract replication trees from the critical paths after timing analysis, and then they perform
embedding and post-unification to determine the gates that should be duplicated and their loca-
tions. Since duplicated gates may overlap with existing gates, at the end of the process, a phase
of timing-driven legalization is applied. Although their approach improves timing by 1-36%,
it also increases route length by 2-28%. Gate replication can be made physically safe if the
duplicated gates are always placed on unoccupied sites.

(a) Symmetry-based rewiring. (b) Gate sizing.

(c) Gate relocation. (d) Buffer insertion.

(e) Gate duplication.

Figure 2: Several distinct physical synthesis techniques. Newly-introduced overlaps are re-
moved by legalizers after the optimization phase has completed.

Traditional rewiring techniques based on addition or removal of redundant wires are not
physically safe. The basic idea is to add one or more redundant wires to make a target wire
redundant so that it becomes removable. Since gates must be modified to reflect the changes in

6



wires, cell overlaps may occur. To make such techniques physically safe, changes that create
cell overlaps must be rejected. The work by Chang et al. utilizes this technique using an ATPG
(Automatic Test Pattern Generation) reasoning approach [9].

Traditional restructuring focuses on directing the synthesis process using timing informa-
tion obtained from a placed or routed circuit. It is more aggressive in that it may change the logic
structure as well as the placement. Therefore, ensuring its physical safety is more difficult. For
example, new cell locations cannot be evaluated reliably for technology-independent restruc-
turing unless technology mapping is also performed. Moreover, restructuring techniques based
on technology-independent (unmapped) netlists are likely to be unsafe because the performed
optimizations may distort a given placed circuit. As a result, the effects of the changes are not
immediately measurable. In other words, the delay after optimization may be worse than be-
fore. Although carefully designed techniques can be used to alleviate this problem [20, 21, 24],
it is difficult to be eliminated altogether. The strength and safeness of these techniques are
summarized in Table 1.

Techniques Physical Optimization
safeness range

Symmetry-based rewiring Safe Local
SafeResynth (this work) Safe Medium
ATPG-based rewiring, buffer insertion, Unsafe∗ Local
gate sizing, gate relocation
Gate replication Unsafe∗ Medium
Restructuring Unsafe Large-scale

Table 1: Comparison of physical synthesis techniques in terms of physical safeness and opti-
mization range. ∗Note: some of these techniques could be made safe but popular implementa-
tions use them in an unsafe fashion, allowing gate overlap.

3 A New Powerful and Safe Physical Synthesis Approach

Our safe physical synthesis approach, SafeResynth, is discussed in detail in this section. It uses
signatures produced by simulation to identify potential resynthesis opportunities, whose cor-
rectness is then validated by equivalence checking [27]. The logical soundness of the optimiza-
tions is guaranteed by the equivalence checking validation step. In other words, SafeResynth
will not produce netlist modifications that corrupt the circuit’s functional correctness. Since our

7



goal is layout optimization, we can prune some of the opportunities based on their improvement
potential before formally verifying them. To this end, we propose pruning techniques based on
physical constraints and logical compatibility among signatures. SafeResynth is powerful in
that it does not restrict resynthesis to small geometric regions or small groups of adjacent wires.
It is safe because the placement produced is always legal and the circuit improvement can be
evaluated immediately. In this work, we discuss the application of SafeResynth for timing opti-
mization, but our solution can also be used to optimize other circuit parameters, such as power
or reliability. In addition, it may be applied to post-silicon debugging for timing-violation re-
pair. A preliminary version of the SafeResynth solution discussed in this section was presented
in [8].

3.1 Terminology

We define a signature as a bit-vector of simulated values of a wire. Given the signature st of
a wire wt to be resynthesized, and a certain gate g1, a wire w1 with signature s1 is said to be
compatible with wt if it is possible to generate st using g1 with signature s1 as one of its inputs.
In other words, it is possible to generate wt from w1 using g1. For example, if s1 = 1, st = 1
and g1 = AND, then w1 is compatible with wt using g1 because it is possible to generate 1 on
an AND’s output if one of its inputs is 1. However, if s1 = 0, then w1 is not compatible with wt

using g1 because it is impossible to obtain 1 on an AND’s output if one of its inputs is 0 (see
Table 2).

A controlling value of a gate is the value that fully specifies the gate’s output when applied
to one input of the gate. For example, 0 is the controlling value for AND because when applied
to the AND gate, its output is always 0 regardless of the value of other inputs. When two
signatures are incompatible, that can often be traced to a controlling value in some bits of one
of the signatures.

3.2 SafeResynth Framework

The SafeResynth framework is outlined in Figure 3, and an example is shown in Figure 4.
Initially, library contains all the gates to be used for resynthesis. We first generate a signature
for each wire by simulating certain input patterns, whose selection will be discussed in detail
in Section 3.4. In order to optimize timing, wiret in line 2 will be selected from wires on the

8



critical paths in the circuit. Line 3 restricts our search of potential resynthesis opportunities
according to certain physical constraints, and lines 4-5 further prune our search space based on
logical soundness. After a valid resynthesis option is found, we try placing the gate on various
overlap-free sites close to a desired location in line 6 and check their timing improvements.
In this process, more than one gate may be added if there are multiple sinks for wiret , and the
original driver of wiret may be replaced. We then call equivalence checking using the input cone
of the new signal when we found certain changes that improve timing. In line 10 we remove
redundant gates and wires that may appear because wire′ts original driver may no longer drive
any wire, which often initiates a chain of further simplifications.

1. Simulate patterns and generate a signature for each wire.
2. Determine wiret to be resynthesized and retrieve wiresc from the circuit.
3. Prune wiresc according to physical constraints.
4. Foreach gate ∈ library with inputs selected from combinations of compatible

wires ∈ wiresc.
5. Check if wiret’s signature can be generated using gate with its inputs’ signatures.

If not, try next combination.
6. If so, do restructuring using gate by placing it on overlap-free sites close to the

desired location.
7. If timing is improved, check equivalency. If not equivalent, try next combination

of wires.
8. If equivalent, a valid restructuring is found.
9. Use the restructuring with maximum delay improvement for resynthesis.

10. Identify and remove gates and wires made redundant by resynthesis.
Figure 3: The SafeResynth framework.

3.3 Search-Space Pruning Techniques

In order to resynthesize a target wire (wiret ) using an n-input gate in a circuit containing m
wires, the brute force technique needs to check

(m
n
)

combinations of possible inputs, which can
be very time-consuming for n > 2. Therefore it is important to prune the number of wires to try.

When the objective is to optimize timing, the following physical constraints can be used in
line 3 of the framework: (1) wires with arrival time later than that of wiret are discarded because
resynthesis using them will only increase delay; and (2) wires that are too far away from the
sinks of wiret are abandoned because the wire delay will be too large to be beneficial. We set

9



Figure 4: A restructuring example. Input vectors to the circuit are shown on the left. Each wire
is annotated with its bit-signature computed by simulation on those test vectors. We seek to
compute signal w1 by a different gate, e.g., in terms of signals w2 and w3. Two such restruc-
turing options (new gates) are shown as gn1 and gn2. Since gn1 produces the required signature,
equivalence checking is performed between wn1 and w1 to verify the correctness of this restruc-
turing. Another option, gn2, is abandoned because it fails our compatibility test.

this distance threshold to twice the HPWL (Half-Perimeter Wirelength) of wiret .
In line 4 logical compatibility is used to prune the wires that need to be tried. Wires not

compatible with wiret using gate are excluded from our search. Table 2 summarizes how com-
patibilities are determined given a gate type, the signatures of wiret and the wire to be tested
(wire1).

Gate type wiret wire1 Result
NAND 0 0 Incompatible
NOR 1 1 Incompatible
AND 1 0 Incompatible
OR 0 1 Incompatible

XOR/XNOR Any Any Compatible

Table 2: Conditions to determine compatibility: wiret is the target wire, and wire1 is the poten-
tial new input of the resynthesized gate.

To accelerate compatibility testing, we use the “one-count”, i.e., the number of 1s in the
signature, to filter out unpromising candidates. For example, if gate==OR and the one-count
of wiret is smaller than that of wire1, then these two wires are incompatible because OR will
only increase one-count in the target wire. This technique can be applied before bit-by-bit
compatibility test to detect incompatibility faster.

Our pruned search algorithm that implements lines 4-5 of the framework is outlined in Fig-
ure 5. The algorithm is specifically optimized for two-input gates but can be extended to gates
with more than two inputs. Wiret is the target wire to be resynthesized, wiresc are wires selected

10



according to physical constraints, and library contains gates used for resynthesis. All wires in
the fanout cone of wiret are excluded in the algorithm to avoid formation of combinational
loops.

Function pruned search(wiret,wiresc, library)
1 foreach gate ∈ library
2 wiresg = compatible(wiret,wiresc,gate);
3 foreach wire1 ∈ wiresg
4 wiresd = get potential wires(wiret,wire1,wiresg,gate);
5 foreach wire2 ∈ wiresd
6 Restructure using gate, wire1 and wire2;

Figure 5: The pruned search algorithm.

In Figure 5, function compatible returns wires in wiresg that are compatible with wiret

given gate. Function get potential wires returns wires in wiresd that are capable of generat-
ing the signature of wiret using gate and wire1, and its algorithm is outlined in Figure 6. For
XOR/XNOR, the signature of the other input can be calculated directly, and wires with signa-
tures identical to that signature are returned using the signature hash table. For other gate types,
signatures are calculated iteratively for each wire (denoted as wire2) using wire1 as the other
input, and the wires that produce signatures which match wire′ts are returned.

Function get potential wires(wiret,wire1,wiresg,gate)
1 if (gate == XOR/XNOR)
2 wiresd= sig hash[wiret.signature XOR/XNOR wire1.signature];
3 else
4 foreach wire2 ∈ wiresg
5 if (wiret .signature == gate.evaluate(wire1.signature,wire2.signature))
6 wiresd = wiresd ∪wire2;
7 return wiresd;

Figure 6: Algorithm for function get potential wires. XOR/XNOR is considered separately
because the required signature can be calculated uniquely from wiret and wire1.

The effectiveness of our search-space pruning techniques is supported by our empirical
results. For example, in the worst case (MEM CTRL) 7,560 equivalence checking steps are
performed during resynthesis. However, it is far smaller than the number of resynthesis options
in the search space (about 1 billion), indicating that our techniques are effective in pruning
unpromising resynthesis opportunities.

11



3.4 Implementation Insights

In our implementation, we select desired locations for placing the restructured gates with the
following criterion: the first 200 overlap-free slots closest to the Center Of Gravity (COG)
of the new gate’s input and output wires’ COG. Although better initial guesses may exist for
desired locations than the COG, they are not necessary because a fairly large number of valid
locations will be evaluated rigorously. As a result, having an extremely accurate initial guess is
not necessary to find the actual best location.

The performance of our algorithm is greatly influenced by the quality of the signatures
generated by simulation. Poor signatures cannot distinguish many different wires and require
additional calls to equivalence checking. On the other hand, potentially resynthesizable wires
can usually be distinguished from those not resynthesizable if their signatures are different. In
light of this, we enhanced the FRAIG package in ABC [27] to dump its patterns and use them
for our initial simulation. The purpose of the patterns in ABC is to distinguish different nodes
in the AIG (And-Inverter Graphs) netlist built from the circuit, therefore they are also suitable
for generating signatures that can distinguish different wires. In particular, if the FRAIG pack-
age is run with infinite backtrack limit, at least one simulation vector will exist to distinguish
every two nodes. Currently, FRAIGs first simulate 2048 random patterns. Next, they append
the counterexamples returned during equivalence checking and their variants as additional sim-
ulation patterns.

Despite our efforts to generate high-quality signatures, ill-behaved signatures still exist and
may render our simulation-based techniques ineffective. For example, a wire with an all-1
signature can generate a target wire with an all-1 signature using any wire through an OR
gate. The same happens to NOR, AND and NAND gates, but not to XOR and XNOR gates.
This problem arises because the gate being tried is controlled by one of its inputs. When this
happens, only equivalence checking can verify the correctness of resynthesis involving the ill-
behaved wire. Needless to say, most such resynthesis opportunities are invalid, making the
time spent to verify them worthless. Therefore in our implementation, we abandon resynthesis
opportunities with the number of uncontrolled bits (bits in the signature with non-controlling
value of the gate) smaller than 4, making sure that simulation-based techniques have enough
chance to prune impossible combinations of wires.

12



3.5 Analysis of Our Approach

Several aspects of our approach are discussed in this subsection, including its scalability, opti-
mization power, safeness, advantages and limitations.

Scalability: suppose that there are m wires in the circuit and g n-input gates are used for
resynthesis, then the worst case time complexity of our resynthesis algorithm is on the order
of g×mn if n ≤ m/2. However, by using physical constraints and logical pruning techniques,
as well as several other heuristics, the time complexity is reduced significantly in practice.
From our experimental results, we observe that the runtime is somewhere between linear and
quadratic for n = 2. For example, a netlist with almost 100K nets can be resynthesized in 24
minutes (see the largest benchmark in Table 3).

Aside from runtime, the use of signatures instead of other logic representations, such as
BDDs, makes our approach more scalable in terms of memory usage. For example, comparable
methods to find resynthesis opportunities in [13, 22] are evaluated for at most 5K gates at a
time, whereas our techniques typically handle 100K-gate circuits in minutes. Commercial tools
often use BDDs but achieve scalability by means of (i) netlist partitioning, and (ii) restricting
logic optimization to small windows. To this end, our main contribution is a relatively sim-
ple framework that is fast and naturally scales to large designs without netlist partitioning or
windowing.

Optimization power and safeness: our resynthesis technique tries to reproduce a signal
using gates in the library with new inputs selected from the whole circuit, therefore it is es-
sentially a form of technology mapping. Since the selection is not limited by small windows
like in previous restructuring techniques [6], it is capable of exhaustively finding optimizations
that may be long-range. This is important in later stages of physical synthesis because most
short-range optimization opportunities may have been exploited. In addition, the exhaustive
nature of SafeResynth also allows us to find optimizations that most resynthesis techniques do
not consider. For example, the optimization shown in Figure 7 typically cannot be found by
synthesis tools because it uses an additional level of logic to generate signal A that is already
available; however, this opportunity can be exploited by SafeResynth because it exhaustively
tries all possible combinations of wires and gates. Furthermore, since signatures implicitly en-
code controllability don’t-cares, these don’t-cares are automatically utilized in our techniques
by construction, giving our technique more optimization power to find restructuring opportuni-

13



ties.

(a)

(b)
Figure 7: SafeResynth example. The original circuit is shown in (a), and w is on the critical path
(a buffer is already inserted to improve its signal propagation). The optimized circuit is shown
in (b), where a new gate g4 is inserted by SafeResynth. The delay is improved in (b) because
wire A has significantly smaller load; therefore, signal propagation to g1 and g2 becomes faster,
resulting in better timing for w even though new gate delays are introduced. This optimization
typically cannot be found by traditional resynthesis techniques because an extra level of logic
is used.

When we try to resynthesize a wire, we are either trying to remove a gate and drive all the
relevant sinks by a new gate or to speed up the propagation of the signal to the sinks of the
wire. The former case subsumes simple gate relocation, gate relocation that simultaneously
changes gate type, and also several types of traditional restructuring. The latter case subsumes
single-gate logic replication, including the possibility of gate relocation and changing the gate
type immediately after cloning.

All our transformations are physically safe in that no gates will be overlapped by our op-
timization. They also have limited effect on congestion because gates may be removed after
each transformation, making whitespace almost equal or even better after resynthesis. Further-
more, it is easy to veto transformations that violate designer-specified constraints or worsen
designer-specified quality metrics, e.g., involve wires crossing obstacles, increase gate area or
aggravate routing congestion. By making sure that every transformation improves major qual-
ity metrics without introducing new violations, we ensure that our resynthesis techniques are
physically safe. On the other hand, by subsuming and generalizing several existing techniques

14



they achieve considerable strength in practice.
As far as limitations go, we observed that our technique does not improve standard arith-

metic circuits because they are already heavily optimized. Nonetheless, our technique can be
very helpful for large netlists automatically synthesized from HDL descriptions.

4 Experimental Results

We implemented our techniques in C++ including a simple incremental Static Timing Analy-
sis (STA) engine for our experiments. In our benchmarks, gate delays range from 0.025ns to
0.15ns, the unit capacitance is 131.53pF/m and unit resistance is 337KΩ/m. The driver resis-
tance ranges from 2.5KΩ to 10KΩ, and the port capacitance is 0.0149pF. These parameters
are based on a 0.18µm technology library, and we expect greater improvements as wire delays
become more significant in newer technologies. We use three net delay models. The star model
from [25] applies Elmore formulas to a star topology with the star point placed at the center of
gravity of all pins. Other models use the D2M formulas from [2], and we apply them to Rec-
tilinear Steiner Minimal Trees (RSMTs) generated by the FLUTE package [10]2 or to actual
net routes produced by an industry router. We perform our optimizations using STA engines
based on the star model and RSMT, and we route the resynthesized layout to measure the final
timing based on actual net routes. We observe that STA based on RSMTs provides much more
accurate timing estimation than the star model, and the simpler star model has poor correlation
with the routed timing. Therefore we report primary results based on RSMTs in this paper, and
report results based on the star model only for comparison.

Our hardware platform is an AMD Opteron 880 workstation running Fedora 4 Linux. Our
experiments use the min-cut placer Capo 10 from the University of Michigan [5], the NanoRoute
4.1 router from Cadence, and the FLUTE RSMT package from GSRC Bookshelf [10]. Simula-
tion patterns are generated by the ABC package from UC Berkeley [27], and all transformations
are verified by an external equivalence checker based on the MiniSat SAT solver [12].

Our initial testcases are selected from IWLS 2005 benchmarks [28], where the design uti-
lization is 70%, but for experiments in Table 6 we varied the amount of whitespace. These
benchmarks belong to the following suites: OpenCores (SPI, DES AREA, TV80, SYSTEM-

2Minimal Steiner trees sometimes provide unnecessarily large source-to-sink delays, and our framework can
use a drop-in replacement for timing-driven Steiner trees.

15



CAES, MEM CTRL, AC97, USB, PCI, AES, WB CONMAX, Ethernet and DES PERF), Fara-
day (DMA), ITC99 (b14, b15, b17, b18 and b22) and ISCAS89 (s35932 and s38417). The
benchmarks in the OpenCores suite are produced by a quick synthesis run of Cadence RTL
Compiler, and all the benchmarks are mapped to a 0.18µm library. Our current implementa-
tion can only generate two-input NAND, NOR, AND, OR and XOR gates. In particular, if a
three-input gate can be replaced by a two-input gate, our technique will find this restructuring
opportunity. Although the netlists used in our experiments have multi-input cells, such as AOI,
we do not need to break them down into smaller cells. Multiple gate cloning is not yet sup-
ported in the current implementation. As a result, area utilization remains roughly the same
after resynthesis is performed.

Figure 8: Flow chart of our resynthesis experiments.

The flow of our experiments is summarized in Figure 8. Three iterations of the resynthesis
are carried out for each run, and the maximum number of resynthesis attempts for each wire is
limited to 1,000 to further reduce runtime. Characteristics of the benchmarks and our empirical
results are summarized in Table 3, where the numbers are averages over three independent runs.

Evaluation of SafeResynth: from the results shown in Table 3, we observe that our ap-
proach is effective in reducing the delay for most of the benchmarks with minor increase in
total route length, and sometimes it even results in route length reduction. The average delay
improvement is 12% before routing and 11% after routing, while the route length and via counts
increase by less than 0.2% on average. This is remarkable, compared to the results for logic
cloning in [14] where route length increases by 2-28%. The results also show that our Safe-
Resynth approach works most effectively for the OpenCores benchmarks (SPI to DES PERF),
because they are generated by quick synthesis without optimization. For example, the delay

16



Benchmark Cell Net Resynthesized Runtime
count count Est. Routed Route Additional (min)

delay delay length vias
improv. improv. increase

SPI 3227 3277 2.89% 2.84% 0.14% 0.14% 1.07
DES AREA 4881 5122 1.24% 1.28% 0.19% 0.56% 0.66
TV80 7161 7179 12.23% 12.08% 0.25% 0.13% 1.77
SYSTEMCAES 7959 8220 2.94% 2.94% 0.04% -0.12% 1.02
MEM CTRL 11440 11560 6.42% 6.54% 0.12% 0.24% 44.71
AC97 11855 11948 2.67% 1.56% 0.04% -0.14% 0.58
USB 12808 12968 5.21% 3.09% 0.06% 0.15% 1.36
PCI 16816 16990 5.99% 0.00% 0.09% 0.10% 1.68
AES 20795 21055 2.32% 2.25% 0.09% -0.08% 2.63
WB CONMAX 29034 30165 61.37% 61.29% 0.19% -0.19% 7.6
Ethernet 46771 46891 85.66% 85.61% 0.04% -0.14% 21.66
DES PERF 89341 98576 1.98% 1.93% 0.02% 0.01% 5.58
DMA 19118 19809 3.33% 1.03% 0.01% -0.03% 1.37
b14 8679 8716 3.66% 3.66% 0.04% -0.03% 4.32
b15 12562 12605 3.71% 3.63% 0.03% -0.15% 2.22
b17 37117 37167 5.26% 5.22% 0.00% -0.07% 4.99
b18 92048 92214 17.54% 17.41% -0.04% -0.07% 23.05
b22 28317 28354 6.58% 6.46% 0.02% -0.23% 7.75
s35932 7273 7599 9.11% 0.00% 0.05% 0.14% 0.31
s38417 8278 8309 2.38% 0.00% 0.06% 0.14% 0.94
Average 12.12% 10.94% 0.07% 0.02%

Table 3: Improvement achieved by our techniques: relative delay improvements are shown,
followed by changes in route lengths and via counts. “Est. delays” were delays estimated by
the STA, while “routed delays” were measured using the D2M model from [2]. The last column
shows the program runtime.

improved by 86% for the Ethernet benchmark, suggesting that our technique is effective when
applied by itself. However, our technique still achieves up to 17% delay improvement when
applied to already optimized benchmarks (DMA to s38417), indicating that it can augment
traditional optimization techniques for further improvement.

The impact of our techniques is illustrated in Figure 9: (a) the detour of the critical path
is reduced, which also reduces the maximum delay; and (b) our resynthesis technique found
another source to generate the same signal. Although the new path is longer, the delay is actually
reduced.

Comparison between safe and unsafe optimizations: in order to compare safe and unsafe

17



(a)

(b)
Figure 9: Two optimization examples, one critical path per plot. Delay calculations are at the
0.18µm technology node. In (a) the critical path is shortened. In (b) an alternative source to
generate the same signal is found. Although the new path is longer, the delay is actually reduced.

optimizations, we apply our resynthesis technique in an unsafe way to compare the results with
safe resynthesis. In particular, we allow gate overlap during resynthesis and rely on a legalizer
to remove the overlaps. In our unsafe resynthesis, the location to place the resynthesized gate
is determined by trying 400 sites near the desired coordinate regardless whether these sites are
overlap-free or not. We used the legalizer provided by GSRC Bookshelf [29] in our experi-
ments, and noticed that its runtime is typically short. In addition to performing safe and unsafe
resynthesis separately, we combined both techniques by performing safe resynthesis after un-
safe resynthesis in the hope of leveraging both their advantages. While this experiment does
not cover all possible safe and unsafe techniques, we believe that it is representative. Because
benchmarks that are only slightly modified cannot reflect the difference between safe and un-
safe resynthesis, we use seven large benchmarks from OpenCores in this experiment, whose
netlists are more significantly altered. The results are summarized in Table 4, where the esti-
mated and routed delay improvements are both shown. The route length and via count increase
are summarized in Table 5.

The comparison of estimated delay improvement between safe and unsafe resynthesis in
Table 4 shows that unsafe resynthesis provides more improvement before legalization because

18



Benchmark Estimated delay improvement Routed delay improvement
Safe Unsafe resynthesis Unsafe Safe Unsafe Unsafe

resynth. Before After + safe resynth. resynth. + safe
legal. legal. resynth. resynth.

AC97 2.67% 3.67% 3.44% 3.67% 1.56% 1.31% 2.65%
USB 5.21% 5.29% 5.10% 5.29% 3.09% 6.69% 10.41%
PCI 5.99% 5.37% 4.58% 5.37% 0.00% -1.90% 0.00%
AES 2.32% 5.06% 4.94% 5.06% 2.25% 3.61% 5.66%
WB CONMAX 61.37% 61.54% 61.48% 61.54% 61.29% 61.30% 63.14%
Ethernet 85.66% 86.41% 85.89% 86.41% 85.61% 82.07% 86.60%
DES PERF 1.98% 2.21% 2.12% 2.21% 1.93% 0.49% 2.44%
Average 23.60% 24.22% 23.93% 24.22% 22.25% 21.94% 24.41%

Table 4: A comparison of safe resynthesis, unsafe resynthesis, and unsafe followed by safe
resynthesis. Relative improvements in delay are shown. Unsafe optimizations allow cell over-
laps, and legalization is required to remove the overlaps. Since netlists that are only slightly
modified cannot reflect the difference between unsafe and safe resynthesis, we choose seven
large benchmarks from the OpenCores suite in this experiment, whose netlists are more signifi-
cantly altered.

the resynthesized gate is placed at the best location. However, the improvement reduces after
legalization and becomes close to the improvement achieved by safe resynthesis. This shows
that performing our resynthesis technique in a safe way, instead of the traditional unsafe way,
does not result in any loss in its optimization strength. In addition, performing safe optimiza-
tions avoids the detrimental effects that worsen other physical parameters. As can be observed
from Table 5, performing safe instead of unsafe resynthesis avoids the significant increase in via
count. The results also suggest that to obtain the greatest improvement, the advantages of both
safe and unsafe techniques should be leveraged. As Table 4 shows, this goal can be achieved by
applying safe resynthesis after unsafe resynthesis.

The effects of timing-driven placement on optimization results: Capo supports a “boost”
mode which optimizes timing during placement [19]. In order to study the effects of timing-
driven placement on our technique, we perform safe resynthesis using the same benchmarks
shown in Table 4, whose placements are produced by Capo-boost in this experiment. On aver-
age, pre-resynthesized routed delay improved by 10.34% due to timing-driven placement, while
resynthesis provides an additional 20.08% improvement, resulting in an 30% overall improve-
ment. Compared with the 22.25% improvement shown in Table 4, this result suggests that our
optimization is mostly orthogonal to that provided by timing-driven placement, and can improve

19



Bench- Route length increase Via count increase
mark Safe Unsafe Unsafe Safe Unsafe Unsafe

resynth. + safe resynth. resynth. + safe
resynth. resynth.

AC97 0.04% 0.12% 0.06% -0.14% 2.60% 2.19%
USB 0.06% 0.00% 0.00% 0.15% 1.56% 1.35%
PCI 0.09% 0.44% 0.48% 0.10% 5.88% 5.47%
AES 0.09% 0.08% 0.11% -0.08% 4.00% 3.99%
WB CONMAX 0.19% -0.16% 0.00% -0.19% -0.07% -0.59%
Ethernet 0.04% 0.00% 0.02% -0.14% 0.16% 0.14%
DES PERF 0.02% -0.12% -0.11% 0.01% 0.08% 0.08%
Average 0.08% 0.05% 0.08% -0.04% 2.03% 1.80%

Table 5: A comparison of safe resynthesis, unsafe resynthesis, and unsafe followed by safe
resynthesis. Relative increases in route length and via count are shown.

Perc. Estimated delay improvement Routed delay improvement
of Safe Unsafe resynthesis Unsafe Safe Unsafe Unsafe

white- resynth. Before After + safe resynth. resynth. + safe
space legal. legal. resynth. resynth.
30% 23.60% 24.22% 23.93% 24.22% 22.25% 21.94% 24.41%
10% 23.59% 24.12% 23.64% 24.01% 23.52% 23.56% 23.98%
3% 20.33% 20.78% 20.34% 21.63% 20.22% 20.23% 21.38%

Table 6: A comparison of delay improvement for layouts with different percentage of white-
space.

upon it.
Effects of whitespace on optimization results: in order to study the impact of available

whitespace on the success of optimization results, we repeat the same experiments with varying
whitespace. The results are summarized in Table 6 and Table 7. We can observe from the tables
that delay improvement tends to decrease with the reduction in whitespace because of dimin-
ishing flexibility in layouts. However, the difference is small, showing that our SafeResynth
technique is effective even when whitespace is limited. In addition, the safeness property is
not affected by the amount of whitespace. As seen from Table 7, safe resynthesis essentially
preserves via counts, while unsafe resynthesis significantly increases via counts.

Effects of delay model on physical safeness: in order to explore other factors that may af-
fect the stability of physical synthesis techniques, we reran the same experiments using the STA
engine based on the star model [25] to study the relation between STA accuracy and physical

20



Perc. Route length increase Via count increase
of Safe Unsafe Unsafe Safe Unsafe Unsafe

white- resynth. resynth. + safe resynth. resynth. + safe
space resynth. resynth.
30% 0.08% 0.05% 0.08% -0.04% 2.03% 1.80%
10% 0.05% 0.09% 0.07% -0.01% 2.29% 1.87%
3% 0.04% 0.05% 0.05% 0.15% 1.68% 1.62%

Table 7: A comparison of route length and via count for layouts with different percentage of
whitespace.

Perc. Estimated delay improvement Routed delay improvement
of Safe Unsafe Unsafe Safe Unsafe Unsafe

white- resyn- resyn- + safe resyn- resyn- + safe
space thesis thesis resynth. thesis thesis resynth.
30% 34.20% 34.51% 36.53% 19.73% 20.58% 20.97%
10% 26.27% 25.62% 28.11% 15.62% 15.12% 17.78%
3% 21.64% 21.57% 24.10% 16.45% 16.10% 19.75%

Table 8: A comparison of delay improvement using STA based on the star model.

stability. The results are summarized in Table 8, which should be compared with Table 6 where
timing analysis based on RSMT topology is used. These results show that the star model often
overestimates delay, and therefore may also overestimate delay improvement. As can be seen
from Table 8, the routed delay improvement is much smaller than the estimated improvement.
In addition, the comparison with Table 6 shows that the star model provides smaller routed
delay improvement, suggesting that timing analysis without route topology is inaccurate. The
results also show that inaccurate timing analysis may make unsafe techniques unsafer. As can
be observed from Table 8, safe resynthesis performs better than unsafe resynthesis at 3% and
10% whitespace, suggesting that legalization worsens the final timing more significantly. In
contrast, Table 6 shows similar performance between unsafe and safe resynthesis. To further
investigate this phenomenon, we provide detailed results after resynthesizing seven large Open-
Cores benchmarks at 3% whitespace in Table 9. The results show that when the star model is
used, the optimized delay may be worse than that of the unoptimized layout. However, we do
not observe such a phenomenon when RSMT topology is used. This observation suggests that
inaccurate timing analysis worsens physical stability. On the other hand, Table 9 also shows
that safe resynthesis is less likely to worsen the final timing when the star model is used, sug-

21



gesting that physical stability can be improved by applying the optimizations in a safe way. This
result indicates that the stability of existing physical synthesis techniques may be improved by
performing safe instead of unsafe layout modifications.

Bench- Routed delay improvement
mark Star model RSMT topology

Safe Unsafe Unsafe Safe Unsafe Unsafe
resyn- resyn-. + safe resyn- resyn- + safe
thesis thesis resynth. thesis thesis resynth.

AC97 0.00% -1.62% -1.04% 2.43% 3.14% 4.58%
USB -4.04% -5.56% 3.15% 6.81% 6.47% 8.19%
PCI 2.02% 1.44% 1.46% 3.80% 4.25% 5.29%
AES 1.58% 3.82% 4.33% 2.49% 2.26% 3.39%

WB CONMAX 63.90% 63.82% 63.97% 60.47% 60.35% 60.32%
Ethernet 51.81% 51.89% 60.44% 63.67% 62.62% 65.64%

DES PERF -0.14% -1.11% 5.94% 1.83% 2.49% 2.22%
Table 9: Routed delay improvement of OpenCores benchmarks at 3% whitespace resynthesized
using STAs based on the star model and the RSMT topology.

5 Conclusions

In this paper we proposed and evaluated the concept of physical safeness to analyze circuit
transformations in physical synthesis: physically safe techniques only modify the circuit in such
a way that the effect is immediately and reliably measurable. Safe techniques are preferable
in later physical synthesis stages because the optimizations are more stable, more reliable and
more predictable. In addition, such techniques are especially suitable for post-silicon debugging
because cell locations are preserved, allowing changes to be implemented via metal fix. On the
other hand, most safe techniques known before our work are limited in their optimization power
because of the small number of transformations allowed.

To overcome the limitations of traditional physically safe techniques, we proposed a new
resynthesis algorithm called SafeResynth that is safe and sound. It is physically safe because
no cell overlap is created during resynthesis. It is logically sound in that equivalence checking
is used during resynthesis, thus the functional correctness of the resynthesized netlist is guaran-
teed. SafeResynth utilizes simulation to generate a signature for each wire, and the wires on the
critical path are resynthesized using new gates with their inputs selected from compatible wires.

22



On-line equivalence checking is then applied to validate the proposed logic transformations.
Since we allow the insertion of additional gates only when unused space is available, original
gate locations are preserved. In addition, the ability to search for candidate wires globally gives
our technique the power to find long-range optimizations. Experimental results show that our
technique can improve timing considerably without deteriorating other circuit parameters, such
as route length and via count. Furthermore, it is orthogonal to timing-driven placement and can
provide additional improvements. Our technique can be applied to practically any design flow
without hampering its timing closure. Finally, our comparison between safe and unsafe opti-
mizations highlights the importance of developing more powerful physically safe techniques,
or methods to apply intrinsically unsafe transformations in a safe way with minimal loss in
optimization potential.

References

[1] A. H. Ajami and M. Pedram, “Post-Layout Timing-Driven Cell Placement Using an Ac-
curate Net Length Model with Movable Steiner Points”, DAC’01, pp. 595-600.

[2] C. J. Alpert, A. Devgan and C. Kashyap, “A two moment RC delay metric for performance
optimization”, ISPD’00, pp. 69-74.

[3] C. J. Alpert, G. Gandham, M. Hrkic, J. Hu, S. T. Quay, C. N. Sze, “Porosity-aware
Buffered Steiner Tree Construction”, IEEE Trans. on CAD, Apr. 2004, pp. 517-526.

[4] U. Brenner, A. Pauli and J. Vygen, “Almost Optimum Placement Legalization by Mini-
mum Cost Flow and Dynamic Programming”, ISPD’04, pp. 2-9.

[5] A. E. Caldwell, A. B. Kahng and I. L. Markov, “Can Recursive Bisection Alone Produce
Routable Placements?” DAC’00, pp. 693-698.

[6] C. Changfan, Y. C. Hsu and F. S. Tsai, “Timing Optimization on Routed Designs with
Incremental Placement and Routing Characterization”, IEEE Trans. on CAD, Feb. 2000,
pp. 188-196.

23



[7] C.-W. Chang, M.-F. Hsiao, B. Hu, K. Wang, M. Marek-Sadowska, C.-K. Cheng, S.-J.
Chen, “Fast Postplacement Optimization Using Functional Symmetries”, IEEE Trans. on
CAD, Jan. 2004, pp. 102-118.

[8] K.-H. Chang, I. L. Markov and V. Bertacco, “Safe Delay Optimization for Physical Syn-
thesis”, ASPDAC, 2007, pp. 628-633.

[9] S. C. Chang, L. P. P. P. van Ginneken and M. Marek-Sadowska, “Circuit Optimization by
Rewiring”, IEEE Trans. on Comp., Sep. 1999, pp. 962-969.

[10] C. Chu and Y.-C. Wong, “Fast and Accurate Rectilinear Steiner Minimal Tree Algorithm
for VLSI Design”, ISPD’05, pp. 28-35.
http://class.ee.iastate.edu/cnchu/flute.html

[11] W. Donath et al., ‘Transformational Placement and Synthesis”, DATE’00, pp. 194-201.

[12] N. Eén and N. Sörensson, “An Extensible SAT-solver”, Theory and Applications of Satis-
fiability Testing, SAT, 2003, pp. 502-518.

[13] S.-Y. Huang, K.-C. Chen and K.-T. Cheng, “AutoFix: A Hybrid Tool for Automatic Logic
Rectification”, IEEE Trans. on CAD, Sep. 1999, pp. 1376-1384.

[14] M. Hrkic, J. Lillis and G. Beraudo, “An Approach to Placement-Coupled Logic Replica-
tion”, DAC’04, pp. 711-716.

[15] C. Hwang and M. Pedram, “Timing-Driven Placement Based on Monotone Cell Ordering
Constraints”, ASPDAC’06, pp. 201-206.

[16] D. Josephson, “The Good, the Bad, and the Ugly of Silicon Debug”, DAC’06, pp. 3-6.

[17] A. B. Kahng and Q. Wang, “Implementation and Extensibility of an Analytic Placer”,
IEEE Trans. on CAD, May 2005, pp. 734-747.

[18] L. N. Kannan, P. R. Suaris and H. G. Fang, “A Methodology and Algorithms for Post-
Placement Delay Optimization”, DAC’94, pp. 327-332.

[19] A. B. Kahng, I. L. Markov and S. Reda, “Boosting: Min-Cut Placement with Improved
Signal Delay”, DATE’04, pp. 1098-1103.

24



[20] V. N. Kravets and P. Kudva, “Implicit Enumeration of Structural Changes in Circuit Opti-
mization”, DAC’04, pp. 438-441.

[21] C. Li, C-K. Koh and P. H. Madden, “Floorplan Management: Incremental Placement for
Gate Sizing and Buffer Insertion”, ASPDAC’05, pp. 349-354.

[22] C.-C. Lin, K.-C. Chen and M. Marek-Sadowska, “Logic Synthesis for Engineering
Change”, IEEE Trans. on CAD, Mar. 1999, pp.282-202.

[23] A. Lu, H. Eisenmann, G. Stenz and F. M. Johannes, “Combining Technology Mapping
with Post-Placement Resynthesis for Performance Optimization”, ICCD’98, pp. 616-621.

[24] T. Luo, H. Ren, C. J. Alpert and D. Pan, “Computational Geometry Based Placement
Migration”, ICCAD’05, pp. 41-47.

[25] B. M. Riess and G. G. Ettelt, “Speed: Fast and Efficient Timing Driven Placement”, IS-
CAS’95, pp. 377-380.

[26] H. Vaishnav, C. K. Lee and M. Pedram, “Post-Layout Circuit Speed-up by Event Elimina-
tion”, ICCD’97, pp. 211-216.

[27] Berkeley Logic Synthesis and Verification Group, ABC: A Sys-
tem for Sequential Synthesis and Verification, Release 51205.
http://www-cad.eecs.berkeley.edu/˜alanmi/abc/

[28] http://iwls.org/iwls2005/benchmarks.html

[29] UMICH Physical Design Tools,
http://vlsicad.eecs.umich.edu/BK/PDtools/

25


