

StarSync: An Extendable Standard-cell

Mesochronous Synchronizer

Dmitry Verbitsky
1,2

, Rostislav (Reuven) Dobkin
2
, Ran Ginosar

1
, Salomon Beer

1

1EE Dept., Technion, Haifa 32000, Israel; 2vSync Circuits LTD.

Abstract —StarSync, a mesochronous synchronizer, enables

low latency and full throughput crossing of clock domain

boundaries having same frequency but different phases. Full

back pressure is supported, where the receiver can start and stop

accepting words without any data loss. Variable depth buffering

is provided, supporting a wide range of short and long range

communications and accommodating multi-cycle wire delays.

Burst data can also be accommodated thanks to buffering.

Dynamic phase shifting due to varying voltage and temperature

are mitigated by increasing the separation between write and

read pointers. The synchronizer is exposed to metastability risk

only during reset. It is suitable for implementation using

standard cell design and requires neither delay lines nor other

full custom circuits. It is shown that a minimum of four buffer

stages are required, to mitigate skew in reset synchronization, in

contrast with previous proposals for three stages.

Keywords—Synchronization, mesochronous, multi-synchronous,

buffering, back-pressure

1. INTRODUCTION

Modern technology generations lead to Systems on Chip

(SoCs) integrating multiple IP modules placed on the same

die. Clock distribution remains a major issue in such complex

systems, because of the wire delay problem and because of

delay variations. Distributing the global clock in a system with

minimal clock skew is difficult due to the reverse scaling of

global wire delay in nanoscale integrated circuits ‎[1].

A fully asynchronous approach to global intra-chip

communication would eliminate the clock distribution

concerns and would make designs more modular since timing

assumptions are explicit in the hand-shaking protocols ‎[2].

Still, current design tools and IP libraries rely heavily instead

on the synchronous paradigm, making intermediate solutions

more attractive and affordable in the short run. Generic

solutions assuming no knowledge of clock relations may

suffer from inferior throughput or may require custom circuits

approach ‎[3]‎[4]. A trade-off between synchronous and

asynchronous approaches consists of the mesochronous

scheme ‎[5]‎[6] or the multi-synchronous method ‎[7]‎[8].

In a mesochronous system, a single clock signal is distributed

to the various modules in the design with an arbitrary amount

of space-dependent time-invariant phase offset (i.e., clock

skew). Mesochronous synchronization enables architecture

scalability and may also mitigate the skew constraints in the

clock tree synthesis process, resulting in higher clock rate,

lower power and faster back-end turnarounds ‎[9].

The contributions offered by this paper include an extensive

survey of previous work on mesochronous and related

synchronizers, a proof that at least four buffer stages are

generally required in a mesochronous synchronizer based on a

cyclic buffer (due to initialization issues), an analysis of the

impact of wire delays and clock drifts on mesochronous

synchronization, and a description of StarSync, a complete

practical full throughput synchronizer that can be implemented

using standard cells on ASIC and FPGA, that supports back

pressure, provides extensible buffering, enables both short and

long interconnects, accommodates drifting or multi-

synchronous clocks and achieves high MTBF.

The paper is organized as follows. Sect.‎1 discusses related

work. Sect.‎1 describes StarSync architecture and design

considerations. In Sect.‎1, StarSync performance is analyzed,

and StarSync is compared with a standard two-clock FIFO.

Conclusions are drawn in Sect.‎1.

2. RELATED WORK

A large body of previous research related to mesochronous

and similar synchronizers is reviewed in this section and

summarized in Table 1.

In practice, often the standard two-clock FIFO synchronizer

‎[10], which can bridge any two clock domains and not merely

mesochronous ones, is employed even when synchronizing

mesochronous domains, primarily thanks to its extensive

heritage in actual systems, its ready availability and its

robustness, in spite of its latency disadvantage (as discussed in

Sect. ‎4.5).

A common approach to the design of mesochronous

synchronizers consists of delaying either data or the clock

signal to sample data reliably when they are guaranteed to be

stable. Fig.1 shows a typical scheme of delay-line based

mesochronous synchronizer ‎[5]. Signal Xmay change close in

time to the sampling clock clk, leading to metastability of the

sampling XS flip-flop. By changing the delay line settings, the

relation between data and the clock is modified so that data

transitions happen outside the 'keep-out' region determined by

the two delay lines td and tcy–td, where tcy is the clock period

and td is a half-width of the keep-out region, which must be

accurately matched to provide minimal latency and at the

same time meet the setup and hold requirements of XS flip-

flop. A similar approach requiring only td delay line is

suggested in ‎[7]‎[8]‎[11].

2

D Q

D Q

D Q

x xd

clk td

tcy-td

FSM

xsXS

Fig.1. Delay-line synchronizer(‎[5], figure 10-9)

A digitally calibrated delay line is employed for shifting the

clock of the write-side FSM in ‎[12], while the rest of the

transmitter clock domain is clocked by a non-shifted version

of the clock. Unfortunately, the principles of choosing the

delay value as well as the structure of the synchronizer circuit

employed for pointer synchronization were not disclosed. In

‎[13] a delay line is employed for setting the relative skew

between the write and read clocks, and the delay value is

determined at design time by static timing analysis (STA). The

authors employ double data rate source synchronous

communication and sample data at the receiver side using a

dual stage buffer. Ref. ‎[14] generalized the method of ‎[13] to

construct a token-based FIFO-like transfer link. In ‎[15] a

delay-line on the read clock was employed in order to safely

sample encoded write pointer at the receiver side of the

proposed FIFO. A self-timed single stage FIFO for

mesochronous communication was proposed by ‎[16]. Its

implementation is quite simple, but it requires delay lines for

proper clocks adjustment.

A different approach for dealing with an unknown clock phase

shift involves a phase detector circuit (Fig.2, following ‎[19]).

In ‎[17] a phase detector is used to predict conflicts and to

delay the write clock. Similar methods of phase detection for

conflict prediction are proposed in ‎[18] and ‎[19], where for

each predicted conflict the write clock is shifted as well.

Conflict detectors to track drifting phase shifts between multi-

synchronous clock domains are employed in ‎[8]. In ‎[20] and

‎[11] conflict detectors are employed to prevent metastability

when using periodic clocks.

tx_clk

data_in

Clock

Reconstructor
strobe

tx_clk’

Phase

Detector

rx_clk

data_out

Strobe

Generator

TX RX

Fig.2. Phase Detection Synchronizer ‎[19]

An all-digital synchronizer that exploits the predictability of

periodic clocks is proposed by ‎[21]. Its advantages include

low latency, handling various clock frequency relations and

robustness to clock jitter and phase drift. However, it incurs

relatively high implementation complexity, requiring the

tuning of several parameters to guarantee safe

synchronization. It also uses custom design delay lines.

Ref. ‎[22] uses a learning-phase-based interface for

mesochronous synchronization. The transmitter generates a

strobe signal, the delayed version of which is sampled at the

receiver by both a positive and a negative edge-triggered flip-

flops. Before being analyzed, samples are synchronized with

N-flop synchronizers in the receiver clock domain. After the

learning phase, the receiver knows on which clock edge it

should sample data, by detecting the first sample of delayed

strobe that is different from the previous one. The advantages

of that approach include the ease of implementation, capability

to cope with various non-idealities (like clock and data jitter),

low latency and reduced overhead. On the other hand, the

design uses delay lines and offers no flow control.

Long wire delays between communicating modules typically

incur additional skew. An N-depth mesochronous

synchronizer is proposed in ‎[23] to deal with global wire

delays, estimated using STA and used to define the spread of

the write and read pointers of the N-depth synchronizer. Ref.

‎[24] suggests a similar technique for long wires, dynamically

calculating the pointer spread, using a phase detector. Mixed

timing relay stations were introduced in ‎[25] for handling long

wire interconnects, and for interfacing synchronous and

asynchronous domains.

Delay-line based synchronizers are mostly suitable for full

custom designs. They require clock tree modifications and

multiple instantiations for multi-bit applications. For SoCs

which are based on standard cell design, including both ASIC

and FPGAs, and which do not permit any fine-tune clock tree

modifications, another approach to mesochronous

synchronization is required. The principle structure of such a

synchronizer is shown in Fig.3‎[5]. This mesochronous

synchronizer employs cyclic write and read pointers, wp and

rp respectively, with a certain initial spread to allow collision-

free write and read operations. The write pointer is

synchronous to wclk and the read pointer is synchronous to

rclk, while the clocks are mesochronous. References ‎[26] and

‎[27] employ a similar structure; the goal is to provide time for

multi-stage metastability resolution, avoiding a serial

synchronization chain.

Ref. ‎[28] shows a constraint-based forward-path synchronizer

design without back-pressure. Ref. ‎[29] employs the three-

element cyclic buffer mesochronous synchronizer as shown in

Fig.4. The architecture comprises two synchronization paths.

The‎‘data‎sync’‎path‎synchronizes‎data‎that‎are‎sent‎ from‎the‎

transmitter‎ to‎ the‎ receiver.‎ The‎ ‘ctrl‎ sync’‎ path‎ synchronizes

back-pressure signaling in the reverse direction. Both

synchronization paths employ cyclic buffers, each consisting

of three stages. Buffers are managed by cyclic counters, and

their initial spread should avoid metastability. Counters of the

‘ctrl‎ sync’‎ run‎ continuously,‎ whereas‎ counters‎ of‎ the‎ ‘data‎

sync’‎ are‎ stopped‎ each‎ time‎ the‎ Stall signal is received

(TX/RX Enable in Fig.4).The circuit is tolerant only to small

phase drifts; larger phase drifts may result in unstable data

being sent to the output of the synchronizer.

Data bursts can be supported in synchronizers that implement

3

back-pressure. Another mechanism that enables data bursts

was described in ‎[30].

D

Q

E

D

Q

E

D

Q

E

ring

counter

wclk

wp

wp0

X

ring

counter
rclk

rp

XS

X0

X1

Xm...

...wp1

wpm

Fig.3. m-elements cyclic buffer mesochronous synchronizer

 [‎[5], figure 10-13]

Latch_0

Latch_1

Latch_2

CTR_Latch_0

CTR_Latch_1

CTR_Latch_2

MUX

MUX
Backward

Flow

Control

CounterCounter

CLK_sender CLK_receiver

Stall/Go

front end back end

Counter

T
X

-E
n

a
b

le

Counter

R
X

-E
n

a
b

le

Data

and

Flow Control
Data

and

Flow Control

data sync

ctrl sync

Fig.4.A Three-Element FIFO Synchronizer with

Back-Pressure ‎[29]

StarSync is compared to previous work in the rightmost

column of Table 1. More specifically, the contributions made

in this paper include:

1. The proof that at least four buffer stages are generally

required in a mesochronous synchronizer based on a

cyclic buffer (due to initialization).

2. Analysis of the impact of wire delays and clock drifts.

3. A complete practical full throughput synchronizer that can

be implemented using standard cells on ASIC and FPGA,

supports back pressure, provides extensible buffering,

enables both short and long interconnects, accommodates

drifting or multi-synchronous clocks and achieves high

MTBF.
StarSync enables data transfer between mesochronous clock

domains. The receiver clock is never stopped or modified, and

the write and read pointers are never stopped as well. The

architecture supports full backpressure and buffering for data

burst transfers and is also suitable for long range

communications. In addition, relative to other

implementations, in StarSync only a single cyclic-counter is

employed at each side of the synchronizer. The initial spread

of the pointers and the number of stages in StarSync are key

design considerations, and are discussed with respect to

different operating conditions. We show that three

synchronization stages are insufficient to assure correct

initialization and may lead to metastability; rather, a minimum

of four stages is required in general.

Table 1 : Previous work on mesochronous and related

synchronizers

Category Previous Work This Paper:

StarSync

Synchronizer

type

‎[5]‎[7]‎[8]‎[11]‎[12]‎[13]‎[14]‎[16]‎[17]‎[18]‎[19]‎[22]‎[2

3]‎[24]‎[26]‎[28]‎[29]:

Data synchronizer

‎[15]‎[21]‎[25]: Control synchronizer

Data synchronizer

Delay Line ‎[5](figure 10-9)‎[7]‎[8]‎[18]‎[21]‎[22]: Data delay

line

‎[12]‎[15]‎[16]: Clock delay line

‎[13]‎[14]: Static clock delay line

No delay line

2-clock FIFO ‎[5](figure 10-9)‎[12]: Cyclic buffer

‎[14]‎[15]: Bi-synchronous FIFO

‎[23]‎[24]‎[28]: Cyclic buffer (STA based read-

write pointer spread)

‎[25]: mixed-clock FIFO

‎[26]: Cyclic buffer with fixed pointer spread

‎[29]: Cyclic buffer of 3 stages

2-clock FIFO

based on 4 stage

cyclic buffer

Multi-Phase

Sampling

‎[7]‎[8]‎[11]‎[20]‎[22]‎[27] No multi-phase

sampling

Phase Detector ‎[17]‎[18]: phase detector of two phases per cycle

‎[5]‎[7]‎[11]‎[20]‎[21]‎[22]: Phase detector with

delay line

‎[24]: reset-only phase detector comparing

normal and delayed data

No phase detector

Back pressure ‎[14]‎[15]‎[11]‎[21] Supports back

pressure

Support long

interconnect

‎[23]‎[24]‎[28] Supports long

interconnect with

back pressure

Suitable for

standard cells

and FPGA

‎[5](figure 10-13)‎[23]‎[25]‎[28]‎[29] Suitable for

standard cells and

FPGA

Support drift

or

multi-

synchronous

clocks or

periodic clocks

‎[5](figure 10-13)‎[29]: Drift tolerance up to 1

cycle

‎[16]: Drift tolerance up to 2 cycles

‎[7]‎[8]‎[20]: Multi-synchronous clocks with re-

synchronization and training

‎[11]: Periodic clocks

‎[22]: mesochronous and plesiochronous clocks

Support multi-

synchronous

clocks without re-

synchronization

Latency ‎[7]‎[8]‎[11]‎[16]: Latency 1 or less cycles

‎[22]: Latency between 1 and 1.5 cycles

‎[5]‎[12]‎[15]: Latency between 1 and 2 cycles

‎[17]‎[21]: Latency between 1.5 and 2 cycles

‎[13]‎[14]: Latency 2 cycles

‎[18]‎[19]: Latency between 2 and 3 cycles

‎[7]: Latency equals phase difference

‎[23]: Latency equals pointer spread

‎[24]: Latency at least interconnect delay divided

by clock cycle

‎[25]: Latency between 3 and 3.5 cycles

Latency between

1 and 3 cycles,

plus interconnect

delay

Throughput ‎[25]: Full throughput or less

All others: Full throughput (one word each clock

cycle)

Full throughput

3. STARSYNC ARCHITECTURE AND EXTENSIONS

3.1. Conceptual description

The synchronizer connects a sender to a receiver and consists

of a TX and a RX blocks. The TX block uses the same clock

as the sender, and RX uses the receiver clock. The sender can

send data via the synchronizer to the receiver, and the receiver

may apply backpressure to the sender, asking to stop sending

data. Ideally, the sender should be able to send an infinite

stream of data (one new word each cycle), but the receiver can

use backpressure to stop data transmission when it cannot

4

receive more data. Still, the sender should be allowed to

support a burst mode by sending a continuous burst of the pre-

defined number of data words (L) without interruption.

Note that it takes a certain delay from the time of issue of

backpressure by the receiver and until the sender is notified of

that backpressure. Meanwhile, some data words have already

accumulated inside the synchronizer, and the sender continues

to send data until it receives the notice of backpressure. We do

not wish to lose these data, and a FIFO is added at the RX

block to keep that data until the receiver agrees to receive it.

Three StarSync extensions are described. First, the FIFO at the

RX block may be extended, to enable receiving a burst of L

words even if the receiver has applied backpressure. The

actual backpressure signal is delayed to the sender until after

the sender has sent all L words of the burst.

StarSync can support long interconnecting wires between TX

and RX. Such wires may incur multi-cycle delay between TX

and RX. To support that, the RX FIFO can be further

extended, and the synchronization buffers in TX and RX can

also be further extended.

Last StarSync also supports correct multi-synchronous

operation in the presence of cumulative dynamic phase shift

between the two mesochronous clocks. That shift can

accumulate beyond one clock cycle. To allow that, longer

synchronization buffers are employed on both TX and RX.

3.2. Architecture

StarSync architecture is shown in Fig.5. The mesochronous

synchronizer employs two cyclic buffers (TX_BUF and

RX_BUF), each consisting of four parallel stages (as

explained in Sect. ‎0 below). TX_BUF is a data buffer,

responsible for data transfer from the transmitter interface to

the receiver. TX_BUF holds both forward tokens and data.

Forward data valid (DV) tokens indicate the data validity.

RX_BUF holds backward tokens, which indicate the amount

of free space at the receiver side.

Data Transfer

The data and the forward DV tokens (PUSH signal converted

into data valid DV signal) are written cyclically into

DATA_REG_x and DV_FF_x registers with TX_CLK. The

cyclic WR_COUNTER is never stopped. The same is true for

the RD_COUNTER, which is clocked by the mesochronous

RX_CLK. Thanks to the initial spread (discussed below in

Sect.‎0), metastability is avoided when reading data from

TX_BUF using the read pointer RP. The read data are output

over the RX_DATA and EMPTY lines. The EMPTY signal is

effectively an inverted copy of the DV signal.

Backpressure

The receiver side can stop the transfer by de-asserting the POP

signal, which immediately causes the data from TX_BUF to

be saved into the Single-Clock FIFO. Note that if there are

valid data in TX_BUF or in FIFO then the EMPTY signal

remains low, since it always indicates the presence of valid

data regardless of whether the data are held in TX_BUF or in

FIFO.

The backward token in Token_FF_x is‎ either‎ ‘ClearToSend’‎

(‘1’), allowing writing into DATA_REG_x and DV_FF_x, or

‘DoNotSend’‎ (‘0’).‎ In‎ a‎ basic‎ (minimal‎ buffering)

configuration, the FIFO depth is equal to the depth of

TX_BUF (four buffers), to allow clearing of TX_BUF into

FIFO, since the pointer counter is never stopped.‎‘DoNotSend’‎

tokens are written into RX_BUF when POP is de-asserted.

When Token_FF_x is‎ ‘DoNotSend’,‎ writing‎ data‎ into‎ the‎

corresponding DATA_REG_x and DV_FF_x is blocked, since

the data register is occupied. FULL signal is asserted,

providing back-pressure. Data transfer is resumed when POP

signal is re-asserted. After asserting POP, data from FIFO are

output on RD_DATA. In parallel, RX_BUF is filled with

‘ClearToSend’‎tokens‎that‎are‎passed‎to‎the‎transmitter.‎Once‎

a‎ ‘ClearToSend’‎ token‎ is‎ selected‎ by WP, FULL is de-

asserted, enabling a write operation. During subsequent write

and read operations, the data at the receiver side are pushed

into the FIFO as long as it is not empty. Once the FIFO

becomes empty (e.g., thanks to idle cycles at the transmitter

side) the data bypass the FIFO and are output with normal

latency.

Token Management

The token buffer RX_BUF is managed in the following way:

 All token buffer stages are initialized to '1' ('ClearToSend')

 For valid read cycle (namely, POP is high) the following

operations are performed:

o Valid Token ('1') is written into the current RX_BUF

stage (pointed at by read pointer RP), indicating that

the corresponding TX_BUF stage is empty and is

ready to receive new data.

o When FIFO is not empty, current data from TX_BUF

is written into the FIFO (only if the current TX_BUF

register holds valid data, namely the corresponding

DV is high) and the data for RD_DATA bus is popped

out of the FIFO. Otherwise (when FIFO is empty)

valid data from TX_BUF are conveyed directly to the

output (FIFO is bypassed).

 For stall cycle (namely, POP is low) the following

operations are performed:

o Valid data from TX_BUF are pushed into the FIFO.

o When THRESHOLD is low (namely, there is still

room in the FIFO), a Valid token is written into

RX_BUF.

o When THRESHOLD is high (namely, the FIFO has

room only for words that are already in TX_BUF but

no room for additional new words), Invalid token ('0')

is written to RX_BUF. Note that the FIFO has room

also for new words that may be inserted into TX_BUF

until the Invalid backward token has propagated and

toggled the FULL signal.

Since TX_CLK and RX_CLK have the same frequency, but a

constant relative skew, the initial values of the write and read

pointers should be carefully set to eliminate contention (WAR

or RAW hazards). The initial write pointer is set to 0, and the

initial read pointer is set to 2 (as detailed below in Sect. ‎0).The

initial separation is preserved throughout subsequent operation

thanks to the mesochronous clock relationship.

5

MUX

MUX

R
D

_
C

O
U

N
T

E
R

FIFO MUX

TXD
A

T
A

_
R

E
G

_
0

D
V

_
F

F
_

0

EN

EN

EN

MUX

FPUSH

WR_DATA

FEMPTY

FPOP

RD_DATA

THRESHOLD

‘1’
1

1
0

0

‘0’

MUX

TX_CLK

FULL

PUSH

TX_DATA

RX_DATA

EMPTY

RX_CLK

POP

WP

RP

TX_BUF

DV(0)

DV(1)

DV(2)

RX

TV(0)

TV(1)

TV(2)

D
V

_
F

F
_

1

EN

D
V

_
F

F
_
2

EN

W
R

_
C

O
U

N
T

E
R

D
A

T
A

_
R

E
G

_
2

EN

D
A

T
A

_
R

E
G

_
1

EN

EN

T
O

K
E

N
_

F
F

_
0

EN

RX_BUF

D
A

T
A

_
R

E
G

_
3

EN

D
V

_
F

F
_
3

EN

DV(3)

T
O

K
E

N
_

F
F

_
1

T
O

K
E

N
_
F

F
_
2

T
O

K
E

N
_
F

F
_

3

EN

TV(3)

DV

0

Fig.5. StarSync Architecture

At the output, the RX_DATA multiplexer chooses the output

of the FIFO, when it is not empty, or TX_BUF otherwise.

Additional multiplexing selects EMPTY, which is '0' if either

internal FIFO is not empty or internal FIFO is empty but the

TX_BUF holds valid data, and '1' otherwise.

The basic StarSync architecture described above can be

extended to support the bursts, long interconnect delay and

multi-synchronous clocking, as follows.

3.2.1 Support of Data Burst and Buffering

As described above, the minimal FIFO depth equals the depth

of TX_BUF (depth of four in the basic configuration). The

minimal depth is dictated by the maximal number of words

inside TX_BUF. Since the read out of TX_BUF is never

stopped, the words are saved aside in the FIFO when POP is

de-asserted.

Burst transfer is supported by making FIFO deeper. For a data

burst of length L>4 the FIFO depth is set to L. The

THRESHOLD signal is asserted when the number of data

words in FIFO reaches the predefined threshold of L-4. As

described below, both POP and THRESHOLD affect token

generation for RX_BUF.

3.2.2 Support of Long Wires

Two different modes of synchronizing over long interconnect

are described. The interconnect is considered long when the

wire delay is significant, e.g., data takes m>0 clock cycles to

travel over the wire:

1. Source synchronous communication, where the entire

synchronizer is placed at the sink of the communication

link (Fig.6a) and the data transmitted on the link are

accompanied by a STROBE. A similar approach was

presented in ‎[24]. In that case, the long lines are not part

of the synchronizer, and may be implemented as either

wave-pipelined links or registers may be inserted over the

long wires.

2. Split synchronizer: Long wires between the TX and RX

sides of the synchronizer (Fig.6b).

Two variants of the synchronizer are employed for source

synchronous communication (Fig.6a). If no backpressure is

needed, the basic StarSync of Fig.5 may be used. Otherwise,

FIFO should be extended to depth 4+m. This is required

because, when the receiver RX is stopped, the FULL

indication may arrive at the source module after a few clock

cycles due to the long interconnect delay. By increasing the

depth of the FIFO, the synchronizer deals with this case

without any latency overhead. The number m of additional

required FIFO stages can be computed using Static Timing

Analysis (STA). Note that any spare stages added for safety

affect only the area; neither throughput nor latency are

affected.

In the split synchronizer case (Fig.6b), in which the TX and

RX parts are placed far away from each other, long delay is

incurred both over the TX-to-RX data path and over the RX-

to-TX token path. When no backpressure is needed, only the

TX-to-RX interconnect delay is taken into account. In this

case, the synchronizer should assure that the data are read

before the same buffer is written. Since it takes time for the

data and for the DV signal to reach RX, the synchronizer

TX_BUF needs to be extended to cover for the longer

interconnect delay. While in a short wires synchronizer four

TX_BUF stages suffice (Fig.7a), for an interconnect delay of

m cycles, additional m stages are added (Fig.7b), resulting in a

4+m stage buffer. The initial spread between the pointers is

two in both cases, and RP points to a TX_BUF entry only after

the entry becomes valid, finishing its propagation through the

6

interconnect. Red color was used to define the cycles where it

is not allowed to sample DATA_REG_0, because it is not yet

ready. Yellow was used to define the cycle where sampling of

DATA_REG_0 is not safe due to initialization case where

write and read pointers spread is one. And finally, green was

used to define the cycle where DATA_REG_0 sampling is

safe. The required additional number of stages m is computed

using STA. When backpressure is desired, the additional

latency of the backpressure signal TV (Token Valid) should be

taken into account, adding in a similar way additional 2m

stages to both TX_BUF and RX_BUF (Fig.7c). The effective

rate of each line is 1/2m, because new data can be sent on the

same line only once per 2m cycles, whereas m is chosen to be

the maximum delay over all control and data lines. In that

way, when DV and data lines are sampled, they are all stable.

In addition, similarly to the source synchronous case, FIFO

depth is extended to 4+2m in order to compensate for that

delay. This split synchronizer is useful for mesochronous

NoC, where TX can serve as the output ports of a NoC router

and RX is the input port of the next router ‎[32].

3.2.3 Support of Multi-Synchronous

Communications

Mesochronous clocks may suffer from phase drifting during

operation, due to temporal and spatial variations in voltage and

temperature. In this work we analyze dynamic phase shift in

the range of [0, ±T) between the clocks, where T is the clock

period. We show in the next section that six synchronization

stages can deal with such phase drifts.

In general, each cumulative T-long phase shift requires adding

two synchronization stages, to keep the pointer spread

symmetric in both directions, coping with both positive and

negative clock phase shifts. Each stage incurs an additional

DATA_REG, DV_FF and TOKEN_FF registers (see Fig.5). It

means that in order to cope with phase shift of [0, ±k·T) we

need 4 + 2k stages in each of TX_BUF and RX_BUF.

Note that the extensions described in the ensuing three sub-

sections, related to bursts, to long wires and to multi-

synchronous communications, are independent of each other

and may be applied in any combination. Note further that all

three extensions lead to requirements regarding the FIFO

depth L, stemming from either burst length, or from line

length as determined through STA, or from drift requirements,

or any combination thereof; these requirements result in a

feasible FIFO depth of L words, and correct operation in all

cases (avoidance of FIFO overflow) is assured by means of

back-pressure.

3.3. Initialization

An asynchronous reset is employed for circuit initialization.

To properly reset multiple clock domains, the reset signal

must be synchronized with each one of their respective clocks.
Fig.8 shows a typical case of two two-flip-flop reset

synchronizers for two clock domains (more than two stages

may be required to achieve a desired MTBF). These

synchronizations may lead to non-deterministic timing of the

release of the multiple synchronized reset signals: due to

possible metastability, each synchronizer may produce the

trailing edge of reset after either k or k+1 cycles of its

respective clock, for some k.

FIFO

CL

RX_DATATX_DATA

PUSH

EMPTY

POP

TX RX

Clock

Tree

STROBE

FULL

≈
≈

≈
≈

D
V

(0
)

D
V

(1
)

D
V

(2
)

D
V

(3
)

T
V

(0
)

T
V

(1
)

T
V

(2
)

T
V

(3
)

(a)

FIFO

CL

RX_DATATX_DATA

PUSH

EMPTY

POP

TX RX

TX_CLK

FULL

≈
≈

≈
≈

≈
≈

≈
≈
≈

...

...

...
..
.

.. .
.. .

......

...

DV(0)

DV(1)

DV(2m-1)

TV(0)

TV(1)

TV(2m-1)

...

(b)

Fig.6. Communication over m-cycles long interconnect

(a) Source synchronous communication

(b) Split synchronizer: Long wires between TX and RX (DV

and TV signals)

 For each clock domain the reset is asserted asynchronously

and instantaneously, but is released synchronously, leading to

skew of [0, ±T), where T is the clock period. The waveforms

in Fig.9 describe the operation for two possible maximum

skew scenarios that can occur: either one of the synchronized

release of the reset signals precedes the other by a skew no

more than T.

Notice that when the wire delays of global 'RESET' signal to

WR and RD reset synchronizers are different (ΔT1 andΔT2

in Fig.8), an additional skew may be incurred. We assume that

this skew can be mitigated by reset tree balancing toward R1

and G1 reset synchronizers, since this is a relatively small tree

that can be lumped within a small area on the chip, and the

balancing can be performed by conventional routing tools.

Therefore, skew on the RESET wires towards the

synchronizers is disregarded in the following analysis. When

resets are asserted, write and read pointers are set to their

initial values with a spread of at least 2 (0 and 2 respectively,

for short interconnect, or 0 and k for split synchronizer with

backpressure).

7

tx_time

TX

RX

T 2T 3T

TX_PTR 0 1 2

rx_time0 T 2T

RX_PTR 2 3 0

0

3

1

3T 4T

tx_time

TX

RX

T 2T 3T

TX_PTR 0 1 2 ... m-1

rx_time
0 T 2T ...

RX_PTR 2 3 m m+1 0

0

m+3m+2

m×T

m×T

m

(m+1)×T

(m+1)×T

1

(a)

(b)

m m+112m+3

tx_time

TX

RX

T 2T m×T

TX_PTR 0 1 ... m

rx_time
0 T 2T...

RX_PTR m+2 m+3 2m+1 2m+2

0

m+1 m+2 ... 2m+2 2m+3

(m+1)T

0

...

0

m×T

m+3

(c)

Fig.7. data/token transitions (a) short wires (b) long wires split

synchronizer, no backpressure

(c) long wires split synchronizer with backpressure

These initial values are explained as follows, showing that a

pointer spread of less than two is insufficient. First, consider

the case of zero initial pointer spread as in Fig.10. In this

example, both reset synchronizers are resolved after the same

number of cycles. In addition, clock phase between the clocks

is less than the setup-hold window width of RD_CLK (green

area in Fig.10). The problem is that DATA_REG_i and

DV_FF_i (see Fig.5) change in the metastability region of

RD_CLK violating its setup time.

Next, consider initial pointer spread of one as in Fig.11. In this

case, if one synchronizer takes longer to resolve than the other,

one pointer gets incremented in the first cycle while the other

pointer does not, they become equal and we face again the risk

of concurrent read and write. So only the initial spread of two

(or more) can guarantee continuous maintenance of minimal

spread of one, because reset synchronization cannot reduce the

R1 R2

RESET

G1 G2

WR_CLK

RD_CLK

WR_RESET

RD_RESET

ΔT1

ΔT2

Fig.8. Synchronization of asynchronous RESET in two

different clock domains

RD_CLK

WR_CLK

RESET

RD_RESET

WR_RESET

skew≤T

 (a) WR_RESET precedes RD_RESET

(rising RD_CLK just misses falling RESET)

WR_CLK

RD_CLK

RESET

WR_RESET

RD_RESET

skew≤T

(b) RD_RESET precedes WR_RESET

(rising WR_CLK just misses falling RESET)

Fig.9. Reset: two maximum skew scenarios (a) positive skew

up to T (b) negative skew up to T

spread by more than one. The same is true in the opposite

direction when tokens are written to TOKEN_FF_i in

RD_CLK domain and are read in WR_CLK domain. In order

to maintain a minimal symmetric pointers spread of two, the

minimal cyclic buffer depth should be equal to four, while the

buffer depth of three can provide a spread of two in only one

direction.

The synchronizer can be enhanced to support multi-

synchronous domains subject to a dynamic phase drift. Here

we analyze a phase drift limited to a single clock cycle. In case

of a phase drift of a whole cycle the spread between the

pointers is reduced and the situation described in Fig.11 is

again possible. In order to avoid this, additional spread of one

place must be added between the pointers. That means that the

initialization setup would be six register stages with initial

write pointer = 0 and initial read pointer = 3. Note that the

pointer spread must be symmetric in both directions to deal

with both positive and negative clock phase shifts. Thus, each

additional phase shift of T adds two synchronization stages,

leading to 4+2k stages for phase shift of [0, ±kT).

8

WR_CLK

DATA_REG_i D0 D1

DV_FF_i

RESET

WR_RESET

V0 V1

RD_CLK

RD_RESET

i i+1WR_PTR

i i+1RD_PTR

Fig.10. Setup time violation when pointers are initialized to

the same value

WR_CLK

DATA_REG D0 D1

DV_FF

RESET

WR_RESET

V0 V1

RD_CLK

RD_RESET

i i+1WR_PTR

i+1RD_PTR

D2

V2

i+2

Fig.11. Setup time violation when pointers are initialized

with spread of one

4. PERFORMANCE

In this section, StarSync performance is analyzed. Forward

latency, throughput, area and power requirements are

discussed, and StarSync is compared to a two-clock FIFO.

4.1. Forward Latency

The forward latency is defined as the time from the data being

placed at the synchronizer input until it appears at the

synchronizer output. The forward latency varies in the range

(T, 3T), depending on the initial pointer spread and on the

relative phase difference of the two clocks. Fig.12 and Fig.13

show the forward data latency when RD_CLK has a positive

or negative phase shift, respectively, where  is the absolute

value of the phase shift.

4.2. Throughput

StarSync provides maximal throughput, namely a data word

can be transferred on each clock cycle, when the receiver side

is ready and if there is no backpressure. When backpressure is

applied, the throughput is linearly affected as shown in Fig.14.

4.3. Area

StarSync area consists mostly of registers and flip-flops.

WR_CLK

RD_CLK

WR_PUSH

WR_FULL

WR_DATA

RD_EMPTY

RD_POP

D1 D2 D3 D4 D5 D6 D7

D1 D2 D3 D4RD_DATA D5

2T+Φ Φ

Fig.12. StarSync forward‎latency‎2T+Φ‎(WR_CLK‎precedes‎

RD_CLK)

WR_CLK

RD_CLK

WR_PUSH

WR_FULL

WR_DATA

RD_EMPTY

RD_POP

D1 D2 D3 D4 D5 D6 D7

D1 D2 D3 D4RD_DATA D5

2T-Φ Φ

Fig.13. StarSync forward latency 2T-Φ‎(RD_CLK precedes

WR_CLK)

1

Backpressure

Throuput

[Words/Cycle]

0 1

[#stall cycles / #cycles]

Fig.14. Throughput vs. RX backpressure

The number of registers depends on the data word width, on

the depth of the synchronization buffers (BufDepth), and on

the FIFO depth (FifoDepth), as shown in Eq.(1). Note that

FifoDepth=max(BufDepth, L), where L is the data burst

requirement. The register data count comes from two main

sources: one is the TX and RX BUFs and their pointers WP

and RP, and the FIFO. BufDepth should be greater or equal to

four. Increasing BufDepth (in the cases of split synchronizer

for long interconnect and multi-synchronous domains) has the

most significant impact among all parameters, as it affects also

the value of FifoDepth.

2

2

(2) #TX&RX BUFs

2 log () # WP & RP

log () #FIFO: data and control

Area

BufDepth DataWidth

BufDepth

FifoDepth DataWidth FifoDepth



  

   

    

(1)

4.4. Dynamic Power

StarSync implementation is based only on standard library

cells and therefore, StarSync power can be assessed using

conventional digital design power analysis tools that rely on

9

the power values specified for the library. Since power

analysis is straightforward, in this section we shortly review

the impact of StarSync configuration parameters on the power.

For the long-wires extension (Sect. ‎3.2.2), additional power is

incurred, required for driving the long interconnect wires.

A single register inside each buffer is enabled per cycle thanks

to the cyclic enable pointers. Thus, data toggles in only about

one fourth of the circuit. In addition, FIFO works only when

backpressure is applied, while during continuous data transfer

it can be clock-gated. Therefore, for a continuous data transfer,

the power is proportional to about one fourth of the

TX/RX_BUF registers. Clock gating can be employed in all

the disabled registers, controlled by WP and RP. Thanks to the

mesochronous clock relation (and the fact that typically the

two clock phases are different from each other), peak power is

reduced since TX and RX clocks do not toggle

simultaneously.

2

1
(2) 2 log ()

4
(2)Power BufDepth DataWidth BufDepth         

4.5. Comparison to two-clock FIFO

The structure of a standard two-clock FIFO ‎[10] is shown in

Fig.15. Incoming data are pushed into the FIFO when write

enable is asserted (push). On the subsequent cycle, a gray

coded write pointer wp_g is sent to the synchronizer, which

usually consists of at least two stages. The synchronized value

of the write pointer wp_sync is then compared to the current

value of the read pointer to assess the amount of unread data

inside the FIFO, setting the empty signal accordingly. When

the empty is de-asserted, pop signal can be applied (for fast

response the pop signal can be asserted immediately after

empty de-assertion, on the same clock cycle). In a standard

FIFO protocol, the data appear at the FIFO output on the next

clock cycle. For fall-through FIFO the data appear along with

the empty de-assertion.

Fig.16 shows the waveform diagram of the two-clock FIFO

operation and the forward latency for the standard FIFO

protocol. The total worst case latency is four clock cycles. For

the fall-through FIFO it can be reduced to three.

In terms of throughput, both structures provide the maximal

throughput of one word per cycle (WPC).

Read Pointer

Dual-Port RAM

Write Pointer

SYNC

SYNC

Compare

Compare

wdata rdata

full

empty

push

pop

wp_sync

wp_g

Fig.15. Two-clock gray fifo structure ‎[10]

The area expression for the two-clock FIFO is shown in

Eq.(3). We assume here that the two synchronization stages

are enough to obtain high reliability, otherwise the factor of 4

in Eq.(3) should be increased.

StarSync is compared to two-clock FIFO in Table 2. For

StarSync, only the flip-flops of the reset synchronizer may

become metastable.

2

2

2 log () # WP & RP

4 log () #SYNCs

#Buffers

Area

BurstLength

BurstLength

BurstLength DataWidth



   

   



 (3)

Thus, the MTBF of StarSync equals the MTBF of the reset

synchronizer. Using regular MTBF expression ‎[30], we can

compute this MTBF, as in the following example. Assume

sampling clock frequency FC=100MHz, reset toggling

frequency FD=1 toggle/day, settling time T=10 ns, =40 ps for

90nm technology, and W=10 ps:

200
200 3

11 8
MTBF= 10

10 10

S

C D

e e
e days

W F F




  

  

Evidently, this value of MTBF is practically unlimited.

RD_CLK

WR_CLK

PUSH

WDATA D0 D1 D2 D3 ...

WP_G 1 2 3 40 ...

WP_SYNC 1 2 3 40 ...

EMPTY

POP

RDATA D0 D1 D2 D3

1 2 3 4

Fig.16. Two-Clock FIFO latency

StarSync latency is at most the same as the minimal latency of

the two-clock FIFO, while the same maximal possible

throughput is provided. The latency of the two-clock FIFO

depends on the clock rate and the technology as for certain

cases a longer delay is required to resolve metastability inside

SYNC modules. StarSync, however, does not incur such

overhead and always incurs three or fewer cycles forward

latency (down to one cycle), with an unlimited MTBF.

In addition, the two-clock FIFO does not support long wire

communication (Sect.‎3.2) since it cannot be distributed.

Table 2 : Comparison of StarSync and two-clock FIFO

Parameter StarSync

Two-Clock FIFO

(with two stage gray-code

synchronizers)

Latency (cycles) 1-3 3-4

Throughput (WPC) 1 1

MTBF Practically Unlimited
Technology & Operating

conditions dependent

To provide full-throughput while accommodating

backpressure and supporting bursts, the two-clock FIFO is

usually designed with a depth of at least eight places (although

five stages suffice ‎[33]). For example, the minimal depth of

Xilinx two-clock FIFO is 16 ‎[34], while the minimal depth of

Altera two-clock FIFO is 8 ‎[35]. While the two-clock FIFO

can support data bursts by increasing its depth, it cannot

support long wires, unlike StarSync. On the other hand, a two-

10

clock FIFO can support unrelated clock frequencies while

StarSync is optimized for mesochronous and multi-

synchronous clock domains. The critical path of StarSync

resides inside the single-clock FIFO; thus, the maximum

allowed frequency of operation can be optimized in the same

manner as in any synchronous, single-clock circuit, and does

not depend on the other parts of StarSync. Regarding area

comparison, StarSync occupies about the same area as the full

throughput two-clock FIFO. When the data width is held

constant, both Eq. (1) and Eq. (3) converge to the same value

of BurstLength×DataWidth. In terms of power, we note that

the two-clock FIFO must always work with its internal dual-

port RAM, whereas StarSync may bypass the RAM

consuming less dynamic power.

5. CONCLUSIONS

In this paper data transfer between mesochronous clock

domains was discussed. StarSync, a new mesochronous

synchronizer with back-pressure and burst support was

presented. The paper shows that a minimal depth of four

buffers is required to avoid timing violations, when a real reset

circuitry is considered. This is in contrast with previous

publications that employed three buffers. StarSync provides

low latency and full throughput, while requiring less area than

a standard two-clock FIFO. StarSync can be configured to

support both long range source-synchronous communication

and long wires between the transmitter and receiver sides of

the synchronizer. In addition, StarSync may be extended to

support dynamic clock phase drift and custom burst length.

StarSync relies only on synthesizable logic and standard cell

libraries and therefore it is suitable for any SoC, FPGA and

NoC applications.

References

[1] E.G. Friedman, Clock Distribution Networks in Synchronous Digital

Integrated Circuits, In Proc. of the IEEE 89(5),pp. 665-692, 2001.

[2] J. Sparso and S. Furber, Principles of asynchronous circuit design - A

systems perspective, Kluwer Academic Publishers, 2001.
[3] R. Dobkin and R. Ginosar, Fast Universal Synchronizer, Proc. 18th

International Workshop PATMOS, Lisbon, Portugal, pp.199-208, 2008.

[4] R. Dobkin and R. Ginosar, Two Phase Synchronization with Sub-cycle
Latency, Integration, the VLSI Journal, 42(3) , pp.367-375, 2009.

[5] W.J. Dally and J.W. Poulton, Digital Systems Engineering, Cambridge

University Press, 1998.
[6] T.H. Meng, Synchronization Design of Digital Systems, Kluwer

Academic Publishers, 1990.

[7] R. Kol and R. Ginosar, Adaptive Synchronization, Proc. of IEEE
International Conference on Computer Design, 1998.

[8] R. Kol and R. Ginosar, Adaptive Synchronization, Proc. of
Asynchronous Interfaces Workshop (AINT), TU Delft, The Netherlands,

pp. 93-101, 2000.

[9] D.G. Messerchmitt, Synchronization in Digital System Design, IEEE
Trans. Select. Areas Commun., Vol. 8, pp. 1404-1419, 1990.

[10] C.E. Cummings, Simulation and Synthesis Techniques for

Asynchronous FIFO Design, SNUG 2002 .User Papers, 2002.
[11] U. Frank, T. Kapschitz and R. Ginosar, A Predictive Synchronizer for

Periodic Clock Domains, Formal Methods in System Design (special

issue on Formal Methods for Globally Asynchronous Locally
Synchronous Design), 28(2), pp.171-186, 2004.

[12] S.R. Vangal, J. Howard et al., An 80-Tile Sub-100-W TeraFLOPS

Processor in 65-nm CMOS, IEEE Journal of Solid-State Circuits, 43(1),
pp.29-41, 2008.

[13] F. Vitullo, N.E. L'insalata et.al., Low-Complexity Link
Microarchitecture for Mesochronous Communication in Networks-on-

Chip, IEEE Trans. on Computers, Vol.57,no.9, pp. 1196-1201, 2008.

[14] S. Saponara, F. Vitullo et.al., LIME: A Low-latency and Low-
complexity On-chip Mesochronous Link with Integrated Flow Control,

Proc. of the 11thEUROMICRO Conference on Digital System Design

Architectures, Methods and Tools (DSD), Parma, Italy, pp. 32-35, 2008.
[15] I.M. Panades and A. Greiner, Bi-Synchronous FIFO for Synchronous

Circuit Communication Well Suited for Network-on-Chip in GALS

Architectures, Proc. of the 1st International Symposium on Networks-
on-Chip (NOCS'07), pp.83-94, 2007.

[16] A. Chakraborty and M.R. Greenstreet, Efficient Self-Timed Interfaces

for Crossing Clock Domains, Proc. of the 9th IEEE International
Symposium on Asynchronous Circuits and Systems

(ASYNC'03),Vancouver, Canada, pp. 78-88, 2003.

[17] F. Mu and C. Svensson, Self-Tested Self-Synchronization Circuit for
Mesochronous Clocking, IEEE Trans. on Circuits and Systems II:

Analog and Digital Signal Processing, Vol.48, no.2, pp. 129-141, 2001.

[18] B. Mesgarzadeh and C. Svensson, A New Mesochronous Clocking

Scheme for Synchronization in SoC, Proc. of IEEE International

Symposium on Circuits and Systems (ISCAS'04), Vancouver, Canada,

pp. 605-609, 2004.
[19] D. Wiklund, Mesochronous Clocking and Communication in On-Chip

Networks, Proc. of the Swedish System-on-Chip Conference
(SSoCC'03), 2003.

[20] Y. Semiat and R. Ginosar, Timing Measurements of Synchronization

Circuits, Proc. of the 9th IEEE International Symposium on
Asynchronous Circuits and Systems (ASYNC'03), Vancouver, Canada,

pp. 68-77, 2003.

[21] W.J. Dally and S.G. Tell, The Even/Odd Synchronizer: A Fast, All-
Digital, Periodic Synchronizer, Proc. of the IEEE International

Symposium on Asynchronous Circuits and Systems (ASYNC 2010),

pp. 75-84, 2010.
[22] J.M. Chabloz and A. Hemani, Low-Latency and Low-Overhead

Mesochronous and Plesiochronous Synchronizers, Proc. of the 2011

14th Euromicro Conference on Digital System Design, pp. 157-164,

2011.

[23] P. Caputa and C. Svensson, An On-Chip Delay- and Skew-Insensitive

Multicycle Communication Scheme, Proc. of the IEEE International
Solid-State Circuits Conference (ISSCC 2006), San Francisco, U.S, pp.

1765-1774, 2006.

[24] M. Ghoneima, Y. Ismail, M. Khellah and V. De, Variation-Tolerant and
Low-Power Source-Synchronous Multi-Cycle On-Chip Interconnection

Scheme, IEEE Trans. on Circuits and Systems I, Regular Paper, vol.

2007, pp. 1-12, 2007.
[25] T. Chelcea and S.M. Nowick, Robust Interfaces for Mixed-Timing

Systems, IEEE Trans. on VLSI Systems, Vol.12, pp. 857-873, 2004.

[26] J. Jex and C. Dike, A fast resolving BiNMOS synchronizer for parallel
processor interconnect, IEEE Journal of Solid-State Circuits, 30(2), pp.

133-139, 1995.

[27] M. Alshaikh, D. Kinniment and A. Yakovlev, A synchronizer design
based on wagging, Microelectronics (ICM), International Conference on

Microelectronics ,pp.415-418, 2010.

[28] S.R. Hasan, N. Belanger, Y. Savaria and M.O. Ahmad, All digital skew

tolerant synchronous interfacing methods for high-performance point-to-

point communications in deep sub-micron SoCs, Integration,

the VLSI Journal 44.1, pp. 22-38, 2011.
[29] D. Ludovici, A. Strano et.al., Comparing Tightly and Loosely Coupled

Mesochronous Synchronizers in a NoC Switch Architecture, Proc. of the

3rd ACM/IEEE International Symposium on Networks-on-Chip
(NOC2009), Salo, Finland, pp. 244-249, 2009.

[30] R.W. Horst, TNet: a reliable system area network, IEEE Micro, 1995.

[31] R. Ginosar, 2005, MTBF of a Multi-Synchronizer System on Chip,
http://webee.technion.ac.il/~ran/papers/MTBFmultiSyncSoc.pdf,

2005

[32] E. Bolotin et al., QNoC: QoS architecture and design process for
network on chip, Journal of Systems Architecture 50.2, pp. 105-128,

2004.

[33] A. Strano, D. Ludovici and D. Bertozzi, A library of dual-clock fifos for
cost-effective and flexible MPSoC design, Proc. Embedded Computer

Systems (SAMOS), pp. 20-27, 2010.

[34] Xilinx, Core Generator, version 14.6.
[35] Altera, Mega Wizard, version 13.0.

http://webee.technion.ac.il/~ran/papers/FrankKapshitzGinosarFMpredictiveSynchronizer.pdf
http://webee.technion.ac.il/~ran/papers/FrankKapshitzGinosarFMpredictiveSynchronizer.pdf
http://webee.technion.ac.il/~ran/papers/FrankKapshitzGinosarFMpredictiveSynchronizer.pdf
http://en.wikipedia.org/wiki/IEEE_Micro

