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Abstract —StarSync, a mesochronous synchronizer, enables 

low latency and full throughput crossing of clock domain 

boundaries having same frequency but different phases. Full 

back pressure is supported, where the receiver can start and stop 

accepting words without any data loss. Variable depth buffering 

is provided, supporting a wide range of short and long range 

communications and accommodating multi-cycle wire delays. 

Burst data can also be accommodated thanks to buffering.  

Dynamic phase shifting due to varying voltage and temperature 

are mitigated by increasing the separation between write and 

read pointers. The synchronizer is exposed to metastability risk 

only during reset. It is suitable for implementation using 

standard cell design and requires neither delay lines nor other 

full custom circuits. It is shown that a minimum of four buffer 

stages are required, to mitigate skew in reset synchronization, in 

contrast with previous proposals for three stages. 

 

Keywords—Synchronization, mesochronous, multi-synchronous, 

buffering, back-pressure 

1. INTRODUCTION 

Modern technology generations lead to Systems on Chip 

(SoCs) integrating multiple IP modules placed on the same 

die. Clock distribution remains a major issue in such complex 

systems, because of the wire delay problem and because of 

delay variations. Distributing the global clock in a system with 

minimal clock skew is difficult due to the reverse scaling of 

global wire delay in nanoscale integrated circuits ‎[1].  

A fully asynchronous approach to global intra-chip 

communication would eliminate the clock distribution 

concerns and would make designs more modular since timing 

assumptions are explicit in the hand-shaking protocols ‎[2]. 

Still, current design tools and IP libraries rely heavily instead 

on the synchronous paradigm, making intermediate solutions 

more attractive and affordable in the short run. Generic 

solutions assuming no knowledge of clock relations may 

suffer from inferior throughput or may require custom circuits 

approach ‎[3]‎[4]. A trade-off between synchronous and 

asynchronous approaches consists of the mesochronous 

scheme ‎[5]‎[6] or the multi-synchronous method ‎[7]‎[8]. 

In a mesochronous system, a single clock signal is distributed 

to the various modules in the design with an arbitrary amount 

of space-dependent time-invariant phase offset (i.e., clock 

skew). Mesochronous synchronization enables architecture 

scalability and may also mitigate the skew constraints in the 

clock tree synthesis process, resulting in higher clock rate, 

lower power and faster back-end turnarounds ‎[9]. 

The contributions offered by this paper include an extensive 

survey of previous work on mesochronous and related 

synchronizers, a proof that at least four buffer stages are 

generally required in a mesochronous synchronizer based on a 

cyclic buffer (due to initialization issues), an analysis of the 

impact of wire delays and clock drifts on mesochronous 

synchronization, and a description of StarSync, a complete 

practical full throughput synchronizer that can be implemented 

using standard cells on ASIC and FPGA, that supports back 

pressure, provides extensible buffering, enables both short and 

long interconnects, accommodates drifting or multi-

synchronous clocks and achieves high MTBF. 

The paper is organized as follows. Sect.‎1 discusses related 

work. Sect.‎1 describes StarSync architecture and design 

considerations. In Sect.‎1, StarSync performance is analyzed, 

and StarSync is compared with a standard two-clock FIFO. 

Conclusions are drawn in Sect.‎1. 

 

2. RELATED WORK 

A large body of previous research related to mesochronous 

and similar synchronizers is reviewed in this section and 

summarized in Table 1. 

In practice, often the standard two-clock FIFO synchronizer 

‎[10], which can bridge any two clock domains and not merely 

mesochronous ones, is employed even when synchronizing 

mesochronous domains, primarily thanks to its extensive 

heritage in actual systems, its ready availability and its 

robustness, in spite of its latency disadvantage (as discussed in 

Sect. ‎4.5). 

A common approach to the design of mesochronous 

synchronizers consists of delaying either data or the clock 

signal to sample data reliably when they are guaranteed to be 

stable. Fig.1 shows a typical scheme of delay-line based 

mesochronous synchronizer ‎[5]. Signal Xmay change close in 

time to the sampling clock clk, leading to metastability of the 

sampling XS flip-flop. By changing the delay line settings, the 

relation between data and the clock is modified so that data 

transitions happen outside the 'keep-out' region determined by 

the two delay lines td and tcy–td, where tcy is the clock period 

and td is a half-width of the keep-out region, which must be 

accurately matched to provide minimal latency and at the 

same time meet the setup and hold requirements of XS flip-

flop. A similar approach requiring only td delay line is 

suggested in ‎[7]‎[8]‎[11]. 
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Fig.1. Delay-line synchronizer(‎[5], figure 10-9) 

A digitally calibrated delay line is employed for shifting the 

clock of the write-side FSM in ‎[12], while the rest of the 

transmitter clock domain is clocked by a non-shifted version 

of the clock. Unfortunately, the principles of choosing the 

delay value as well as the structure of the synchronizer circuit 

employed for pointer synchronization were not disclosed. In 

‎[13] a delay line is employed for setting the relative skew 

between the write and read clocks, and the delay value is 

determined at design time by static timing analysis (STA). The 

authors employ double data rate source synchronous 

communication and sample data at the receiver side using a 

dual stage buffer. Ref. ‎[14] generalized the method of ‎[13] to 

construct a token-based FIFO-like transfer link. In ‎[15] a 

delay-line on the read clock was employed in order to safely 

sample encoded write pointer at the receiver side of the 

proposed FIFO. A self-timed single stage FIFO for 

mesochronous communication was proposed by ‎[16]. Its 

implementation is quite simple, but it requires delay lines for 

proper clocks adjustment. 

A different approach for dealing with an unknown clock phase 

shift involves a phase detector circuit (Fig.2, following ‎[19]). 

In ‎[17] a phase detector is used to predict conflicts and to 

delay the write clock. Similar methods of phase detection for 

conflict prediction are proposed in ‎[18] and ‎[19], where for 

each predicted conflict the write clock is shifted as well. 

Conflict detectors to track drifting phase shifts between multi-

synchronous clock domains are employed in ‎[8]. In ‎[20] and 

‎[11] conflict detectors are employed to prevent metastability 

when using periodic clocks. 
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Fig.2. Phase Detection Synchronizer ‎[19] 

 

An all-digital synchronizer that exploits the predictability of 

periodic clocks  is proposed by ‎[21]. Its advantages include 

low latency, handling various clock frequency relations and 

robustness to clock jitter and phase drift. However, it incurs 

relatively high implementation complexity, requiring the 

tuning of several parameters to guarantee safe 

synchronization. It also uses custom design delay lines. 

Ref.  ‎[22]  uses a learning-phase-based interface for 

mesochronous synchronization. The transmitter generates a 

strobe signal, the delayed version of which is sampled at the 

receiver by both a positive and a negative edge-triggered flip-

flops. Before being analyzed, samples are synchronized with 

N-flop synchronizers in the receiver clock domain.  After the 

learning phase, the receiver knows on which clock edge it 

should sample data, by detecting the first sample of delayed 

strobe that is different from the previous one. The advantages 

of that approach include the ease of implementation, capability 

to cope with various non-idealities (like clock and data jitter), 

low latency and reduced overhead. On the other hand, the 

design uses delay lines and offers no flow control. 

Long wire delays between communicating modules typically 

incur additional skew. An N-depth mesochronous 

synchronizer is proposed in ‎[23]  to deal with global wire 

delays, estimated using STA and used to define the spread of 

the write and read pointers of the N-depth synchronizer. Ref. 

‎[24] suggests a similar technique for long wires, dynamically 

calculating the pointer spread, using a phase detector.  Mixed 

timing relay stations were introduced in ‎[25] for handling long 

wire interconnects, and for interfacing synchronous and 

asynchronous domains. 

Delay-line based synchronizers are mostly suitable for full 

custom designs. They  require clock tree modifications and 

multiple instantiations for multi-bit applications.  For SoCs 

which are based on standard cell design, including both ASIC 

and FPGAs, and which do not permit any fine-tune clock tree 

modifications, another approach to mesochronous 

synchronization is required. The principle structure of such a 

synchronizer is shown in Fig.3‎[5]. This mesochronous 

synchronizer employs cyclic write and read pointers, wp and 

rp respectively, with a certain initial spread to allow collision-

free write and read operations. The write pointer is 

synchronous to wclk and the read pointer is synchronous to 

rclk, while the clocks are mesochronous. References ‎[26] and 

‎[27] employ a similar structure; the goal is to provide time for 

multi-stage metastability resolution,  avoiding a serial 

synchronization chain. 

Ref. ‎[28] shows a constraint-based forward-path synchronizer 

design without back-pressure. Ref. ‎[29] employs the three-

element cyclic buffer mesochronous synchronizer as shown in 

Fig.4. The architecture comprises two synchronization paths. 

The‎‘data‎sync’‎path‎synchronizes‎data‎that‎are‎sent‎ from‎the‎

transmitter‎ to‎ the‎ receiver.‎ The‎ ‘ctrl‎ sync’‎ path‎ synchronizes 

back-pressure signaling in the reverse direction. Both 

synchronization paths employ cyclic buffers, each consisting 

of three stages. Buffers are managed by cyclic counters, and 

their initial spread should avoid metastability. Counters of the 

‘ctrl‎ sync’‎ run‎ continuously,‎ whereas‎ counters‎ of‎ the‎ ‘data‎

sync’‎ are‎ stopped‎ each‎ time‎ the‎ Stall signal is received 

(TX/RX Enable in Fig.4).The circuit is tolerant only to small 

phase drifts; larger phase drifts may result in unstable data 

being sent to the output of the synchronizer.   

Data bursts can be supported in synchronizers that implement 
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back-pressure. Another mechanism that enables data bursts 

was described in ‎[30]. 
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Fig.3. m-elements cyclic buffer mesochronous synchronizer 

   [‎[5], figure 10-13]  
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Fig.4.A Three-Element FIFO Synchronizer with  

Back-Pressure ‎[29] 

StarSync is compared to previous work in the rightmost 

column of Table 1. More specifically, the contributions made 

in this paper include: 

1. The proof that at least four buffer stages are generally 

required in a mesochronous synchronizer based on a 

cyclic buffer (due to initialization). 

2. Analysis of the impact of wire delays and clock drifts. 

3. A complete practical full throughput synchronizer that can 

be implemented using standard cells on ASIC and FPGA, 

supports back pressure, provides extensible buffering, 

enables both short and long interconnects, accommodates 

drifting or multi-synchronous clocks and achieves high 

MTBF. 
StarSync enables data transfer between mesochronous clock 

domains. The receiver clock is never stopped or modified, and 

the write and read pointers are never stopped as well. The 

architecture supports full backpressure and buffering for data 

burst transfers and is also suitable for long range 

communications.  In addition, relative to other 

implementations, in StarSync  only a single cyclic-counter is 

employed at each side of the synchronizer. The initial spread 

of the pointers and the number of stages in StarSync  are key 

design considerations, and are discussed with respect to 

different operating conditions. We show that three 

synchronization stages are insufficient to assure correct 

initialization and may lead to metastability; rather, a minimum 

of four stages is required in general. 
 

Table 1 : Previous work on mesochronous and related 

synchronizers 

Category Previous Work This Paper: 

StarSync 

Synchronizer 

type 

‎[5]‎[7]‎[8]‎[11]‎[12]‎[13]‎[14]‎[16]‎[17]‎[18]‎[19]‎[22]‎[2

3]‎[24]‎[26]‎[28]‎[29]:  

Data synchronizer 

‎[15]‎[21]‎[25]:  Control synchronizer 

Data synchronizer 

Delay Line ‎[5](figure 10-9)‎[7]‎[8]‎[18]‎[21]‎[22]: Data delay 

line 

‎[12]‎[15]‎[16]: Clock delay line 

‎[13]‎[14]: Static clock delay line 

No delay line 

2-clock FIFO ‎[5](figure 10-9)‎[12]: Cyclic buffer 

‎[14]‎[15]: Bi-synchronous FIFO 

‎[23]‎[24]‎[28]: Cyclic buffer (STA based read-

write pointer spread) 

‎[25]: mixed-clock FIFO 

‎[26]: Cyclic buffer with fixed pointer spread 

‎[29]: Cyclic buffer of 3 stages 

2-clock FIFO 

based on 4 stage 

cyclic buffer 

Multi-Phase 

Sampling 

‎[7]‎[8]‎[11]‎[20]‎[22]‎[27] No multi-phase 

sampling 

Phase Detector ‎[17]‎[18]: phase detector of two phases per cycle 

‎[5]‎[7]‎[11]‎[20]‎[21]‎[22]: Phase detector with 

delay line 

‎[24]: reset-only phase detector comparing 

normal and delayed data 

No phase detector 

Back pressure ‎[14]‎[15]‎[11]‎[21] Supports back 

pressure 

Support long 

interconnect 

‎[23]‎[24]‎[28] Supports long 

interconnect with 

back pressure 

Suitable for 

standard cells 

and FPGA 

‎[5](figure 10-13)‎[23]‎[25]‎[28]‎[29] Suitable for 

standard cells and 

FPGA 

Support drift 

or  

multi-

synchronous 

clocks or 

periodic clocks 

‎[5](figure 10-13)‎[29]: Drift tolerance up to 1 

cycle 

‎[16]: Drift tolerance up to 2 cycles 

‎[7]‎[8]‎[20]: Multi-synchronous clocks with re-

synchronization and training 

‎[11]: Periodic clocks 

‎[22]: mesochronous and plesiochronous clocks 

Support multi- 

synchronous 

clocks without re-

synchronization 

Latency ‎[7]‎[8]‎[11]‎[16]: Latency 1 or less cycles 

‎[22]: Latency between 1 and 1.5 cycles 

‎[5]‎[12]‎[15]: Latency between 1 and 2 cycles 

‎[17]‎[21]: Latency between 1.5 and 2 cycles 

‎[13]‎[14]: Latency 2 cycles 

‎[18]‎[19]: Latency between 2 and 3 cycles 

‎[7]: Latency equals phase difference 

‎[23]: Latency equals pointer spread 

‎[24]: Latency at least interconnect delay divided 

by clock cycle 

‎[25]: Latency between 3 and 3.5 cycles 

Latency between 

1 and 3 cycles, 

plus interconnect 

delay 

Throughput ‎[25]: Full throughput or less 

All others: Full throughput (one word each clock 

cycle) 

Full throughput 

3. STARSYNC ARCHITECTURE AND EXTENSIONS 

3.1. Conceptual description  

The synchronizer connects a sender to a receiver and consists 

of a TX and a RX blocks. The TX block uses the same clock 

as the sender, and RX uses the receiver clock. The sender can 

send data via the synchronizer to the receiver, and the receiver 

may apply backpressure to the sender, asking to stop sending 

data. Ideally, the sender should be able to send an infinite 

stream of data (one new word each cycle), but the receiver can 

use backpressure to stop data transmission when it cannot 
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receive more data. Still, the sender should be allowed to 

support a burst mode by sending a continuous burst of the pre-

defined number of data words (L) without interruption. 

Note that it takes a certain delay from the time of issue of 

backpressure by the receiver and until the sender is notified of 

that backpressure. Meanwhile, some data words have already 

accumulated inside the synchronizer, and the sender continues 

to send data until it receives the notice of backpressure. We do 

not wish to lose these data, and a FIFO is added at the RX 

block to keep that data until the receiver agrees to receive it. 

Three StarSync extensions are described. First, the FIFO at the 

RX block may be extended, to enable receiving a burst of L 

words even if the receiver has applied backpressure. The 

actual backpressure signal is delayed to the sender until after 

the sender has sent all L words of the burst. 

StarSync can support long interconnecting wires between TX 

and RX. Such wires may incur multi-cycle delay between TX 

and RX. To support that, the RX FIFO can be further 

extended, and the synchronization buffers in TX and RX can 

also be further extended.  

Last StarSync also supports correct multi-synchronous 

operation in the presence of cumulative dynamic phase shift 

between the two mesochronous clocks. That shift can 

accumulate beyond one clock cycle. To allow that, longer 

synchronization buffers are employed on both TX and RX. 

 

3.2. Architecture 

 

StarSync  architecture is shown in  Fig.5. The mesochronous 

synchronizer employs two cyclic buffers (TX_BUF and 

RX_BUF), each consisting of four parallel stages (as 

explained in Sect. ‎0 below). TX_BUF is a data buffer, 

responsible for data transfer from the transmitter interface to 

the receiver. TX_BUF holds both forward tokens and data. 

Forward data valid (DV) tokens indicate the data validity. 

RX_BUF holds backward tokens, which indicate the amount 

of free space at the receiver side. 

Data Transfer 

The data and the forward DV tokens (PUSH signal converted 

into data valid DV signal) are written cyclically into 

DATA_REG_x and DV_FF_x registers with TX_CLK. The 

cyclic WR_COUNTER is never stopped. The same is true for 

the RD_COUNTER, which is clocked by the mesochronous 

RX_CLK. Thanks to the initial spread (discussed below in 

Sect.‎0), metastability is avoided when reading data from 

TX_BUF using the read pointer RP. The read data are output 

over the RX_DATA and EMPTY lines. The EMPTY signal is 

effectively an inverted copy of the DV signal. 

Backpressure 

The receiver side can stop the transfer by de-asserting the POP 

signal, which immediately causes the data from TX_BUF to 

be saved into the Single-Clock FIFO. Note that if there are 

valid data in TX_BUF or in FIFO then the EMPTY signal 

remains low, since it always indicates the presence of valid 

data regardless of whether the data are held in TX_BUF or in 

FIFO. 

The backward token in Token_FF_x is‎ either‎ ‘ClearToSend’‎

(‘1’), allowing writing into DATA_REG_x and DV_FF_x, or 

‘DoNotSend’‎ (‘0’).‎ In‎ a‎ basic‎ (minimal‎ buffering) 

configuration, the FIFO depth is equal to the depth of 

TX_BUF (four buffers), to allow clearing of TX_BUF into 

FIFO, since the pointer counter is never stopped.‎‘DoNotSend’‎

tokens are written into RX_BUF when POP is de-asserted. 

When Token_FF_x is‎ ‘DoNotSend’,‎ writing‎ data‎ into‎ the‎

corresponding DATA_REG_x and DV_FF_x is blocked, since 

the data register is occupied. FULL signal is asserted, 

providing back-pressure.  Data transfer is resumed when POP 

signal is re-asserted. After asserting POP, data from FIFO are 

output on RD_DATA. In parallel, RX_BUF  is filled with 

‘ClearToSend’‎tokens‎that‎are‎passed‎to‎the‎transmitter.‎Once‎

a‎ ‘ClearToSend’‎ token‎ is‎ selected‎ by WP, FULL is de-

asserted, enabling a write operation. During subsequent write 

and read operations, the data at the receiver side are pushed 

into the FIFO as long as it is not empty. Once the FIFO 

becomes empty (e.g., thanks to idle cycles at the transmitter 

side) the data bypass the FIFO and are output with normal  

latency. 

Token Management 

The token buffer RX_BUF is managed in the following way: 

 All token buffer stages are initialized to '1' ('ClearToSend') 

 For valid read cycle (namely, POP is high) the following 

operations are performed: 

o Valid Token ('1') is written into the current RX_BUF 

stage (pointed at by read pointer RP), indicating that 

the corresponding TX_BUF stage is empty and is 

ready to receive new data. 

o When FIFO is not empty, current data from TX_BUF 

is written into the FIFO (only if the current TX_BUF 

register holds valid data, namely the corresponding 

DV is high) and the data for RD_DATA bus is popped 

out of the FIFO. Otherwise (when FIFO is empty) 

valid data from TX_BUF are conveyed directly to the 

output (FIFO is bypassed). 

 For stall cycle (namely, POP is low) the following 

operations are performed: 

o Valid data from TX_BUF are pushed into the FIFO. 

o When THRESHOLD is low (namely, there is still 

room  in the FIFO), a Valid token is written into 

RX_BUF. 

o When THRESHOLD is high (namely, the FIFO has 

room only for words that are already in TX_BUF but 

no room for additional new words), Invalid token ('0') 

is written to RX_BUF. Note that the FIFO has room 

also for new words that may be inserted into TX_BUF 

until the Invalid backward token has propagated and 

toggled the FULL signal. 

Since TX_CLK and RX_CLK have the same frequency, but a 

constant relative skew, the initial values of the write and read 

pointers should be carefully set to eliminate contention (WAR 

or RAW hazards). The initial write pointer is set to 0, and the 

initial read pointer is set to 2 (as detailed below in Sect. ‎0).The 

initial separation is preserved throughout subsequent operation 

thanks to the mesochronous clock relationship. 
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Fig.5. StarSync Architecture

At the output, the RX_DATA multiplexer chooses the output 

of the FIFO, when it is not empty, or TX_BUF otherwise. 

Additional multiplexing selects EMPTY, which is '0' if either 

internal FIFO is not empty or internal FIFO is empty but the 

TX_BUF holds valid data, and '1' otherwise. 

The basic StarSync architecture described above can be 

extended to support the bursts, long interconnect delay and 

multi-synchronous clocking, as follows. 

3.2.1 Support of Data Burst and Buffering  

As described above, the minimal FIFO depth equals the depth 

of TX_BUF (depth of four in the basic configuration). The 

minimal depth is dictated by the maximal number of words 

inside TX_BUF. Since the read out of TX_BUF is never 

stopped, the words are saved aside in the FIFO when POP is 

de-asserted.   

Burst transfer is supported by making FIFO deeper. For a data 

burst of length L>4 the FIFO depth is set to L. The 

THRESHOLD signal is asserted when the number of data 

words in FIFO reaches the predefined threshold of L-4. As 

described below, both POP and THRESHOLD affect token 

generation for RX_BUF. 

 

3.2.2 Support of Long Wires 

Two different modes of synchronizing over long interconnect 

are described.  The interconnect is considered long when the 

wire delay is significant, e.g., data takes m>0 clock cycles to 

travel over the wire: 

1. Source synchronous communication, where the entire 

synchronizer is placed at the sink of the communication 

link (Fig.6a) and the data transmitted on the link are 

accompanied by a STROBE. A similar approach was 

presented in ‎[24]. In that case, the long lines are not part 

of the  synchronizer, and may be implemented as either 

wave-pipelined links or registers may be inserted over the 

long wires.  

2. Split synchronizer: Long wires between the TX and RX  

sides of the synchronizer (Fig.6b). 

Two variants of the synchronizer are employed for source 

synchronous communication (Fig.6a). If no backpressure is 

needed, the basic StarSync of Fig.5 may be used. Otherwise, 

FIFO should be extended to depth 4+m. This is required 

because, when the receiver RX is stopped, the FULL 

indication may arrive at the source module after a few clock 

cycles due to the long interconnect delay. By increasing the 

depth of the FIFO, the synchronizer deals with this case 

without any latency overhead. The number m of additional 

required FIFO stages can be computed using Static Timing 

Analysis (STA). Note that any spare stages added for safety 

affect only the area; neither throughput nor latency are 

affected. 

In the split synchronizer case  (Fig.6b), in which the TX and 

RX parts are placed far away from each other, long delay is 

incurred both over the TX-to-RX data path and over the RX-

to-TX token path. When no backpressure is needed, only the 

TX-to-RX interconnect delay is taken into account. In this 

case, the synchronizer should assure that the data are  read 

before the same buffer is written. Since it takes time for the 

data and for the DV signal to reach RX, the synchronizer 

TX_BUF needs to be extended to cover for the longer 

interconnect delay. While in a short wires synchronizer four 

TX_BUF stages suffice (Fig.7a), for an interconnect delay of 

m cycles, additional m stages are added (Fig.7b), resulting in a 

4+m stage buffer. The initial spread between the pointers is 

two in both cases, and RP points to a TX_BUF entry only after 

the entry becomes valid, finishing its propagation through the 
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interconnect. Red color was used to define the cycles where it 

is not allowed to sample DATA_REG_0, because it is not yet 

ready. Yellow was used to define the cycle where sampling of 

DATA_REG_0 is not safe due to initialization case where 

write and read pointers spread is one. And finally, green was 

used to define the cycle where DATA_REG_0 sampling is 

safe. The required additional number of stages m is computed 

using STA. When backpressure is desired, the additional 

latency of the backpressure signal TV (Token Valid) should be 

taken into account, adding in a similar way additional 2m 

stages to both TX_BUF and RX_BUF (Fig.7c). The effective 

rate of each line is 1/2m, because new data can be sent on the 

same line only once per 2m cycles, whereas m is chosen to be 

the maximum delay over all control and data lines. In that 

way, when DV and data lines are sampled, they are all stable. 

In addition, similarly to the source synchronous case, FIFO 

depth is extended to 4+2m  in order to compensate  for that 

delay. This split synchronizer is useful for mesochronous 

NoC, where TX can serve as the output ports of a NoC router 

and RX is the input port of the next router ‎[32]. 

3.2.3 Support of Multi-Synchronous 

Communications 

Mesochronous clocks may suffer from  phase drifting during 

operation, due to temporal and spatial variations in voltage and 

temperature. In this work we analyze dynamic phase shift in 

the range of [0, ±T) between the clocks, where T is the clock 

period. We show in the next section that six synchronization 

stages can deal with such phase drifts. 

In general, each cumulative T-long phase shift requires adding 

two synchronization stages, to keep the pointer spread 

symmetric in both directions, coping with both positive and 

negative clock phase shifts. Each stage incurs an additional 

DATA_REG, DV_FF and TOKEN_FF registers (see Fig.5). It 

means that in order to cope with phase shift of [0, ±k·T) we 

need 4 + 2k stages in each of TX_BUF and RX_BUF. 

Note that the extensions described in the ensuing three sub-

sections, related to bursts, to long wires and to multi-

synchronous communications, are independent of each other 

and may be applied in any combination. Note further that all 

three extensions lead to requirements regarding the FIFO 

depth L, stemming from either burst length, or from line 

length as determined through STA, or from drift requirements, 

or any combination thereof; these requirements result in a 

feasible FIFO depth of L words, and correct operation in all 

cases (avoidance of FIFO overflow) is assured by means of 

back-pressure. 

3.3. Initialization 

An asynchronous reset is employed for circuit initialization. 

To properly reset multiple clock domains, the reset signal 

must be synchronized with each one of their respective clocks. 
Fig.8 shows a typical case of two two-flip-flop reset 

synchronizers for two clock domains (more than two stages 

may be required to achieve a desired MTBF). These 

synchronizations may lead to non-deterministic timing of the 

release of the multiple synchronized reset signals: due to 

possible metastability, each synchronizer may produce the 

trailing edge of reset after either k or k+1 cycles of its 

respective clock, for some k. 
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Fig.6. Communication over m-cycles long interconnect  

(a) Source synchronous communication  

(b) Split synchronizer: Long wires between TX and RX (DV 

and TV signals) 

 For each clock domain the reset is asserted asynchronously 

and instantaneously, but is released synchronously, leading to 

skew of [0, ±T), where T is the clock period. The waveforms 

in Fig.9  describe the operation for two possible maximum 

skew scenarios that can occur: either one of the synchronized 

release of the reset signals precedes the other by a skew no 

more than T. 

Notice that when the wire delays of global 'RESET' signal to 

WR and RD reset synchronizers are different (ΔT1  andΔT2  

in Fig.8), an additional skew may be incurred. We assume that 

this skew can be mitigated by reset tree balancing toward R1 

and G1 reset synchronizers, since this is a relatively small tree 

that can be lumped within a small area on the chip, and the 

balancing can be performed by conventional routing tools. 

Therefore, skew on the RESET wires towards the 

synchronizers is disregarded in the following analysis. When 

resets are asserted, write and read pointers are set to their 

initial values with a spread of at least 2 (0 and 2 respectively, 

for short interconnect, or 0 and k for split synchronizer with 

backpressure). 
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Fig.7. data/token transitions (a) short wires (b) long wires split 

synchronizer, no backpressure  

(c) long wires split synchronizer with backpressure 

These initial values are explained as follows, showing that a 

pointer spread of less than two is insufficient. First, consider 

the case of zero initial pointer spread as in Fig.10. In this 

example, both reset synchronizers are resolved  after the same 

number of cycles. In addition, clock phase between the clocks 

is less than the setup-hold window width of RD_CLK (green 

area in Fig.10). The problem is that DATA_REG_i and 

DV_FF_i (see Fig.5)  change in the metastability region of 

RD_CLK violating its setup time. 

Next, consider initial pointer spread of one as in Fig.11. In this 

case, if one synchronizer takes longer to resolve than the other, 

one pointer gets incremented in the first cycle while the other 

pointer does not, they become equal and we face again the risk 

of concurrent read and write. So only the initial spread of two 

(or more) can guarantee continuous maintenance of minimal 

spread of one, because reset synchronization cannot reduce the  

R1 R2

RESET

G1 G2

WR_CLK

RD_CLK

WR_RESET

RD_RESET

ΔT1

ΔT2

 
Fig.8. Synchronization of asynchronous RESET in two 

different clock domains 

RD_CLK

WR_CLK

RESET

RD_RESET

WR_RESET

skew≤T

 (a) WR_RESET precedes RD_RESET  

(rising RD_CLK just misses falling RESET) 

WR_CLK

RD_CLK

RESET

WR_RESET

RD_RESET

skew≤T

 

(b) RD_RESET precedes WR_RESET 

(rising WR_CLK just misses falling RESET) 

Fig.9. Reset: two maximum skew scenarios (a) positive skew 

up to T (b) negative skew up to T 

spread by more than one. The same is true in the opposite 

direction when tokens are written to TOKEN_FF_i in 

RD_CLK domain and are read in WR_CLK domain. In order 

to maintain a minimal symmetric pointers spread of two, the 

minimal cyclic buffer depth should be equal to four, while the 

buffer depth of three can provide a spread of two in only one 

direction. 

The synchronizer can be enhanced to support multi-

synchronous domains subject to a dynamic phase drift. Here 

we analyze a phase drift limited to a single clock cycle. In case 

of  a phase drift of a whole cycle the spread between the 

pointers is reduced and the situation described in Fig.11 is 

again possible. In order to avoid this, additional spread of one 

place must be added between the pointers. That means that the 

initialization setup would be six register stages with initial 

write pointer = 0 and initial read pointer = 3. Note that the 

pointer spread must be symmetric in both directions to deal 

with both positive and negative clock phase shifts. Thus, each 

additional phase shift of T adds two synchronization stages, 

leading to 4+2k stages for phase shift of [0, ±kT). 
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Fig.10. Setup time violation when pointers are initialized to 

the same value 
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Fig.11. Setup time violation when pointers are initialized 

with spread of one 

4. PERFORMANCE 

In this section, StarSync performance is analyzed. Forward 

latency, throughput, area and power requirements are 

discussed, and StarSync is compared to a two-clock FIFO. 

4.1. Forward Latency 

The forward latency is defined as the time from the data being 

placed at the synchronizer input until it appears at the 

synchronizer output. The forward latency varies in the range 

(T, 3T), depending on the initial pointer spread and on the 

relative phase difference of the two clocks. Fig.12 and Fig.13 

show the forward data latency when RD_CLK has a positive 

or negative phase shift, respectively, where   is  the  absolute 

value of the phase shift. 

4.2. Throughput 

StarSync  provides maximal throughput, namely a data word 

can be transferred on each clock cycle, when the receiver side 

is ready and if there is no backpressure. When backpressure is 

applied, the throughput is linearly affected as shown in Fig.14.  

4.3. Area 

StarSync area consists mostly of registers and flip-flops.  

WR_CLK
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WR_DATA

RD_EMPTY

RD_POP

D1 D2 D3 D4 D5 D6 D7

D1 D2 D3 D4RD_DATA D5

2T+Φ Φ

Fig.12. StarSync forward‎latency‎2T+Φ‎(WR_CLK‎precedes‎

RD_CLK) 

WR_CLK

RD_CLK

WR_PUSH

WR_FULL

WR_DATA
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RD_POP

D1 D2 D3 D4 D5 D6 D7

D1 D2 D3 D4RD_DATA D5

2T-Φ Φ

Fig.13. StarSync forward latency 2T-Φ‎(RD_CLK precedes 

WR_CLK) 

1
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[#stall cycles / #cycles]

 

Fig.14. Throughput vs. RX backpressure 

The number of registers depends on the  data word width, on 

the depth of the synchronization buffers (BufDepth), and on 

the FIFO depth (FifoDepth), as shown in Eq.(1). Note that 

FifoDepth=max(BufDepth, L), where  L is the data burst 

requirement. The register data count comes from two main 

sources: one is the TX and RX BUFs and their pointers WP 

and RP, and the FIFO. BufDepth should be greater or equal to 

four. Increasing BufDepth (in the cases of split synchronizer 

for long interconnect and multi-synchronous domains) has the 

most significant impact among all parameters, as it affects also 

the value of FifoDepth. 

 

2

2

( 2)                    #TX&RX BUFs

2 log ( )                    # WP & RP 

log ( ) #FIFO: data and control

Area

BufDepth DataWidth

BufDepth

FifoDepth DataWidth FifoDepth



  

   

    

(1) 

4.4. Dynamic Power 

StarSync implementation is based only on standard library  

cells and therefore, StarSync power can be assessed using 

conventional digital design power analysis tools that rely on 
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the power values specified for the library. Since power 

analysis is straightforward, in this section we shortly review 

the impact of StarSync configuration parameters on the power. 

For the long-wires extension (Sect. ‎3.2.2), additional power is 

incurred, required for driving the long interconnect wires. 

A single register inside each buffer is enabled per cycle thanks 

to the cyclic enable pointers. Thus, data toggles in only about 

one fourth of the circuit. In addition, FIFO works only when 

backpressure is applied, while during continuous data transfer 

it can be clock-gated. Therefore, for a continuous data transfer, 

the power is proportional to about one fourth  of the 

TX/RX_BUF registers. Clock gating can be employed in all 

the disabled registers, controlled by WP and RP. Thanks to the 

mesochronous clock relation (and the fact that typically the 

two clock phases are different from each other), peak power is 

reduced since TX and RX clocks do not toggle 

simultaneously. 

2

1
( 2) 2 log ( )    

4
(2)Power BufDepth DataWidth BufDepth         

 

4.5. Comparison to two-clock FIFO 

The structure of a standard two-clock FIFO ‎[10] is shown in 

Fig.15. Incoming data are  pushed into the FIFO when write 

enable is asserted (push). On the subsequent cycle, a gray 

coded write pointer wp_g is sent to the synchronizer, which 

usually consists of at least two stages. The synchronized value 

of the write pointer wp_sync  is then compared to the current 

value of the read pointer to assess the amount of unread data 

inside the FIFO, setting the empty signal accordingly. When 

the empty is de-asserted, pop signal can be applied (for fast 

response the pop signal can be asserted immediately after 

empty de-assertion, on the same clock cycle). In a standard 

FIFO protocol, the data appear at the FIFO output on the next 

clock cycle. For fall-through FIFO the data appear along with 

the empty de-assertion. 

Fig.16 shows the waveform diagram of the two-clock FIFO 

operation and the forward latency for the standard FIFO 

protocol. The total worst case latency is four clock cycles. For 

the fall-through FIFO it can be reduced to three. 

In terms of throughput, both structures provide the maximal 

throughput of one word per cycle (WPC). 
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Dual-Port RAM

Write Pointer

SYNC
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Compare
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wdata rdata
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wp_sync
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Fig.15. Two-clock gray fifo structure  ‎[10] 

The area expression for the two-clock FIFO is shown in 

Eq.(3). We assume here that the two synchronization stages 

are enough to obtain high reliability, otherwise the factor of 4 

in Eq.(3) should be increased.  

StarSync is compared to two-clock FIFO in Table 2. For 

StarSync, only the flip-flops of the reset synchronizer may 

become metastable. 

2

2

2 log ( ) # WP & RP 

4 log ( ) #SYNCs

#Buffers

Area

BurstLength

BurstLength

BurstLength DataWidth



   

   



 (3) 

Thus, the MTBF of StarSync equals the MTBF of the reset 

synchronizer. Using regular MTBF expression ‎[30], we can 

compute this MTBF, as in the following example. Assume 

sampling clock frequency FC=100MHz, reset toggling 

frequency FD=1 toggle/day, settling time T=10 ns, =40 ps for 

90nm technology, and W=10 ps:  

200
200 3

11 8
MTBF= 10

10 10

S

C D

e e
e days

W F F




  

  
 

 

Evidently, this value of MTBF is practically unlimited. 
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Fig.16. Two-Clock FIFO latency 

StarSync latency is at most the same as the minimal latency of 

the two-clock FIFO, while the same maximal possible 

throughput is provided. The latency of the two-clock FIFO 

depends on the clock rate and the technology as for certain 

cases a longer delay is required to resolve metastability inside 

SYNC modules. StarSync, however, does not incur such 

overhead and always incurs three or fewer cycles forward 

latency (down to one cycle), with an unlimited MTBF.  

In addition, the two-clock FIFO does not support long wire 

communication (Sect.‎3.2) since it cannot be distributed. 

 

Table 2 : Comparison of StarSync and two-clock FIFO 

Parameter StarSync 

Two-Clock FIFO 

(with two stage gray-code 

synchronizers) 

Latency (cycles) 1-3 3-4 

Throughput (WPC) 1 1 

MTBF Practically Unlimited 
Technology & Operating 

conditions dependent 

 

To provide full-throughput while accommodating 

backpressure and supporting bursts, the two-clock FIFO is 

usually designed with a depth of at least eight places (although 

five stages suffice ‎[33]). For example, the minimal depth of 

Xilinx two-clock FIFO is 16 ‎[34], while the minimal depth of 

Altera two-clock FIFO is 8 ‎[35]. While the two-clock FIFO 

can support data bursts by increasing its depth, it cannot 

support long wires, unlike StarSync. On the other hand, a two-
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clock FIFO can support unrelated clock frequencies while 

StarSync is optimized for mesochronous and multi-

synchronous clock domains. The critical path of StarSync 

resides inside the single-clock FIFO; thus, the maximum 

allowed frequency of operation can be optimized in the same 

manner as in any synchronous, single-clock circuit, and does 

not depend on the other parts of StarSync. Regarding area 

comparison, StarSync occupies about the same area as the full 

throughput two-clock FIFO. When the data width is held 

constant, both Eq. (1) and Eq. (3) converge to the same value 

of BurstLength×DataWidth. In terms of power, we note that 

the two-clock FIFO must always work with its internal dual-

port RAM, whereas StarSync may bypass the RAM 

consuming less dynamic power. 

  

5. CONCLUSIONS 

In this paper data transfer between mesochronous clock 

domains was discussed. StarSync, a new mesochronous 

synchronizer with back-pressure and burst support was 

presented. The paper shows that a minimal depth of four 

buffers is required to avoid timing violations, when a real reset 

circuitry is considered. This is in contrast with previous 

publications that employed three buffers. StarSync provides 

low latency and full throughput, while requiring less area than 

a standard two-clock FIFO. StarSync can be configured to 

support both long range source-synchronous communication 

and long wires between the transmitter and receiver sides of 

the synchronizer. In addition, StarSync may be extended to 

support dynamic clock phase drift and custom burst length. 

StarSync relies only on synthesizable logic and standard cell 

libraries and therefore it is suitable for any SoC, FPGA and 

NoC applications. 
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