
Dynamically adaptive real-time disparity estimation hardware using
iterative refinement

Abdulkadir Akin n, Ipek Baz, Alexandre Schmid, Yusuf Leblebici
Microelectronic Systems Laboratory (LSM), Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland

a r t i c l e i n f o

Keywords:
Disparity estimation
Census transform
Sum of absolute differences
High resolution
Real-time implementation
Iterative refinement
FPGA

a b s t r a c t

The computational complexity of disparity estimation algorithms and the need of large size and
bandwidth for the external and internal memory make the real-time processing of disparity estimation
challenging, especially for High Resolution (HR) images. This paper proposes a hardware-oriented
adaptive window size disparity estimation (AWDE) algorithm and its real-time reconfigurable hardware
implementation that targets HR video with high quality disparity results. Moreover, an enhanced version
of the AWDE implementation that uses iterative refinement (AWDE-IR) is presented. The AWDE and
AWDE-IR algorithms dynamically adapt the window size considering the local texture of the image to
increase the disparity estimation quality. The proposed reconfigurable hardware architectures of the
AWDE and AWDE-IR algorithms enable handling 60 frames per second on a Virtex-5 FPGA at a
1024�768 XGA video resolution for a 128 pixel disparity range.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Depth estimation is an algorithmic step in a variety of applica-
tions such as autonomous navigation, robot and driving systems
[1], 3D geographic information systems [2], object detection and
tracking [3], medical imaging [4], computer games and advanced
graphic applications [5], 3D holography [6], 3D television [7],
multiview coding for stereoscopic video compression [8], and
disparity-based rendering [9]. These applications require high
accuracy and speed performances for depth estimation.

Depth estimation can be performed by exploiting three main
techniques: time-of-flight (TOF) camera, LIDAR sensor and stereo
camera. A TOF camera easily measures the distance between the
object and camera using a sensor, circumventing the need of
intricate digital image processing hardware [10]. However, it does
not provide efficient results when the distance between the object
and camera is high. Moreover, the resolution of TOF cameras is
usually very low (200�200) [10] when it is compared to the Full
HD display standard (1920�1080). Furthermore, their commercial
price is much higher than the CMOS and CCD cameras. LIDAR
sensors compute the depth by using laser scanning mechanisms
but they are also very expensive compared to CMOS and CCD
cameras. Due to laser scanning hardware, LIDAR sensors are
heavy and bulky devices. Therefore, they can be used mainly for
static images. Consequently, in order to compute depth map, the

majority of research focus on extracting the disparity information
using two or more synchronized images taken from different
viewpoints, using CMOS or CCD cameras [11].

Many disparity estimation (DE) algorithms have been devel-
oped with the goal to provide high-quality disparity results. These
are ranked with respect to their performance in the evaluation of
Middlebury benchmarks [11]. Although top-performer algorithms
provide impressive visual and quantitative results [12–14], their
implementations in real-time High Resolution (HR) stereo video
are challenging due to their complex multi-step refinement
processes or their global processing requirements that demand
huge memory size and bandwidth. For example, the AD-Census
algorithm [12], currently the top published performer, provides
successful results that are very close to the ground truths. How-
ever, this algorithm consists of multi disparity enhancement sub-
algorithms, and implementing them into a mid-range FPGA is very
challenging both in terms of hardware resource and memory
limitations.

Various hardware architectures that are presented in literature
provide real-time DE [15–21]. Some implemented hardware archi-
tectures only target CIF or VGA video [15–18]. The hardware
proposed in [15] only claims real-time for CIF video. It uses the
Census transform [22] and currently provides the highest quality
disparity results compared to real-time hardware implementa-
tions in ASICs and FPGAs. The hardware presented in [15] uses low
complexity Mini-Census method to determine the matching cost,
and aggregates the Hamming costs following the method in [12].
Due to high complexity cost aggregation, the hardware proposed
in [15] requires high memory bandwidth and intense hardware

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/vlsi

INTEGRATION, the VLSI journal

0167-9260/$ - see front matter & 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.vlsi.2013.11.002

n Corresponding author. Tel.: þ41 216934698.
E-mail address: abdulkadir.akin@epfl.ch (A. Akin).

Please cite this article as: A. Akin, et al., Dynamically adaptive real-time disparity estimation hardware using iterative refinement,
INTEGRATION, the VLSI journal (2013), http://dx.doi.org/10.1016/j.vlsi.2013.11.002i

INTEGRATION, the VLSI journal ∎ (∎∎∎∎) ∎∎∎–∎∎∎

www.sciencedirect.com/science/journal/01679260
www.elsevier.com/locate/vlsi
http://dx.doi.org/10.1016/j.vlsi.2013.11.002
http://dx.doi.org/10.1016/j.vlsi.2013.11.002
http://dx.doi.org/10.1016/j.vlsi.2013.11.002
mailto:abdulkadir.akin@epfl.ch
http://dx.doi.org/10.1016/j.vlsi.2013.11.002
http://dx.doi.org/10.1016/j.vlsi.2013.11.002
http://dx.doi.org/10.1016/j.vlsi.2013.11.002
http://dx.doi.org/10.1016/j.vlsi.2013.11.002


resource utilization, even for low resolution (LR) video. Therefore,
it is able to reach less than 3 frames per second (fps) when its
performance is scaled to 1024�768 video resolution and 128 pixel
disparity range.

Real-time DE for HR images offers some crucial advantages
compared to low resolution DE. First, processing HR stereo images
increases the disparity map resolution which improves the quality
of the object definition. Second, DE for HR stereo images is able to
define the disparity with sub-pixel efficiency compared to the DE
for LR image. Therefore, the DE for HR provides more precise
depth measurement than the DE for LR. Third, disparity values
between 0 and 2 can be considered as background for LR images.
In HR such disparities are defined within a larger disparity range;
thus, the depth of far objects can be established more precisely.

Despite the advantages of HR disparity estimation, the use of
HR stereo images brings some challenges. Disparity estimation
needs to be assigned pixel by pixel for high-quality disparity
estimation. Pixel-wise operations cause a sharp increase in com-
putational complexity when the DE targets HR stereo video.
Moreover, DE for HR stereo images requires stereo matching
checks with larger number of candidate pixels than the disparity
estimation for LR images. The large amount of candidates
increases the challenge to reach real-time performance for HR
images. Furthermore, high-quality disparity estimation may
require multiple reads of input images or intermediate results,
which poses severe demands on off-chip and on-chip memory size
and bandwidth especially for HR images.

The systems proposed in [19–21] claim to reach real-time for
HR video. Still, their quality results in terms of the HR benchmarks
given in [11] are not provided. Authors [19] claims to reach 550 fps
for 80 pixel disparity range at a 800�600 video resolution, but it
requires extremely large hardware resources. A simple edge-
directed method presented in [20] reaches 50 fps at a
1280�1024 video resolution and 120 pixel disparity range, but
does not provide satisfactory DE results due to a low-complexity
architecture. In [21], a hierarchical structure with respect to image
resolution is presented to reach 30 fps at a 1920�1080 video
resolution and 256 pixel disparity range, but it does not provide
high-quality DE for HR.

In this paper, we present a hardware-oriented adaptive win-
dow size disparity estimation (AWDE) algorithm and its real-time
reconfigurable hardware implementation to process HR stereo
video with high-quality disparity estimation results. A preliminary
description of AWDE has been presented in [23]. In this paper, the
AWDE algorithm and its real-time hardware implementation are
explained with further details. In addition, the disparity estimation
quality of the AWDE algorithm is improved using iterative dis-
parity refinement process. The proposed enhanced AWDE algo-
rithm that utilizes iterative refinement (AWDE-IR) is implemented
in hardware and its implementation details are presented. More-
over, the algorithmic comparison is enhanced including with the
results of additional algorithms.

The proposed AWDE algorithm combines the strengths of the
Census transform and the Binary Window SAD (BW-SAD) [24]
methods, thus enables an efficient hybrid solution for the hard-
ware implementation. Although the low-complexity Census
method can determine the disparity of the pixels where the image
has a texture, mismatches are observed in textureless regions.
Moreover, due to a 1-bit representation of neighboring pixels, the
Census easily selects wrong disparity results. In order to correct
these mismatches, our proposed AWDE algorithm uses the sup-
port of the BW-SAD, instead of using the complex cost aggregation
method [12,15].

The benefit of using different window sizes for different texture
features on the image is observed from the DE results in [24].
The selection of a large window size improves the algorithm

performance in textureless regions while requiring higher computa-
tional load. However, the usage of small window sizes provides
better disparity results where the image has a texture. Moreover, the
use of BW-SAD provides better disparity estimation results than the
SAD for the depth discontinuities [24]. The hardware presented in
[24] is not able to dynamically change the window size, since it
requires to re-synthesize the hardware for using different window
sizes. In addition, the hardware presented in [24] does not benefit
from the Census cost metric.

The proposed hardware provides dynamic and static configur-
ability to have satisfactory disparity estimation quality for the
images with different contents. It provides dynamic reconfigur-
ability to switch between window sizes of 7�7, 13�13 and
25�25 pixels in run-time to adapt to the texture of the image.

The proposed dynamic reconfigurability provides better DE
results than existing real-time DE hardware implementations for
HR images [19–21] for the tested HR benchmarks. The proposed
hardware architectures for AWDE and AWDE-IR provides 60
frames per second at a 1024�768 XGA video resolution for 128
pixel disparity range. The AWDE and AWDE-IR algorithms and
their reconfigurable hardware can be used in consumer electronics
products where high-quality real-time disparity estimation is
needed for HR video.

2. Hardware-oriented adaptive window size disparity
estimation algorithm

The main focus of the AWDE algorithm is its compatibility with
real-time hardware implementation while providing high-quality
DE results for HR. The algorithm is designed to be efficiently
parallelized to require minimal on-chip memory size and external
memory bandwidth.

As a terminology, we use the term “block” to define the 49
pixels in the left image that are processed in parallel. The term
“window” is used to define the 49 sampled neighboring pixels of
any pixel in the right or left images with variable sizes of 7�7,
13�13 or 25�25. The pixels in the window are used to calculate
the Census and BW-SAD cost metrics during the search process.

The algorithm consists of three main parts: window size deter-
mination, disparity voting, and disparity refinement. The parameters
that are used in the AWDE algorithm are given in Section 5.

2.1. Window size determination

The window size of the 49 pixels in each block is adaptively
determined according to the Mean Absolute Deviation (MAD) of
the pixel in the center of the block with its neighbors. The formula
of the MAD is presented in (1), where c is the center pixel location
of the block and q is the pixel location in the neighborhood, Nc, of
c. The center of the block is the pixel located at block (4,4) in Fig. 1.

Fig. 1. 9 Selected pixels in a block for BW-SAD calculation. 49 Pixels in a block are
searched in parallel in hardware.

A. Akin et al. / INTEGRATION, the VLSI journal ∎ (∎∎∎∎) ∎∎∎–∎∎∎2

Please cite this article as: A. Akin, et al., Dynamically adaptive real-time disparity estimation hardware using iterative refinement,
INTEGRATION, the VLSI journal (2013), http://dx.doi.org/10.1016/j.vlsi.2013.11.002i

http://dx.doi.org/10.1016/j.vlsi.2013.11.002
http://dx.doi.org/10.1016/j.vlsi.2013.11.002
http://dx.doi.org/10.1016/j.vlsi.2013.11.002


The high MAD value is a sign of high texture content and the low
MAD value is a sign of low texture content. Three different
window sizes are used. As expressed in (2), a 7�7 window is
used if the MAD of the center pixel is high, and a 25�25 window
is used if the MAD is very low.

MADðcÞ ¼ 1
48

� ∑
qANc

ILðqÞ� ILðcÞj
�� ð1Þ

window
size

¼
7� 7 if MADðcÞ 4tr7�7

13� 13 else if MADðcÞ4tr13�13

25� 25 else

8><
>: ð2Þ

As a general rule, increasing the window size increases the
algorithm and hardware complexity [24]. As shown in Fig. 2, in our
proposed algorithm, in order to provide constant hardware com-
plexity over the three different window sizes, 49 neighbors are
constantly sampled for different window sizes. “1”, “2” and “3”
indicate the 49 pixels used for the different window sizes 7�7,
13�13 and 25�25, respectively. If the sampling of 49 pixels in a
window is not applied and all the pixels in a window are used
during the matching process, an improvement in the disparity
estimation quality can be obtained. The overhead of computational
complexity for this high-complexity case and the degradation of
the DE quality due to sampling are presented in Section 5.

2.2. Disparity voting

A hybrid solution involving the Binary Window SAD and
Census cost computation methods is presented to benefit from
their combined advantages. The SAD is one of the most commonly
used similarity metrics. The use of BW-SAD provides better results
than using the SAD when there is disparity discontinuity since it
combines shape information with the SAD [24]. However, the
computational complexity of the BW-SAD is high, thus result of
this metric is provided for nine of the 49 pixels in a block and they
are linearly interpolated to find the BW-SAD values for the
remaining 40 pixels in a block. The selected nine pixels for the
computation of BW-SAD are shown in Fig. 1. The low complexity
Census metric is computed for all of the 49 pixels of a block.

The formula expressing the BW-SAD for a pixel p¼(x,y) is
shown in (3) and (4). The BW-SAD is calculated over all pixels q of
a neighborhood Np, where the notation d is used to denote the
disparity. The Binary Window, w, is used to accumulate absolute
differences of the pixels, if they have an intensity value which is
similar to the intensity value of the center of the window. The
multiplication with w in (4) is implemented as reset signal for the
resulting absolute differences (AD). In the rest of the paper, the
term, “Shape” is indicated by w.

Depending on the texture of the image, the Census and the BW-
SAD have different strengths and sensibility for the disparity
calculation. To this purpose, a hybrid selection method is used to
combine them. As shown in (5) and (6), an adaptive penalty (ap)
that depends on the texture observed in the image is applied to
the cost of the Hamming differences between the Census values.
Subsequently, the disparity with the minimum Hybrid Cost (HC) is
selected as the disparity of a searched pixel. Two's order penalty
values are used to turn the multiplication operation into a shift
operation. If there is a texture on the block, the BW-SAD difference
between the candidate disparities needs to be more convincing to
change the decision of Census, thus a higher penalty value is
applied. If there is no texture on the block, a small penalty value is
applied since the BW-SAD metric is more reliable than the
decision of Census.

w¼ 0 if jILðqÞ� ILðpÞj4thresholdw; qANp

1 else

�
ð3Þ

BW� SADðp ; dÞ ¼ ∑
qANp

jILðqÞ� IRðq�dÞjnw ð4Þ

HCðp; dÞ ¼ BW� SADðp; dÞþHammingðp; dÞ � ap ð5Þ

ap¼
ap7�7 if window sizeðpÞ ¼ 7� 7
ap13�13 else if window sizeðpÞ ¼ 13� 13
ap25�25 else if window sizeðpÞ ¼ 25� 25

8><
>: ð6ÞFig. 2. 49 Selected pixels of adaptive windows (yellow (1) 7�7, green (2) 13�13

and blue (3) 25�25). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 3. (a) Examples for selecting 17 contributing pixels for 7�7, 13�13 and 25�25 window sizes during the disparity refinement process (yellow (1) 7�7, green (2)
13�13 and blue (3) 25�25). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

A. Akin et al. / INTEGRATION, the VLSI journal ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 3

Please cite this article as: A. Akin, et al., Dynamically adaptive real-time disparity estimation hardware using iterative refinement,
INTEGRATION, the VLSI journal (2013), http://dx.doi.org/10.1016/j.vlsi.2013.11.002i

http://dx.doi.org/10.1016/j.vlsi.2013.11.002
http://dx.doi.org/10.1016/j.vlsi.2013.11.002
http://dx.doi.org/10.1016/j.vlsi.2013.11.002


2.3. Disparity refinement

The proposed disparity refinement (DR) process assumes that
neighboring pixels within the same Shape needs to have an
identical disparity value, since they may belong to one unique
object. In order to remove the faulty computations, the most
frequent disparity value within the Shape is used.

As shown in Fig. 3, since the proposed hardware processes
seven rows in parallel during the search process of a block, the DR
process only takes the disparity of pixels in the processed seven
rows. The DR process of each pixel is complemented with the
disparities of 16 neighbor pixels and its own disparity value.
Finally, the most frequent disparity in the selected 17 contributors
is replaced with the disparity of that processed pixel.

The selection of these 17 contributors proceeds as follows. The
disparity of the processed pixel and the disparity of its four
adjacent pixels always contribute to the selection of the most
frequent disparity. Four farthest possible Shape locations are pre-
computed as a mask. If these locations are activated by Shape, the
disparity values of these corner locations and their two adjacent
pixels also contribute. Therefore, at most 17 and at least 5 dispa-
rities contribute to the refinement process of each pixel.

In Fig. 3, examples of the selection of contributing pixel locations
are shown for three different window sizes. Considering the proposed
contributor selection scheme, the pixels in the same row with the
samewindow size have identical masks. The masks for the seven rows

of a block and three window sizes are different. Therefore, 21 different
masks are applied in the refinement process. These masks turn out to
simple wiring in hardware.

Median filtering of the selected 17 contributors provides
negligible improvement on the DR quality, but it requires high-
complexity sorting scheme. The highest frequency selection is
used for the refinement process since it can be implemented in
hardware with low-complexity equality comparators and accu-
mulators. The maximum number of contributors is fixed to 17
which provides an efficient trade-off between hardware complex-
ity and the disparity estimation quality.

3. Hardware implementation

3.1. System overview

The top-level block diagram of the proposed reconfigurable
disparity estimation hardware and the required embedded system
components for the realization of the full system are shown in Fig. 4.
The Reconfigurable Disparity Map Estimation module involves 5 sub-
modules and 62 dual port BRAMs. These five sub-modules are the
Control Unit, Reconfigurable Data Allocation, Reconfigurable Compu-
tation of Metrics (RCM), Adaptive Disparity Selection (ADS) and
disparity refinement. 31 of the 62 BRAMs are used to store 31
consecutive rows of the right image, and the remaining 31 BRAMs

Fig. 4. Top-level block diagram of the system architecture.

Fig. 5. System timing diagram.

A. Akin et al. / INTEGRATION, the VLSI journal ∎ (∎∎∎∎) ∎∎∎–∎∎∎4

Please cite this article as: A. Akin, et al., Dynamically adaptive real-time disparity estimation hardware using iterative refinement,
INTEGRATION, the VLSI journal (2013), http://dx.doi.org/10.1016/j.vlsi.2013.11.002i

http://dx.doi.org/10.1016/j.vlsi.2013.11.002
http://dx.doi.org/10.1016/j.vlsi.2013.11.002
http://dx.doi.org/10.1016/j.vlsi.2013.11.002


are used to store 31 rows of the left image. The dual port feature of the
BRAMs is exploited to replace processed pixels with the new required
pixels during the search process. The proposed hardware is designed
to find disparity of the pixels in the left image by searching candidates
in the right image. The pixels of the right image are not searched in
the left image, and thus cross-check of the DE is not applied.

External memory bandwidth is an important limitation for
disparity estimation of HR images. For example, the disparity
estimation of a 768�1024 resolution stereo video at 60 fps
requires 566 MB/s considering loading and reading each image
one time. The ZBT SRAM and DDR2 memories that are mounted on
FPGA prototyping boards can typically reach approximately 1 GB/s
and 5 GB/s, respectively. However, an algorithm or hardware
implementation that requires multiple reads of a pixel from an
external memory can easily exceed these bandwidth limitations.
Using multiple stereo cameras in future targets or combining
different applications in one system may bring external memory
bandwidth challenges. The hardware in [15] needs to access
external memory at least five times for each pixel. The hardware
presented in [19] requires external memory accesses at least seven
times for each pixel assuming that the entire data allocation
scheme is explained. Our proposed memory organization and data
allocation scheme require reading each pixel only one time from
the external memory during the search process.

The system timing diagram of the AWDE is presented in Fig. 5.
The disparity refinement process is not applied to the pixels that
belong to the two blocks at the right and left edges of the left image.
For the graphical visualization of the reconfigurable disparity com-
putation process together with the disparity refinement process, the
timing diagram is started from the process of a sixth block of the left
image. As presented in Fig. 5, efficient pipelining is applied between
the disparity refinement and disparity selection processes. Therefore,
the disparity refinement process does not affect the overall system
throughput but only increases the latency. The system is able to
process 49 pixels every 197 clock cycles for a 128 search range.
Important timings during the processes are also presented with
dashed lines along with their explanations.

3.2. Data allocation and disparity voting

The block diagram of the Reconfigurable Data Allocation module
is shown in Fig. 6. The data allocation module reads pixels from
BRAMs, and depending on the processed rows, it rotates the rows
using the Vertical Rotator to maintain the consecutive order. This
process is controlled by the Control Unit through the rotate amount
signal.

The search process starts with reading the 31�31 size window
of searched block from the BRAMs of the left image. Therefore, the
Control Unit sends the image select signal to the multiplexers that
are shown in Fig. 6 to select the BRAMs of the left image.
Moreover, the color select signal provides static configurability to
select one of the pixel's components (Y, Cb or Cr) during the search
process. This user-triggered selection is useful if the Y components
of the pixels are not well distributed on the histogram of the
captured images. While the window of searched block are loaded
to the D flip-flop (DFF) Array, the RCM computes and stores the 49
Census transforms, 49 Shapes and 9 windows pertaining to the
pixels in the block for the computation of BW-SAD.

The Census transforms and windows of the candidate pixels in
the right image are also needed for the matching process. After
loading the pixels for the computation of metrics for the 7�7
block, the Control Unit selects the pixels in the right image by
changing the image select signal, and starts to read the pixels in the
right image from the highest level of disparity by sending the
address signals of the candidate pixels to the BRAMs.

The disparity range can be configured by the user depending on
the expected distance to the objects. Configuring the hardware for
a low disparity range increases the hardware speed. In contrast, a
high disparity range allows the user to find the depth of close
objects. The architecture proposed in [19] is not able to provide
this configurability since it is designed to search 80 disparity
candidates in parallel, instead of providing parallelization to
search multiple pixels in the left image. Therefore, a fixed amount
of disparities is searched in [19], and changing the disparity range
requires a redesign of their hardware.

The detailed block diagram of the DFF array and the weaver are
shown in Fig. 7. They are the units of the system that provide the
configurability of the adaptive window size. As a terminology, we
used the term “weaving” to mean “selecting 49 contributor pixels
in different window sizes 7�7, 13�13 and 25�25 by skipping
1, 2 and 4 pixels respectively”. Seven rows and one column are
processed in parallel by the Weaver, and the processed pixels flow
inside the DFF Array from the left to the right. Additionally, the
weaving process is applied to the location (15,8) of the DFF Array
at the beginning of the search process only, to select the window
size by computing the deviation of the center of the block from its
neighbors for 7�7 and 13�13 windows.

The DFF Array is a 31�25 array of 8-bit registers shown in
Fig. 7. The DFF Array has 25 columns since it always takes the
inputs of the largest window size, i.e., 25�25, and it has 31 rows
to process seven rows in parallel. While the pixels are shifting to
the right, the Weaver is able to select the 49 components of the
7�7, 13�13 and 25�25 window sizes from the DFF Array with
simple wiring and multiplexing architecture. Some of the con-
tributor pixels of the windows for different window sizes are
shown in Fig. 7 in different colors. The Weaver and DFF Array are
controlled by Control Unit through the calculate deviation, window
size and shift to right signals. The Weaver sends seven windows to
be processed by RCM as process row 1�process row 7, and each
process row consists of 49 selected pixels.

A large window size normally involves high amount of pixels
and thus requires more hardware resource and computational cost
to support the matching process [24]. By using the proposed
weaving architecture, even if the window size is changed, always
49 pixels are selected for the window. Therefore, the proposed
hardware architecture is able to reach the largest window size
(25�25) among the hardware architectures implemented for DE
[15–21]. The adaptability of window size between the small and
large window sizes provides high-quality disparity estimation
results for HR images.

During the weaving process of the 49 pixels in the block
and the candidate pixels in the right image, the RCM computes
the Census and Shape of these pixels in a pipeline architecture.

Fig. 6. Reconfigurable data allocation module.

A. Akin et al. / INTEGRATION, the VLSI journal ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 5

Please cite this article as: A. Akin, et al., Dynamically adaptive real-time disparity estimation hardware using iterative refinement,
INTEGRATION, the VLSI journal (2013), http://dx.doi.org/10.1016/j.vlsi.2013.11.002i

http://dx.doi.org/10.1016/j.vlsi.2013.11.002
http://dx.doi.org/10.1016/j.vlsi.2013.11.002
http://dx.doi.org/10.1016/j.vlsi.2013.11.002


The block diagram of the RCM is shown in Fig. 8. The process for
each block starts by computing and storing the Census and Shape
results for the 7�7 block. In Fig. 8, the registers are named as
“Shaperow_column” and “Censusrow_column”. Since the BW-SAD is only
applied for 9 of the 49 pixels, the BW-SAD computation sub-
modules are only implemented in process rows 2, 4 and 6.

The BW-SAD sub-module in Fig. 8 takes the Shape, registered
window of the pixel in a block and the candidate window of the
searched pixel as inputs, and provides the BW-SAD result as an
output. The computation of the Hamming distance requires
significantly less hardware area than the BW-SAD. Therefore, the
Hamming computation is used for all of the 49 pixels in a block.

As shown in Fig. 8, when a new candidate Census for the process
row 1 is computed by the Census sub-module of the RCM, its
Hamming distance with the preliminary computed seven Census1_
[1:7] of the block is computed by the seven Hamming sub-modules.
The seven resulting Hamming Results of the process row 1 are
passed to the ADS module. Since this process also progresses in
parallel for seven process rows, the proposed hardware is able to
compute the Hamming distances of 49 pixels in a block in parallel.
This parallel processing scheme is presented in Fig. 9. While the
proposed architecture computes the Hamming distance for the left-
most pixels of the block, the Hamming for disparity d, rightmost
pixels of the block computes their Hamming for disparity dþ6.

Fig. 8. Reconfigurable computation of metrics.

Fig. 7. DFF array and the weaver (yellow: 7�7, green: 13�13 and blue: 25�25). (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

A. Akin et al. / INTEGRATION, the VLSI journal ∎ (∎∎∎∎) ∎∎∎–∎∎∎6

Please cite this article as: A. Akin, et al., Dynamically adaptive real-time disparity estimation hardware using iterative refinement,
INTEGRATION, the VLSI journal (2013), http://dx.doi.org/10.1016/j.vlsi.2013.11.002i

http://dx.doi.org/10.1016/j.vlsi.2013.11.002
http://dx.doi.org/10.1016/j.vlsi.2013.11.002
http://dx.doi.org/10.1016/j.vlsi.2013.11.002


Therefore, the resulting Hamming costs are delayed in the ADS to
synchronize the costs. This delay is also an issue of the BW-SAD
results and they are also synchronized in the ADS.

The internal architecture of the Census transform involves 48
subtractors. The Census module subtracts the intensity of center
from the 48 neighboring pixels in a window, and uses the sign bit
of the subtraction to define 48-bit Census result. The Shape
computation module reuses the subtraction results of Census
module. The Shape module takes the absolute values of the
subtraction results and compares the absolute values with the
thresholdw. The Hamming computation module applies 48-bit XOR
operation and counts the number of 1 s with an adder tree.

The Deviation module shown in Fig. 8 only exists on the
process row 4 since it is only needed for the center of the 7�7
block to determine the window size. The module accumulates the
absolute difference of the 48 neighboring pixels from the center.
The Control Unit receives the deviation result of the 7�7 and
13�13 window sizes in consecutive clock cycles and determines
window size. The mathematical calculation of the MAD requires
dividing the total deviation by 48. In order to remove the
complexity of the division hardware, the thresholds tr7�7 and
tr13�13 are re-computed by multiplying them with 48 and com-
pared with the resulting absolute deviations.

The use of BW-SAD provides better results than using the SAD
in presence of disparity discontinuity [24]. However, if the pro-
cessed image involves a significant amount of texture without
much depth discontinuity, using the SAD provides better results.
Especially for 7�7 window size, using SAD instead of BW-SAD
provides better visual results since it is the sign of significantly
textured region. Thus, dynamic configurability is provided to
change the BW-SAD computation metric to the SAD computation
for a 7�7 window. The SAD module computes the ADs and the
result of ADs are stored in registers prior to accumulation. An
active-low reset signal is used at the register of the AD to make its
result 0 when the architecture is configured for the BW-SAD and
the respective Shape of the pixel in the block is 0. Otherwise, the
AD register takes its actual value and participate to the SAD.

The ADS module that is shown in Fig. 4 receives the Hamming
results and the BW-SAD results from the RCM and determines the
disparity of the searched pixels. Since the BW-SAD results are
computed for 9 of the 49 pixels, the RCM linearly interpolates
these nine values to find the estimated BW-SAD results of the
remaining 40 pixels in the block. Due to an efficient positioning of
the nine pixels in a block, the linear interpolation requires a
division by 2 and 4, which are implemented as shift operations.

The ADS module shifts the Hamming results of the candidate
pixels depending on the 2's order adaptive penalty for the multi-
plication process as shown in formula (5). The ADS module adds
the resulting Hamming penalty on the BW-SADs to compute
Hybrid Costs. 49 comparators are used to select 49 disparity results
that point minimum Hybrid Costs.

3.3. Disparity refinement

The DR module receives the 49 disparity results from the ADS
and the Shapes of the 49 pixels of a block from the RCM and
determines the final refined disparity values.

As presented in Fig. 10, after the ADS module has computed 49
disparity values in parallel, it loads this data in to the DFF Array of
the DR module (DR-Array). The DR-Array has a size of five blocks
for the refinement process. The Control Unit enables the DFFs by
using the Load Disparity signal when the 49 disparity outputs of
ADS module are ready for the refinement process. In each cell of
the DR-Array, the respective Shape of a pixel is loaded from the
RCM using the Load Shape signal. DR-Array is designed to shift the
disparity and Shape values from right to left to allocate data for the
refinement processes.

The DR hardware involves a Highest Frequency Selection (HFS)
module that consists of seven identical processing elements (DR-
PE). As presented in Fig. 10, DR-PEs are positioned to refine seven
disparities in 15th column of DR-Array in parallel while the
disparity and Shape values shift through the DR-Array. The
hardware architecture of a single DR-PE is presented in Fig. 11.
The location of a single DR-PE is shown in the 6th row of the DR-
Array with bold square.

In Fig. 10, while 17 disparity values are selected by the multi-
plexers, the Shape information corresponding to the four corners
are also selected from the 49-bit Shape information of the
processed pixel. The selected 4-bits inform the DR-PE which of
these 12 disparity values on the corners will be used while
computing the highest frequency disparity. These 4 bits of the
Shape are called activation bits in Fig. 11. Each activation bit
activates itself together with its two adjacent disparities. Since
the center disparity and its four neighbors are always activated,
the 17-bit activation information is loaded to the DR-PE together
with the respective disparities.

As presented in Fig. 11, the DR-PE hardware consists of two parts:
Comparison of Disparities and Comparison of Frequencies. In the
Comparison of Disparities part, the 17-bit activation information and
the 17 disparities are stored in to two DFF Arrays. One of these DFF
Arrays is used as a reference and the other one rotates to compare
each disparity with the 16 other disparities. During the rotation
process, 17 Compare and Accumulate (C&A) sub-modules compare
the disparities in parallel. If the compared disparities are identical
and both of them are activated, the values of the accumulators are
increased by one. After 17 clock cycles, the values in the accumula-
tors and their respective disparities are loaded in to the DFF Array in
the Comparison of Frequencies part of the DR-PE. In the pipeline
architecture, at the same time, the Control Unit shifts the DR-Array to
the left by one to load new 17 contributors to the DR-PE. The
Compare and Select (C&S) sub-module compares the values of the
accumulators to find the highest value in the accumulators, and
selects the disparity with the highest frequency as refined disparity.
Since DR process works in parallel with other hardware modules of
AWDE, it does not affect the throughput of the DE system if disparity
range is configured as more than 70.

4. Iterative refinement for the enhance AWDE implementation

The intuition behind the proposed iterative refinement process
of the IR-AWDE algorithm is identical to the DR process presented
in Section 3: neighboring pixels within the same Shape need to
have an identical disparity value, since they may belong to one
unique object. Using the refinement process multiple times
removes noisy computations more efficiently, and increases the
disparity estimation quality.

Fig. 9. Processing Scheme (“x” indicates 9 selected pixels in a block for BW-SAD
calculations).

A. Akin et al. / INTEGRATION, the VLSI journal ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 7

Please cite this article as: A. Akin, et al., Dynamically adaptive real-time disparity estimation hardware using iterative refinement,
INTEGRATION, the VLSI journal (2013), http://dx.doi.org/10.1016/j.vlsi.2013.11.002i

http://dx.doi.org/10.1016/j.vlsi.2013.11.002
http://dx.doi.org/10.1016/j.vlsi.2013.11.002
http://dx.doi.org/10.1016/j.vlsi.2013.11.002


The iterative refinement hardware is presented in Fig. 12 which
consists of an improved version of the DR hardware presented in
Fig. 10. The proposed iterative refinement process utilizes three
concatenated Highest Frequency Selection modules. Each HFS
module includes seven identical DR-PEs, one of which is presented
in Fig. 11. All DR-PEs receive 17 selected disparities from their own
multiplexer. DR-Array in Fig. 10 includes DFFs to keep record of the
computed disparities for five blocks. Instead, for the IR, the size of
the DFF-Array is increased to six blocks since the disparities need
to be pipelined for longer duration. Moreover, DR hardware
presented in Fig. 10 provides most frequent disparities as an
output as the refined disparities. Instead, the HFS modules for
the IR hardware write back the refined disparities on DR-Array.
Writing back the most frequent disparities into the DR-Array
provides an iterative refinement of the estimated disparities. Since
the disparity results shift inside the DR-Array, refined disparities
are overwritten 2 pixels left of the consecutive pixel location.
For example, as presented in Fig. 12, while the HFS module refines
the disparities of the seven pixels in column 21 of the DR-Array,

the DR-Array shifts the disparity values 2 times. Therefore, the
computed seven highest frequency disparities in the column 19 of
the DR-Array are overwritten.

In addition to removing noisy computations, IR provides efficient
results in assigning disparities of occluded regions. While searching
pixels from the left image inside the right image, occluded regions
appear on the left side of objects [11]. Consequently, wrong
computations due to occlusion appear on the left sides of the
objects in the image, which should be replaced by the correct
disparities that are assigned to the left adjacent pixels of the
occluded ones. The proposed iterative refinement process scans
the estimated disparities from left to right. In addition, HFS modules
receive updated disparities from their left since they are already
overwritten by the refined ones. Therefore, this process iteratively
spreads the correct disparities to the occluded regions while
considering the object boundaries with the Shape information.
While disparities shift inside the DR-Array, the leftmost disparities
in the column 0 of the DR-Array are provided as the refined
disparity value outputs of the IR Module.

Fig. 11. Processing element of the disparity refinement module. The highest frequency selection module includes seven of these DR-PE elements.

Fig. 10. DR-array of the disparity refinement module (yellow (1) 7�7, green (2) 13�13 and blue (3) 25�25). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

A. Akin et al. / INTEGRATION, the VLSI journal ∎ (∎∎∎∎) ∎∎∎–∎∎∎8

Please cite this article as: A. Akin, et al., Dynamically adaptive real-time disparity estimation hardware using iterative refinement,
INTEGRATION, the VLSI journal (2013), http://dx.doi.org/10.1016/j.vlsi.2013.11.002i

http://dx.doi.org/10.1016/j.vlsi.2013.11.002
http://dx.doi.org/10.1016/j.vlsi.2013.11.002
http://dx.doi.org/10.1016/j.vlsi.2013.11.002


5. Implementation results

The reconfigurable hardware architecture of the proposed
AWDE algorithm is implemented using Verilog HDL, and verified
using Modelsim 6.6c. The Verilog RTL models are mapped to a
Virtex-5 XCUVP-110T FPGA comprising 69k Look-Up Tables (LUT),
69k DFFs and 144 Block RAMs (BRAM). The proposed hardware
consumes 59% of the LUTs, 51% of the DFF resources and 42% of the
BRAM resources of the Virtex-5 FPGA. The proposed hardware
operates at 190 MHz after place and route, and computes the
disparities of 49 pixels in 197 clock cycles for 128 pixel disparity
range. Therefore, it can process 60 fps at a 768�1024 XGA video
resolution.

The AWDE-IR is implemented to further improve the disparity
estimation quality of AWDE using an efficient iterative refinement
step. The hardware implementation of AWDE-IR is mapped to a
same FPGA and verified using Modelsim 6.6c. The proposed
AWDE-IR hardware consumes 70% of the LUTs, 63% of the DFF
resources and 42% of the BRAM resources of the Virtex-5 FPGA. It
can work at same speed performance due to the pipeline structure
of the refinement process.

The parameters of the AWDE algorithm are shown in Table 1.
Parameters are selected by sweeping to obtain high quality DE of
HR images considering different features pertaining to the image
content.

Tables 2 and 3 compare the disparity estimation performance
and hardware implementation results of the AWDE architecture
with other existing hardware implementations that targets HR
[19–21] and currently the highest quality DE hardware that targets
LR [15]. These papers do not provide the disparity estimation
quality results for the HR benchmarks of the Middlebury data-set.
Thus, we implemented [15,19,21] in software, and the software
implementation of [20] is obtained from its authors. The DE results
for the Census and the BW-SAD metrics for different window sizes
are also presented in Table 2. The comparisons of the resulting
disparities with the ground-truths are done as prescribed by the
Middlebury evaluation module. If the estimated disparity value is
not within a 71 range of the ground truth, the disparity estima-
tion of the respective pixel is considered erroneous. 18 pixels
located on the borders are neglected in the evaluation of LR
benchmarks Tsukuba and Venus, and a disparity range of 30 is

applied for all algorithms. Thirty pixels located on the borders are
neglected in the evaluation of HR benchmarks Aloe, Art and
Clothes, and a disparity range of 120 is applied for all algorithms.

The Census and BW-SAD results that are shown in Table 2 are
provided by sampling 49 pixels in a window. FW-DE indicates the
combination of BW-SAD and Census for a fixed window size. The
numbers terminating the name of the algorithms indicate the
fixed window sizes of these algorithms.

Although the Census and the BW-SAD algorithms do not
individually provide very efficient results, the combination of
these algorithms into the FW-DE provides an efficient hybrid
solution as presented in Table 2. For example, if a 7�7 window
size and Census method are exclusively used for DE on the HR
benchmark Art, 45.39% erroneous DE computation is observed
from the result of Census7. Exclusively using a 7�7 window size
and BW-SAD method for the same image yields 34.03% erroneous
computation. However, if only a 7�7 window size is used
combining the Census and BW-SAD methods, 20.87% erroneous
computation is observed as presented in the result of FW-DE7.
20.87% erroneous computation is significantly smaller than 45.39%
and 34.03%, which justifies the importance of combining the
Census and BW-SAD in to a hybrid solution. For the same image,
using the FW-DE13 and FW-DE25 algorithms yields 16.97% and
18.12% erroneous DE computations, respectively. Combining the
FW-DE7, FW-DE13 and FW-DE25 into a reconfigurable hardware
with an adaptive window size feature further improves the
algorithm results as demonstrated from the results of AWDE.
AWDE provides 16.33% erroneous computation for the same image
which is smaller than 20.87%, 16.97% and 18.12%, thus numerically
emphasizing the importance of adaptive window size selection.
The algorithmic performance of AWDE, 16.33%, is considerably
better than the DE performance results of HR DE hardware
implementations [19–21] that provide 23.75%, 32.18% and 23.46%
erroneous computations respectively for the same image.

Fig. 12. DR-Array of the iterative disparity refinement module (yellow line: 7�17 candidates for 7�7 window, green line: candidates for 13�13, and blue line: candidates
for 25�25). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Parameters of the AWDE.

tr7�7 tr13�13 ap7�7 ap13�13 ap25�25 thresholdw

5 2 32 16 4 8

A. Akin et al. / INTEGRATION, the VLSI journal ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 9

Please cite this article as: A. Akin, et al., Dynamically adaptive real-time disparity estimation hardware using iterative refinement,
INTEGRATION, the VLSI journal (2013), http://dx.doi.org/10.1016/j.vlsi.2013.11.002i

http://dx.doi.org/10.1016/j.vlsi.2013.11.002
http://dx.doi.org/10.1016/j.vlsi.2013.11.002
http://dx.doi.org/10.1016/j.vlsi.2013.11.002


If the sampling of 49 pixels in a window is not applied and all
the pixels in a window are used during the matching process, the
complexity of the AWDE algorithm increases by 12 times. The result
of the high complexity version of the AWDE algorithm (AWDE-HC)
is also provided in Table 2 for comparison. The AWDE-HC provides
almost the same quality results as the AWDE. Considering the
hardware overhead of AWDE-HC, the low complexity version of the
algorithm, AWDE, is selected for hardware implementation, and its
efficient reconfigurable hardware is presented.

Improving the results of AWDE is possible using the low
complexity iterative refinement step as indicated from the results
of AWDE-IR. AWDE-IR efficiently removes a significant amount of
noisy computations by iteratively replacing the disparity estima-
tions with the most frequent neighboring ones as can be observed
from the results of Tsukuba, Venus, Aloe and Art. Moreover, IR
does not require significant amount of additional computational
complexity. Therefore, AWDE-IR is implemented in hardware for
the further improvement of the disparity estimation quality.

The algorithm presented in [15] uses the Census algorithm with
the cost aggregation method, and provides the best results for both LR
and HR stereo images except the HR benchmark Clothes. As shown in
Table 3, due to the high-complexity of cost aggregation, it only reaches
42 fps for CIF images, thereby consuming a large amount of hardware
resource. If the performance of [15] is scaled to 1024�768 for a
disparity range of 128, less than 3 fps can be achieved.

None of the compared algorithms that have a real-time HR
hardware implementation [19–21] is able to exceed the DE quality
of AWDE and AWDE-IR for HR images. The overall best results
following the results of AWDE and AWDE-IR are obtained from
[21]. The hardware presented in [21] consumes 20% of the 270k

Adaptive LUT (ALUT) resources of a Stratix-III. It provides high
disparity range due to its hierarchical structure. However, this
structure easily causes faulty computations when the disparity
selection finds wrong matches in low resolution.

The hardware implementation of [19] provides the highest
speed performance in our comparison. However this hardware
applies 480 SAD computations for a 7�7 window in parallel. The
hardware presented in [19] consumes 60% of the 244k ALUT
resources of a Stratix-IV FPGA. In our hardware implementation
we only use 9 SAD computations in parallel for the same size
window and this module consumes 16% of the resources of Virtex-
5 FPGA on its own. Therefore, the hardware proposed in [19] may
not fit in to 3 Virtex-5 FPGAs.

The visual results of the AWDE and AWDE-IR algorithms for
the HR benchmarks Clothes, Art and Aloe are shown in Fig. 13(a–l).
The disparity map result of the AWDE algorithm for the 1024�768
resolution pictures taken by our stereo camera system is shown in
Fig. 13(m–o). Our hardware architectures provide both quantitative
and visual satisfactory results and reaches real-time for HR.

6. Conclusion

In this paper, a hardware-oriented adaptive window size disparity
estimation algorithm, AWDE, and its real-time reconfigurable hard-
ware implementation are presented. The proposed AWDE algorithm
dynamically adapts the window size considering the local texture of
the image to increase the disparity estimation quality. In addition, an
enhanced version of the AWDE, AWDE-IR, is presented. AWDE-IR
iteratively refines disparity estimations to remove the noisy

Table 2
Disparity estimation performance comparisons.

Algorithm Error rate (%)

Tsukuba 288�384 Venus 383�484 Aloe 1110�1282 Art 1110�1390 Clothes 1110�1300

Chang [15] 4.15 0.56 3.75 12.80 2.97
Ttofis [20] 13.21 4.56 8.88 32.18 7.67
Greis [21] 12.42 4.14 8.65 23.46 5.30
Georg [19] 12.38 15.20 6.97 23.75 9.15
Census7 26.05 30.80 20.36 45.39 21.80
Census13 18.19 18.83 11.21 31.65 9.36
Census25 15.94 15.38 10.41 29.66 7.16
BWSAD7 12.19 19.45 8.31 34.03 13.33
BWSAD13 11.23 15.16 7.13 28.57 9.27
BWSAD25 10.43 11.12 6.74 24.74 6.28
FW-DE7 9.53 12.59 5.38 20.87 5.39
FW-DE13 7.90 6.82 4.81 16.97 3.16
FW-DE25 8.03 5.66 5.16 18.12 3.87
AWDE 7.64 5.33 4.94 16.33 2.89
AWDE-HC 7.47 4.73 4.92 16.17 2.95
AWDE-IR 6.53 5.01 4.30 14.47 2.94

Table 3
Hardware performance comparisons.

Hardware Technology Image resolution DFF consumption LUT consumption Disparity range fps Clock speed (MHz)

Chang [15] ASIC-90 nm 352�288 562k Gates 64 42 95
Ttofis [20] Virtex-5 1280�1024 31k 47k 120 50 100
Greisen [21] Stratix-III 1920�1080 26k 54k 256 30 130
Georgoulas [19] Stratix-IV 800�600 15k 146k 80 550 511

Proposed (AWDE) Virtex-5 1024�768 128 60
190640�480 35k 40k 64 221

352�288 64 670

Proposed (AWDE-IR) Virtex-5 1024�768 128 60
190640�480 43k 48k 64 221

352�288 64 670

A. Akin et al. / INTEGRATION, the VLSI journal ∎ (∎∎∎∎) ∎∎∎–∎∎∎10

Please cite this article as: A. Akin, et al., Dynamically adaptive real-time disparity estimation hardware using iterative refinement,
INTEGRATION, the VLSI journal (2013), http://dx.doi.org/10.1016/j.vlsi.2013.11.002i

http://dx.doi.org/10.1016/j.vlsi.2013.11.002
http://dx.doi.org/10.1016/j.vlsi.2013.11.002
http://dx.doi.org/10.1016/j.vlsi.2013.11.002


computations of AWDE. Currently, the AWDE and AWDE-IR algo-
rithms and their real-time hardware implementation reach higher
DE quality than the existing real-time DE hardware implementa-
tions for HR images. The proposed reconfigurable hardware archi-
tectures of AWDE and AWDE-IR can process 60 fps at a 1024�768
XGA video resolution for 128 pixel disparity range. The AWDE and
AWDE-IR algorithms and their reconfigurable hardware can be used
in consumer electronic products where high-quality real-time
disparity estimation is needed for HR video.

Acknowledgment

The authors would like to thank Baris Atakan and Irem Boybat
for their support in algorithm development. This research has been
partly conducted with the support of the Swiss NSF under Grant
number 200021-125651, and in part by the Science and Technology
Division of the Swiss Federal Competence Center armasuisse.

References

[1] F. Tombari, S. Mattoccia, L. Di Stefano, Stereo for robots: quantitative evalua-
tion of efficient and low-memory dense stereo algorithms, in: Proceedings of
the International Conference on Control Automation Robotics and Vision, IEEE
Computer Society, December 2010, pp. 1231–1238.

[2] S. Yang, G. Huang, Z. Zhao, N. Wang, Extraction of topographic map elements
with SAR stereoscopic measurement, in: Proceedings of the IEEE International
Symposiom on Image and Data Fusion, August 2011.

[3] P.M. Cheung, K.T. Woo, Human tracking in crowded environment with stereo
cameras, in: Proceedings of the 17th International Conferance on Digital
System Processing, July 2011, pp. 1–6.

[4] M. Field, D. Clarke, S. Strup, W.B. Seales, Stereo endoscopy as a 3-D measure-
ment tool, in: Proceedings of the 31st Annual International Conference of the
IEEE Engineering in Medicine and Biology Society 2009, September 2009, pp.
5748–5751.

[5] G. Yahav, G.J. Iddan, D. Mandelboum, 3D imaging camera for gaming applica-
tion, in: Proceedings of the International Conference on Consumer Electronics
(ICCE), January 2007, pp. 1–2.

[6] M. Grosse, J. Buehl, H. Babovsky, A. Kiessling, R. Kowarschik, 3D shape
measurement of macroscopic objects in digital off-axis holography using
structured illumination, Opt. Lett. 35 (2010) 1233–1235.

Fig. 13. Visual disparity estimation results of AWDE and AWDE-IR algorithms for HR benchmarks. From left column to right column: DE result of AWDE, DE result of AWDE-
IR, left image, ground truth. Black regions in the ground truths are not taken into account for the error computations as explained in [11]. Ground truth for the image (o) is
not available. (a–d) Clothes, (e–h) Art, (i–l) Aloe and (m–o) LSM lab.

A. Akin et al. / INTEGRATION, the VLSI journal ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 11

Please cite this article as: A. Akin, et al., Dynamically adaptive real-time disparity estimation hardware using iterative refinement,
INTEGRATION, the VLSI journal (2013), http://dx.doi.org/10.1016/j.vlsi.2013.11.002i

http://refhub.elsevier.com/S0167-9260(13)00073-4/sbref1
http://refhub.elsevier.com/S0167-9260(13)00073-4/sbref1
http://refhub.elsevier.com/S0167-9260(13)00073-4/sbref1
http://dx.doi.org/10.1016/j.vlsi.2013.11.002
http://dx.doi.org/10.1016/j.vlsi.2013.11.002
http://dx.doi.org/10.1016/j.vlsi.2013.11.002


[7] Dongbo Min, Donghyun Kim, SangUn Yun, Kwanghoon Sohn, 2D/3D freeview
video generation for 3DTV system, Elsevier J. Signal Process.: Image Commun.
24 (1–2) (2009) 31–48.

[8] P. Merkle, Y. Morvan, A. Smolic, D. Farin, K. Müller, P.H.N. de With, T. Wiegand,
The effects of multiview depth video compression on multiview rendering,
Elsevier J. Signal Process.: Image Commun. 24 (1–2) (2009) 73–88.

[9] Y. Mori, N. Fukushima, T. Yendo, T. Fujii, M. Tanimoto, View generation with 3D
warping using depth information for FTV, Elsevier J. Signal Process.: Image
Commun. 24 (1–2) (2009) 65–72.

[10] C. Lee, H. Song, B. Choi, Y.S. Ho, 3D scene capturing using stereoscopic cameras
and a time-of-flight camera, IEEE Trans. Consum. Electron. 57 (3) (2011)
1370–1376.

[11] D. Scharstein, R. Szeliski, A taxonomy and evaluation of dense two-frame
stereo correspondence algorithms, Int. J. Comput. Vision 47 (1–3) (2002) 7–42.

[12] X. Mei, X. Sun, M. Zhou, S. Jiao, H. Wang, X. Zhang, On building an accurate
stereo matching system on graphics hardware, in: Proceedings of GPUCV,
November 2011.

[13] Z. Wang, Z. Zheng, A region-based stereo matching algorithm using coopera-
tive optimization, in: Proceedings of the IEEE Conference on Computer Vision
Pattern Recognition, June 2008.

[14] A. Klaus, M. Sormann, K. Karner, Segment-based stereo matching using belief
propagation and a self-adapting dissimilarity measure, in: Proceedings of
ICPR, vol. 3, 2006.

[15] N.-C. Chang, T.-H. Tsai, B.-H. Hsu, Y.-C. Chen, T.-S. Chang, Algorithm
and architecture of disparity estimation with mini-census adaptive support
weight, IEEE Trans. Circuits Syst. Video Technol. 20 (6) (2010) 792–805.

[16] Y. Miyajima, T. Maruyama, A real-time stereo vision system with FPGA, in:
Proceedings of the 30th Conference of IEEE Industrial Electronics Society,
2003.

[17] S. Jin, J. Cho, X.D. Pham, K.M. Lee, S.-K. Park, M. Kim, J.W. Jeon, FPGA design and
implementation of a real-time stereo vision system, IEEE Trans. CSVT (2010) 15–26.

[18] Sang Hwa Lee, Siddharth Sharma, Real-time disparity estimation algorithm for
stereo camera systems, IEEE Trans. Consum. Electron. 57 (3) (2011) 1018–1026.

[19] C. Georgoulas, I. Andreadis, A real-time occlusion aware hardware structure
for disparity map computation, image analysis and process, ICIAP 5716 (2009)
721–730.

[20] C. Ttofis, S. Hadjitheophanous, A.S. Georghiades, T. Theocharides, Edge-
directed hardware architecture for realtime disparity map computation, in:
Proceedings of the IEEE Transactions on Computers, January 2012.

[21] P. Greisen, S. Heinzle, M. Gross, A.P. Burg, An FPGA-based processing pipeline
for high-definition stereo video, EURASIP J. Image Video Process. 2011 (2011)
18.

[22] R. Zabih, J. Woodfill, Non-parametric local transforms for computing visual
correspondence, in: Proceedings of the 3rd European Conference on Computer
Vision, vol. 2, 1994, pp. 151–158.

[23] A. Akin, I. Baz, B. Atakan, I. Boybat, A. Schmid, Y. Leblebici, A hardware-oriented
dynamically adaptive disparity estimation algorithm and its real-time hardware,
in: Proceedings of the GLSVLSI Conference, Paris, France, May 2013.

[24] A. Motten, L. Claesen, A binary adaptable window SoC architecture for a stereo
based depth field processor, in: Proceedings of the IEEE VLSISOC-2010, 18th
IEEE/IFIP International Conference on VLSI and System-on-Chip, September
2010, pp. 25–30.

Abdulkadir Akın received B.S. and M.S. degrees in
Electronics Engineering from Sabanci University, Istan-
bul, Turkey in July 2008 and July 2010, respectively. He
is currently studying towards a Ph.D. degree at the
Swiss Federal Institute of Technology in Lausanne
(EPFL), Switzerland. His research interests include digi-
tal hardware design for video processing and coding.

İpek Baz received B.S. degree in Electronics Engineer-
ing from Sabanci University, Istanbul, Turkey in July
2011. She is currently studying towards a M.S. degree at
the Swiss Federal Institute of Technology in Lausanne
(EPFL), Switzerland. Her research interests include
algorithm development for image processing and
coding.

Alexandre Schmid (S′98–M′04) received the M.Sc.
degree in Microengineering and the Ph.D. degree in
Electrical Engineering from the Swiss Federal Institute
of Technology (EPFL) in 1994 and 2000, respectively.

He has been with the EPFL since 1994. Since 2011, he is
a “Maître d'Enseignement et de Recherche” (MER) faculty
member in EPFL, conducting research in the fields of
bioelectronic interfaces, non-conventional signal proces-
sing and neuromorphic hardware, and reliability of
nanoelectronic devices. He is co-author and co-editor of
three books, and over 100 articles published in journals
and conferences.

Dr. Schmid has served as the General Chair of the
Fourth International Conference on Nano-Networks in 2009, and serves as an
Associate Editor of the IEICE Electronics Express since 2009.

Yusuf Leblebici (M′90–SM′98–F′09) received his B.Sc.
and M.Sc. degrees in Electrical Engineering from Istan-
bul Technical University, in 1984 and in 1986, respec-
tively, and his Ph.D. degree in Electrical and Computer
Engineering from the University of Illinois at Urbana-
Champaign (UIUC) in 1990. Since 2002, Dr. Leblebici
has been a Chair Professor at the Swiss Federal Institute
of Technology in Lausanne (EPFL), and director of
Microelectronic Systems Laboratory. His research inter-
ests include design of high-speed CMOS digital and
mixed-signal integrated circuits, computer-aided
design of VLSI systems, intelligent sensor interfaces,
modeling and simulation of semiconductor devices,

and VLSI reliability analysis. He is the coauthor of 6 textbooks, as well as more
than 300 articles published in various journals and conferences.

He has served as an Associate Editor of IEEE Transactions on Circuits and Systems
(II), and IEEE Transactions on Very Large Scale Integrated (VLSI) Systems. He has
also served as the general co-chair of the 2006 European Solid-State Circuits
Conference, and the 2006 European Solid State Device Research Conference
(ESSCIRC/ESSDERC). He is a Fellow of IEEE and has been elected as Distinguished
Lecturer of the IEEE Circuits and Systems Society for 2010–2011.

A. Akin et al. / INTEGRATION, the VLSI journal ∎ (∎∎∎∎) ∎∎∎–∎∎∎12

Please cite this article as: A. Akin, et al., Dynamically adaptive real-time disparity estimation hardware using iterative refinement,
INTEGRATION, the VLSI journal (2013), http://dx.doi.org/10.1016/j.vlsi.2013.11.002i

http://refhub.elsevier.com/S0167-9260(13)00073-4/sbref2
http://refhub.elsevier.com/S0167-9260(13)00073-4/sbref2
http://refhub.elsevier.com/S0167-9260(13)00073-4/sbref2
http://refhub.elsevier.com/S0167-9260(13)00073-4/sbref3
http://refhub.elsevier.com/S0167-9260(13)00073-4/sbref3
http://refhub.elsevier.com/S0167-9260(13)00073-4/sbref3
http://refhub.elsevier.com/S0167-9260(13)00073-4/sbref4
http://refhub.elsevier.com/S0167-9260(13)00073-4/sbref4
http://refhub.elsevier.com/S0167-9260(13)00073-4/sbref4
http://refhub.elsevier.com/S0167-9260(13)00073-4/sbref5
http://refhub.elsevier.com/S0167-9260(13)00073-4/sbref5
http://refhub.elsevier.com/S0167-9260(13)00073-4/sbref5
http://refhub.elsevier.com/S0167-9260(13)00073-4/sbref6
http://refhub.elsevier.com/S0167-9260(13)00073-4/sbref6
http://refhub.elsevier.com/S0167-9260(13)00073-4/sbref7
http://refhub.elsevier.com/S0167-9260(13)00073-4/sbref7
http://refhub.elsevier.com/S0167-9260(13)00073-4/sbref7
http://refhub.elsevier.com/S0167-9260(13)00073-4/sbref8
http://refhub.elsevier.com/S0167-9260(13)00073-4/sbref8
http://refhub.elsevier.com/S0167-9260(13)00073-4/sbref9
http://refhub.elsevier.com/S0167-9260(13)00073-4/sbref9
http://refhub.elsevier.com/S0167-9260(13)00073-4/sbref10
http://refhub.elsevier.com/S0167-9260(13)00073-4/sbref10
http://refhub.elsevier.com/S0167-9260(13)00073-4/sbref10
http://refhub.elsevier.com/S0167-9260(13)00073-4/sbref11
http://refhub.elsevier.com/S0167-9260(13)00073-4/sbref11
http://refhub.elsevier.com/S0167-9260(13)00073-4/sbref11
http://dx.doi.org/10.1016/j.vlsi.2013.11.002
http://dx.doi.org/10.1016/j.vlsi.2013.11.002
http://dx.doi.org/10.1016/j.vlsi.2013.11.002

	Dynamically adaptive real-time disparity estimation hardware using iterative refinement
	Introduction
	Hardware-oriented adaptive window size disparity estimation algorithm
	Window size determination
	Disparity voting
	Disparity refinement

	Hardware implementation
	System overview
	Data allocation and disparity voting
	Disparity refinement

	Iterative refinement for the enhance AWDE implementation
	Implementation results
	Conclusion
	Acknowledgment
	References




