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Abstract

This paper describes a novel approach for obtaining semantic interoperabiitygam
data sources in a bottom-up, semi-automatic manner without relying on isteigx
global semantic models. We assume that large amounts of data existitleabéen
organized and annotated according to local schemas. Seeing semantiftsraso
agreement, our approach enables the participating data sources to increndsstally
velop global agreement in an evolutionary and completely decentralized pritegs
solely relies on pair-wise, local interactions: Participants provide translatione&etw
schemas they are interested in and can learn about other translations by raetieg g
(gossiping). In previous work we relied on the realistic assumption that sucliatrans
tions would be provided manually only. In contrast to that, we assume in this pape
that only some translations exist and generate random translations for reachiatj o
sematic agreement automatically. To support the participants in assessimgniue- S
tic quality of the achieved agreements we develop a formal framework that takes in
account both syntactic and semantic criteria. The assessment processnintate
and the quality ratings are adjusted along with the operation of the system. Ultimately,
this process results in global agreement, i.e., the semantics that all participdets
stand. We discuss strategies to efficiently find translations and provide results from ou
experiments to justify our claims. We specifically focus on semantic analysgqgand
vide pointers to the possible quality that is achievable through semantic anaijsis o
Our approach applies to any system which provides a communication infragtructu
(existing websites or databases, decentralized systems, P2P systenf@rartti®op-
portunity to study semantic interoperability as a global phenomenon in a network of
information sharing parties.

Keywords: Semantic integration, semantic agreements, self-organization

1 Introduction

The recent success of peer-to-peer (P2P) systems and the initiativestéotisee8emantic
Web have emphasized again a key problem in information systems: the lackhahse
tic interoperability. Semantic interoperability is a crucial element for making distributed
information systems usable. It is prerequisite for structured, distributed searctatnd d
exchange and provides the foundations for higher level (web) servidgsracessing.

For example, the technologies that are currently in place for P2P file sharing system
either impose a simple semantic structure a-priori (e.g., Napster, KazakSeaedthe bur-
den of semantic annotation to the user, or do not address the issue oitiesmatall (e.g.,

*The work presented in this paper was supported (in part) by the National Cormp&lenter in Research
on Mobile Information and Communication Systems (NCCR-MICS), a center supported by ibe $ational
Science Foundation under grant number 5005-67322.
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the current web, Gnutella, Freenet) but simply support a semantically unstadictata
representation and leave the burden of “making sense” to the skills of theeugeby pro-
viding pseudo-structured file names suctEaserprise-2x03-Mine-Fieldhat encapsulate
very simple semantics.

Also, classical attempts to make information resources semantically interoperable,
particular in the domain of database integration, do not scale well to global iafiam
systems, like P2P systems. Despite a large number of approaches aegtspsuch as
federated databases, the mediator concept [26], or ontology-based itiforinéegration
approaches [12, 21], practically engineered solutions are still frequently hdedt@nd
require substantial support from human experts. A typical example of sstbnsy are
domain-specific portals such as CiteSeer (www.researchindex.com, publidate), SRS
(srs.ebi.ac.uk, biology) or streetprices.com (e-commerce). They itdedp$a sources on
the Internet and store them in a central warehouse. The data is converted to arcomm
schema which usually is of simple to medium complexity. This approach adaggts-a
ple form of wrapper-mediator architecture and typically requires substantidbgevent
efforts for the automatic or semi-automatic generation of mappings from the dataeso
into the global schema.

In the context of the Semantic Web, a major effort is devoted to the provision -of ma
chine processable semantics expressed in meta-models such as RDF, ONW[Z[5[or
DAML+OIL [11], and based on shared ontologies. Still, these approaches relyron co
monly agreed upon ontologies, which existing information sources can be rébabsd
proper annotation. This is an extremely important development, but its sweitldssavily
rely on the wide adoption of common ontologies or schemas.

The advent of P2P systems, however, introduces a different view on thkeiprai
semantic interoperability by taking a social perspective which relies on selfiaegen
heavily. We argue that we can see the emerging P2P paradigm as an oy tstinmprove
semantic interoperability rather than a threat, in particular in revealing new possibitities o
how semantic agreements can be achieved. This motivated us to look atbfenpfoom
a different perspective and has inspired the approach presented in this paper

In the following, we abstract from the underlying infra-structure such as federated
databases, web sites or P2P systems and regard these systems as gnipttoohected
data sources. For simplicity, but without constraining the general applicakiltheqre-
sented concepts, we denote these data sourgaeseas Each peer offers data which are
organized according to some schema expressed in a data model, e.gnaglxthL, or
RDF. Among the peers, communication is supported via suitable protocols aritberc
tures, for example, HTTP or IXTA.

The first thing to observe is that semantic interoperability is always based on some
form of agreement. Ontology-oriented approaches in the Semantic Web repitasent
agreement essentiallxplicitly through a shared ontology. In our approach, no explicit
representation of a globally shared agreement will be required, but agreeareintplicit
and result from the way our (social) mechanism works.

We impose a modest requirement on establishing agreements by assunexigtirece
of local agreements provided as mappings between different schemeaglieements es-
tablished in a P2P manner. These agreements will have to be established ina oran
semiautomatic way since in the near future we do not expect to be able to fuliypatato
the process of establishing semantic mappings even locally. However, setidf tools
is getting available to to support this [24]. Establishing local agreements is a ldss cha
lenging task than establishing global agreements by means of globally egpleechas
or shared ontologies. Once such agreements exist, we establish onedestadionships
among schemas of different information systems that are sufficient to satisfynation
processing needs such as distributed search.

We briefly highlight two of the application scenarios that convinced us (beidesh-
vious applicability for information exchange on the web) that enabling sematgioper-
ability in a bottom-up way driven by the participants is valid and applicable: inttoatuof
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meta-data support in P2P applications and support for federating existingylcospled
databases.

Imposing a global schema for describing data in P2P systems is almost inippdai
to the decentralization properties of such systems. It would not work unles®edl een-
scientiously follow the global schema. Here our approach would fit well: Wesketsuin-
troduce their own schemas which best meet their requirements. By exabarapslations
between these schemas, the peers can incrementally come up with an imphsiefisus
schema” which gradually improves the global search capabilities of the P&#rsyEhis
approach is orthogonal to the existing P2P systems and could be introdugsadlpasto
all of them.

The situation is somewhat similar for federating existing loosely-coupled da&mbas
Such large collections of data exist for example for biological or genomibdsts. Each
database has a predefined schema and possibly some translations maytedrdafined
between the schemas, for example data import/export facilities. Howevbalgearch,
i.e., propagation of queries among the set of databases, is usually uotggrand if this
feature exists it is usually done in an ad-hoc, non-systematic way, i.ereusable and
not automated. The more complex these database schemas get, the leds ikt
the schemas partially overlap and the harder it gets to increasingly generatetitagsla
automatically.

In our approach, we build on the principle of gossiping that has been sfialtes
applied for creating useful global behaviors in P2P systems. In any P2P sysaroh
requests are routed in a network of interconnected information systems. We the¢ams
eration of these systems as follows: When different schemas are involveldniaggings
are used to further distribute a search request into other semantic domains.

For simplicity but without constraining general applicability, we will limit the following
discussions to the processing of search requests. The quality of search iresuith
a gossiping-based approach depends clearly on the quality of the locplngsn the
mapping graph.Our fundamental assumption is that these mappings may be incorrect.
Thus our agreement construction mechanisms try to determine which mappimdse c
trusted and which not and take this into account to guide the search process.

A main contribution of the paper is to identify the different methods that can dedpp
to establish global forms of agreement starting from a graph of local mappingsgam
schemas. We elaborate the details of each of these methods for a simpleodatathat
is yet expressive enough to cover many practical cases. This modeliiarsinother
data models currently considered for semantic annotation in P2P architectures [Eg. Th
methods will be introduced in particular:

1. A syntactic analysis of search queries after mappings have been apphietkirto
determine the potential information-loss incurred through the transformation.

2. A semantic analysis of composite mappings along cycles in the mappipl, gna
order to determine the level of agreement that peers achieve throughoutlkbe c

3. A semantic analysis of search results obtained through composite mappsegs b
on the preservation of data dependencies.

The information obtained by applying these different analyses is then used tb direc
searches in a network of semantically heterogeneous information sourcesn(tog of a
P2P network). We will provide results from first experiments that have been perfdomed
this setting.

We believe that this radically new approach to semantic interoperability shifts the at-
tention from problems that are inherently difficult to solve in an automated mantte at
global level (“How do humans interpret information models in terms of real watd ¢
cepts?”), to a problem that leaves vast opportunities for automated pragessirfor in-
creasing the value of existing information sources, namely the processingstifigtocal
semantic relationships in order to raise the level of their use from local to gloinaindie
interoperability. The remaining problem of establishing semantic interoperability adla loc
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level seems to be much easier to tackle once an approach such as outadgin p

2 Overview

Before delving into the technical details, this section provides an informal oveofiewr
approach and of the paper.

We assume that there exists a communication facility among the participantsithat e
ables sending and receiving of information, i.e., queries, data, and acinéonmation.
This assumption does not constrain the approach, but emphasizes that gpsndeént
of the system it is applied to. The underlying system could be a P2P system ratéeldde
database system, the web, or any other system of information sourcesiogatimg via
some communication protocol. We denote the participants as peers abstractinddrom
concrete underlying system.

In the system, groups of peers may have agreed on common semanties;@@mon
schema. We denote these groupsamantic neighborhoodd he size of a neighborhood
may range from a single individual peer up to any number. If two peers lotated dis-
joint neighborhoods meet, they can exchange their schemas and prapgéigs between
them (how peers meet and how they exchange this information dependswmdtntying
system but does not concern our approach). We assume that skilledsesppported by
appropriate mapping tools provide the mappings. The direction of the mappinthend
node providing a mapping are not necessarily correlated. For instances Acaled B
might both provide a mapping frosthema(A) to schema(B), and they may exchange
this mapping upon discretion. During the life-time of the system, each peerd&asdki-
bility to learn about existing mappings and add new ones. This means thattedigeaph
of mappings as shown in Figure 1 will be built between the neighborhoods alitimghe
normal operation of the system (e.g., query processing and forwarding in syBt&en).

(& ®)

&) A

Figure 1: Mapping graph among semantic neighborhoods

This mapping graph has two interesting properties: (1) based on the alreadygexistin
mappings and the ability to learn about existing mappings, hew mappingsecadded
automatically by means of transitivity, for example, - F — B = D — B and (2)
the graph has cycles. (1) means that we can propagate queries towagdsforoahich
no direct translation link exists. This is what we cadimantic gossiping. (2) gives us the
possibility to assess the degreesaimantic agreemerlong a cycle, i.e., to measure the
quality of the translations and the degree of semantic agreement in a community.

In such a system, we expect peers to perform several task: (1) uponimgceiguery,

a peer has to decide where to forward the query to, based on a set of criteriaethat a
introduced below; (2) upon receiving results or feedback (cycle), it hasabyze the
quality of the results at the schema and at the data level and adjust its critenidingty;

and (3) update its view of the overall semantic agreement.

The criteria to assess the quality of translations—which in turn is a measure of the
semantic agreement—can be categorizedadext-independerand context-dependent.
Context-independent criteria, discussed in Section 4, are syntactic in naturésaadndy
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to the processed query and to the required translation. We introduce the nationtandtic
similarity to analyze the extent to what a query is preserved after translation.

Context-dependent criteria, which are discussed in Section 5, relate to the degree o
agreement that can be achieved among different peers upon specifictivassléSuch
degrees of agreement may be computed using feedback mechanistas éppearing in
the translation graph and results returned by different peers). This means theatvailpe
locally obtain both returned queries and data through multiple cycles. In casegeegisa
ment is detected (e.g., a wrong attribute mapping at the schema level gptomismatch
at the content level), the peer has to suspect that at least some ofggpengginvolved in
the cycle were incorrect, including the mapping it has used itself to propagateding q
Even if an agreement is detected, it is not clear whether this is not accidehtatgsult of
compensating mapping errors along a cycle. Thus, analyses are requiresktest which
are the most probable sources of errors along cycles, to what extent the aping can
be trusted and therefore of how to use these mappings in future routing decisibas. A
global level, we can view the problem as follows: The translations in betweenid®oia
semantic homogeneity (same schemas) form a directed graph. Within thatdiigeapd
we find cycles. Each cycle allows to return a query to its originator which in turn cae mak
the analysis described above.

Each of these criteria is applied on an attribute-basis to the transformed queries and
results in geature vector This vector encompasses the outcome of the criterion for each of
the attributes concerned. The decision whether or not to forward a query usinglaticn
link then is based on these feature vectors. The details of the query forwardingpeoee
provided in Section 6.

Assuming all the peers implement this approach, we expect the network\tergen
to a state where a query is only forwarded to the peers most-likely understandirgy it an
where the correct mappings are increasingly reinforced by adapting the périvapding
behaviors of the peers. Implicitly, this is a state where a global agreement eantlaatics
of the different schemas has been reached. To demonstrate this, wet preserimental
results where semantic agreement is reached in a network of partially erronggpisgsa
in Section 8.

3 The Model
3.1 The Data Model

We assume that each pgeis maintaining its databasb B, according to a schemé,.
The peers are able to identify their schema, either by explicitly storing it or by keapin
pseudo unique schema identifier, obtained for example by hashing. Themaaonsists
of a single relational table?, i.e., the data that a peer stores consists of a set of tuples
ty,...,t, of the same type. The attributes have complex data types and NULL-values are
possible.

We do not consider more sophisticated data models to avoid diluting the dista$s
the main ideas through technicalities related to mastering complex data modelsyv&toreo
many practical applications, in particular in scientific databases, use exactiypthef
simplistic data model we have introduced, at least at the meta-data level.

We use a query language for querying and transforming databases. The qgegda
consists of basic relational algebra operators since we do not care abouacliegh en-
coding, e.g., in SQL or XQuery. The relational operators that we require are:

e Selectiono,,)(R), wherea =< Ay,..., A, > is alist of attribute names, angis
any predicate on the attributesusing standard atomic predicates on the respective
datatypes, i.ep = p(41, ..., Ax).

e Projectionr,(R), wherea is a list of attribute named,, ..., Ay.
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e Mapping s (R), wheref is a list of functions of the formi, := F(A4,..., Ax)

andA4, ..., A, are attribute names occurring i The functionF is specific to the
datatypes of the attribute4,, ..., A;. A special case is renaming of an attribute:
AO = Al.

We assume that queries can be evaluated against any database irregpéstschema.
Predicates containing attributes not present in the evaluated schema are fgRvogec-
tion attributes which are not present in the current schema return a NULL-value indapp
applied to non-existing attributes also return NULL-values.

3.2 The Network Model

Let us now consider a set of pedps Each peep € P has a basic communication mecha-
nism that allows it to establish connection with other peers. Without loss ofgégewe
assume in the following that it is based on the Gnutella protocol [4]. Thus peesendn
ping messages and receigeng messages in order to learn about the network structure.
In extension to the Gnutella protocol, peers also send their schema identifiet attha
pong message.

Every peer maintains a neighborhod®(p) selected from the peers that it identified
throughpong messages. The peers in this neighborhood are distinguished into those that
share the same schenié, (p), and those that have a different scheivg(p) as shown in
Figure 2.

Figure 2: The Network Model

A peerp includes another peer with a different schema into its neighborhood if
it knows a translation for queries against its own schema to queries againstefgnfo
schema. The query translation operafpr,, is given by a queryp that takes data struc-
tured according to schents, and transforms it into data structured according to schema
Sp.
ThusT,_,,, has the property

Ty—p (qp)(DBy ) = q,(q7(DBy))

We assume that transformations only use a mapping operator followed by atiprojec
on the attributes that are preserved. Thuswill always be of the form

ar (DBP/) = Ta (,“f (DBP'))

Furthermore, we assume that the transformation query is normalized as follows: If an
attribute A is preserved, it also occurs in the mapping operator as an identity mapping, i.e.

1We do not use the same conventions as XPath/XQuery here, but we willusalaf additional mechanisms
for dropping queries.



EPFL Technical Report 1C/2003/42

A := A € f. This simplifies our subsequent analysis. Note that multiple transformations
may be applied to a single query iteratively:

Tn—1—>n(~ .- Tl—»2(q) .. ) - T1—>2,...,n—1—>n(Q)

Such query translations may be implemented easily using various mechanisms, fo
ample XQuery, as done in our case study in Section 8.

Queries can be issued to any peer through a query message. A quergensssains
a query identifierid, the (potentially transformed) quety the query message originator
p, and the translation tracET to keep track of the translations already performed. In the
subsequent sections we will extend the contents of the query messageritoardplement
a more intelligent control of query forwarding. The basic query message format is

query(id, q,p, TT)

The translation trac7" is a list of pairs{(p srom. Sp;,.,m ) (Pror Sp,, )} keeping track
of the peers having sent the request through a translation link,{) and of the peers hav-
ing received it after the translation linkz), along with their respective schema identifiers
(Sp;rom @NASy, ). We will call py...,,, the sender, ang;, the receiver. For any translation
link, we have to record both the sender and the recipient, as after a translatiery aght

be forwarded without transformation to peers sharing the same schema.

4 Syntactic Similarity

As context-independent criterion to measure the degree of similarity betweenuesies)
(in our context, between an original query and a transformed query), we istdba no-
tion of syntactic similarity which is related to the number of attributes preserved during
translation. Note that a high syntactic similarity in terms of number of attributes lost du
ing translation will not ensure that forwarding the query is useful, but converskely a
syntactic similarity implies that it might not be useful to forward the query.

Let us suppose we have a querywhich always has the generic form of a selection-
projection-mapping query

q= 71-a]!)(o'p(as) (Ufa (DB)))

whereas is a list of attributes used in the selection predicatgdss a list of attributes
used in the projection, anfl is a list of functions applied. Again, without loss of gener-
ality, we assume that the query is normalized such that all attributes requitedimdap
are computed by one of the functionsjin to simplify the subsequent analysis.

Therefore the transformed query will be of the form (this is also true for multiple trans-
formations after normalization)

T(q)(DB') = Tap(0p(as) (fa(ma(pis (DB')))))

It might occur that attributes usedqrare no longer available after the transformation
has been applied @ This can only happen when an attribute needed for the derivation of
a new attribute by means of one of the functionginand required irp or as is missing,
i.e., not occurring inu.

We now analyze which attributes are exactly needed in order to properly evaluate the
queryq. We define

atty(q) = {[Ao: {A1,..., Ax}] | Ao € as, Ag := F(Ay,..., Ax) € fa}
and similarly
attﬂ(Q) = {[AO : {Ala"'aAk}] | AO S ap7A0 = F(Ala"'7Ak) € fa’}
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Given a transformatioff’ we can define the source of an attribstesrcer(A):

JF € fasuchthatd := F(Ay,..., Ax)
then

sourcer(A) = {A,..., A}
else

sourcer(A) = L.

Informally, sourcer(A) tells whether and how an attribute is preserved in a transfor-
mationT. Then we can define the operation (att,(¢q)) as follows:
If

V[Ao : {A1,..., Ax}] € att,(q) VA e {Ay,..., Ap}sourcer(A) # L
then

[Ao : Unega,,.. 4,y sourcer(A)] € wr(atts(q))
else

[Ag : L] € wr(atty(q)).

This definition extends naturally to multiple transformation. In order to define

wr, (... (wr (atts(q))) .. .)

we simply apply the above definiton for wy, to  wp, (...
(wr, (atty(q)))...) instead ofutt, (q). All definitions are analogous fary (att,(q)).

wr, (... (wr (att,(q))) ...) allows to determine which of the required attributes for
evaluating queries are at disposal after applying the transformatigns. , 7;,. The defi-
nitions are given such that they can be evaluated locally, i.e., for eaclicmauadion step
in an iterative manner. Using this information we can now define the syntactic similarity
between the transformed query and the original query.

The decision on the importance of attributes is query dependent. We have testesu
consider:

1. Not all attributes imus are preserved. Therefore some of the atomic predicates in
p(as) will not be correctly evaluated (the atomic predicates will simply be dropped
in this case). Depending on the selectivity of the predicate this might be harmful
to different degrees. We capture this by calculating a vglu for every attribute
A; € as U ap as follows:

If

Aj €as, [A;: L] €wr, (... (wr(atts(q) . ..)
then

fva,(Ti—....—n(q)) =0
else

V4, (Th—,.. —n(q)) = sela,
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wheresel 4, is the selectivity (ranging over the interjal 1], with high values indi-
cating highly-selective attributes, i.e., attributes whose predicates seleellgpsm
portion of the database) of an attribute. Given the valuegvg for A; € as U ap

we can introduce a feature vectBiV,, for the transformed query,,(...T1(q) .. .)
characterizing the syntactic similarity with respect to the selection operator:
g g
FVo (T, ~n(q)) = (f041s- - -, fUd)

We derive the syntactic similarity between the original query and the transformed
query for the selection from this feature vector and from a user-defined weigbt vec
vy

W = (way, ..., war) With A; € asUap pondering the importance of the attributes:
W FV,
Sa((b Tlﬂ ..... Hn(q» — —J>
(W [FVe]
where
_ =
W - FV, =wi fog, +wafvgs + ...+ wrfod,
and where

X| = X|l, = /23 +a3+...+ad

This value is normalized on the intervl 1]. Originally, the similarity will be one,
and it will decrease proportionally to the relative weight and selectivity of every
attribute lost in the selection operator, until it reaches 0 when all attributes are lost.

. Not all attributes inup are found ina or af. Therefore, some of the results may
be incomplete or even erroneous (due to the loss of key attributes, for eyample
Following the method used above for the selection, we propose to measurerthis fo
every attribute:

If
A;€as, [4; L] €wr, (... (wr (attz(q))...)
then
S, (Ti—... ~n(q)) =0
else
foR, (T —n(@) = 1.
The feature vector and the syntactic similarity for the projection operator then are

—

FV (T (@) = (F0hrs - fOR0)
and
— —
S0(6 Tieon(q)) = 2V
(W [EVz]

Again, this similarity decreases with the number of translations applied to the query,
until it reaches 0 when all the projection attributes are lost.
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5 Semantic Similarity

The context-independent measure of syntactic similarity is based on thepgsuthat
the query translations are semantically correct, which in general might not bagbe A&
better way to view semantics is to consider it as an agreement among pe®rs.pkers
agree on the meaning of their schemas, then they will generate compatiblaticass
From that basic observation, we will now derive context-dependent measiuse mantic
similarity. These measures will allow us to assess the quality of attributes that age/pres
in the translation.

To that end, we introduce two mechanisms for deriving the quality of a trans|&ioa
mechanism will be based on analyzing the fidelity of translations at the scheelathey
other one will be based on analyzing the quality of the correspondences inghergsults
obtained at the data level.

5.1 Cycle Analysis

For the first mechanism, we exploit the protocol property that detects cyclesoasas

a query reenters a semantic domain it has already traversed (see Section 6 facthe e
algorithm). Such a cycle starts with a pegrtransmitting a query; to a second peer,
through a translation lini} ., (see Figure 3).

Figure 3: The Feedback Mechanism

In the example, after a few hops, the query is finally sent to a pgevhich, sharing
the same schema ag, detects a cycle and informs. The returning query, is of the
form

dn = T1—>2,3—>5,..4,n—1—>n(q1)

p1 may now analyze what happened to the attributes. . A, originally present iny;.
We could attempt to check whether the composed mapping is identity, buyipheseh we
propose here appears more practical. We differentiate three cases:

— Case 1:sourcer,_. _ . (A;) = {A;}, this means thatd, has been maintained
throughout the cycle. It usually indicates that all the peers along the cycle agre
on the meaning of the attribute. Such an observation increases the confideree in th
correctness of the mapping.

— Case 2:sourcer,_, _, (A;) = L, this means that someone along the cycle had
no representation fad;. A; is not part of the common semantics. This leaves the
confidence in the mapping unchanged.

— Case 3: Otherwise, if none of the two previous cases occurss@ugcer, . . (A4;) =
{A;},7 # i, this indicates some semantic confusion along the cycle. Subcases can
occur depending on what happensdqn This lowers the confidence in the mapping.

10
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We then derive heuristics fqr; to assess the correctness of the translafipn, it
has used based on the different cycle messages it received. Let idecansranslation
cyclec; composed ofl¢;|| translation links. On an attribute basig,may result inpositive
feedback (case 1 abovegutralfeedback (case 2, not used for the rest of this analysis but
taken into account by the syntactic similarity) ;agativefeedback (case 3). We denote by
es and byey the probability ofp,’s translation (i.e.T—.2) and another foreign translation
(i.e.,T5_4...Tnh_1—,) being wrong for the attribute in question. Considering the foreign
error probabilities as being independent and identically distributed random vari#iiée
probability of not having a foreign translation error along the cycle is

(1- 6f)l\cil\—l

Moreover,compensating errors.e., series of independent translation errors resulting
in a correct mapping, may occur along the cycle of foreign links without beitiged by
p1 (which only has the final result, as its disposal). Thus, assumifig ., correct and
denoting by the probability of errors being compensated somehow, the probability of a
cycle being positive is

(1—ep)ll= 4 (1= (1 = ep)“I=1)5 = p(leil], €5, 6)
while, under the same assumptions, the probability of a cycle being negative

(1= =)l =8) =1~ p(lleill, e, 6)-

Similarly, if we assuméd? _,5 to be incorrect, the probability of a cycle being respec-
tively negative and positive are

(1 —ep)lel= 4 (1 — (1 —ep)lel=1)(1 = 6) = q(|lcil, er, 6)
and

(1= —ep)l™1)5 = (1 - q(lleill, €7, 5))-

Combining those equations, the likelihood of receiving a set of cyclescy, ..., c,
for some positived; € C*), and for some negative (€ C ™), is

11(61,...,Ck):
(t—e) T wlleillier.0) TT 0 —plleill,er.))
c,eC+t c;eC—
+ e T alleiler,0) TT (0= alllill, 5. 9))
c,eC— c,eCt

Now, we integrate over; andd, 2 and lete, tend toward zero and one in order to obtain
the likelihood of the translatiof; _.» being semantically correct or incorrect respectively:

1 1
lim/ / Li(er...cp)depdd
€—0 J5=0Je;=0

1 1
Py = lim/ / li(er...cp)depdd
€1 Js=0Je;=0

Finally, we define a variable for the relative degree of correctness of the translation:

p1

Y= -
p1+ D2

2We could take into account density functions here if we haveaapsiori knowledge about those two vari-
ables.

11
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Such an analysis may be performed for every outgoing link and every attribute inde-
pendently, resulting in a series of valugsindicating the likelihood of the translatidf;
being correct for the attributd;. Examples of such calculations are given in Section 8.

As for the preceding section, we define now a feature vector and a similarity value
to capture the semantic losses along the translation links. Let us suppose #daipa p
issues a query = Ty (0p(as) (1o (DB))) through a translation link’, . ;. p, computes
a feature vector fog based on the cycle messages it has received as follows:

P —
FVo(Tij(@) = (f03y, - f030)
where the feature valuq‘a;gi are defined for every attributé; € as U ap as

F03 (Temj(@) =7
These values are updated by iteratively multiplying the probabilities for each seman
domain traversed. We consider here that if two translatianandT's have probabilities of
a andb respectively and are independent, the overall probabilityFdr T'a) to be correct
is ab. Thus, when forwarding a transformed query using afigk, ;, peerp, updates each

value fvgi of the feature vectoF'V;, it has received along with the transformed query

T1—... —r(g) in this way:
Fo3 (T ke (@) = f05, (Ti (@) S0, (Timy (Ti i (0))

whereﬂ values for which we did not receive significant feedback (either because
does not have a representation foy or because no cycle message has been received so
far) are evaluated to 1. The semantic similarity associated with this vector is

— —
 W-FV,
W |FVe]

This value starts from 1 (in the semantic domain which the query originates from) and
decreases as the query traverses more and more semantically heterogensgios.d

SO (Q7 T1~>7...,Hn(q))

5.2 Results Analysis

The second mechanism for analyzing the semantic quality of the translation®d dras
the analysis of the results returned. In [1] we have introduced a method usinghatc
dependencies at the data level in order to assess the quality of translatiéasnethod
was based on analyzing to which extent integrity constraints are preserved afktiosn

Here we present an alternative approach. We assume that peers annotmte ks
using meta-data expressed according to our data model. Having semyappess start
to receive answer documents with semantically rich content. Based on thenttmey
attempt to assess to which extent the queries expressed at the meta-datareypzoperly
translated and thus led other peers to return the right result documents.

Queries in our meta-data model are thus an intensional way of expressiragtie
concepts, whereas extensionally the concepts are related to sets of dtxcurherproblem
that we address is of how to arrive at agreed annotation schemes at thioimaélevel that
result in concept definitions that are compatible with the extensional notiomoépts that
peers have. In the simplest case (on which we will base our subsedseugsion studies)
where relationships among different concepts are not further considered,ethedata
model is used to give names to concepts C. These names can be different for different
peers, but the peers should be able to properly translate them.

The extensional notion of concept each peer has is based on methoulgterfit anal-
ysis. Here, we do not make any assumption about the methods (eaut &nelysis, lex-
icographical analysis, contour-detection, etc., or even simple mafasalification) used

12
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to extract meaningful features out of the documents and use them for dissoeidah a
concept; we simply treat them as high-level abstractions used to unambigutassify
any possible retrieved documeint& D into concepts: € C using a decision rul®:

R(d):D — c3

Using their local classification schemes, peers can thus determine for eveiyetkec
document the concept it belongs to.
Imagine now a peey; classifying documents according to a rilg;. p; issues a query
qpi for retrieving documents related to the concept Upon reception of a document
d,; from a foreign peep; € N.(p;), p; performs the classification operation. Different
situations may then occur:
— Rpi(dpj) = cx: thisis the resulp; was expecting; itis an indication that the outgoing
translation link used to forwargl,; to p; was semantically correct for quegy;. We
treat this as positive feedback {2

— Rypi(dy;) = a,¢ # i p; receives a document related to another class than
considering that the classification is mostly peer independent, it means that so
semantic confusion occurred along the path figno p;. In this case, we consider
this as negative feedback'().

If p; andp; are directly connected, the situation gives us a clear indication about the
semantic (in)correctness of the translation lifjk ., for the attributes in question. Eval-
uating the mean classification error probabilityetdiass, the probability of the link being
correct and incorrect in case of positive feedback are respectivelyClass andeClass.

In case of negative feedback, they becar@ass and1 — eClass. Also, note that in this
case (and for sufficiently smaiClass) we get a good indication for correcting the map-
ping, sincep;'s documents classified into conceptdirectly relate to the query,; with
probability (1 — eClass) (see the experimental evaluation where this is used).

If the two peers are separated by one or more semantic domains, the situatioris so
what more complicated since we have to take into account all the suezésgiv used to
forward the query fromp; to p;. Let us suppose that a peer receives some feedfadker
the query has gone throudf;|| different translation links; reusing some of the equations
from the cycle analysis, the probability of receiving a positive feedback asgthe link
we are analyzing is correct is

p(Ilfi = 1l €5,0)(1 — eClass) + (1 — p([|fi = 1|, €7, 6)) AeClass

where A represents the probability of a document being misclassified and taken as
belonging to the class related to the query.

Performing an analysis analogous to that given in Section 5.1 and introdijciamsy
the likelihood of receiving a certain combination of responses for a given mwdel, we
obtain again two valuegs andp, for the likelihood of the translation being semantically
correct or not:

1 1
p3 = lim/ / la(er ... cp,e)depdo
€s—0 =0 6f:0

1 1
Py = lim/ / la(er ... cp,e)depdo
€1 Js=0Je;=0

Defining »] as the likelihood of the translatidh; being correct for attribute; with
value

b3
R =
P3 + P4

3In a more general setting this could be a probabilistic rule.
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we obtain again another feature vector:

. - _
FV=(Ti(q)) = (foag, -5 foag)
whose feature valueﬁuz_ are defined for every attributé; € as U ap as

foa, (Ti(q) = &
and where, again, we evaluate missing values to 1 and we update the vecitirelie

fvi <T1—>—>k,k—>J(Q)) = fluz (T1—>—>k(q))fvi (Tk—>j (T1—>—>k(Q)>)

The associated semantic similarity is, as expected:

W.FV=
SZ(QaTl—»,...,—m(Q)) = W

6 Gossiping Algorithm

At this point, we have four measures,(,SS;, S-, andS=) for evaluating the losses due to
the translations. We will now make use of these values to decide whethetibrsworth
forwarding a query to a foreign semantic domain.

First, we require the creator of a query to attach a few user-defined or generatesl va
to the query it issues:

- The weightsIT/ pondering the importance of the attributes in the query
- The respective selectivity of the selection attributels

- The minimal valuesS,,;, for the similarity measures under which a transformed
query is so deteriorated that it can no longer be considered as equivaleatoiogh
inal query.

We extend the format of a query message to include these values as wellit@sahe
tively updated feature vectors:

—_ S = = = ——
query(id, q,p, TT, W, sel, Spin, F Vo, FVy, FVey, FV2).
Now, upon reception of a query message, we require a peer to perform a $éasso
1. detect any semantic cycles
2. check whether or not this query has already been received
3. in case the local neighborhood has not received the query, forward it todhle lo

neighborhood
4. return potential results

and, for each of its outgoing translation links:
5. apply the translation to the query
6. update the similarity measures for the transformed query
—
7. perform a test for each of the feature vectaisuilar(F'V;) evaluates to 1 if

- =
W - FV;
pp————
W |FVi]
that is if the semantic similarity is greater or equal to the specified minimal value,

and to O otherwise
8. forward the query using the link if alimilar() tests succeed (i.e., evaluate to 1).

This algorithm ensures that queries are forwarded to a sufficiently large set of peers
capable of rendering meaningful feedback without flooding the entire network.

min,i
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7 Case Study

Several experiments were conducted following the approach presented @his/section
presents one of them as a case study detailing how the aforementioned heungstibs
deployed in a concrete setting.

Seven people from our laboratory were first asked to design a simple XML document
containing some project meta-data. The outcome of this voluntary imprecistetsikion
was a collection of structured documents lacking common semantics thoedapping
partially for a subset of the embraced meta-data (e@mne of the projecbr start datg.
Viewing these documents as seven distinct semantic domains in a decentsaliing,
we then produced a random graph connecting the different domains togéthmeevies of
translation links (the resulting topology is depicted in Figure 4).

title->name

title->title

title->description/name

Figure 4: The Semantic Graph

Translations were formulated as XQuery expressions in such a way that they strictly
adhere to the principles stipulated above (see Section 3). As an example, Figasehtp
two different documents as well as a simple query translation using the transigpi@se
sionT12. Providing the authors with the required documents, we asked them to write the
translations for every link departing from their domain (thus,was asked to provide us
with the translation tp 5, pc andpp). Finally, using the IPSI-XQ XQuery libraries [8] and
the Xerces [23] XML parser, we built a query translator capable of handlinfpawdrding
the queries following the gossiping algorithm.

We focus now on a single nodg,, and on a single-attribute query issuedzhy to
obtain all the titles of the different projects, namely:

Query =

FOR $project IN "project_A xm"/*
RETURN

<title>$project/title </title>

Note that the weight and selectivity values attached to the query do not marteials a
single attribute is concerned. Moreover we will not consisleland S= for the rest of this
study (here S, always evaluates to 1 because there is no selection attribute, and so does
S= since we do not return any document). The other minimal values are Gét to
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Ql=

FOR $p IN “zoran_project.xml”/*
WHERE “Jie Project” IN p/title
RETURN

<start> $p/duration/start </start>

<zoran_project> <jie_project> )
<title> My Project </title> <Name> Jie Project </N: ame>
<acronym> MP </acronym> <Begin> 02/05/02 </Begin>
<duration> <Level>Diploma</Level>

<start>10/11/01</start> <

<end>13/10/05 _ ReJLab-
</duration> R $p IN “ii iectxmpy \ute>1IF</Institute>
<team> RETLﬁgN yeprojectxm >]&C</Faculty>

6 monthsy</Length>
>...</Benefits>
Yes</Report>

ect>

<member>1</n] <zoran_project>
<member>2</n{ <title> $p/Name </title>
<acronym> </acronym>
</team> . <duration>
</zoran_project> <start>$p/Begin</start>

/

Figure 5: The Translation Mechanism

All the domains have some representation for the title of the project (usually referred
to asnameor title, see Figure 4 where the translations for the attrittitieeare represented
on top of the link), excepbc which only considers a meit® for identifying the projects.
Following the gossiping algorithmy 4 first attempts to transmit the query to its direct
neighbors, i.epg, pc andpp. pg andpp in turn forward the query to the other nodes, but
pc Will in fact never receive the query: As> has no representation for thide, the only
projection attribute would be lost in the translation process fponto p¢, lowering S, to
0.

Let us now examine the semantic similarly,. For the topology considered, thirty-
one semantic cycles could be detecteghyin the best case. As the query never traverses
C, only eight cycles remain (Table 1 lists those cycles). We use now the forrinatas
Section 5; For its first outgoing link (i.e., the link going fropy to pg), pa receives
five positive cycles, raising the semantic similarity measure for this link and the &ttribu
considered to 0.79. p4 does not receive any semantically significant feedback for its
second outgoing link'p 4 — pg, which is anyway handled by the syntactic analysis. Yet,
it receives three negative cycles for its last outgoing lifky — pp. This link is clearly
semantically erroneous, mappititie ontoacronym This results inp 4 excluding the link
for this attribute, the semantic similarity dropping to 0.26.

Cycle T,.,—po Erroneous 7,,._,,, Erroneous
A,B,D,E A + -
A,B,D,E.F A + -
A, B E A + +
A B EFA + +
A B FA + +
A D, E A - +
AD,E,B,FA - +
AD,E,F A - +
Table 1: Cycles Resulting In Positive(+) or Negative(-) Feedback

The situation may consequently be summarized in this wayrestrains from sending
the query throughp because of the syntactic analysis (too much information lost in the
translation process) and excluges because of the high semantic dissimilarity.

The situation somewhat changes if we correct the erroneous link and add kenfiista
the linkTpg — pp. For the attribute considered, the semantic similarity drops to 0.69 for

4Remember that we did not make any assumption regarding the distribution oé@nslinks. In this case,
the positive feedback received may well come from a series of compensating.
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the outgoing link topg (two long cycles are negative, see third column in Table 1). Even
though it is not directly connected to an erroneous link,senses the semantic incom-
patibilities affecting some of the messages travergipg It will continue to send queries
through this link, as long as it receives positive feedback at least.

8 Experimental evaluation

In the preceding section, we have evaluated the Chatty Web by examining qoeayde

ing in a small network of static translations generated by a group of users. Instdiotra
this, we detail below simulation experiments where semantic gossiping is usedbto a
matically reach semantic agreement in large networks of computer-genanategnamic
translation links. Such an approach in place could for example be used tolkesieecom-

mon ontologies from a dynamic system with heterogeneous schemas, orualtyraefine
existing networks of translations. The initial results interpreted below provide promising
evidence that it is worth pursuing further research along these lines and higidiglet of

the issues to be addressed in that course.

8.1 Experimental setup

The setup we used in the experiments is as follows: We assume a network ofgpeers
senting individual semantic domains. Peers share similar concepts, ea®m a certain
semantic domain (for example, biological databases) inside the network sfiaee anno-
tated documents (or data) relative to those concepts, but refer to consamdifferent
names (they denominate the concepts differently). From this basic setup, wgtatibe
create global interoperability by applying semantic gossiping techniques usiely pair-
wise, local translations.

Here is the exact description of the process: first, we create a topologyafrs
peersp; ... pnpeers, €ach of them connected through translation linkaTd inks other
peers. The peers shan€'oncepts concept; . .. Cpooncepts, DUt use distinct names to
refer to them. Thus we study the problem of peers sharing the same concelaisking
knowledge of how to refer to them by names. This is somewhat similar to theagbpro
taken in [25], without aiming at universally agreed upon names. Eaclppeses its own
set of names.), ... an"”cePts to identify the concepts. We writg:; — C;) when peer

p; uses namez,’];‘i to refer to concep€;. These names may be seen in our data model, for
example, as attribute names indicating the presence of a concept in a cibcAise, peers
can verify whether a document belongs to a concept or not.

We generate mappinggn,, . .. n;fo”ce”“) for every translation link relating names
from the first peer to names from the second peer, with every name used by tpedirst
mapped onto a distinct name used by the second peer. For every mappiregy trans-
lation link, we say that the mapping is correct if and only if the two names bowrttieb

mapping actually refer to the same concept, that is if
p(nhy) = n;Q A ngl,n;Q — Ch.

Thus, random mappings would only have a probabilityﬁgfm of being correct
in such a setting. In the experiments, we generate a fraefitate of erroneous mapping
initially.

Unless specified otherwise, we use small-world graphs to interconnect peetawith
lation links; small-world topologies have been extensively applied to modepater net-
works or social behaviors. They are typically characterized by high clusterirfficterts
(average fraction of pairs of neighbors of a node that are also neighborglofo#zer)
and relatively small path length (average minimal distance between two )nobethe
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following, we generate graphs with an average clustering coefficieltl ind with 10%
shortcuts (i.e., links rewired to any random peer in the network).

Starting from the original topology, we apply semantic gossiping techniques itdyative
in order to detect and rectify erroneous mappings. At every simulation stdppeac se-
lects one of its names randomly and issues a query about this name (iquietlgeconsists
of a projection on one attribute: the name selected). The query is propagatecthehe
peers (semantic domains) in a Gnutella fashion with a low time-to-live (TTL) value.

The syntactic analysis for this simplistic type of query is straightforward: peers forward
the query through an outgoing translation link if there exists a mapping translatingéie lo
name used in the query (projection attribute) into another name for the foreignNmer
for detecting and repairing erroneous translation links, we slightly modify the semantic
analysis; we forward queries irrespectively of the results of previous semaiatigsas
in order to get as many evidences as possible, and use these results teemactitic
agreements by gradually modifying mappings.

Before taking a closer look at the final results, we will evaluate in the following sec-
tions each of the semantic analyses (cycle and result analysis) separaietietine their
specificities.

8.2 Cycle Analysis

Let us start with the cycle analysis. For every iteration step, peers randomlyechoame,
send a query for this name and analyze the cycle messages they get in return.

Here, we do not only estimate the correctness of the actual mapping as egpiain
Section 5.1, but determine also which of the possible mappings is most likectand
adopt it as a new mapping. Therefore, peers view mappings resulting of retguenigs
as new mapping candidates. Consider for example Figure 6, where pesrstemati-
cally receives:’; mapped ontm? in returning queries (negative feedback). In addition to
evaluating the correctness of the current mapping;onsiders other mappings as well. It
takes the potential mapping receiving the highest probability of being comddnacase
this probability is above 50% and the most probable mapping is different from thentu
mapping it changes it. In this examp}e, evaluates the correctness of mappirlg onto
n%, and might consider to modify it to a mapping, ontonl;.

Figure 6: New Mapping Candidates

As indicated in Section 5.1, preexisting knowledge on the distribution of error piteba
itiesd ande y may be used in the computation of semantic similatitghe probability of se-
ries of different errors to compensate along a cycle, is approximatedtoncepts—1) 1,
which is the probability of the last erroneous link in the cycle to map to the originaénam
and thus to correct previous errors.

We estimate ¢ with standard maximum-likelihood techniques applied to the feedback
information we receive. From the probability of receiving a positive cycle of lefigih
knowing that the error probability of a translation linkeis

(1-— e)HCiH +(1-(1- G)HCHI)(;,
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and from its negative counterpart, we derive the density function for the likelihbod o

Liesle) =& [[ a=e)lel+ 1 -@=epl=hs T] (1-@-gl=hya—s)

c;€Ct c;eC—

where K is a normalizing constant. The local maximum of this function fivéf gives
a good approximation afy, supposing we have sufficient feedback information.

What is the result of such a process in the long run? It of course dependsiaitittie
setting. In the end, this method attempts to obtain a mapping consensus bafed o
different feedback cycles detected in the network. Considering a high den$itk®tind
relatively few erroneous links, the method converges (i.e., repairs all exrsmeappings)
rapidly, since peers can base their decisions on numerous and meanieghdad& cycles.
For settings where links are scarce, peers do not have sufficient informatiomafang
sensible choices, and results may diverge.

The figures below show experimental results for topologies whdteers = 25,
eRate = 0.1, nConcepts = 4, TTL = 5 andnT Llinks = 5 and where one of those
parameters varies. All the curves are actually average curves over tenuressams. At
every step, each peer sends a query picking a random concept for etgoyng edge and
modifies the mappings depending on the results of the analysis explainesl &teps are
represented on the-axis. The graph shows the evolution of the percentage of erroneous
mappings, starting at a ratdate initially. Clearly, the outcome depends on the density
of links, which directly impacts on the number of cycles we have at our dagdor tak-
ing mapping decisions (see Figure 7). kFdFlinks = 4 and the topology considered,
we get on average only one positive feedback per mapping candiddtd, istobviously
insufficient to take sensible decisions. Fdflinks = 5 andnTlinks = 6, the value
raises to respectively 1.8 and 2.9 and most of the erroneous mappingsrigetted after
ten iterations. Finally, fonTlinks = 7, we get enough evidences (4.5 on average per
mapping candidate) for correcting all the erroneous links, thus reaching atpefeantic
agreement, in eight steps.

Ywong  nappi ngs

—— nilirks =3

coeemeeee NI NKS =4

-—w-- nilirks =5

——a—— NIlinks =6

Figure 7: Sensitivity to the number of outgoing edges

Similar considerations may be drawn for variable TTLs. Figure 9 shows results us-
ing the same parameters as before, but this time for a fixed number of outgajeg ed
(nTlinks = 4) and TTLs ranging from 3 to 6. Again, for low values, peers do not gain
sufficient feedback information to correct mappings. Starting fihil. = 4 (1.8 positive
feedback per decision), peers receive sufficient information to correct naorgd 896 of er-
roneous mappings after nine iterations. Low-connectivity networks may tmesibiEom
increasing the TTL value of their queries in order to the peers to get sufficientdeledb
information.
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—m.— TIL=5

e TIL=6

# stes

Figure 8: Sensitivity to the TTL

Our approach is rather insensitive to variations of the initial error rate (see Figure 9)
until a certain threshold, where too many bad links are present initially to reach &tcorre
consensus based on the feedback cycles. Finally, it is worth mentioning éregpphoach
scales very well with the number of nodes; This is not surprising, consideraigth
method relies solely on local interactions (no central component or compytatid that
the clustering coefficient of the network is relatively high. See Figure 10 where the ex
periments were conducted for networks ranging from 50 to 800 peers withoutiemdzl
results variations. The small deviations are due testiwtcutsan the small world topology
which connect two random peers in the network. The bigger the graph, the lggstlis

that these links can be used to form cycles within a certain neighborhood.

%wong  appi ngs

STt ey vty e s e S
2 4 6 8

Figure 9: Sensitivity to the initial error rate

—— nReers =800

x-e- NREErS =400

= RIS =20

——+—— nReers =100

2 e e nREEYS =50

# steps

Figure 10: Scalability
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8.3 Results Analysis

We consider now the second part of the analysis, where peers analyzategdrize doc-
uments they receive. The process is as follows: At every step, peers firshissuple of
gueries with a high TTL for estimating the error rate as explained above. Then, fookac
their outgoing links, peers pick a concept randomly and issue a query dskihgcuments
relating to that concept. They receive in return series of documents they anetyzding

to what is described in Section 5.2. They modify the mapping they have used tréotitve
guery with the most probable mapping if it has a likelihood of at least 0.5iafjlrrect.

For the simulations, we consider a fixed set of documents scattered randorahg
the peers. Documents are all assigned to concepts. Each documenthawiagrrobability
(eClass) of misclassifying a document by relating it to a wrong concept. Peers do not try
to evaluate the probability of misclassification, but arbitrarily use a fixed, low valtesids
(5% in the following experiments). For our setting, the probability that a misclassified
document is seen as relating to another specific concept, is equaltacepts — 1) 1.

Unless specified otherwise, we used below a network of 50 peers sharing ihG6tal
document, 2 outgoing translation links per peer, 4 concepts, a TTL of 3, an enitalrate
of 10%, and a probability of 10% of misclassifying documents.

First, it is interesting to remark that this approach is very robust vis--vis the initial error
rate, mainly because a few links suffice here to get meaningful results (thuserhiw
TTL), while whole link cycles were needed previously. See Figure 11 where the initial
percentage of wrong mappings vary from 10% to 50%.

o
Eale SN TN e AT

e o S R VRN
25 5 7.5 10 25 15 17.5

Figure 11: Sensitivity to initial error rate

Nevertheless, the approach is rather sensitive to the rate of misclassificatioousf d
ments, as shown in Figure 12. This is especially true since we do not try to evalisate th
parameter but consider a mere fixed value.

—+— eQass =0.4

cmewe €SS =0.3

# steps

Figure 12: Sensitivity to misclassification rate
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The approach taken here is completely local, and does not take into consiteratio
global behavior, and scales with the number of peers quite naturally (see Eigu Here,
we increase the number of documents linearly with the number of peers pithieaverage
number of documents per peer constant. This number is essential todhisisysince it is
directly proportional to the number of evidences a peer gets for every queay.allook at
Figure 14, where this effect is depicted: Peers start having trouble correcting thegap
as they get less and less documents returned for their queries (docunaeaity)sc

Figure 13: Scalability

———— DcRrReer =1/4

,,,,,,,,,,,, DocRerReer  =1/2

25 5 7.5 10 25 15 7.5

Figure 14: Sensitivity to number of documents

8.4 Combined Results

Below, we show some results where the two mechanisms were used in paralley. Man
possibilities exist for combining the two analyses; we chose a very simpleaireach
step, every peer performs first a results step (modifying a few mappings degemdin
the results returned) and sequentially performs then a cycle step (trying to reaztosam
agreement on mappings based on cycle feedback). The results for topaldthi@5 peers,

4 concepts, 2 outgoing edges, TTLs of 3 (results) or 6 (cycles) and a vawinigrates on
initial mappings are depicted on Figure 15. This method takes more time to cotlarge
the two analyses taken separately; this is because the analyses keep intaritbriegach
other until some state is reached that is consistent from both a cycle and adkeuint

of view. Also, note that the overall results outperform in the end the two analysa tak
separately (e.g., more than 95% of erroneous mappings corrected aftep$Wite50%
erroneous mappings initially).
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—— eRte =05

e EREE =04

—me— REe =03

Figure 15: Combined results, varying initial error rate

9 Implementation framework

All the tasks of the Chatty Web approach have been been mapped onto améntdé&on
architecture which uses a meta-data model expressed in XML and XQuerylasghage

to translate among schemas. The framework assumes the availability of a cmationn
infrastructure, for example, simple web access via HTTP or a P2P infrastructuressuch a
JXTA [9]. However, we are not bound to any specific communication infrastructlie

we require is access to the relevant schema data and to query information dtsd Tdgs!

can easily be achieved by a standard abstraction layer that maps a specificgization
infrastructure’s interface to the one we require. Since this is a fairly standard softvgire en
neering task we omit it in the following discussion. Based on these assumiignse 16
shows the standard architecture used for semantic gossiping in the Chatty Web.

Semantic Processing Data Processing

Network | Network
I >
= Semantic Result N Query Router Outgoing Query and
Analyzer ! and Translator Result Handler
lq- -
T
T I
I <
Neighborhood Semantic Cycle ' Incoming Query and
= e ]
Exploration Analysis i Cycle Detection Result Handler
F--»

i 4

1

!

|

Meta-data Repository ! 1

(neigbboring peers, ' Local Data Repository !

schemas and i and Query Processor
translations i

Legend:
—»  Query
- % Result
—= Meta-data

Figure 16: Architecture for semantic gossiping

Incoming queries are registered at and handled bynt@ming Query and Result Han-
dler whose task is to communicate with other peers, to forward the query for further pro-
cessing and to gather partial results which it uses to assemble the final resgipetific
guery. The next step then is to detect whether a cycle has occurred. Ihsanteanaly-
sis of the cycle is triggered. Otherwise, the query is processed, first by quergihucti
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database and then by handing it over to@heery Router and Translatdp collect results
from other peers.

For this purpose th@uery Router and Translatanquires for possible translations,
evaluates the quality of the resulting queries, and if it is above a defined threfsimaldrds
the query to the respective peer in a different semantic domain. Queries arededvey
the Outgoing Query and Result Handlarhich is also in charge of collecting the results
and forwarding the results to thiecoming Query and Result Handlerich returns them
to the original requester. Additionally, it provides input data for semantic resalysis.

This is the main data processing flow of the architecture. In parallel, partly triggered
by the ongoing data processing, there is also semantic processing as depittedight
side of Figure 16. Its main tasks are semantic analyses of results based on timg exis
knowledge of schemas and their relationships and the semantic analgstsciéd cycles.
The results of these analyses are integrated again into the system’s knowéessgenil
provide the basic decision criteria for query routing.

Additionally, the knowledge base is updated and improved by exploring thes pee
neighborhood and detecting new schemas and translations. The meta-dateorgpvill
try to infer further translations and present new ones for human analysis orfapjaly-
tively detecting semantic agreements in an automatic way.

10 Related Work

A number of approaches for making heterogeneous information sourcepiraite are
based on mappings between distributed schemas or ontologies withougrttakicanoni-
cal assumption on the existence of a global schema.

For example, in OBSERVER [17] each information source maintains an ontology, ex
pressed in description logics, to associate semantics with the information stored and
process distributed queries. In query processing, they use local measuties foss of
information when propagating queries and receiving results. Similarly to OBSERVER,
KRAFT [22] proposes an agent-based architecture to manage ontological retép®im
a distributed information system. Relationships among ontologies are expresseahin a
straint language. [2] propose a model and architecture for managing distrilela&dnal
databases in a P2P environment. They use local relational database sahdmgsresent
the relations between those with domain relations and coordination formulas. Theese a
used to propagate queries and updates. The relationships given betweeratidatabase
schemas are always considered as being correct. In [21] a probabilistic frakniawo
reasoning with assertions on schema relationships is introduced. Thus them@pgeals
with the problem of having possibly contradictory knowledge on schema relhaijmg18]
propose an architecture for the use of XML-based annotations in P2P systertebisks
semantic interoperability.

An approach to self-organizing vocabularies is described in [25]. A set otagem-
municate by randomly associating a fixed set of words to a fixed set of maegmwhech is
called a vocabulary but in fact is an ontology) and repeatedly evaluateumessful their
communicative acts have been. Depending on the success the bintlimgbea word and
a meaning is maintained or replaced by a new random coupling. The decisiaseid bn
s sigmoid functions so that the probability of change quickly decreases if tjugitpaf
of agents uses the same coupling. This approach is related to the methotecralysis
we use and simulate in Section 8. However, it does not employ result anaesisrthe-
less [25] shows that semantic agreements are reached rather quickly. Tiematicesult
analysis we perform may help to speed up convergence speed and irtbeeasalability
and robustness of the self-organization process. It is interesting to note thah[s$
that an increased numbers of agents, words, and meanings does ot ¢eatbinatorial
explosion but implosion. This is due to the fact that the increasing numbeomfswvith
consistent meaning narrow the selection space drastically. This phenomesimrilas to
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the combinatorial implosions described by Kauffman [13] for the clustering andtorte
nection of autocatalytic networks.

Edutella [19] is a recent approach to apply the P2P architectural principle to build a
semantically interoperable information system for the educational domain. Theria2P p
ciple is applied at the technical implementation level whereas logically a cofgrsioared
ontology is used. The original design of Edutella which is based on Gnutellangetido
a super peer network approach in [20] which offers better scalability and ssimphis-
ticated routing and clustering strategies based on the meta-data schemas a#ndwues
tologies used. This approach includes a methodology for mediation betwed¢sdbemas
at super peers which enables super peers to route queries and comblisefn@sLdiffer-
ent semantic domains into one result. It employs transformation rules, so-aaliedpmon-
dences, which have already been used in mediator-based informatiomsy26}. Query
Response Assertiofit6] andModel Correspondencd8] are used to express correspon-
dences between heterogenous schemas.

The Piazza system [10] defines a mapping language to specify mappings bettgeen s
of XML or RDF data sources that tries to take into account both domain and @odtum
structure in the mediation process. The transitive closure of these mappingslitouse
provide a query answering algorithm over the graph of data source definedrbgipéngs.
Piazza's approach is complementary to our approach since it assumes thecexidteair-
wise mappings between data sources and uses these mappings for apguweries while
we try to detect the quality of mappings in terms of an overall agreement anuames n
(which can also be seen as a form of transitive closure). However, thamydppguage of
Piazza together with its query rewriting and query answering methods could alsodbe use
in the Chatty Web approach for more expressive mappings and improved quéngro

Approaches for automatic schema matching—see [24] for an overview—woualltlide
support the approach we pursue in order to generate mappings in a semataaomanner.

In fact, we may understand our proposal as extending approaches fhimgetgo schemas

to an approach matching multiple schemas in a networked environment. Omglexa
illustrating how the schema matching process could be further automated atahieVet

is introduced in GLUE [6] which employs machine learning techniques to assist in the
ontology mapping process. GLUE is based on a probabilistic model, emploitargym
measures and uses a set of learning strategies to exploit ontologies in multyseova
improve the resulting mappings.

Finally, we see our proposal also as an application of principles used in Wedmigi-
sis, such as [14], in which local relationships of information sources are exptoitkstive
global assessments on their quality (and eventually their meaning).

11 Conclusions

Semantic interoperability is a key issue on the way to the Semantic Web which can push
the usability of the web considerably beyond its current state. The successSantic
Web, however, depends heavily on the degree of global agreememtathée achieved,

i.e., global semantics. In this paper we have presented an approachtfagilitee ful-
filment of this requirement by deriving global semantics (agreements) frontydocal
interactions/agreements. This means that explicit local mappings are usetvéoateim-

plicit global agreement. We see our approach as a complementary effort do-thang
standardization in the area of semantics which may help to improve their accepiachc
application by augmenting their top-down approach with a dual bottom-up gptratige

have developed our approach in a formal model that is built around a settoiments
which enable us to assess the quality of the inferred semantics. To demonstralidittys

and practical usability, the model is applied in a simple yet practically relevaetstady.
Also, series of experimental results legitimate our claims and illustrate our interests in
pursuing research aiming at a better understanding of network-related profstézsg
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semantic interoperability.
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