
Optimizing Taxonomic Semantic Web Queries

using Labeling Schemes�y

V� Christophides G� Karvounarakis D� Plexousakis
Institute of Computer Science� FORTH�

Vassilika Vouton� P�O�Box ����� GR ��� �	� Heraklion� Greece
fchristop� gregkar� dpg
ics�forth�gr

Michel Scholl
CEDRIC�CNAM

�� Rue St Martin� ����� Paris� Cedex 	�� France
scholl
cnam�fr

Sotirios Tourtounis
Department of Computer Science�

Univ� of Crete� GR ���	� Heraklion� Greece
tourtoun
csd�uch�gr

Abstract

This paper focuses on the optimization of the navigation through voluminous subsumption

hierarchies of topics employed by Portal Catalogs like Netscape Open Directory �ODP�� We
advocate for the use of labeling schemes for modeling these hierarchies in order to e�ciently
answer queries such as subsumption check� descendants� ancestors or nearest common ances�
tor� which usually require costly transitive closure computations� We �rst give a qualitative
comparison of three main families of schemes� namely bit vector� pre�x and interval based
schemes� We then show that two labeling schemes are good candidates for an e�cient im�
plementation of label querying using standard relational DBMS� namely the Dewey Pre�x
scheme and an Interval scheme by Agrawal� Borgida and Jagadish� We compare their storage
and query evaluation performance for the 	
 ODP hierarchies using the PostgreSQL engine�

� Introduction

Semantic Web applications such as e�commerce� e�learning� or e�science portals and sites require
advanced tools for managing metadata i�e�� descriptions about the meaning� usage� accessibility
or quality of information resources �e�g�� data� documents� services� found on corporate intranets
or the Internet� To describe resources� various structured vocabularies �i�e�� thesauri� or thematic
taxonomies �i�e�� conceptual schemas� are widely employed by di�erent user communities� Such
descriptive schemas represent nowadays an important part of the hierarchical data available on
the Web �	
�� In this context� the Resource Description Framework �RDF� ��� 	� is increasingly
gaining acceptance for metadata creation and exchange by providing i� a Standard Representation

Language for descriptions based on directed labeled graphs� ii� a Schema De�nition Language

�RDFS� ��� for modeling user thesauri or taxonomies as class�property subsumption hierarchies
�i�e�� trees or DAGs�� and iii� an XML syntax for both schemas and resource descriptions� For
instance� Web Portals such as Netscape Dmoz or Chefmoz� MusicBrain� CNET� XMLTree� export
their catalogs in RDF�S� In this paper� we are interested in labeling schemes for such hierarchical
data exported by Portals� in order to optimize complex queries on their catalogs�

A Portal catalog � created according to one or more topic hierarchies �schemas� � is actually
published on the Web as a set of statically interlinked Html pages�� each page contains the

�This work was supported in part by the European project Mesmuses �IST�����������	

yAn earlier version of this paper appears in the proceedings of WWW����

�See dmoz
org� chefmoz
org� musicbrain
org� home
cnet
com� www
xmltree
com� respectively

�Note that RDF is used as an export format for bulk catalog loading

	

information resources �objects� classi�ed under a speci�c topic �class�� as well as various kinds of
relationships between topics� In particular� the subtopic relationship represents subsumption �isA�
between classes� Then� a Portal schema forms a tree �single isA links� or a DAG �multiple isA links�
of classes �at best semi�lattices�� and assists end�user navigation� for each topic one can navigate
to its subtopics �i�e�� subclasses� and eventually discover the resources which are directly classi�ed
under them� In 	
� ��� �� we have studied how declarative query languages for RDF�S can support
dynamic browsing interfaces and personalization of both Portal schemas and resource descriptions�
This paper is a �rst step toward the general optimization of query languages for RDF�S� We focus
on the optimization of a large class of queries� central to semantic web applications� namely the
queries on class hierarchies� Basically� we optimize such queries by avoiding costly transitive
closure computations over voluminous class hierarchies�� More precisely� we are interested in
labeling schemes for RDF�S class �or property� hierarchies allowing us to e�ciently evaluate
descendant�ancestor� adjacent�sibling queries� as well as� �nding nearest common ancestors �nca�
by using only the generated labels� Compared to the transitive closure evaluation reported in our
previous work 	���� the performance gains for these queries are of
�� orders of magnitude when
using adequate labeling schemes� Then� starting from a topic somewhere in the taxonomy� a user
can easily and e�ciently access not only its parent�children �as in existing Portals� but also the
leaf topics underneath where most of the web resources are classi�ed� discover sibling topics �where
related web resources may be found� or even continue navigation from the nca of two topics in
the hierarchy� It is worth noting that we focus in this paper on intentional queries �i�e�� schema

queries� since they represent a novel requirement for Semantic Web applications� However� our
optimization techniques can be easily applied to extensional queries �i�e�� data queries� involving
complex data paths as in the case of RDF resource descriptions or XML documents�

Several labeling schemes for tree or graph�shaped data have been proposed for network routing
	��� object programming 	��� ��� �� � �� ���� knowledge representation systems 	�� and recently
XML search engines 	�� �� ��� �
� �� �� ��� However� choosing a labeling scheme for e�ciently
supporting the functionality required by Web Portals is still an open issue because�

� Portal�s isA hierarchies of classes� may range from simple trees to complex DAGs 	��� while
the ordering of subclasses is not important �compared to XML search engines�� therefore we
need a labeling scheme for trees that can be easily extended for DAGs with a reasonable extra

storage and querying cost�

� Querying�Browsing Portal schemas heavily relies on bulk class retrieval using complex �lter�
ing conditions on subsumption relationships �unlike network routing� object programming
or knowledge representation systems treating two nodes�classes at a time�� thus we need
a labeling scheme generating class labels which can be e�ciently processed by a database

back�end using standard index structures �i�e�� B�trees��

We are interested in the tradeo� between storage and query requirements of di�erent labeling
schemes for both trees and DAGs of RDF�S classes �or properties�� Our contribution� guided by
the e�cient implementation of label querying using standard DBMS technology� is three�fold �

� Section brie�y recalls the RDF�S modeling primitives used to represent the ODP Catalog
and presents statistics about the size and the morphology of the ODP class semi�lattices
that are used for our performance evaluation of existing labeling schemes�

� Section
 provides a qualitative analysis of bit�vector� pre�x� and interval based labeling
schemes for tree or graph�based data exported by Portals like ODP� We pay particular
attention to the expression of the core query functionality �i�e�� descendant�ancestor�leaf�
adjacent�sibling� nca� with each labeling scheme�

� Section � compares the performance of two representative labeling schemes� namely the
Unicode Dewey pre�x scheme 	�� and the extended postorder interval scheme by Agrawal�
Borgida and Jagadish 	��� in terms of storage requirements and query execution time on top
of an ORDBMS �PostgreSQL�� We focus on the e�cient translation of the di�erent types of
queries over class trees �single isA� into SQL� as well as� the extra cost required for DAGs
�multiple isA��

�For example� the catalog of the Open Directory Portal�Dmoz comprises around ���M of Topics exported in
RDF �les�

TypeOf(instance)

SubClassOf(isA)

rdfs: http://www.w3.org/2000/01/rdf−schema#

ns1: http://www.dmoz.org/schema.rdfs#

rdf: http://www.w3.org/1999/02/22−rdf−syntax−ns#

RegionalArts Reference

Resource

Art History

Artists Museum

Robin August

Europe

Art & Ent. France

Museum

Louvre

Regions

IN−de−france

Paris

Museums

Museum

Art & Ent.

Art−Museum

European

French

Class

Property

www.museerodin.fr www.louvre.fr

Figure �� RDF Catalog of Open Directory Portal

� Motivating Example� ODP

Portals aggregate and classify various information resources for diverse target audiences �e�g�� en�
terprise� professional� trading�� A portal catalog includes descriptive information about resources
found on corporate intranets or the Internet� The complexity of the semantic descriptions� using
thesauri� taxonomies or more sophisticated ontologies depends on the scope of the community
domain knowledge as well as the nature of the available resources �sites� documents� etc���

In most Web Portals� resources are classi	ed under large hierarchies of topics that can be
represented and exchanged using RDF
S� Figure � depicts a part of the RDFS schema employed by
Netscape Open Directory �or Dmoz� Portal �ODP� identi	ed by the namespace ns��� nodes denote
class names
topics �e�g��Museum� and solid edges denote subsumption relationships between them
�e�g�� ArtMuseum � Museum�� Note that the roots of all topic hierarchies �e�g�� Arts� Regional�
Reference� specialize the core RDF
S class Resource� These hierarchies are class semi�lattices and
in the simplest case take the form of trees�� From an application viewpoint� they play the role of
facets� which can be combined in order to describe and retrieve Web resources�

Using faceted classi	cation� a resource is described �classi	ed� using one or more topics from
each facet� For example� in Figure � the Web site of Rodin museum in Paris is classi	ed under both
�Reference�Museum�Art�Entertainment�Art�Museum�European�French� and �Regional�Europe��
France�Regions�Ile�de�France�Paris�Museums� where the dashed edges stand for RDF
S instan�
tiation relationships� We can observe that topic names are composed of di�erent descriptive terms
�e�g�� Museum� France�� The ODP schema designers partially replicate these terms in the various
topic hierarchies in order to denote all the valid combinations of terms �from di�erent facets�� In
our example� cultural and geographical terms �e�g�� Museum and France� appear in both Reference

and Regional hierarchies� while the complete path from the root of these hierarchies is used as a
pre	x to distinguish topic names� For simplicity� we hereforth omit the schema namespaces as
well as the pre	x paths�

Table � lists the complete statistics of � ODP hierarchies �version of ��
�
����� comprising
������ topics under which ������Web resources are classi	ed �fan�in stands for the fan�in degree
of the tree� i�e� the number of direct subclasses of a given class�� Note that the total number of
distinct terms used by all topics is ����� while ����� of them �������� are replicated in more
than one topic name� Under these topics� a total number of ������� resources are classi	ed with
������ ������ of them multiply classi	ed under more than one topic� Moreover� due to the partial

�http���www�dmoz�org�schema�rdfs� For simplicity� we omit administrative metadata such as titles� mime�types�
modi�cation�dates� of Web resources represented in ODP by an OCLC Dublin�Core like schema �	
��

�It is worth noticing that the e�ect of multiple isA is partially captured by terms replication in several hierarchies
as well as other link types de�ned between topics such as symbolic and related�

�

Hierarchy Max� Avg Max Avg �Topics �Terms �Resources

Depth Depth Fan�in Fan�in

at Depth

netscape�rdf � ���� ���� 	�

�� ��
 �	� �����

news�rdf � ��	� ���� ��		�� ��� ��� �����

kat�rdf � ���� ��� ��		� �� � ���	

home�rdf � ���� ���� ��		�� ���� ���� ���

health�rdf
 ��� ������ ��			 ��	� ���� ����

shopping�rdf
 ��� ��� ��			� ���
 ���� �����

games�rdf �	 ��� ����� ��			� ���� ���	 ����

computers�rdf �	 �� ����� ��			� 	�	 ���

��
�

reference�rdf �� ���� ����� ��			� ��� ���
 ���	�

business�rdf �� ��� ������ ��			� ��� ��	 �����

recreation�rdf �� �� ���� ��			� ��
 ����
�
�

science�rdf �	 ���� ���� ��			� �� ��� �
�

sports�rdf
 ���� ���� ��			� �	�� �
�� ��	

society�rdf �� ��
 ����� ��			� ���	 ��� �����

arts�rdf �� ��	� ���� ��				 ����� ���	 ����
�

regional�rdf �� ���� ����� 	�

 ��	�� ���
� ������

Total �� ���� ��� 	�

 ������ �	�
� �������

Table �� Statistics of the ODP Topic Hierarchies

replication of terms� ODP topic hierarchies are relatively deep �the average depth is ���	 and the
maximum is �	
 with a varying fan�in at each level �the maximum fan�in degree is 	�� while the
average is only �����
� Table � also illustrates the depth of classes with the maximum fan�in
degree for each hierarchy� ODP subclass trees are far from complete and the largest percentage
of the classes appears in the upper half of the respective trees� In addition� the maximum fan�in
degree is in the middle and slightly in the upper half of the corresponding of ODP trees�

With current Portal interfaces users can either navigate through the topic hierarchies in order
to locate resources of interest� or issue a full�text query on topic names and the URIs of the de�
scribed resources or the text values of attributes like title� description� In the �rst case� users have
to navigate from the root of each hierarchy down to the leaves in order to reach the resources of
interest� because most of the resources are classi�ed under the leaf topics� In the second case� users
are forced to manually �lter the topics and URIs returned by the full�text query� Advanced brows�
ing�querying interfaces aim at simplifying such tasks� by permitting smooth navigation��ltering
on both Portal schemas and resource descriptions� In order to support such Portal interfaces we
need an e�cient evaluation of a number of basic queries on class �or property
 semi�lattices� �a

�nd direct subclasses� transitive ancestor�descendant subclasses or leaf classes� �b
 �nd sibling
�brother
 or following�preceding �adjacent�
 classes� and �c
 �nd the nearest common ancestor�s

�nca
 of two classes� Examples of these queries in a simpli�ed schema are illustrated in Figure ��

� Families of Labeling Schemes

The labeling schemes proposed in the literature can be characterized by�

� The structure of the encoded data �trees� graphs� etc�
�

� The supported queries �ancestor�descendant�leaf� adjacent�sibling� nca
�

� The complexity of the labeling algorithms�

� The maximum or average label size�

� The query evaluation time on the resulting labels�

� The relabeling implications of incremental updates�

In this section� we present a qualitative comparison of three families of labeling schemes� namely
bit�vector� pre�x and interval�

�Note that adjacent queries do not explore semantic relationships of classes but they have been included in our

study for completeness reasons w�r�t� XML XPath expressions�

�

��� Bit�Vector Schemes

The label of a node is represented by a vector of n bits where n is the number of nodes� a
��� bit at some position uniquely identi�es the node in a lattice L and each node inherits the
bits identifying its ancestors �or descendants� in a top	down �or bottom	up� encoding
 More
formally� in the algorithm proposed by Wirth ��� �see Figure �	a�� the label of a node u in L is
l�u� � fb�� � � � � bng� bi � � if the ith node is either u or an ancestor �alternatively descendant� v of
u
 Otherwise bi � �
 Then� using binary OR �j� and AND ��� on labels� one can check whether
a node v is an ancestor �descendant� of u in L� u � v i� l�u� � l�v� � l�v� �or l�u� j l�v� � l�u��

This scheme supports subsumption checking and Least Upper Bound �LUB� or Greatest Lower
Bound �GLB� operations �i
e
� nca�ncd� in constant time �the time for comparing two bit vectors�
while labels can be constructed in time linear in the size of L
 It should be stressed that all labels
have �xed size n bits and the storage required for the labels of a lattice L is exactly n�

More compact variations of bit	vector schemes ��� �� ��� use new bit positions only when it
is necessary to distinguish between nodes with common descendants
 For instance� the total size
of the bit	vectors produced by the Near Hierarchical Encoding �NHE� ���� is � � n � logn for
balanced binary trees and close to logn when multiple isA is low
 However� the most interesting
compact variations do not support all the queries we need� Caseau�s scheme ��� supports only
ancestor�descendant checking� while NHE ���� supports only lattice operations �LUB�GLB�
 In
addition� NHE is able to encode arbitrary partially	ordered sets rather than lattices as in Caseau�s
algorithm
 Ait	Kaci�s scheme ��� supports all the previous operations but generates labels of size
O�logn� and O�n� in the best and worst case respectively

The main drawback of bit	vector labeling schemes is that ancestor�descendent�sibling queries
are O�n�
 No O�logn� data structure can be used to accelerate the evaluation of these queries

Additionally� the ��xed� size of the produced labels heavily depends on the size �and the morphol	
ogy for compressed variations� of the input class hierarchies making these schemes inappropriate
for a database implementation especially in the presence of incremental updates

��� Pre�x Schemes

Pre�x	based schemes directly encode the parent of a node in a tree� as a pre�x of its label using
for instance a depth	�rst tree traversal
 Therefore the labels for a tree T can be computed in
time linear in the number of nodes in T
 The simplest algorithm is the Dewey Decimal Coding
�DDC� widely used by librarians ��� �see Figure �	b�� the label of a node u in T is l�v�l�u� where
l�v� is the label of its parent v� l�u� � f�� ��� �g�
 Then� one can check whether a node v is an
ancestor of u in T in practically constant time by checking whether a string is a pre�x of another
one� u � v i� l�v� � prefixes�l�u��
 The same is true for �nding the nca of two tree nodes

An interesting property of pre�x	based labels is their lexicographic order� the labels of nodes
u in a subtree with root v are greater �smaller� than those of its left �right� sibling subtrees�
prev�l�v�� � l�v� � l�u� � next�l�v�� where next������ ���� and prev������ �����
 Then� index
structures based on the key�s domain order such as the B	tree� can be used to speed	up the
evaluation of our testbed queries �i
e
� ancestor�descendant�leaf� preceding�following� sibling and
nca�
 Table � gives for each query expressed in a declarative way �column ��� its corresponding
formulation in terms of the required conditions on the labels for di�erent schemes
 The set of
conditions for the pre�x	based scheme is given in column �
 Parent�children�sibling queries rely
purely on string matching functions� the parent of a node in T is directly given by the greatest
pre�x �function maxprefix returning all but the last character of the input string� of its label

Nca queries require to �nd common pre�xes �function prefixes� of maximum length �function
maxlength�
 Although label conditions involving user	de�ned functions can be translated in the
recent versions of the SQL standard �SQL	���� in existing SQL engines such queries do not take
bene�t from indices de�ned on labels �i
e
� they can be evaluated using only sequential scans�

In DDC� the size of the proper node label �e
g
� ���� ���� at each level is exactly one byte and
thus the maximum label size �in bytes� depends only on the maximum depth of T
 As a matter
of fact� DDC consumes per node more bits than actually required but this extra cost makes easier
a string representation of labels by avoiding the introduction of separator characters like ��� at

�Note that the same idea is employed by ODP in order to identify topics�classes from the root of each hierarchy
with user readable labels� using a vocabulary of distinct terms�words �see Table ���

�

Sculptor

00000011 00000101

00010011 00100011 01001001 10001001

1

11 12 13

111 112 131 132

[1,8]

[1,8]

[2,3]

[2,3]

[1,3]

Dewey

[3,1] [4,2]

[5,4] [6,7]

[7,5] [8,6]

[1,1] [2,2]

[4,4]

[5,5] [6,6]

[5,7]

[3,1] [4,1]

[5,1] [6,3]

[7,1] [8,1]

Resource

MuseumArtist

Painter Painting Scultpure

Artifact

00000001

00001001

[1,8]

Wirth

Dietz

Argawal et al

Li and Moon

Ancestors

Precedings

Nearest Common Ancestor

Descendants (Artifact):Painting, Sculpure
(Sculptor):Artifact,Resource

Leaves (Resource):Painter,Sculptor,
Museum,Painting,Sculpture

(Museum):Artist, Painter, Sculpture
Followings (Museum):Artifact
Siblings (Museum):Artist, Artifact

(Artifact, Painter):Resource

Figure �� Labeling Schemes� a� Wirth b� Dewey c� Dietz d� Agrawal et al e� Li and Moon

each level �e�g�� ����	�� For fan
in degrees greater than ��� larger alphabets should be used to
label each node as� for instance� the Unicode Character Set� In UTF
 ���� a variable number of
bytes are used to encode integer codes of di�erent character sets� ASCII characters are encoded
by one byte �from �x�� to �x�f� while characters in other sets �� �x�f� are encoded as a multibyte
sequence �consisting only of bytes in the range �x� to �xfd� with the �rst byte indicating its
length �up to � bytes long�� Since in Portal schemas �see Table �� the average fan
in degree is
small ������� compared to the maximum ����� most of the node labels require one byte per depth
�i�e�� can be encoded by ASCII characters�� When binary alphabets are used� the maximum size
of pre�x
based labels �in bits� depends both on the maximum depth �d� and fan
in degree ��� of
the encoded tree T �dlog��� Applications of this scheme to XML tree data have been proposed
in ��� ���� Several variations provide more compact labels that minimize either the maximum size
of a label ��xed size representation� or the average size of a label �variable size representation��
See ���� for a comparative analysis and ���� for a recent survey�

The main advantage of pre�x
based labeling schemes is their dynamicity in the presence of
incremental updates� As long as ordering among descendants is not important �as in class semi

lattices�� one can always add new children nodes to the right of existing nodes without having to
relabel them� As a matter of fact� most of the bene�ts �for updates� compression� of pre�x
based
schemes are due to the production of labels with variable size� Unfortunately� the evaluation of
queries on variable size labels relies on �bit� string manipulation functions �especially for com

pressed pre�x variations�� reducing the optimization opportunities of existing SQL query engines
because the evaluation cost of user
de�ned functions is unknown by the optimizers� Finally� pre�x

based schemes produce in�ationary labels when extended for DAGs �to cater for multiple isA� see
section �����

��� Interval Schemes

The label of a node in a tree T is given in this scheme by an interval �start� end� such that it is
contained in its parent	s interval label� In the original scheme of Dietz ���� ��� �see Figure �
c�
each node is labeled with a pair of its preorder and postorder numbers in T � the label of a node
u is �pre�u�� post�u��� Since an ancestor node v appears before �after� a descendant node u in
the pre
�post�order traversal of T � u � v i� pre�v� � pre�u� and post�v� � post�u�� In addition�
the intervals of two sibling nodes w and u are disjoint� The complete set of conditions for our
testbed queries is given in column � of Table �� Interval labels can be computed in time linear

�

Query Dewey Agrawal et al Li and Moon Dietz�Zhang et al

descendants�v� l�u� � next�l�v�� index�v� �� post�u� pre�v� � pre�u� post�u� � post�v�
fuju � vg � l�u� � l�v� � post�u� � post�v� � pre�u� � size�u� � pre�v� � pre�u�

�� pre�v� � size�v�
ancestors�v� prefixes�l�v�� index�u� �� post�v� pre�v� � pre�u� post�u� � post�v�
fuju � vg �post�u� � post�v� � pre�u� � size�u� � pre�v� � pre�u�

�� pre�v� � size�v�
leaves�v� l�u� � next�l�v�� index�v� �� post�u� pre�v� � pre�u� post�u� � post�v�
fuju � v �l�u� � l�v� �post�u� � post�v� � size�u� � � � pre�v� � pre�u�
� ��u� � ���u� � �l�u�� � l�v� � post�u� � index�u� � pre�u� � � pre�u� �
�u� � v � l�u�� � next�l�v�� pre�v� � size�v� depth�u� � post�u�
� u� � u�g � l�u�� � next�l�u��

� l�u�� � l�u��
precedings�v� l�u� �� prev�l�v�� post�u� � index�v� pre�u� � size�u� post�u� � post�v�
fuju� vg � l�u� � �� pre�v� � pre�u� � pre�v�

maxprefix�l�v��
followings�v� next�l�u�� �� l�v� index�u� � post�v� pre�u� �� post�u� � post�v�
fujv � ug � l�u� � pre�v� � size�v� � pre�u� � pre�v�

next�maxprefix�l�v���
siblings�v� maxprefix�l�u�� � post�parent�u�� � pre�parent�u�� � pre�parent�u�� �
fuju	 vg maxprefix�l�v�� post�parent�v�� pre�parent�v�� pre�parent�v��
nca�v�w� l�u�
 prefixes�l�v�� index�u� �� i pre�u� � pr post�u� � p

fuju � v � prefixes�l�w�� �post�u� � p � pre�u� � size�u� � pre�u� � pr

� u � w � maxlength�l�u�� � ��u� � �� ps � ��u� �
� ��u� � �index�u�� �� i � ��u� � �post�u�� � p

�u� � v � post�u�� � p �pre�u�� � pr � pre�u�� � pr

� u� � w � index�u�� � pre�u�� � size�u�� � post�u�� � post�u�
� u� � u�g �� post�u� �� ps � pre�u�� � pre�u��

� post�u�� � post�u�� � pre�u�� � pre�u� where

where � pre�u�� � size�u�� pr � minpre�v� w��
i � minindex�v� w�� �� pre�u� � size�u�� p � maxpost�v� w�
p � maxpost�v� w� where

pr � minpre�v� w��
ps � max�
pre�v� � size�v��
pre�w� � size�w��

Table �� Core Query Expressions for Trees� a� Dewey b� Agrawal et al c� Li and Moon d� Di�
etz�Zhang et al

in the size of T � Subsumption checking can be evaluated in constant time �i�e�	 comparing four
integers� while the storage required for the labels of a tree T is O�n� and the label size in bits is
exactly �logn
���� The labeling scheme proposed in
��� for XML tree data is a straightforward
extension of Dietzs scheme with depth information about tree nodes in order to also compute
direct parent�children and leaf queries� However	 for sibling queries as well as for an e�cient
evaluation of parent�children queries �avoiding the computation of all ancestors�descendents� we
need to additionally encode the parent of each tree node and therefore depth becomes redundant�

One variation for graphs has been proposed by Agrawal	 Borgida and Jagadish
�� �see Figure ��
d for trees and Figure ��a for graphs� and relies on the introduction of a spanning tree to distinguish
between tree and non�tree edges connecting class nodes� They propose a hybrid scheme in which
the spanning tree edges fully take advantage of the interval�based labeling	 while the non spanning
tree edges require a replication of the label of their source node upwards to their target and its
ancestors� Then	 subsumption checking for spanning tree edges relies purely on interval inclusion
test	 while for the remaining edges one has to also check whether there is a path in the graph� More
precisely	 a node u in the spanning tree T of the graph is labeled with
index�u�� post�u�� where
post is the postorder number of u and index is the lowest postorder number of us descendants
�index�u� �� post�u� and for leaf nodes index�u� � post�u��� Furthermore	 a node u can receive
additional labels as follows� if node v is the source of a non spanning tree edge with target u	 then
u as well as all its ancestors in the graph replicate the label of v� Such a scheme favors e�cient
subsumption checking �i�e�	 comparing sets of labels for each class� in the graph while the price to
be paid is the additional storage cost of propagated labels� In the worst case of bipartite graphs	
the extra storage is O�n��	 but fortunately this is not the case of class semi�lattices represented in
RDF�S� Table �	 column � illustrates the expression of our testbed queries in this scheme when the

�

A

C

B E F

GD

H I

ancs=0

ancs=1

ancs=2ancs=2

ancs=3

ancs=2

ancs=6

ancs=5

ancs=7 H

G

F

E

D

C

B

A

Graph

[1,9]

[1,2]

[1,1]

[3,6]

[7,7]

[3,5]

[3,3]

[1,2]

[3,3]

[3,3]

[3,3]

[3,5]

[3,5]

[3,5]

[3,5] [3,5]
[1,9]

[1,5]

[1,8] [1,8]

Spanning

[1,9]

[2,2]

[4,8]

[3,1]

[5,4]

[9,1]

[7,1]

Graph

[2,2] [7,1]

[7,1]

[7,1]

[7,1][3,3]

[6,3]

[6,3]

[6,3]

[6,3]

Node

Tree Tree Propagation

[6,3] [6,3]

[6,3][3,5]

Propagation
Spanning

’111’

’1111’

’113’’111’
’1121’

’11211’
’113’’1111’

’113’

Graph

’1’

’1’

’111’ ’1’
’113’

’111’ ’1’
’1’ ’113’

Tree

’1’

’11’

’1111’

’112’

’113’

’11211’

Compres−
sion

[1,9]

[4,8][6,3]

[2,2][6,3] ’111’

’1121’

Spanning
Propagation

Compression
Agrawal et all

I [4,4] [8,1] ’11212’ ’111’ ’1’

’113’ ’111’

’11212’

’1111’

Compres−
sion

Li and Moon Dewey

Figure �� Label Compression for Graphs� a� Agrawal et al b� Li and Moon c� Dewey

encoded class hierarchies are trees �the case of DAGs will be addressed in Subsection ����� Finally	
to support incremental updates without node relabeling one can leave gaps between the intervals
generated during the bottom
up tree traversal using some constant factor c in the postorder
numbering	 i�e�	 the label of a node u is �index�u�� c�post�u��� Other interval computation policies
�out of the scope of this paper� use	 for instance	 a top
down traversal in order to encode at each
level random or adaptive size gaps for node intervals w�r�t� to the prediction of future updates

It should be stressed that for trees	 Agrawal	 Borgida	 Jagadish scheme is equivalent to the
scheme proposed by Li and Moon ��� �see Figure �
e� for encoding XML data where the label
of a node u is �pre�u�� size�u�� �size�u� denotes the size of the subtree rooted at u�� It is also
identical to the scheme by Schubert et al ��� �with inverse query conditions� recently studied
for XML trees in ��� where the label of a node u is �pre�u�� index�u�� �index�u� is the highest
preorder number of u�s descendants�� Compared to these variations the extended postorder scheme
of Agrawal et al has the following advantages� �a� it requires smaller index volumes �and update
costs� since we need only a B
tree on the post value of labels �as opposed to Dietz�s labels ��	 �
requiring indices on both pre�u� and post�u� values and Zhang�s variation ���� requiring an extra
index on depth�� �b� it allows for more e�cient query evaluation by standard SQL engines since
the core conditions for the structural relationships among nodes are simpler �unlike labels in the
scheme by Li and Moon involving arithmetic operations in all queries�� �c� it �nally exhibits
interesting interval compression opportunities for graphs either by absorbing subsumed intervals
or by merging adjacent intervals coming from non spanning tree edges�

Consider for example the DAG D illustrated in the left part of Figure �� The nodes of D
represent classes and the edges isA links de�ned between them� The link from B to A is redundant
but such a redundancy is frequent in RDF�S schemas found on the Web ���� Note also that
precedings�followings queries �see Table �� are meaningless in a graph setting� In order to label
D	 the scheme by Agrawal	 Borgida	 Jagadish �� chooses an optimal spanning tree T w�r�t the
number of generated labels	 based on the number of ancestors per node� an edge of D from n to
n� belongs to T �represented by solid lines� only if n� has the maximum number of ancestors w�r�t�
the other edge target nodes with source node n� For instance	 the edge from B to C belongs to the
spanning tree while the edge from B to A does not �dashed line�� Only non redundant edges belong
to the optimal spanning tree� Then �see the right part of Figure �� for each non spanning tree edge
�e�g�	 from H to D the interval of the source node �e�g�	 ������ is propagated to the target node
�e�g�	 D� and recursively up to its ancestors �e�g�	 B	 C	 A�� However	 when propagated upwards	
the intervals of descendent nodes may be subsumed by those of ancestors �e�g�	 ����� is subsumed
by both C and A intervals�� Therefore they can be absorbed by the label of a node �either from
the spanning tree or propagated� representing their nca� In addition	 adjacent intervals like �����
and ����� can be merged into a new one ����� without breaking down the interval inclusion rule
which captures the node ancestor relationship �e�g�	 after merging B is an ancestor of D and H��
Such interval merging	 clearly depends on the order of edges belonging to the spanning tree ��
while it a�ects the identi�cation of nodes based on their postorder number �we come back on this

�

issue in Subsection ����� At the end of the compression process� the scheme requires only two
additional intervals �for D and F� for the four non spanning tree edges of our example�

The same label propagation can be also applied to other interval based schemes such as the
one by Li and Moon ����� However� the compression rate is signi	cantly reduced
 interval merging
is not possible while interval subsumption �w�r�t the subsumption checking conditions of Table ��
is limited �e�g�� ����� is subsumed by ������� The Dewey pre	xbased scheme ��� can similarly
extended with additional labels in the case of DAGs� We rely� as previously� on the same spanning
tree choice but the propagation of labels is now performed downwards i�e�� from the target of non
spanning tree edges �e�g�� A� to the source node �e�g�� B and its descendants �e�g�� D� G� H and I��
The only possible compression in this scheme is the absorption of a label when it already appears
as a pre	x of another� for instance� ��� is absorbed by ������ ������� etc� As illustrated in
Figure �� in our simple example Dewey�s scheme requires six additional labels �for G� H and I��

In summary� bitvector based schemes do not e�ciently support all our testbed queries when im
plemented by SQL engines� Pre	xbased schemes provide simple expressions for ancestor�descendant
queries based on string matching operators and allow for simple incremental updates� However�
in this scheme the optimization opportunities of existing SQL engines are reduced for some of
our testbed queries� Among the intervalbased schemes� the extended postorder interval scheme
proposed by Agrawal� Borgida� Jagadish �referred to as PInterval� presents several advantages
among which compactness for DAG hierarchies and e�cient query evaluation by standard SQL
engines are noteworthy� The experimental study presented in the next section compares its per
formance with that of the Unicode Dewey pre	x scheme �referred to as UPrefix� in terms of
storage volumes and query evaluation time�

� Evaluation of Labeling Schemes

In this section� we compare the storage and query performance of two labeling schemes when
implemented with an SQL engine� namely the Unicode Dewey pre	xbased scheme �UPrefix� and
the extended postorder intervalbased scheme by Agrawal� Borgida and Jagadish �PInterval�� We
use as a testbed for our evaluation the RDF dump of the ODP Catalog �version of ����������
We successively study the case of subclass trees �i�e�� the ODP hierarchies with single isA� and
DAGs �i�e�� the ODP hierarchies are augmented with synthetically generated multiple isA links��
Experiments were carried out on a SunBlade����� with an UltraSPARCIII ���MHz processor
and ��� MB of main memory� using PostgreSQL �Version ������ with Unicode con	guration� ����
bu�ers ��KB� were used for data loading� index creation and querying� �� ODP class hierarchies
�see Table �� with a total number of ������ topics were loaded� Indices on the generated labels
were constructed after 	le sorting on the index key in order to use packed Btrees�

We 	rst choose a relational representation of UPrefix and PInterval labels in order to com
pare the resulting database size� The performance of the testbed queries �see Table �� is then
compared when implemented with the PostgreSQL engine�

��� The Case of Trees

����� Database Representation and Size

The RDF�S class �or property� hierarchy of a Portal Catalog like ODP� can be represented by
one table with two attributes
 the name of the class �primary key� and the name of its parent
class� Because in ODP the class names are large variable size strings �path from root including
namespace and path pre	x� we choose the following normalized relational database schema

Class�id
 int�� name
 varchar������

SubClass�id
 int�� parent
 int��

where id is a class identi	er� name is its name� and parent is the parent class identi	er�

Since the labels produced by UPrefix or PInterval are unique� they can be used �or a part
of them� as identi	ers of classes in the tree� In the following� we evaluate the database and index
size of the following tables replacing SubClass respectively by

UPrefix�label
 varchar����� parent
 varchar�����

PInterval�index
 int�� post
 int�� parent
 int��

�

0

2000

4000

6000

8000

10000

12000

14000

16000

150000 170000 190000 210000 230000 250000

D
at

a
- I

nd
ex

 S
iz

e
(k

B
)

Schema Classes

Agrawal et all DB
Unicode Dewey DB
Postnum Index (Agrawal et all)
Label Index (Un. Dewey)

0

20

40

60

80

100

150000 170000 190000 210000 230000 250000

D
at

a
Lo

ad
in

g
- I

nd
ex

 C
on

st
ru

ct
io

n
Ti

m
e

(s
ec

)

Schema Classes

Agrawal et all DB
Unicode Dewey DB
Postnum Index (Agrawal et all)
Label Index (Un. Dewey)

Figure �� a� Database�Index Size and b� Construction Time for ODP Subclass Trees

where parent respectively stores the parent�s string label or post�number value�

Two remarks are noteworthy� First the string type of attribute label in UPrefix is deter�
mined by the maximum depth of the ODP class hierarchy 	see Table
� plus one 	for the root
class Resource� while the type of the post 	and index� attribute in PInterval by the total number
of the ODP classes� Second� in both cases we utilize the parent attribute in order to recon�
struct the class hierarchy in RDF�S from the database as well as to e�ciently support direct
parent�children�sibling queries� This choice is justied by the signicant evaluation cost of these
queries in SQL engines with user�dened functions like prefix in UPrefix or additional infor�
mation on node labels like depth in PInterval 	otherwise nding the direct children of Resource
requires a complete scan of the ODP hierarchy���

Figure ��a displays the size of the database 	tables UPrefix and PInterval� and the size of
the index 	respectively on attributes label and post� while Figure ��b displays the construction
time when the
� ODP hierarchies 	see Table
� are loaded in decreasing order of their number
of classes� More precisely� the size of table UPrefix is
���� Kb and the size of PInterval is

���� Kb both containing ����
� tuples 	i�e�� classes� on ���� and
�
� disk pages respectively�
Equivalently� to store the label of a class as well as the label of its superclass 	i�e�� a tuple� we need
���
� bytes with PInterval and ����� bytes with UPrefix� Compared to the PInterval
� bytes
expected from the schema� the extra storage cost per tuple is due to an id 	�� bytes� generated
by PostgreSQL to identify the physical location of a tuple within its table 	block number� tuple
index within block�� In addition� the PostgreSQL storage requirement for string types is � bytes
plus the actual string size� For these reason we need on the average�
��

 bytes for storing the
class label in UPrefix� It should also be emphasized that only ��
��� of the encoded classes 	�
classes have a fan�in degree � ��� with ��� subclasses� in UPrefix require labels with Unicode
characters exceeding the two bytes�

Table UPrefix is �
��� bigger than PInterval� while the size of the index on attribute
label is ����� larger 	
��
 disk pages� than that of post 	��� disk pages�� On the other hand�
data loading 	index construction� time of UPrefix is ������ 	����
�� larger than of PInterval�
Slightly smaller size and time have been obtained for the indices on attribute parent in both tables
	due to the indexing of smaller ranges of values�� Clearly� the extra storage cost of PInterval is
due to a signicant overhead for storing and indexing strings in the PostgreSQL DBMS�

����� Core Query Evaluation

In this subsection� we are interested in the e�cient implementation of the Portal query func�
tionality for both prex and interval labeling schemes using standard SQL engines� Most query
expressions 	see Table �� can be directly translated into SQL� using the relational schema of the
previous section� The only queries for UPrefix needing to be implemented by SQL stored proce�
dures are ancestors 	function prefixes� and nca 	functions prefixes and maxlength�� Stored
procedures are also employed to implement the subsumption checking on two class labels for both
schemes� It should be stressed that for optimization reasons queries such as leaves for UPrefix

and followings for PInterval need to be rewritten�

�Note that the average depth of ODP class hierarchies including the root Resource is ���� �see Table ���

�

More precisely� the main performance limitation of SQL queries for UPrefix is due to the
presence of user�de�ned functions �next� prev andmaxprefix� in the selection conditions involving
the attribute label� Such queries are evaluated by the SQL engine without taking into account the
existence of an index de�ned on label� To solve this limitation� when possible user�de�ned functions
are evaluated prior to the execution of the SQL query� For instance� the query descendants of
the root class Resource uses the condition label � ��� � label � next������ Since function next

is applied to the input node of the query �e�g�� the label ��� of Resource� the condition can be
replaced by ��� � label � ��� �next����� 	���� where next has been pre�evaluated� However� this
rewriting is not always possible� as in query leaves where the function next is used in the nested
subquery over the labels returned by the outer block

select label

from UPrefix

where label � �l� and label ��ln� and
not exists �select �

from UPrefix u�
where u��label � label and

u��label � next�label��

For this reason� the previous query was rewritten so as to involve only string operations and
not functions on label

select label

from UPrefix

where label � �l� and label � �l� �� �xFF� and
not exists �select �

from UPrefix u�
where u��label � label and

u��label� � label �� �xFF��

The string operator �� concatenates the Unicode character �xFF� ��all�ones byte� to the value
of attribute label� The resulting string is the maximal string inferior to next�label��� Then the
index can be used during the evaluation of the nested query� Other rewritings were experimented
with �e�g�� using structural information represented by attribute parent� but the previous solution
exhibited the best performance�

The only problem for the interval based scheme is related to the followings query� It relies
on the values of the attribute index for which no index was constructed� In order to use only the
available index on post� we rewrite the query as follows

select post

from PInterval

where post � p and index � i

The selection condition is equivalent to the original one index � p �in PInterval following
nodes have always greater postorder and index numbers��� and query evaluation can be optimized
with the use of the B�tree de�ned on post�

Except for the two previous rewritings� the evaluation of the core queries with the two labeling
schemes strictly uses the conditions stated in Table �� Each query was run several times
 one
initially to warm up the database bu�ers and then nine times to get the average execution time
of a query� Recall that ���� bu�ers of size �KB and thus the indices of attributes label �����
disk pages� and post ���� disk pages� can �t entirely in main memory� Table � gives the resulting
execution time in seconds �using PostgreSQL Explain Analyze facility� for both schemes and for
up to three di�erent cases per query
 each case corresponds to a di�erent choice of input node
and therefore of query selectivity�

The main observation is that the query performance of the two labeling schemes is comparable�
The leaves query is penalized in UPrefix by the use of nested queries� Compared to PInterval�
ancestors and nca run with the former scheme in practically constant time� In all other queries�
PInterval exhibits slightly smaller execution times than UPrefix since for the same number of

�Note that label xFF is an imaginary rightmost child ��xFF� cannot actually be used in a valid UTF�� encoding�
for the node with label label whose immediate right following node has the label next�label��

��The second condition is used to eliminate ancestors�

��

Query PInterval UPre�x

Case � Case � Case �

�Select �Select �Select

Case � Case � Case �

�Select �Select �Select

subsumption check

Q�

descendants
Q�

ancestors
Q�

leaves

Q�

precedings
Q�

followings
Q�

siblings

Q	

nca

������� ������� ������	

���
���� �����	�� ������	
���� ��� �������
������� ���	�� ������	

������ ������� ������
���	��� �������� ������	
	���� ���
� �������

��
����� ������ �������
���� �� ��
���	�� ����	� �������

���� �� ��
�����
� ������ ������	
�����
� ������ �������

����	�� ������� ��������
������� ������� �������

������	 ������	 ������	

����
��
 ��		�� ������	
���� ��� �������
�����
� �����	� �����
	

������ ������� ������
����
	 �
���
� �����
	���� ���
� �������

���	��	 ����� �����
���� �� ��
���	�� ��

��� �����

���� �� ��
�����
� �����
 �������
�����
� ������ �������

�������� �������� ��������
������� ������� �������

Table �� Execution Time of Core Queries for the ODP Subclass Tree

returned tuples a smaller number of disk pages need to be accessed� Finally� PostgreSQL �cost�
based� query optimizer seems to favor index scans on tables UPrefix and PInterval although
sequential scans should be more e	cient �e�g�� in queries with
�� selectivity�� This is due to
inaccurate selectivity estimations �higher� of query predicates especially for string comparisons in
UPrefix� The same plans and comparable execution times for all queries have been observed
when augmenting the number of bu�ers from ���� to ������

In Q� each case corresponds to the choice of a di�erent node for which the descendants are
computed� �a� in Case � the root �i�e�� Resource� �b� in Case � a node with a medium number of
descendants �i�e�� Arts� and �c� in Case � a node with a minimum number of descendants� In Cases
� and �� the node label appears in the middle of the post or label intervals of values� PostgreSQL
optimizer chooses for both labeling schemes a sequential scan for the �rst case and index scans
for the other two� Since the interval query is based exclusively on post �e�g�� i �� post � p�
or label �e�g�� l � label � l�� index scan is bene�cial� the optimizer uses the index to access the
tuple satisfying the lower bound condition and since the examined index keys are sorted� it stops
sequential scan of tuples when the upper bound is reached�

The three cases of input nodes for Q� correspond to �a� the leftmost �b� a middle and �c� the
rightmost leaf of the ODP subclass tree� The response time is signi�cantly better for the Pre�x
scheme in the �rst two cases� PostgreSQL optimizer chooses for PInterval �for UPrefix stored
procedures are used� a sequential scan for Case � and index scans for Cases � and �� The interval
query is based now on di�erent attributes namely post and index �index �� p � p � post since
for leaves index � post� and all values returned by the index scan �on post� have to be scanned to
check the �rst condition �on index�� The wrong selectivity estimation for the conjunction leads
the optimizer to favor in Case � an index scan �on the half interval� which turns out to be much
more costly than a sequential one �on the entire interval�

Q� is evaluated with the same input nodes as Q�� Thus� for PInterval� the PostgreSQL
optimizer chooses the same plans in the three cases� The slightly higher execution times compared
to Q� are due to the evaluation of the extra condition for leaves �index � post� given that
the number of accessed disk pages are the same� On the other hand� UPrefix is signi�cantly
penalized by the use of the nested query� index scans are used for the nested query in all cases
while a sequential scan should be used at least for Case ��

Queries Q� and Q� employ the same input nodes as Q� and the three cases for precedings
and followings have inverse selectivities� The execution times for queries with zero selectivities
�Case �� give us an indication about the lookup cost of indices de�ned on attributes post and
label�

Q� is evaluated with input nodes having the maximum� a medium and the minimum fan�in
degrees of ODP subclass trees� It involves a nested loop join over two index scans� one to �nd the
parent of a node and the other to �nd its direct siblings using equality on post �label� and parent�

Finally� Q� takes as an input a pair of nodes �using the same leaves as in Q��� in Case � the

��

leftmost�rightmost leaves� in case � the leftmost�middle leaf and in Case � the middle�rightmost
leaves� For UPrefix a stored procedure is executed� while for PInterval a nested query is
evaluated using index scans for both the inner and outer blocks in the three cases� In Case � the
resulting time for the interval based scheme is signi�cant� However as aforementioned� a sequential
scan should be chosen� For Cases � and � the response times are comparable�

��� The Case of DAGs

In this section we �rst present the relational representation of UPrefix and PInterval labels in
the case of a subclass DAG and evaluate the extra storage cost for both labeling schemes� We
then show� as for the case of trees� how subsumption check� descendant� ancestor� leaves�
siblings and nca queries 	preceding and following queries are not de�ned on DAGs
 can be
expressed on the label representation of the hierarchy and translated into SQL queries� We end
up our study by a performance comparison of the two schemes in terms of query response time�

����� Database Representation and Size

In each labeling scheme� two tables are now necessary for representing the class hierarchy� apart
from table Class with attributes id and name� The �rst table in both schemes is the same as in
the case of trees 	UPrefix� PInterval
� The only modi�cation is that for DAGs� tuples in these
tables represent both kinds of edges 	spanning�tree or non�spanning�tree edges
� The rationale
behind this choice is that siblings 	and parent�children
 queries can be easily evaluated on tables
UPrefix and PInterval using the parent attribute 	as in the case of trees
� This choice implies
the extension of both tables key in order to include the parent attribute� as follows�

UPrefix	label � varchar	�
� parent � varchar	�

PInterval	index � int�� post � int�� parent � int�

It should be stressed that when label compression in PIn� terval also considers the merging
of adjacent intervals� DAG nodes are not anymore identi�ed using their postorder number� For
instance� in Figure � both nodes C and G have as a post value �� As shown in the following� the
total label compression gains from merging is less than ���� and therefore we do not consider this
compression in the following�

The second table is respectively called DUPrefix and DPInterval in the two schemes where
D stands for DAG� In the former table� tuple 	label� ancestor
 indicates that the node with label
ancestor propagates downwards its label to the node identi�ed by label� In the latter� tuple 	index�
post� ancestor
 indicates that the node with label �index� post� propagates its label upwards to the
node identi�ed by the post value ancestor� Keys are not mandatory for these tables because they
are not accessed independently from the primary table 	indices have been de�ned on attributes
ancestor and label or post
�

DUPrefix	label � varchar	�
� ancestor � varchar	�

DPInterval	index � int�� post � int�� ancestor � int�

Looking at Figure �� left� the label ����� of G is propagated up only to B since it is absorbed
by A� Then DPInterval includes one tuple 	�� � �
 where �� account for the index and post

values of G and � for the post value of B 	i�e�� its id
� Similarily the DUPrefix table includes the
two tuples 	�������� ����
� and 	��������� ����
 that account for the propagation of B�s label down
to its descendants G� and I 	for H� B�s label is absorbed by the propagated label ������ of D
�
Note the redundancy of the attribute index� since any node is identi�ed by its post value� This
redundancy allows for a faster SQL execution of the descendants query� It should be stressed
that when label compression is not considered in both schemes� table DUPrefix 	DPInterval

essentially materializes the result of descendents 	ancestors
 query involving DAG edges�

Let us now evaluate the extra storage cost for labeling DAGs with the two schemes� Since in
both cases the tables UPrefix and PInterval hold all the edges of the DAG 	to enable reconstruc�
tion in RDF�S
� the extra storage space is exactly the size of tables DUPrefix and DPInterval�
for each scheme we only need to measure the number of propagated labels� This 	downwards or
upwards
 propagation depends on the position of the source and target nodes of the non spanning
tree edges in the DAG or more precisely the number of descendants 	ancestors
 of source 	target

nodes� The DAG testbed uses the ODP hierarchies 	see Table �
 augmented with synthetically
generated multiple isA links� The original ODP classes are decomposed into three sets according

��

0

50000

100000

150000

200000

250000

300000

0 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f P
ro

pa
ga

tio
ns

Percentage of added non-tree edges (%)

Agrawal et all
Unicode Dewey

0

500

1000

1500

2000

0 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f C
om

pr
es

si
on

s

Percentage of added non-tree edges (%)

Agrawal et all - Absorbing Subsumed Intervals
Agrawal et all - Merging Adjacent Intervals
Unicode Dewey - Absorbing Subsumed Labels

Figure �� Label Propagation and Compression for ODP Subclass DAGs

to their depth in the tree� a� near to the root �denoted R�� b� near to the leaves �denoted L�� and
c� in between �denoted B�� Then� picking at random the source and target edge classes� additional
edges are equally distributed in nine groups� RR� RL� RB� etc� In addition� the maximum fan	out
degree of classes is
xed to � �a typical upper bound of multiple isA links as observed in �����

The total number of label propagations is displayed in Figure � versus the percentage of
additional edges� The experiment was conducted incrementally until the number of original ODP
tree edges is doubled ���� percentage of additional edges�� for every �� generated edges� we
execute the two labeling algorithms� Note that the spanning tree computed �for both algorithms�
is di�erent at each increment step� The main observation from Figure � is that the number of
label compressions in PInterval is proportional to the number of additional edges� regardless of
their positioning in the DAG� which is not the case for UPrefix� For this reason� the number of
label propagations for PInterval is stabilized between �����	������ while for UPrefix it seems to
depend on the actual number of descendants of the source class of each additional edge� Clearly�
when a signi
cant number of edges has been added �e�g�� ���� label propagation in the two schemes
diverges signi
cantly� In addition� the number of adjacent label mergings in PInterval is always
smaller than the number of subsumed label absorptions� while ignoring labels� merging �in order to
maintain postorder numbers as class identi
ers� implies only ���� additional tuples in DPInterval

�i�e�� ���� Practically speaking� for ����� additional edges �i�e�� ���� DUPrefix will contain
����� tuples and DPInterval ����� �i�e�� ���� plus ����� when compression is based only on
the absorption of subsumed labels� This DAG testbed will be used in the sequel for evaluating the
query performance of both labeling schemes� When labels� compression is completely ignored� the
size of table DPInterval is three times bigger� while DUPrefix has almost the same size �due to
the very small numbers of compressions��

����� Core Query Evaluation

In Table �� we provide� for both labeling schemes� a declarative formulation of the
ve testbed
queries expressed in terms of the queries de
ned for the tree case� We denote by Propdown�u� in
DUPrefix the set of descendant nodes of u to which u�s label is propagated and by Propanc�v� the
set of ancestors u of v such that v � Propdown�u�� Similarily� Propup�u� in DPInterval is the set
of ancestor nodes of u to which the label of u is propagated as an additional label and Propdesc�v�
is the set of descendants u of v such that v � Propup�u�� Subsumption checking for two DAG
nodes u and v evaluates to true in DUPrefix �DPInterval� i� the subsumption�u� v� condition
given in the case of trees �see Table � columns ���� is true or u � Propanc�v� �v � Propup�u���
In the sequel� we provide the SQL translation of the declarative expressions for Ddescendants�
Dancestors and Dleaves� Clearly� label compression result to more complicated query expressions
because the paths connecting two DAG nodes through non spanning tree edges are not completely
materialized in tables DUPrefix and DPInterval� On the other hand� it ensures that no descen	
dant�ancestor is computed more than once when querying both the tables UPrefix �or PInterval�
and DUPrefix �or DPInterval�� In other words� we don�t need to eliminate duplicates in the
union of the two subqueries �i�e�� for computing tree and DAG descendants�ancestors��

Query Ddescendants�v� uses the descendants�v� expression given for the case of a tree �see
Table �� columns ����� In both schemes� it also
nds the descendants related to propagated labels

�

Query DUPre�x DPInterval

Ddescendants�v� descendants�v� � Propdown�v� descendants�v�S
w�Propdesc�v�

descendants�w�

Dancestors�v� ancestors�v� ancestors�v� � Propup�v�S
w�Propanc�v�

ancestors�w�

Dleaves�v� fu j u � Ddescendants�v�� fu j u � Ddescendants�v��
Propdown�u� � �� Propdesc�u� � ��
� �u� j u� � Ddescendants�u�� � �u� j u� � Ddescendants�u��

Propdown�u�� � �g Propdown�u�� � �g
Dsiblings�v� siblings�v� siblings�v�
Dnca�v� w� fu j u � Dancestors�v�� fu j u � Dancestors�v��

u � Dancestors�w�� u � Dancestors�w��
� �u� j u� � Dancestors�v�� � �u� j u� � Dancestors�v��

u� � Dancestors�w�� u� � Dancestors�w��
u� � Ddescendants�u�g u� � Ddescendants�u�g

Table �� Core Query Expressions for DAGs� a� DUPre�x b� DPInterval

of v� respectively given by Propdown�v� and Propdesc�v�� In the absence of compression� the
expression Propdown�v� would be expressed by the following simple SQL query� where 	l	 denotes
the label of v �UPrefix��

select label from DUPrefix where ancestor
 	l	

Because of the label compression the corresponding SQL query employs also a nested query
on UPrefix for �nding the descendants in paths involving DAG edges�

select w�label
from DUPrefix w� �select u�label as label

from UPrefix u
where u�label �
 	l	 and
u�label � 	l	 �� 	xFF	� u	

where w�ancestor
 u	�label

Denoting the label of v by �i�p� �PInterval� the union subquery on Propdesc�v� is translated
into SQL as follows�

select u�post
from PInterval u� DPInterval w
where w�ancestor
 p and u�post �
 w�index

and u�post �
 w�post

The query Dancestors�v� relies in turn on the ancestors�v� expression given for the case of
a tree� In both schemes� it also considers the ancestors related to propagated labels of v which
are given respectively by the expressions Propanc�v� and Propup�v�� The SQL translation of
Propup�v� for DPInterval with label compression is given below�

select v�ancestor
from DPInterval v�

�select u�post as post
from PInterval u
where u�index �
 p and u�post �
 p� u	

where v�post
 u	�post

In e�ect� the nested query computes all tree ancestors of v �including itself�� while the outer query
returns the ancestors of all propagated labels of any of those nodes�

The query Dancestors�v� for DUPrefix is translated into a stored procedure which employs
an intermediate SQL query to compute the expression Propanc�v��

function Gancestors� l �

let anc � 	
�

let anc �� Prefixes�l�

let labels � 	
�

let labels �� �select ancestor from DUPrefix where label � l��

let anc �� labels

while �labels�next�

anc �� Prefixes�labels�next��

return anc�

�

where Prefixes�� is a function giving the set of pre�xes of a string �l�� Note that the labels
of Propanc�v� as well as their pre�xes are included in the result of Gancestors�v� �duplicate
elimination is required in this case��

For query Dleaves�v� we obtain the following SQL translation in DPInterval�

select u�post
from PInterval u
where u�post � p and u�post �� i and u�post � u�index

and not exists �select 	
from DPinterval u�

Union All where u��ancestor � u�post�
select u�post
from PInterval u
 DPInterval w
where w�ancestor � p and u�post �� w�index

and u�post �� w�post
and not exists �select 	

from DPinterval u�
where u��ancestor � u�post�

For DUPrefix
 the SQL query is similar and uses the SQL translation of Ddescendants�

select label

from UPrefix

where label � �l� and label � �l� �� �xFF�
and not exists �select 	

from UPrefix u�
where u��label � label and

u��label� � label �� �xFF��
and not exists �select 	

from DUPrefix u�
Union All where u��ancestor � label�
select w�label
from DUPrefix w

�select u�label as label
from UPrefix u
where u�label �� �l� and
u�label � �l� �� �xFF�� u�

where w�ancestor � u��label
and not exists �select 	

from UPrefix u�
where u��label � w�label and

u��label� � w�label �� �xFF��
and not exists �select 	

from DUPrefix u��
where u���ancestor � w�label�

Dsiblings�v� has exactly the same expression as for the tree case� The SQL translation of
Dnca�v� w� for DPInterval is given in Appendix A and uses nested subqueries as presented
previously for Dancestors� In DUPrefix however the expression is much simpler since it relies
on string functions as illustrated in Appendix B�

Table � shows the execution times of the testbed queries for the synthetically generated ODP
DAGs ���� of Figure �� using the same input nodes as in the case of trees �see Table ���
Due to the additional DAG edges �on the same ODP nodes� the size of tables UPrefix and
PInterval is practically doubled and the query selectivities are accordingly increased
 despite
the fact that additional nodes are returned by some of our queries� The main observation is
that DPInterval outperforms DUPrefix by up to � orders of magnitude for descendants and
leaves queries especially for cases with high selectivity �i�e
 ��� This is due to the evaluation of
the nested subqueries in the from clause of these queries using merge�joins over string attributes�
String sorting exhibited unacceptable execution time in PostgreSQL
 compared to integer sorting
involved in the evaluation of the ancestors query in DPInterval using the same execution plan�

�

Query DPInterval DUPre�x

Case � Case � Case �
�Select �Select �Select

Case � Case � Case �
�Select �Select �Select

Q�

descendants

Q�

ancestors
Q�

leaves
Q�

siblings

Q�

nca

�������� 	�
����� 	�			�
�
�	� ��	��� 	�			�

����	��� ��
��� ��	����
	�	��� 	�		�� 	�		��
�
���	
� ������� 	�				��

������ ������ 	�			��
	�		���� 	�		�� 	�			��
	�	
�
� 	�			�� 	�			�

���	�
	 �
����� ���	���
	�			�� 	�			�� 	�			��

������ �����

� �	�	�
�	� ��	��� 	�			�

	�		
�� 	�		�� 	�		��
	�	��� 	�		�� 	�		��
�
�������� �����
�
 ��������

������ ������ 	�			��
	�		�	�� 	�		��
 	�			��
	�	
�
� 	�			�� 	�			�

	�			�� 	�			�� 	�			��
	�			�� 	�			�� 	�			��

Table �� Execution Time of Core Queries for the ODP Subclass DAG
On the other hand� ancestors and nca in DUPrefix run in practically constant time� Although
not detailed in this paper� when we ignore label compression� no signi�cant performance gains are
obtained for both schemas due to the extra cost of label�s sorting and duplicate elimination �i�e��
Union vs� Union All	 in queries� especially for string labels�

� Summary

A number of interesting conclusions can be drawn from the conducted experiments� Firstly� for
voluminous class �or property	 subsumption hierarchies� labeling schemes bring signi�cant per

formance gains ��
� orders of magnitude	 in query evaluation as compared to transitive closure
computations ���� Secondly� this gain comes with no signi�cant increase in storage requirements
for the case of tree
shaped hierarchies especially for the interval schema while the query perfor

mance for both schemes is comparable� For DAG
shaped hierarchies� we need for the interval
�pre�x	 schema up to ��� ����	 times more storage space when the propagated labels are com

pressed� In particular� for practical cases �i�e�� small percentage of added non tree edges	 the
interval schema is less sensitive than the pre�x one� to the propagation of labels w�r�t� the actual
position of the source and target nodes of the added DAG edges� Signi�cant divergent behavior
in labels� propagation is observed when the percentage of the added DAG edges increases sub

stantially �� ���	� Thirdly� for descendants and leaves queries on DAGs� interval schemes are
up to �ve times more costly than in the case of trees� compared to pre�x ones which are up to �
orders of magnitude more costly� However� ancestors and nca in DUPrefix run in practically
constant time for both trees and DAGs� When labels� compression is ignored� the two schemes
exhibit almost the same storage requirements while their query performance is slightly improved�
This is due to the PostgreSQL questionable choice of optimization strategies for complex queries
over string attributes and their surprisingly bad execution time� We are planning to study this
issue w�r�t� other DBMS� Finally� our algorithm for subsumption DAGs can be adapted to the data
paths of resource descriptions formed by RDF properties� As a future work we intend to compare
our approach with other path indexing strategies as proposed in the literature�

References

�� R� Agrawal� A� Borgida� and H� V� Jagadish� E�cient management of transitive relationships
in large data and knowledge bases� In Proc� of the SIGMOD Inter� Conf� On Manag� Of
Data� pages �������� �����

�� H� A��t
Kaci� R� Boyer� P� Lincoln� and R� Nasr� E�cient implementation of lattice operations�
ACM Trans� on Progr� Languages and Systems� ����	��������� �����

�� S� Alexaki� G� Karvounarakis� V� Christophides� D� Plexousakis� and K� Tolle� The ICS

FORTH RDFSuite� Managing Voluminous RDF Description Bases� In �nd Inter� Workshop
on the Semantic Web� pages ����� Hong Kong� �����

�� D� Brickley and R�V� Guha� Resource Description Framework �RDF	 Schema Speci�cation
���� W�C Candidate Recommendation� �����

�� Y� Caseau� E�cient handling of multiple inheritance hierarchies� InOOPSLA���� Washington�
�����

��

��� Online Computer Library Center� Dewey decimal classi�cation� Available at
www�oclc�org�dewey��

��� S��Y� Chien	 Z� Vagena	 D� Zhang	 V� J� Tsotras	 and C� Zaniolo� E
cient structural joins on
indexed xml documents� In Proc� of the Inter� Conf� On Very Large Data Bases �VLDB����	
Hong Kong	 China	 �����

�� E� Cohen	 H� Kaplan	 and T� Milo� Labeling dynamic xml trees� In Proc� of the Twenty�	rst
Symposium on Principles of Database Systems �PODS����	 Wisconsin	 USA	 ����� ACM�

��� B� Cooper	 N� Sample	 M� J� Franklin	 G� R� Hjaltason	 and M� Shadmon� A fast index for
semistructured data� In Proc� of the Inter� Conf� On Very Large Data Bases �VLDB��
�	
�����

���� P� F� Dietz� Maintaining order in a linked list� In Proc� of the Fourteenth Annual ACM
Symposium on Theory of Computing �STOC����	 pages �������	 San Francisco	 California	
USA	 ����

���� P� F� Dietz and D� D� Sleator� Two algorithms for maintaining order in a list� In Proc� of the
Sixteen Annual ACM Symposium on Theory of Computing �STOC����	 pages �������	 New
York	 USA	 ����

���� C� Gavoille and D� Peleg� Compact and localized distributed data structures� Journal of Dis�
tributed Computing Special Issue for the Twenty Years of Distributed Computing Research	
�����

���� R� Shabo H� Kaplan	 T� Milo� A comparison of labeling schemes for ancestor queries� In
Proc of the thirteen Annual Symposium on Discrete Algorithms �SODA����	 San Francisco	
California	 USA	 �����

���� G� Karvounarakis	 S� Alexaki	 V� Christophides	 D� Plexousakis	 and M� Scholl� RQL� A
Declarative Query Language for RDF� In Proc� of the Eleventh Inter� World Wide Web
Conf� �WWW����	 pages �������	 Honolulu	 Hawaii	 USA	 �����

���� A� Krall	 J� Vitek	 and N� Horspool� Near optimal hierarchical encoding of types� In

th Eu�
ropean Conf� on Object Oriented Programming �ECOOP����	 pages ������	 Finland	 �����

���� O� Lassila and R� Swick� Resource Description Framework �RDF� Model and Syntax Speci�
�cation	 W�C Recommendation	 �����

���� Q� Li and B� Moon� Indexing and querying XML data for regular path expressions� In Proc�
of ��th Inter� Conf� on Very Large Data Bases�VLDB����	 pages �������	 Roma	 Italy	 �����

��� A� Maganaraki	 S� Alexaki	 V� Christophides	 and D� Plexousakis� Benchmarking rdf schemas
for the semantic web� In Proc� of the First Inter� Semantic Web Conf� �ISWC����	 pages ����
���	 Italy	 �����

���� L� K� Schubert	 M� A� Papalaskaris	 and J� Taugher� Accelerating deductive inference� Special
methods for taxonomies	 colours and times� In N� Cercone and G� McCalla	 editors	 The
Knowledge Frontier	 pages ������� Springer�Verlag	 New York	 ����

���� N� Spyratos	 Y� Tzitzikas	 and V� Christophides� On personalizing the catalogs of web portals�
In Proc� of the Special Track on the Semantic Web at the
�th Inter� FLAIRS��� Conf�	
Florida	 USA	 �����

���� I� Tatarinov	 S� Viglas	 K� S� Beyer	 J� Shanmugasundaram	 E� J� Shekita	 and C� Zhang�
Storing and querying ordered xml using a relational database system� In In Proc� of the
SIGMOD Inter� Conf� On Manag� Of Data	 Wisconsin	 USA	 �����

���� A�K� Tsakalidis� Maintaining order in a generalized linked list� Acta Informatica	 ����������	
����

���� S� Weibel	 J� Miller	 and R� Daniel� Dublin Core� In OCLC�NCSA metadata workshop report	
�����

���� N� Wirth� Type extensions� ACM Trans� on Progr� Languages and Systems	 �������������	
���

���� F� Yergeau� Utf�	 a transformation format of iso �����	 ���� Available at utf�com�

���� C� Zhang	 J� F� Naughton	 D� J� DeWitt	 Q� Luo	 and G� M� Lohman� On supporting
containment queries in relational database management systems� In Proc� of the SIGMOD
Inter� Conf� On Manag� Of Data	 �����

�

Appendix� NCA SQL Query for DAGs

A DPInterval

select v�post
from � �select s�post

from PInterval s
where �s�index �� p� and �s�post � p��

union all

�select c�ancestor
from �select t�post

from PInterval t
where �t�index �� p� and �t�post �� p�� u�
DPInterval c

where u�post � c�post�� v�
� �select r�post

from PInterval r
where �r�index �� p�� and �r�post � p���

union all

�select d�ancestor
from �select z�post

from PInterval z
where �z�index �� p�� and �z�post �� p��� k�
DPInterval d

where k�post � d�post�� w
where v�post � w�post and

not exists �select v��post
from � �select s��post

from PInterval s�
where �s��index �� p� and �s��post � p��

union all

�select c��ancestor
from �select t��post

from PInterval t�
where �t��index �� p� and �t��post �� p�� u��
DPInterval c�

where u��post � c��post�� v��
� �select r��post

from PInterval r�
where �r��index �� p�� and �r��post � p���

union all

�select d��ancestor
from �select z��post

from PInterval z�
where �z��index �� p�� and �z��post �� p��� k��
DPInterval d�

where k��post � d��post�� w�
where v��post � w��post and �

��v��post � v�post� and �select �g�index �� v��post�
from PInterval g
where g�post � v�post��

or
�select TRUE
from DPInterval h
where h�ancestor � v�post and

�select �h�post �� v��post and h�index �� f�index�
from PInterval f
where f�post � v��post����

�	

B DUPre�x

Algorithm NCA�l�� l��
��� List Labels� � fg� Labels� � fg� Labels � fg� Ncas � fg
��� treeNca � ncaTree�l�� l��
��� Labels� �� �select label

from DUPre	x
where parent label � l��

�
� Labels� �� �select label
from DUPre	x
where parent label � l��

��� Labels �� Labels� � Labels�
��� if ��l � Labels pre	x�treeNca� l��

Ncas �� Labels
else if ��l � Labels pre	x�l� treeNca��
Ncas �� Labels
Ncas �� flg
Ncas �� ftreeNcag

else
Ncas �� Labels
Ncas �� ftreeNcag

��� return Ncas

��

