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Abstract

The SLIF project combines text-mining and image processing to extract structured information

from biomedical literature.

SLIF extracts images and their captions from published papers. The captions are automatically

parsed for relevant biological entities (protein and cell type names), while the images are classified

according to their type (e.g., micrograph or gel). Fluorescence microscopy images are further

processed and classified according to the depicted subcellular localization.

The results of this process can be queried online using either a user-friendly web-interface or an

XML-based web-service. As an alternative to the targeted query paradigm, SLIF also supports

browsing the collection based on latent topic models which are derived from both the annotated

text and the image data.

The SLIF web application, as well as labeled datasets used for training system components, is

publicly available at http://slif.cbi.cmu.edu.

1. Introduction

Biomedical research results in a very high volume of information in the form of

publications. Researchers are faced with the daunting task of querying and searching these

publications to keep up with recent developments and to answer specific questions.

In the biomedical literature, data are most often presented in the form of images. A

fluorescence micrograph image (FMI) or a gel is sometimes the key to a whole paper.

Literature retrieval systems should provide biologists with a structured way of browsing the

otherwise unstructured knowledge in a way that inspires them to ask questions that they
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never thought of before, or reach a relevant piece of information that they would have never

have explicitly searched for.

Relevant to this goal, our team developed the first system for automated information

extraction from images in biological journal articles (the “Subcellular Location Image

Finder,” or SLIF, first described in 2001 [1]). Since then, we have reported a number of

improvements to the SLIF system [2, 3, 4].

In response to the opportunity to participate in the Elsevier Grand Challenge, we have made

major enhancements and additions to the system. In part reflecting this, we rechristened

SLIF as the “Structured Literature Image Finder.” The new SLIF provides both a pipeline

for extracting structured information from papers and a web-accessible searchable database

of the processed information. Users can query the database for information appearing in

captions or images, including specific words, protein names, panel types, patterns in figures,

or any combination of the above. We have also added a powerful tool for organizing figures

by topics inferred from both image and text, and have provided a new interface that allows

browsing through figures by their inferred topics and jumping to related figures from any

currently viewed figure.

2. Overview

SLIF consists of a pipeline for extracting structured information from papers and a web

application for accessing that information. The SLIF pipeline is broken into three main

sections: caption processing, image processing and latent topic discovery, as illustrated in

Figure 1.

The pipeline begins by finding all figure-caption pairs and creating database entries for each.

Each caption is then processed to identify biological entities (names of proteins and cell

lines) and these are linked to external databases.

The image processing section begins by splitting each figure into its constituent panels, and

then identifying the type of image contained in each panel. The original SLIF system was

trained to recognize only those panels containing fluorescence microscope images (FMIs),

but as part of the work for the Elsevier Challenge we have extended SLIF to recognize other

types of panels. The patterns in FMIs are then described using a set of biologically relevant

image features [1], and the subcellular location depicted in each image is recognized.

The first two sections result in panel-segmented, structurally and multimodally annotated

figures. The last step in the pipeline is to discover a set of latent themes that are present in

the collection of papers. These themes are called topics and serve as the basis for

visualization and semantic representation. For instance, a topic about “tumorigenesis” is

expected to give high probability to words like (“tumor”, “positive”, “h1b”) and proteins

like (“Caspase”, “Actin”) which are known to be related to tumorigenesis. Each figure in

turn is represented as a distribution over these topics, and this distribution reflects the

themes addressed in the figure. This representation serves as the basis for various tasks like

image-based retrieval, text-based retrieval, and multimodal-based retrieval. Moreover, these

discovered topics provide an overview of the information content of the collection and
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structurally guide its exploration. For instance, the user might ask for articles that have

figures in which the “tumori-genesis” topic is highly represented.

3. Database Access

The results of processing papers are stored in a searchable database and are made available

to the user through an interactive web-interface. A user can query the database for any

combination of: text within captions, proteins extracted by protein name annotators,

different properties of the image panels (panel type or pixel resolution), or images depicting

a particular subcellular location (either inferred from the image or retrieved from a protein

annotation database). The user can also view or browse the latent topics discovered from

figures and captions.

Results can be presented at multiple levels (panel, figure, or paper level) and the user can

switch between these presentation options from within the current results. A link is always

provided to the original publication.

From the results of a search, users can also view the underlying papers or the UniProt record

corresponding to an extracted protein name. They can also further refine the search results

by adding more conditions. Alternatively, using latent topics, users can structurally browse

the otherwise unstructured collection by giving relevance feedback to the system

(interactively flagging certain results as relevant) to guide the system to show the user

targeted results.

We also make the results available via a web service architecture. This enables other

machines to consume SLIF results in automated fashion. For a set of processed results, we

publish a WSDL (Web Services Description Language) document on the SLIF server that

declares the database query procedure for clients in a standard XML based description

language. Clients can query SLIF using an XML-based query submitted as a SOAP (Simple

Object Access Protocol) message. Results are sent back a message in an XML-based format.

4. Caption Processing

The initial version of SLIF focused on finding micrographs that depicted a particular pattern,

but could not associate that pattern with a specific protein. The current system parses the

caption for that information.

Information on the protein depicted in a given figure should be provided in its caption, but

the structure of captions can be quite complex (especially for multipanel figures). We

therefore identify the “image pointers” (e.g., (A) or (red)) in the caption that refer to specific

panel labels or panel colors in the figure [2], dividing the caption into fragments (or

“scopes”) that refer to an individual panel, color, or the entire figure.

The next step is to match the image pointers to the panel labels found during image

processing. We correct errors in optical character recognition by using regularities in the

arrangement of the labels (if the letters A through D are found as image pointers and if the
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panel labels are recognized as A,B,G and D, then the G should be corrected to a C). The

precision of the final matching process was found to be 83% and the recall to be 74% [5].

The recognition of named entities (such as protein and cell names) in free text is a difficult

task that may be even more difficult in condensed text such as captions. In the current

version of SLIF, we have implemented two schemes for recognizing protein names. The first

uses prefix and suffix features along with immediate context to identify candidate protein

names. This approach has a low precision but a good recall (which is useful to enable

database searches on abbreviations or synonyms that might not be present in structured

protein databases) [6]. The second approach uses exact matching to a dictionary of names

extracted from protein databases. The protein names found by this approach can be

associated with a supporting protein database entry.

5. Image Processing

In our image processing pipeline, we start by dividing the extracted figures into their

constituent components, since, in a majority of the cases, the figures are comprised of

multiple panels. For this purpose, we recursively break images along vertical or horizontal

boundary regions. We have previously shown that the algorithm can effectively split figures

with complex panel layouts [1].

SLIF was originally designed to process only FMI panels. As part of our work for the

Elsevier Challenge, we expanded the classification to other panel types. This mirrors other

systems that have appeared since the original SLIF which include more panel types [7, 8, 9].

We have manually labeled circa 700 panels into six panel classes: (1) FMI, (2) gel, (3) graph

or illustration, (4) light microscopy, (5) X-ray, or (6) photograph using an active learning

scheme [10] to optimise our labeling effort.

We decided to focus first on creating a high-quality classifier for the gel class, given its

importance to the working scientist. Using a decision tree learning algorithm based both on

textual and image features, we obtained very high precision (91%) at the cost of moderate

recall (66%). When neither the FMI nor the gel detector were positive, we used a general

purpose image-feature classifier for the other classes (accuracy: 69%).

Fluorescent panels are further processed to identify the depicted subcellular localization. To

provide training data for pattern classifiers, we hand-labeled a set of images into four

different subcellular location classes: (1) nuclear, (2) cytoplasmic, (3) punctate, and (4)

other, again using active learning to select images to label. On the 3 main classes (nuclear,

cytoplasmic, and punctate), we obtained 75% accuracy (as before, reported accuracies are

estimated using 10 fold cross-validation and the classifier used was libSVM based). On the

four classes, we obtained 61% accuracy.

Panels were associated with their scopes based on the textual information found in the panel

itself and the areas surrounding the panels. Each figure is composed of a set of panels and a

set of subimages which are too small to be panels. All of these subimages were analyzed

using optical character recognition (OCR) to identify potential image pointers. The caption
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of each figure was parsed to find the set of associated image pointers. Image pointers in

subimages and in the captions were matched. Each panel was matched to the nearest unique

image pointer found in the figure using OCR. This enabled panels to be directly associated

with the textual information found in a caption scope.

6. Topic Discovery

The goal of topic discovery is to enable the user to structurally browse the otherwise

unstructured collection. This problem is reminiscent of the actively evolving field of

multimedia information management and retrieval. However, structurally-annotated

biological figures pose a set of new challenges [11]. First, figures can be comprised of

structured multiple panels. Portions of the caption are associated with a given panel, while

other portions of the caption are shared across all the panels and provide contextual

information. Second, unlike most associated text-image datasets, the text annotation

associated with each figure is free-form and not all of it is relevant to the graphical content

of the figure. Finally, the figure's caption contains in addition to text, specific entities like

protein names, or subcellular locations. To address these challenges, we developed what we

call a structured correspondence topic model. For a full specification of the model, we refer

the reader to [11].

The input to the topic modeling system is the panel-segmented, structurally and

multimodally annotated biological figures. The goal of our approach is to discover a set of

latent themes in the Elsevier paper collection. These themes are called topics and serve as

the basis for visualization and semantic representation. Each figure, panel, and protein entity

is then represented as a distribution over these latent topics. This representation serves as the

basis for various tasks like image, text, or multimodal retrieval, and image annotation.

6.1. Structured Browsing and Relevance Feedback

Topic models endow the user with a bird's eye view over the paper collection by displaying

a set of topics that summarize the themes addressed in the collection. If a topic interests the

biologist, she can click on the browse button to see all panels (figures) that are relevant to

this topic or all papers containing these figures.

Moreover, if the biologist has a focused search need, the system can confine the displayed

topics to those topics associated with panels (figures) that interest the biologist. For instance,

assume that the biologist searched for high-resolution, FMI panels that contain the protein

MT1-MMP. The biologist can then click the “view associated topics” link below the

displayed panel. The system will display only the topics addressed in this panel and if one of

these focused topics interest the biologist, they can then browse for more panels that show

the pattern(s) captured by this topic by clicking on the browse button (See [11, 12] for more

details).

From the results of any SLIF query, a user can mark panels (or figures) as interesting and

ask SLIF to retrieve panels (figures) similar to the marked ones. SLIF will then rank the

panels (figures) in the database based on the similarity of their latent representations to the
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latent representation of the selected panels (figures). This process can be repeated

recursively to refine the search outcome until a satisfactory result is reached.

7. User Study

We conducted a user study to validate the usability and usefulness of our technology. A

detailed description of the study is given in [12]. Here, we only highlight the main aspects of

the study.

Our target users were graduate students in the fields of biology, computational biology, and

biomedical engineering. Each user was given an instruction sheet that described a set of

tasks to be performed using both SLIF and a traditional search engine (which the user was

free to choose). Examples of these tasks include searching for high-resolution images of a

given protein, and papers with images related to a subcellular location. The user was given a

short overall introduction to the goals of the project but no specific guidance on how to use

the website as to best approximate real-world conditions.

The users were asked for feedback by answering questions related to the various tasks, as

well as general feedback. Most answers were free-form in order to elicit comments that

would allow us to improve the system.

When asked “Overall, how useful did you find SLIF?,” six out of eight users considered

SLIF useful and a seventh stated that the system had “great potential” (the question was

free-form and we scored answers as positive or negative). To some extent, this mimics the

results of Hearst et al. [13] who performed a user study on the viability of using caption

searching to find relevant papers in the bioscience literature and found that “7 out of 8

[users] said they would use a search system with this kind of feature.” Only one user found

that the alternative search engine returned better results. Half found SLIF better and more

relevant, and the other three thought the results were not directly comparable. Moreover, six

out of the eight users said that using topic-models in organizing the information was very

useful or interesting (a sample comment states that it was “useful in terms of depicting

‘intuitive’ relationships between various queries”). Negative remarks centered on the fact

that a normal search engine returns more results than does SLIF, which is operating with a

smaller collection of papers (when compared to a search engine such as Google), as well as

on particular points of the user interface (which were subsequently addressed in a revised

interface).

8. Discussion

We have presented a new version of SLIF, a system that analyses images and their

associated captions in biomedical papers. SLIF demonstrates how text-mining and image

processing can intermingle to extract information from scientific figures. Figures are broken

down into their constituent panels, which are handled separately. Panels are classified into

different types, with the current focus on FMI and gel images, but this could be extended to

other types. FMIs are further processed by classifying them into their depicted subcellular

location pattern. The results of this pipeline are made available through a either a web-

interface or programmatically using SOAP technology.
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A new addition to our system is latent topic discovery which is performed using both text

and image. This enables users to browse through a collection of papers by looking for

related topics. This includes the possibility of interactively marking certain images as

relevant to one's particular interests, which the system uses to update its estimate of the

users' interests and present them with more targeted results.

Although it is crucial that individual components achieve good results (and we have shown

good results in our sub-tasks), good component performance is not sufficient for a working

system. SLIF is a production system which working scientists in biomedical related fields

have described as “very useful.”
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Figure 1.
SLIF Pipeline. This figure shows the paper processing pipeline.
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