Interoperability results for Semantic Web technologies using OWL as the

interchange language

Radl Garcia-Castro*, Asuncion Goémez-Pérez

Ontology Engineering Group, Departamento de Inteligencia Artificial, Facultad de Informdtica, Universidad Politécnica de Madrid Campus de Montegancedo s/n,

Boaditla del Monte, 28660 Madrid, Spain

ABSTRACT

Using Semantic Web technologies in complex scenarios requires that such technologies correctly inter-
operate by interchanging ontologies using the RDF(S) and OWL languages. This interoperability is not
straightforward because of the high heterogeneity in Semantic Web technologies and, while the number
of such technologies grows, affordable mechanisms for evaluating Semantic Web technology interoper-
ability are needed to comprehend the current and future interoperability of Semantic Web technologies.

This paper presents the OWL Interoperability Benchmarking, an international benchmarking activity
that involved the evaluation of the interoperability of different Semantic Web technologies using OWL
as the interchange language. It describes the evaluation resources used in this benchmarking activity,
the OWL Lite Import Benchmark Suite and the IBSE tool, and presents how to use them for evaluating
the OWL interoperability of Semantic Web technologies. Moreover, the paper offers an overview of the
OWL interoperability results of the eight tools participating in the benchmarking: one ontology-based
annotation tool (GATE), three ontology frameworks (Jena, KAON2, and SWI-Prolog), and four ontology
development tools (Protégé Frames, Protégé OWL, SemTalk, and WebODE).

1. Introduction

Even though the number of Semantic Web tools is already rather
large,! many more tools are created every year. The heterogeneity
of Semantic Web tools exists not only because they have different
functionalities (ontology development tools, ontology repositories,
ontology matching tools, etc.) but also because different tools use
different representation formalisms, such as Frames or Descrip-
tion Logics. These representation formalisms, in turn, have different
knowledge representation expressiveness and different reasoning
capabilities that are needed in different use scenarios.

The use of ontologies in applications requires to cope with this
heterogeneity in representation formalisms when ontologies are
interchanged between different tools. Similarly, in the case of deal-
ing with multiple ontologies, applications also require to integrate
such ontologies, but this latter topicis out of the scope of this paper.

A sample ontology reuse scenario can be one where an ontology
is developed using an ontology development tool and, after check-
ing its consistency using a reasoner, it is stored into an ontology

* Corresponding author. Tel.: +34 91 336 3670.
E-mail addresses: rgarcia@fi.upm.es (R. Garcia-Castro), asun@fi.upm.es
(A. G6mez-Pérez).
1810 tools are listed in http://www.mkbergman.com/?page_id=325 by
19/01/2010.

repository soitcanbe visualized using an ontology browser. In such
interchanges, ontologies are usually stored in a shared resource
(e.g., the ontology repository) and represented using the RDE(S)
and OWL languages, which were proposed by the W3C in 2004,

Current Semantic Web tools have problems in interchanging
RDF(S) and OWL ontologies, either when these ontologies come
from other tools or when they are downloaded from the Web.
Such problems sometimes are due to the different representation
formalisms used by the tools, since not every tool natively sup-
ports RDF(S) or OWL. However, very often the problems are due to
other causes such as defects in the tools. Not to be aware of these
interoperability problems prevents a correct selection of Semantic
Web technologies and leads to problems when combining different
technologies in complex applications.

Besides, the actual interoperability between the existing Seman-
tic Web technologies is unknown, and this is so mainly because such
interoperability is not evaluated, since there is no easy way of per-
forming such evaluations. Therefore, we need methods and tools
for evaluating Semantic Web technology interoperability at a large
scale and in an easy and economical way, which requires defining
evaluations focused on their reusability.

A previous benchmarking activity covered the interoperability
of Semantic Web tools using RDF(S) as the interchange language
[16]. As a result, we obtained a clear picture of the RDF(S) inter-
operability of the tools participating in the benchmarking, namely,
Corese, Jena, KAON, Sesame, Protégé, and WebODE.

Now the objective is to analyse the OWL interoperability of any
type of Semantic Web technology in a cheap and reproducible way.
To this end, the OWL Interoperability Benchmarking was organised
with the goals of providing mechanisms for automatic evaluation
of the interoperability of Semantic Web technologies using OWL
as the interchange language and of assessing and improving the
current OWL interoperability of Semantic Web technologies.

This paper presents a summary of this benchmarking activ-
ity and an overview of the OWL interoperability results of the
eight tools participating in it: one ontology-based annotation tool
(GATE), three ontology frameworks (Jena, KAON2, and SWI-Prolog),
and four ontology development tools (Protégé Frames, Protégé
OWL, SemTalk, and WebODE).

This paper is structured as follows: Section 2 states the prob-
lem of the interoperability of Semantic Web technologies. Sections
3 and 4 present previous interoperability evaluations and the
UPM framework for benchmarking interoperability that can be
used in interoperability evaluation activities, respectively. Section
5 introduces the OWL Interoperability Benchmarking and Section
6 describes the experiment performed in this benchmarking activ-
ity. Section 7 concerns the set of ontologies to use as input for the
experiment, namely, the OWL Lite Import Benchmark Suite. Sec-
tion 8 deals with IBSE, the automatic evaluation infrastructure, and
with how it can be used. Section 9 provides the analysis of the
OWL compliance of the Semantic Web tools participating in the
benchmarking and Section 10 presents the analysis of their OWL
interoperability. Finally, Section 11 draws the conclusions from this
work and proposes future lines of work.

2. Semantic Web technology interoperability

According to the Institute of Electrical and Electronics Engineers
(IEEE), interoperability is the ability of two or more systems or com-
ponents to exchange information and to use this information [20].
Duval proposes a similar definition by stating that interoperabil-
ity is the ability of independently developed software components
to exchange information so they can be used together [10]. For
us, interoperability is the ability that Semantic Web tools have to
interchange ontologies and use them.

One of the factors that affects interoperability is heterogeneity.
Sheth [30] classifies the levels of heterogeneity of any information
system into information heterogeneity and system heterogene-
ity. In this paper, only information heterogeneity (and, therefore,
interoperability) is considered, whereas system heterogeneity,
which includes heterogeneity due to differences in informa-
tion systems or platforms (hardware or operating systems) is
disregarded.

Furthermore, interoperability is treated in this paper in terms of
knowledge reuse and must not be confused with the interoperabil-
ity problem caused by the integration of resources. This alternative
notion of interoperability is related to the ontology alignment prob-
lem [11], that is, the problem of how to find relationships between
entities in different ontologies.

2.1. The interoperability problem

Semantic Web technologies appear in different forms (ontology
development tools, ontology repositories, ontology matching tools,
reasoners, etc.) and interoperability is a must for these technologies
because they need to interchange ontologies and use them in the
distributed and open environment of the Semantic Web.

On the other hand, interoperability is a problem for the Seman-
tic Web due to the heterogeneity of the knowledge representation
formalisms of the different existing systems, since each formal-
ism provides different knowledge representation expressivity and

different reasoning capabilities, as it occurs in knowledge-based
systems [5].

Current Semantic Web technologies manage different represen-
tation formalisms, e.g., the W3C recommended languages RDF(S)
and OWL, models based in Frames or in the different families of
Description Logics, or other models such as the Unified Modeling
Language? (UML), the Ontology Definition Metamodel® (ODM), or
the Open Biomedical Ontologies* (OBO) language.

Fig. 1 shows the two common ways of interchanging ontolo-
gies within Semantic Web tools: directly by storing the ontology
in the destination tool, or indirectly by storing the ontology in a
shared resource, such as a fileserver, a web server, or an ontology
repository.

The ontology interchange should pose no problems when acom-
mon representation formalism is used by all the systems involved
in the interchange and there should be no differences between the
original and the final ontologies (i.e., the as and Ss in the figure
should be null).

However, in the real world, it is not feasible to use a single
system, since each system provides different functionalities, nor
is it to use a single representation formalism, since some represen-
tation formalisms are more expressive than others and different
formalisms provide different reasoning capabilities, as previously
mentioned.

Most of the Semantic Web systems natively manage a W3C
recommended language, either RDF(S), OWL, or both; but some
systems manage other representation formalisms. If the systems
participating in an interchange (or the shared resource) have differ-
ent representation formalisms, the interchange requires at least a
translation from one formalism to the other. These ontology trans-
lations from one formalism to another formalism with different
expressiveness cause information additions or losses in the ontol-
ogy (the ws and Bsin Fig. 1), once in the case of a direct interchange
and twice in the case of an indirect one.

Besides, when systems manage ontologies using existing ontol-
ogy management frameworks (e.g., Jena, Sesame, etc.), further
translations may take place when the representation formalisms
of the tool and of the framework are different.

Due to the heterogeneity between representation formalisms in
the Semantic Web scenario, the interoperability problem is highly
related to the ontology translation problem that occurs when com-
mon ontologies are shared and reused over multiple representation
systems [17].

2.2. Categorising ontology differences

The differences between an ontology and the translated one can
happen at different levels. Sometimes changes in one level cause
changes in other levels; in other cases, changes in one level do not
cause further changes in other levels,

Barrasa [2] summarises the different ontology heterogeneity
levels according to the different classifications found in the litera-
ture [4,7,9,19,21,22,32,33]. These levels and classifications can be
seen in Fig. 2. The levels are

- Lexical. At this level we encounter all the differences related to
the ability of segmenting the representation into characters and
words (or symbols).

- Syntactic. Here we encounter all forms of heterogeneity that
depend on the choice of the representation format. Some
mismatches are syntactic sugar while others are caused

2 http://www.umlorg/.
3 http:/fwww.omg.orgfontology/.
4 http://obofoundry.org/.

Direct

Indirect

I
Oi
v
I NG 1l \/1 !
0/=0+o-d! 0/"=0+p-p
e 7
'
— '
0/"=0+or+ol+p-p
Fig. 1. Ontology interchanges within Semantic Web tools.
i Lexical . I Syntactic . I Paradigm iTerminoIogici iConceptuaIi I Pragmatic
[Bouquet et al., 2004] | Lexical-Syntactic |: Terminologic|| Conceptual || Pragmatic |
[Corcho, 2005] | Lexical || Syntactic || Semantic || Pragmatic |
[Dou et al., 2004] | Syntactic | | Semantic |
isser et al., 1997]/ ' —— ar — — I
['[\I{amma, 2001]] | Non semantic || Semantic |
[Klein, 2001] | Language and metamodel | | Ontology or model |

[Hammer and McLeod, 1993] Format

Metadata specification

| | Metadat; Ilanguage I| |

[Kim and Seo, 1991]

Structural

Semantic

Fig. 2. Classification of ontology heterogeneity levels [2].

by expressing the same thing through a totally different
syntax.

- Paradigm. Here we encounter mismatches caused by the use of

different paradigms to represent concepts such as time, action,

plans and causality.

Terminological. At this level, we encounter all forms of mis-

matches related to the process of naming the entities (e.g.,

individuals, classes, properties, relations) that occur in an ontol-

ogy.

Conceptual. Here we encounter mismatches that have to do with

the entities chosen to model a domain and that present differ-

ences in coverage, granularity and perspective.

- Pragmatic. Finally, at this level we encounter all the discrepancies
that result from the fact that different individuals/communities
may interpret the same ontology in different ways in different
contexts,

3. Previous interoperability evaluations

In the Semantic Web area, technology interoperability has been
scarcely evaluated. Some qualitative analyses have been performed
in [29] concerning ontology development tools, ontology merge
and integration tools, ontology evaluation tools, ontology-based
annotation tools, and ontology storage and querying tools; and in
[25] concerning ontology-based annotation tools. These analyses
provide information about the interoperability capabilities of the
tools (such as the platforms where they run, the tools they inter-
operate with, or the data and ontology formats they manage), but
they give no empirical studies to support their conclusions.

The only exception is the experiment carried out in the Sec-
ond International Workshop on Evaluation of Ontology-based Tools
(EON2003). The central topic of this workshop was the evaluation
of ontology development tool interoperability using an interchange
language [31].

In this workshop, the participants were asked to model ontolo-
gies with their ontology development tools and to perform different
tests for evaluating the import, export and interoperability of the
tools.

The experiment had no restrictions on the interchange language,
different languages (RDF(S), OWL, DAML, and UML) were used in
different experiments, or on how to model the ontology to be inter-
changed, a natural language description of a domain was provided
and each experimenter modelled the ontology in different ways.

Corcho’s conclusions [7] are extracted from the results of these
experiments and from an analysis of the main features of RDF(S)
and OWL. These conclusions are the following:

- RDF(S) and OWL allow representing the same knowledge in dif-
ferent ways, making knowledge exchange difficult. This is so
because RDF(S) and OWL ontologies can be serialized with differ-
ent syntaxes (such as RDF/XML,> Notation3® or N-Triples’) and
there are several ways to express knowledge in these syntaxes.
Most of the existing tools can manage these syntaxes or use pro-
gramming libraries to manage them. Nevertheless, some tools
still use the serialized files directly, which can cause problems.

- The standard knowledge models of RDF(S), OWL Lite and OWLDL
are not expressive enough to represent some of the knowledge
that can be represented with traditional ontology languages and
tools. Therefore, translations from more expressive knowledge
models to these knowledge models usually involve knowledge
loses.

- The translators to RDF(S) and OWL are usually written taking
into account a specific language or tool. Two solutions have been

5 http:/jwww.w3,org/TR/rdf-syntax-grammar/.
§ http:/jwww.w3,org/Designlssues/Notation3.
7 http:/fwww.w3.org/TR/rdf-testcases/#ntriples.

R Garcia-Castro, A. Gémez-Pérez { Web Semantics: Science, Services and Agents on the World Wide Web 8 (2010) 278-291 281

adopted to avoid the loss of knowledge when translating from a

more expressive model to a less expressive one:

. To represent the knowledge that could be lost with annotation
properties (such as rdfs:comment) using a specific structure for
this information.

. To extend the RDF(S) and OWL vocabularies with ad-hoc prop-
erties not defined in the specifications.

- Current translation systems in ontology development tools still
have many errors when exporting and/or importing RDF(S) and
OWL.

The EON2003 experiment was a first and valuable step toward
evaluating interoperability, since it highlighted interoperabil-
ity problems in the existing tools using the W3C recommended
languages for ontology interchange. Nevertheless, further evalu-
ations of Semantic Web technology interoperability are required
because

- Interoperability is a main problem for the Semantic Web that still
requires substantial work.

- The workshop experiments concerned only a few tools and
focused only on ontology development tools.

- Some experiments evaluated export functionalities, others,
import functionalities, and only a few evaluated interoperabil-
ity. Furthermore, interoperability from one tool to the same tool
using an interchange language was not considered.

- No systematic evaluation was performed; each experiment used
different evaluation procedures, interchange languages, and
principles for modelling ontologies. Therefore, the results were
not comparable and only specific comments and recommen-
dations for each ontology development tool participating were
made.

4. The UPM framework for benchmarking interoperability

As mentioned above, in the Semantic Web area we can find
many tools that provide specific and limited functionalities. How-
ever, not being aware of the interoperability capabilities of the
existing Semantic Web technologies causes important problems
when more complex technologies and applications are built reusing
existing technologies, and this ignorance regarding interoperabil-
ity is mainly due to the fact that tool interoperability has not been
evaluated because there is no easy way of making this evaluation.

The UPM framework for benchmarking interoperability® (UPM-
FBI) aims to support the interoperability of Semantic Web
technologies by providing all the resources needed for benchmark-
ing the interoperability of these technologies using RDF(S)and OWL
as interchange languages.

As Fig. 3 shows, the UPM-FBI provides four benchmark
suites that contain the ontologies to be used in interoperability
evaluations and two approaches for performing interoperability
experiments (one manual and another automatic), each of them
including different software tools that support the experiment exe-
cution and the result analysis.

The manual experimentation approach was followed in the
RDF(S) Interoperability Benchmarking, a benchmarking of the inter-
operability of Semantic Web tools using RDF(S) as the interchange
language, which was organised before we started the benchmark-
ing presented in this paper. A description of this benchmarking
activity and its results can be found in [16].

For the RDF(S) Interoperability Benchmarking effort, experi-
ments were conducted by accessing the tools manually, using the
RDF(S) Import, Export and Interoperability Benchmark Suites. Two
different tools support this approach, namely, the rdfsbs tool, which

8 http://knowledgeweb.semanticweb.org/benchmarking_interoperability/.

automates part of the experiment execution for some tools, and the
IRIBA® web application, which provides an easy way of dynamically
analysing the results.

The manual experimentation and analysis of the results has
the advantage of yielding highly detailed results, which permits
diagnosing problems in the tools and, consequently, improving
them, but the disadvantage is that it makes the experimentation
costly. Some tool developers automated the execution of the exper-
iments but not all of them. Furthermore, the results obtained may
be influenced by human mistakes and they depend on the people
performing the experiments and on their expertise with the tools.

The next sections deal with the OWL Interoperability Bench-
marking, which follows the automatic approach of the UPM-FBI; in
such anapproach, the OWL Lite Import Benchmark Suite isused and
the experiments and the results analysis are automated by means
of the IBSE (Interoperability Benchmark Suite Executor) tool.

5. The OWL Interoperability Benchmarking

In the OWL Interoperability Benchmarking, we have followed
the Knowledge Web benchmarking methodology [15], a method-
ology used before in the RDF(S) Interoperability Benchmarking and
also employed for benchmarking the performance and the scalabil-
ity of ontology development tools [14].

The most common way for Semantic Web technologies to inter-
operate is the indirect interchange of ontologies by storing them
in a shared resource, which is the way considered here. A direct
interchange of ontologies would require developing interchange
mechanisms for each pair of tools, which would be very costly.

In our case, the representation formalism used to interchange
ontologies is OWL, whereas the shared resource is a local filesys-
tem in which ontologies are stored in text files serialized with the
RDF/XML syntax, because this is the syntax most used by Semantic
Web technologies.

Therefore, the two main goals that we want to achieve in the
benchmarking are (1) to provide mechanisms for automatic eval-
uation of the interoperability of Semantic Web technologies using
OWL as the interchange language, and (2) to assess and improve
the OWL interoperability of Semantic Web technologies.

Although the goals here are similar to those of the RDF(S) Inter-
operability Benchmarking, this time our approachis quite different,
thanks in part to the lessons learnt while carrying out the previ-
ous benchmarking activity. The main changes performed are the
following:

- Broadening the scope of the benchmarking by contemplating any
Semantic Web tool able to read and write ontologies from/to OWL
files.

- Diminishing the cost of the benchmarking by automating the exper-
iments. The cost of organising the benchmarking is unavoidable
because it involves defining the experiments from scratch, since
no previous ones exist.

- Facilitating result analysis. Full automation of the result analysis
is not possible since this requires a person to interpret them;
nevertheless, the automatic generation of different visualizations
and summaries of the results in different formats (such as HTML
or SVG) allows us to draw some conclusions at a glance.

- Including new tools easily, because the effort to be spent in the
benchmarking is a main criteria for an organisation when decid-
ing whether to participate in the benchmarking.

9 http://knowledgeweb.semanticweb.org/iriba/.

RDF(S) Interoperability B.

OWL Interoperability B.

RDF(S) Import B. Suite
Benchmark . . .
Suites RDF(S) Export B. Suite OWL Lite Import B. Suite
RDF(S) Interoperability B. Suite
Manual Automatic
Experiment Tool X Tool Y Tool X Tool Y
definition B> o= B DA DDA
rdfsbs
Tools IRIBA IBSE

Fig. 3. The UPM framework for benchmarking interoperability.

In our scenario, interoperability depends on two different tool
functions, one that reads an ontology stored in the tool and writes
it into an OWL file (OWL exporter from now on), and another that
reads an OWL file with an ontology and stores this ontology into
the tool (OWL importer from now on). Therefore, our experiments
provided data not only on the interoperability but also on the OWL
importers and exporters of the tools.

To obtain detailed information on tool interoperability using
OWL as the interchange language, we need to know (a) the com-
ponents of the knowledge model of a tool that can be interchanged
with others; (b) the secondary effects of interchanging ontologies
that include these components, such as insertion or loss of infor-
mation; (c) the subset of the tools’ knowledge models that can be
used to correctly interoperate; and (d) the problems that arise when
ontologies are interchanged between two tools and the causes of
these problems.

Participation in the benchmarking is open to any Semantic Web
tool capable of importing and exporting OWL. A public call for
participation was issued and many tool developers were directly
contacted to participate in it.

Eight tools took part in the benchmarking: one ontology-based
annotation tool (GATE!9), three ontology frameworks (Jena,!!
KAON2,'2 and SWI-Prolog!3), and four ontology development tools
(Protégé Frames,!4 Protégé OWL,15 SemTalk,'® and WebODE!7),

These tools present a variety of knowledge models, which are
next enumerated:

- GATE’s knowledge model consists of a class hierarchy with an
added level of expressivity aimed at being broadly equivalent to
OWL Lite [3].

- Jena’s knowledge model supports RDF and ontology formalisms
built on top of RDF. Specifically this means RDF(S), the varieties
of OWL, and the now-obsolete DAML+OIL [26].

- KAON2's knowledge model is capable of manipulating the
SHZIQ(D) subset of OWL-DL and F-Logic [27].

- Protégé Frame’s knowledge model is based on a flexible meta-
model, which is comparable to object-oriented and frame-based
systems [28].

- Protégé OWL's knowledge model supports RDF(S), OWL Lite,
OWL DL and significant parts of OWL Full [23].

10 Version 4.0 http://gate.ac.uk].

11 Version 2.3 http://jena.sourceforge.net/.

12 Version 2006-09-22 http://kaon2.semanticweb.org/.

13 Version 5.6.35 http://www.swi-prolog.org/packages/semweb.html.

14 version 3.3 build 395 http://protege stanford.edu/.

15 Version 3.3 build 395 http://protege stanford.edu/overview/protege-owl.html.
16 Version 2.3 http://www.semtalk.com/.

17 Version 2.0 build 192 http://webode.dia.fi.upm.es/.

- SemTalk’s knowledge model supports modelling RDF(S) and
OWL using Visio [12].

- SWI-Prolog’s knowledge model supports RDF(S) and OWL on top
of Prolog [34].

- WebODE’s knowledge model is based in frames and is extracted
from the intermediate representations of METHONTOLOGY [1].

6. Experiment definition

As previously mentioned, participation in the benchmarking
is open to any Semantic Web tool. Nevertheless, the experiment
requires that the tools participating be able to import and export
OWL ontologies. This is so because in the experiment we need an
automatic and uniform way of accessing the tools, and the opera-
tions performed to access the tools must be supported by most of
the Semantic Web tools. Due to the high heterogeneity in Seman-
tic Web tools, ontology management APIs vary from one tool to
another, Therefore, the way that we chose to automatically access
the tools is through the following two operations commonly sup-
ported by most Semantic Web tools: to import an ontology from a
file, and to export an ontology to a file.

During the experiment, a common group of benchmarks is exe-
cuted and each benchmark describes one input OWL ontology that
hastobe interchanged between a single tool and the others (includ-
ing the tool itself).

Each benchmark execution comprises two sequential steps,
shown in Fig. 4. Starting with a file that contains an OWL ontol-
ogy (0y), the first step (Step 1) consists in importing the file storing
the ontology into the origin tool and then exporting the ontology
into an OWLfile (Oﬁ’), The second step (Step 2) consists in importing
the file storing the ontology exported by the origin tool (Ofl) into
the destination tool and then exporting the ontology into another
file (O).

In these steps, there is no common way for the tools to check
how good the importers (by comparing O; with 0! and OF with
0 and exporters (by comparing 0! with O and O/ with 0')
are. We only have the results of combining the import and export
operations (the files exported by the tools), so these two operations

Tool Y
> & &
O I OIV

Step 2:07V=01"+B-g'

~
Step 1: 0"=0,+ a-of

Interchange: aﬁ =0, +o-o'+B-p'

Fig. 4. The two steps of a benchmark execution.

are considered as an atomic operation. It must be noted here that
if a problem arises in one of these steps, we cannot know whether
it was originated when importing or when exporting the ontology,
because we are totally unaware of the state of the ontology inside
each tool.

After a benchmark execution, we have three ontologies to com-
pare, namely, the original ontology (0;), the intermediate ontology
exported by the first tool (OIU), and the final ontology exported by
the second tool (Ollv), From these results, the following evaluation
criteria for a benchmark execution can be defined:

- Execution (OK/FAIL/CE.[N.E.) informs of the correct execution of a
step or of the whole interchange. Its value is OK if the step or the
whole interchange is carried out with no execution problem; FAIL
if the step or the whole interchange is carried out with some exe-
cution problem; CE. (Comparer Error) if the comparer launches
an exception when comparing the original and the final ontolo-
gies; and N.E. (Not Executed) if the second step is not executed
because the first step execution failed.

- Information added or lost informs of the information that is added
to or lost from the ontology in terms of triples in each step or
in the whole interchange. We can know the triples added or lost
in Step 1, in Step 2, and in the whole interchange by comparing
the original ontology with the intermediate one, the intermedi-
ate ontology with the final one, and the original with the final
ontology, respectively. As will be explained in Section 8.3, we
state that two ontologies are the same when they are logically
equivalent; therefore, the triples added or lost will be those that
make the two ontologies logically different.

- Interchange (SAME/DIFFERENT/NO) informs whether the ontology
has been interchanged correctly with no addition or loss of infor-
mation. From the previous basic measurements, we can define
Interchange as a derived measurement that is SAME if Execution
is OK and Information added and Information lost are null; DIFFER-
ENT if Execution is OK but Information added or Information lost
are not null; and NO if Execution is FAIL, N.E. or CE.

For evaluating the interoperability of the tools, the OWL Lite
Import Benchmark Suite has been used, described in the following
section, which is common for all the tools and contains ontologies
with simple combinations of OWL Lite components.

7. The OWL Lite Import Benchmark Suite

The ontologies used in the experiment are those defined for the
OWLLite Import Benchmark Suite and described in detail in[8]. This
benchmark suite was intended to evaluate the OWL import capa-
bilities of Semantic Web tools by checking the import of ontologies
with simple combinations of components of the OWL Lite knowl-
edge model. It is composed of 82 benchmarks and is available on
the Web.18

Each benchmark of the benchmark suite, as Table 1 shows, is
described by a unique identifier, a description in natural language, a
formal description in Description Logics notation of the ontology, a
graphical representation of the ontology, and a file with the ontology
in the RDF/XML syntax.

Since the RDF/XML syntax allows serializing ontology compo-
nents in different ways while maintaining the same semantics, the
benchmark suite includes two kinds of benchmarks: one to check
the import of the different combinations of the OWL Lite vocab-
ulary terms, and another to check the import of OWL ontologies

18 http://knowledgeweb.semanticweb,org/benchmarking.interoperability/owl/
import.html.

Table 1
The description of a benchmark of the OWL Lite Import Benchmark Suite.

Identifier |ISGO03

. .. |Import a single functional object property whose domain
Description|. ;
is a class and whose range is another class

T CL 1 hasHusband
T C VhasHusband™ .Woman
T C YhasHusband.Man

Formal
description

Graph

<owl:Clasgs rdf :about="&ex;Woman" />
<owl:Clasgs rdf :about="&ex;Man"/>
<owl:0bjectProperty rdf :about="&ex; hasHusband">
RDF/XML <rdf : type rdf :resource="g&owl; FunctionalProperty"/>
file <rdfs:domain rdf : resource="g&ex;Woman"/>
<rdfse:range rdf :resource="gex;Man"/>»
</owl:0bjectPropertys

Table 2

Benchmark groups of the OWL Lite Import Benchmark Suite.
Group No.
A - class hierarchies 17
B - class equivalences 12
C - classes defined with set operators 2
D - property hierarchies 4
E - properties with domain and range 10
F - relations between properties 3
G - global cardinality constraints and logical property characteristics 5
H - single individuals 3
I - named individuals and properties 5
] - anonymous individuals and properties 3
K - individual identity 3
L - syntax and abbreviation 15
Total 82

with the different variants of the RDF/XML syntax. Table 2 shows
the groups of the OWL Lite Import Benchmark Suite and the number
of benchmarks in each group.

The OWL Lite Import Benchmark Suite is here used to evaluate
the interoperability of Semantic Web tools. Nevertheless, any group
of ontologies could be used as input for the experiment. For exam-
ple, we could employ a group of real ontologies in a certain domain,
ontologies synthetically generated such as the Lehigh University
Benchmark (LUBM) [18] or the University Ontology Benchmark
(UOB) [24], or the OWL Test Cases [6] (developed by the W3C Web
Ontology Working Group).

However, these other ontologies were designed with specific
goals and requirements, such as that of performance evaluation
or correctness evaluation. Since our goal was to improve inter-
operability, these ontologies could complement our experiments
but, in our circumstances, we aimed at evaluating interoperability
with simple OWL ontologies that, even though they do not cover
exhaustively the OWL specification, are simple and allow isolating
problem causes and highlighting problems in the tools.

8. Experiment execution: the IBSE tool

The experiments to perform in the benchmarking consist in
interchanging each of the ontologies of the OWL Lite Import Bench-
mark Suite between all the tools (including interchanges from one
tool to itself) and in collecting the results of these interchanges.

Although the results of the experiment described above could
be obtained manually, the goal of the benchmarking is to automate

all the experimentation. Hence, we need some software application
that can perform all the experiments automatically.

IBSE (Interoperability Benchmark Suite Executor) is the evalua-
tion infrastructure that automates the execution ofthe experiments
of the OWL Interoperability Benchmarking. It offers a simple way
of executing the experiments between any selected group of tools
and of analysing the results and permits smoothly including new
tools into the infrastructure.

The IBSE tool has been implemented with Java; its source code
and binaries are publicly available and can be downloaded from its
web page.!® The only requirements for executing IBSE are to have
both a Java Runtime Environment and the IBSE binaries. The IBSE
distribution includes the tools mentioned in this paper, ready to be
evaluated; however, to evaluate either SemTalk or WebODE, these
tools must be previously installed in the system.

The main requirements taken into account in the develop-
ment of the IBSE tool surge from the benchmarking requirements
described in Section 5, and are the following: (a) to perform the
experiments with any tool able to import and export OWL files;
(b) to automate the experiment execution and the analysis of the
results; (c) to define benchmarks and results through ontologies,
since the automation mentioned above requires benchmarks and
results to be machine-processable; (d) to use any group of ontolo-
gies as input for the experiments; and (e) to separate benchmark
execution and report generation.

A normal execution of IBSE comprises the three consecutive
steps shown in Fig. 5, although they can also be executed inde-
pendently.

These steps are the following:

(i) To generate machine-readable benchmark descriptions from a
group of ontologies. In this step, and from a group of ontolo-
gies located in a URI, one RDF file with one benchmark for each
ontology is generated.

(ii) To execute the benchmarks. In this step, considering all the differ-
ent combinations of ontology interchanges between the tools,
each benchmark described in the RDF file is executed and its
results are stored in another RDF file,

To execute a benchmark between an origin tool and a destina-
tion one; as described in Section 6, first the file storing the ontology
is imported into the origin tool and then exported into an interme-
diate file and, second, this intermediate file is imported into the
destination tool and then exported into the final file.

Once we have the original, intermediate and final files with their
corresponding ontologies, we can extract the results by compar-
ing these ontologies. This comparison and its output depend on an
external ontology comparer.

(iii) To generate reports with different visualizations of the results.
In this step, different HTML files are generated with different
visualizations, summaries and statistics of the results.

The next sections present some implementation details about
how benchmarks and results are represented using ontologies, how
tools are inserted in the IBSE tool, and how ontologies are com-
pared.

19 http://knowledgeweb.semanticweb.org/benchmarking_interoperability/ibse/.

8.1. Representation of benchmarks and results

The IBSE tool employs two OWL ontologies: the
benchmarkOntology?® one and the resultOntology?! one, which
define the vocabulary for representing the benchmarks and the
results of a benchmark execution, respectively. These ontologies
are lightweight since their main goal is to be user-friendly.

Figs. 6 and 7 show the graphical representation of the bench-
markOntology and of the resultOntology ontologies, respectively.
Next, the section presents the classes and properties that these
ontologies contain. All the datatype properties have as range
xsd:string, with the exception of timestamp whose range is
xsd:dateTime.

8.1.1. benchmarkOntology ontology

The Document class represents a document containing one
ontology. A document can be further described by properties
that have Document as domain. Such properties are the follow-
ing: documentURL (the URL of the document), ontologyName (the
ontology name), ontologyNamespace (the ontology namespace),
and representationLanguage (the language used to implemented the
ontology).

The Benchmark class represents a benchmark to be executed.
A benchmark can be further described with properties that have
Benchmark as domain. Such properties are the following: id (the
benchmark identifier), usesDocument (the document that contains
one ontology used as input), interchangeLanguage (the interchange
language used), author (the benchmark author), and version (the
benchmark version number).

8.1.2. resultOntology ontology

The Tool class represents a tool that has participated as origin or
destination of an interchange in a benchmark. A tool can be further
described with properties that have Tool as domain. Such properties
are the following: toolName (the tool name) and toolVersion (the
tool version number).

The Result class represents a result of one step or of the whole
benchmark execution. A result can be further described with prop-
erties that have Result as domain. Such properties are the following:
execution (if the whole interchange, the first step or the second step
are carried out without any execution problem), informationAdded
(the triples added in the whole interchange, in the first step, or in
the second step), informationRemoved (the triples removed in the
whole interchange, in the first step, or in the second step), and inter-
change (if the ontology has been interchanged correctly from the
origin tool to the destination tool, in the first step or in the second
step with no addition or loss of information).

The BenchmarkExecution class represents a result of a bench-
mark execution. A benchmark execution can be further described
with properties that have BenchmarkExecution as domain. Such
propertiesare the following: ofBenchmark (the benchmark to which
the result corresponds), originTool (the tool origin of the inter-
change), destinationTool (the tool destination of the interchange),
and timestamp (the date and time when the benchmark is exe-
cuted).

8.2. Inserting tools in the evaluation infrastructure

As the experiment requires no human intervention, we can only
run the tools by accessing them through application programming

20 http://knowledgeweb.semanticweb.org/benchmarking.interoperability/owl/
benchmarkOntology.owl.

21 http://knowledgeweb.semanticweb.org/benchmarking.interoperability/owl/
resultOntology.owl.

Benchmark descriptions
benchmarkOntology.owl

Result analysis
(HTML, SVG)

InpUt «<rd:RDF
ontologies R Execution results
Py [> (M Describe [> e resultOntology.owl
3’?};:} benchmarks il Tonear rf =
Tools il sl
xminsxad="http/iwww.w3.org/
O | |:> @ Execute |:> . D ®Generate
oo Oy benchmarks ;:.:Z::“’;Mm. reports

>

Ontology
comparer

Fig. 5. Automatic experiment process.

rdfs:domain rdfs:range
4[documentURL]7 Legend:
4[ontologyName]7
4[ontologyNamespace]7
rdfs:range
4[representationLanguage]7
s
rdfs:domain rdfs:range
4‘ id]7
rdfs:domain
4[interchangeLanguage]7
4[author]7
4[version]7

Fig. 6. Graphical representation of the benchmarkOntology ontology.

interfaces (APIs) or through batch executions. There are other ways
of executing an application automatically (e.g., Web Service execu-
tions) but they are not present in the current tools. Nevertheless,
to adapt the IBSE tool in order to include other types of executions
should be quite straightforward.

Inserting a tool in the evaluation infrastructure is quite easy, it
can be performed either by implementing a Java interface in IBSE
or by building a program that imports an ontology from a file and
exports the imported ontology into another file.

Most of the tools have implemented the Java interface since
they provide Java methods for performing the import and export
operations. With non-Java tools (SemTalk and SWI-Prolog), these
operations are performed by executing precompiled binaries.

8.3. Comparing OWL ontologies

In our experiment, we need to automatically compare ontolo-
gies from the lexical to the conceptual level (see Section 2.2) and

we state that two ontologies are the same when they are logically
equivalent (i.e., each of them entails the other). We do not aim
to compare ontologies at the pragmatic level; finding these differ-
ences automatically is not possible because it requires a human to
interpret the ontologies.

As mentioned above, the IBSE tool uses external software for
comparing the ontologies resulting from the experiment. To be
used within IBSE, an ontology comparer just has to implement a
Java interface.

After researching existing tools, we found no tool able of
comparing two OWL ontologies and of providing the differences
between them, as required for our case. Therefore, we aimed for a
combined solution using several tools.

We decided to use Jena and Pellet?2 because they are freely
available and provide well documented programming interfaces.

22 Version 1.5.2 http://pellet.owldl.com/.

rdfs:domain rdfs:range

hasStep1Result

i

hasStep2Result

hasFinalResult

originTool

destinationTool

rdfs:domain rdfs:range

rdfs:domain rdfs:range
ofBenchmark Benchmark

Legend:

rdfs:range

xsd:date

rdfs:domain

rdfs:domain rdfs:range

Fig. 7. Graphical representation of the resultOntology ontology.

Moreover, we had to use both Jena and Pellet because in some cases
they do not compare OWL ontologies correctly and in specific cases
they have execution problems.

This way, Pellet provides a comparison at the conceptual level
and Jena provides a structural (isomorphic) comparison that is
faster than the previous one, syntax-checking capabilities, and the
ability of extracting the differences between two ontologies.

The process followed for comparing two OWL ontologies (01
and 02) combining Jena and Pellet is described below. We can see
that it is a process that depends on the deficiencies of the tools for
performing the required task.

(i) To check with Jena that the ontologies are syntactically valid.

(ii) To check with Jena if the ontologies are isomorphic and pre-
serve edge and node labels. If O1 is isomorphic with 02, they
are structurally identical and, therefore, equivalent.

(iii) To check with Pellet if the ontologies are entailed by the other.
If 01 entails 02 and 02 entails O1, they are equivalent.

(iv) To extract with Jena the differences between the ontologies
(diff1 and diff2). Jena extracts these differences as RDF graphs.

(v) To check with Jena if the graphs with the differences between
the ontologies are isomorphic. If diff1 is isomorphic with diff2,
the ontologies are equivalent.

During the process, we also check for the following issues when
the tools compare ontologies:

- In some cases, Jena and Pellet say that one literal value and
the same literal value with a xsd:string datatype (e.g., “Peter”
and “Peter”” <xsd:string>) are different. But according to the RDF
Datatype entailment rules,?? these literals are equivalent.

- Jena considers that two ontologies named “onto” and “onto#” are
different.

- Pellet considers that two ontologies entail each other when one
hasthe “ontName rdf:type owl:Ontology.” triple and the other does
not have it; however, we want to detect if ontology names are lost
during interchanges.

23 http://www.w3.org/TR/rdf-mt/#DtypeRules.

Furthermore, since any software used for ontology comparison
could have execution problems or affect the experiment results, we
have evaluated it in two steps:

(i) The interoperability experiment was carried out with the tools
participating in the benchmarking whose knowledge model is
the same as that of the interchange language. In theory, these
tools should interchange all the ontologies correctly because no
ontology translation is required for doing so.

(ii) The interoperability experiment was carried out with all the
tools participating in the benchmarking. In this step, we anal-
ysed if the comparison of two ontologies caused an execution
error in the comparer.

Although we did not make an exhaustive evaluation ofthe ontol-
ogy comparer, after analysing all the benchmarking results, we
found no errors init.

9. OWL compliance results

Once the IBSE tool was adapted to include all the tools participat-
ing in the benchmarking, the experiments were performed using
the ontologies from the OWL Lite Import Benchmark Suite. As men-
tionedin Section 5, results were obtained for eight tools;: GATE, Jena,
KAONZ2, Protégé-Frames, Protégé-OWL, SemTalk, SWI-Prolog, and
WebODE.

A detailed analysis of the interoperability results, including
results specific for each tool, can be found at [13]. The HTML and
RDF files generated by the IBSE tool are available on the Web.24

Since the OWL interoperability results highly depend on the
compliance of the tools with the OWL specification and because
of the large number of benchmark executions,2® the analysis of the
interoperability of the tools is divided into two consecutive steps:

(i) The analysis of the compliance of the tools with the OWL
specification, taking into account the results of the tool when

24 http://knowledgeweb.semanticweb.org/benchmarking.interoperability/owl/
2008-07-06_Results/.

25 For 8 tools we have 64 possible interoperability scenarios, each composed of §2
benchmark executions, which results in 5.248 benchmark executions.

Table 3
Results in Step 1 (for 82 benchmarks).

GA JE K2 PF PO ST SP WE
Same 76 82 48 4 82 34 82 26
More 11 14
Less 6 23 78 48 42

Tool fails

managing OWL ontologies in the combined operation of
importing an OWL ontology and exporting it again (a step of the
experiment, as defined in Section 6). This analysis is included
in this section,

(ii) The analysis of the OWL interoperability of the tools with all
the tools participating in the benchmarking (including the tool
itself). This analysis is presented in Section 10.

To analyse the OWL compliance of the tools, we have taken into
account the tool results when such tool is the origin of the inter-
change (Step 1), irrespective of the tool being the destination of
the interchange. This step has as input an original ontology that
is imported by the tool (0;) and then exported into a resultant
ontology (OIU), This analysis has been performed by comparing the
original and the resultant ontologies.

This is not an exhaustive evaluation of the OWL compliance
because the ontologies used in the experiments belong to the OWL
Lite sublanguage and do not represent every possible combination
of ontology components. However, it provides useful information
about the behaviour ofthe tools when dealing with OWL ontologies.

Table 3 presents the results of a step execution for each tool 2% It
shows the number of benchmarks in each category in which these
results can be classified:

— The original and the resultant ontologies are the same. The only
tools that always produce the same ontologies are Jena, Protégé
OWL and SWI-Prolog. The other tools in some cases insert and
remove information when importing and exporting.

- The resultant ontology includes more information than the orig-
inal one. This only happens with KAON2, since it inserts the
triple “rdfs:Literal rdf:type owl:Datatype.” when the ontology con-
tains datatype properties, and with WebODE, since it inserts
anonymous classes for modelling multiple domains or ranges in
properties and inserts value constraints in classes that are the
domain of datatype properties.

- The resultant ontology includes less information than the original
one.Inthiscase, information is sometimesinserted into the resul-
tant ontology.

— The execution fails in the import and export operation. The tools do
not have execution problems.

Table 4 is a breakdown of the row “Same” in Table 3, according to
the combination of components present in the ontology; it shows
the number of benchmarks in each group and the percentage of
benchmarks whose original (0;) and resultant (OIU) ontologies are
the same in Step 1. It can be observed that some tools work better
with some component combinations than with others.

If we classify the mismatches found when comparing the origi-
nal (0;) and the resultant (Ofl) ontologies according to the ontology
heterogeneity levels described in Section 2.2, we can see that mis-
matches are found in all the levels except in the Lexical and Paradigm
ones, being most of them in the Conceptual level. Besides, in some

26 The tool names have been abbreviated in the tables: GA=GATE,]JE=]ena,
K2=KAON?2, PF=Protégé Frames, PO=Protégé OWL, ST=SemTalk, SP=SWI-Prolog, and
WE=WebODE.

cases mismatches occur in two levels (e.g., in the Syntactic and
Conceptual levels).

Next, we show for each level the tools that present mismatches
and the causes of these mismatches:

- Pragmatic level. Mismatches found at this level occur when the
two ontologies are semantically equivalent but their interpre-
tation may be different in different contexts (e.g., an ontology
contains two classes that are subclass of the other, thus forming a
cycle, and another ontology contains two classes that are equiva-
lent). The tools with mismatches at this level are Protégé-Frames,
Protégé-OWL, SemTalk, and WebODE.

- Conceptual level. Mismatches found at this level are due to dif-
ferences in conceptualizations and are the most frequent in the
tools. The tools with mismatches at this level are GATE, KAON2,
Protégé-Frames, SemTalk, and WebODE.

- Terminological level. The tools with mismatches at this level are
Protégé-Frames, which changes the names of ontologies, classes,
properties, instances, and gives name to anonymous individuals;
SemTalk, which loses the name of the ontology; and WebODE,
which gives name to anonymous individuals.

- Syntactic level. The tools with mismatches at the Syntactic level
are GATE, and Protégé-Frames because they change the ontology
into OWL Full, and WebODE because it redefines datatypes.

In GATE, the change to OWL Full occurs because it does
not explicitly define classes as owl:Class. In Protégé-Frames,
the change to OWL Full occurs because it generates RDF
properties (rdf:Property) instead of OWL datatype properties
(owl:DatatypeProperty). In WebODE, mismatches are due to the
redefinement of datatypes or the insertion of them in values that
were not typed.

10. OWL interoperability results

With the previous information about the OWL compliance of
the tools, we provide the analysis of their interoperability with all
the tools participating in the benchmarking. In this analysis we
consider all the tools because when in Step 1 a tool produces an
ontology different from the original one, this tool may be working
correctly, as intended by its developers.

To analyse the interoperability between two tools (i.e., T1 and
T2), we have considered the interchange from one tool to another
(from T1 to T2) and vice versa (from T2 to T1).

Table 5 provides an overview of the interoperability between
the tools; it shows the percentage of benchmarks in which the
original (0;) and the resultant (Oﬁv) ontologies in an interchange
are the same. For each cell, the row indicates the tool origin of the
interchange and the column indicates the tool destination of the
interchange.

The first thing that can be glanced at is that the interoperability
between the tools is low, even in interchanges between a tool and
the tool itself.

It is also clear from the results that interoperability using OWL
as the interchange language depends on the knowledge model of
the tools, and that the more similar the knowledge model of a tool
is to OWL, the more interoperable the tool is. Nevertheless, the
way of serializing the ontologies in the RDF/XML syntax also has a
high influence inthe results, as the interoperability issues identified
above show.

Correctly working tool importers and exporters do not ensure
interoperability. In Section 9 we saw that Jena, Protégé-OWL and
SWI-Prolog always produced the same ontologies in Step 1, but
not all of these tools also produce the same ontologies after inter-
changing them. Interchanges between Jena and Protégé-OWL and

Table 4
Percentage of identical ontologies per group in Step 1.

Benchmark group GA JE K2 PF PO ST SP WE
A - class hierarchies 53 100 71 0 100 41 100 29
B - class equivalences 75 100 75 0 100 0 100 0
C - classes defined with set operators 100 100 100 0 100 100 100 0
D - property hierarchies 75 100 50 0 100 50 100 25
E — properties with domain and range 60 100 70 0 100 Q0 100 40
F - relations between properties 100 100 67 0 100 67 100 0
G - global cardinality constraints and logical property characteristics 80 100 80 0 100 60 100 60
H - single individuals 0 100 100 0 100 67 100 67
I - named individuals and properties 40 100 60 0 100 80 100 60
] - anonymous individuals and properties 67 100 0 0 100 0 100 0
K - individual identity 33 100 100 0 100 0 100 0
L - syntax and abbreviation 60 100 7 27 100 13 100 53
Table 5
Percentage of identical ontologies after the interchange.
Destination
IE PO SP GA K2 ST WE PF
JE 100 100 100 70 58 31 4
PO 100 100 95 78 58 31 4
SP 100 100 100 91 58 46 31 4
Origin GA 92 92 75 60 56 29 25
e K2 58 58 58 67 58 45 19 13
ST 411 411 46 39 36 40 34
WE 31 31 29 19 20 31 20
PF 4 4 3 4 4
Table 6
Percentage of identical interchanged ontologies for Class hierarchies.
Destination
JE PO SP GA K2 ST WE PF
IE 100 100 100 82 71 29
PO 100 100 100 88 71 29
SP 100 100 100 88 71 411 29
Origin GA 88 88 88 53 71 29 411
e K2 71 71 71 59 71 47 24 35
ST 411 411 65 411 29 411 29
WE 29 29 29 18 29 29 29

PF

interchanges between Jena and SWI-Prolog do produce the same
ontologies. In the interchanges between Protégé-OWL and SWI-
Prolog, when the interchange is from SWI-Prolog to Protégé-OWL
the ontologies produced are the same, but when the interchange is
from Protégé-OWL to SWI-Prolog some problems arise.2’

This leads us to a second fact, that interoperability between two
tools is usually different depending on the direction of the inter-
change. This can be clearly observed in Table 5 and in the previous
example about Protégé-OWL and SWI-Prolog.

If we classify the mismatches found when comparing the orig-
inal (0;) and the final (Oﬁv) ontologies according to the ontology
heterogeneity levels described in Section 2.2, we can draw the same
conclusions as those for the OWL compliance of the tools presented
in Section 9. The only comment we can add is that mismatches in
the first step cause further mismatches in the second step and even
tool failure, as we will show later in the robustness results.

Furthermore, it cannot be said that there is a group of “typical”
interoperability problems, since the interoperability results highly
depend on the tools that participate in the interchange and, on the
other hand, the behaviours of each tool are quite different.

27 SWI-Prolog produces ontologies with an incorrect namespace iden-
tifier ({J) when it imports ontologies that contain default namespaces
(xmins="namespaceURI").

To analyse the interoperability of the tools regarding the com-
bination of components present in the ontology and to know in
which cases interchanges can be performed in one direction but not
in both, we have analysed for each group of the OWL Lite Import
Benchmark Suite the percentage of benchmarks in which the orig-
inal (0;) and the resultant (OI!V) ontologies in an interchange are
the same. Table 6 provides an example of these results for the Class
hierarchies group.28

We have also identified the clusters of interoperable tools
according to the OWL interoperability results. Table 7 shows the
percentage of benchmarks in which the original (0;) and the resul-
tant (Oﬁv) ontologies in an interchange are the same, according to
the combination of components present in the ontology. Each col-
umn shows the average of the percentages for every tool in the
cluster and in all directions.?® From left to right, the table shows
a cluster with all the tools and successive clusters which have
removed the tool with lower percentages fromthe previous cluster.

In the table we can see that Jena, Protégé-OWL, and SWI-Prolog
can interchange correctly all the component combinations; how-

28 Tables with detailed results for each group can be found in

http://knowledgeweb.semanticweb.org/benchmarking_interoperability/owl/2008-
07-06_Results/per_group.html.

29 je, For a cluster of two tools, A and B, we considered: AtoB,Bto A, Ato A, and
BtoB.

Table 7
Percentage of identical interchanged ontologies per group.

Group All GA, JE, K2, PF, GAJE, K2,PO, GAJE K2, PO, JE K2, PO, SP JE, PO,SP JE, PO JE,SP
PO, ST, SP ST, SP SP
Class hierarchies 42 48 64 83 88 100 100 100
Class equivalences 35 45 60 83 Q0 100 100 100
Classes defined with set operators 50 64 86 100 100 100 100 100
Property hierarchies 39 46 61 77 80 100 100 100
Properties with domain and range 48 54 72 83 88 100 100 100
Relations between properties 42 54 71 87 87 100 100 100
Global cardinality constraints and logical property characteristics 47 50 67 83 92 100 100 100
Single individuals 47 49 65 76 100 100 100 100
Named individuals and properties 46 49 65 76 84 100 100 100
Anonymous individuals and properties 23 30 40 56 60 100 100 100
Individual identity 38 49 65 91 100 100 100 100
Syntax and abbreviation 35 35 42 59 60 96 100 100
Table 8
Percentage of benchmarks in which tool execution fails in Step 2.
Destination
GA IE K2 PF PO ST SP WE

GA 2 2 37

JE 37

K2 9 9 9 5
Origin PF 22 18

PO 37

ST 12 12

SP

WE

ever, since some problems appear when Protégé-OWLinterchanges
ontologies with SWI-Prolog in the Syntax and abbreviation bench-
marks, the only two clusters of fully-interoperable tools are Jena
with Protégé-OWL and Jena with SWI-Prolog. If KAON2 or GATE
are included in these clusters, correct interchanges can only be
achieved with few combinations of components.

Finally, regarding the robustness of the tools, as mentioned
above tools have no execution problems when processing the
ontologies of the benchmark suite in the first step of the
experiment, but some of them do have problems when pro-
cessing ontologies generated by other tools. Table 8 provides an
overview of the robustness of the tools and shows the percent-
age of benchmarks in which tool execution fails in the second
step.

All the ontologies that make these tools fail are syntactically
valid. In some cases the ontologies are OWL Lite ontologies; how-
ever, in other cases they are OWL Full ontologies or they present
modelling errors (e.g., to use as the object of the rdfs:subClassOf
property a blank node that is not constrained in the rest of the
ontology or to use rdf:Property instead of owl:ObjectProperty or
owl:DatatypeProperty). Needless to say, this lack of robustness in
the tools also has a negative effect in interoperability.

11. Conclusions and future work

In this paper we show that it is feasible to evaluate different
Semantic Web technologies using a common method and following
a problem-focused approach instead of a tool-focused approach;
our evaluation focused on the interoperability problem instead of
on a certain type of technology.

Semantic Web technologies are constantly evolving and their
interoperability is expected to change over time. Therefore, this
paper is intended to serve not just as a summary of the OWL Inter-
operability Benchmarking and its results, but as a guide to perform
interoperability evaluations over Semantic Web technologies that
allows a continuous evaluation of such technologies.

To this end, the OWL Lite Import Benchmark Suite and the IBSE
tool, presented in the paper, support a large-scale automatic eval-
uation of the OWL interoperability of Semantic Web technologies
in a cheap, flexible and extensible way.

Since the interoperability experiment and the IBSE tool are inde-
pendent of the interchange language, they can be used in other
scenarios using any group of ontologies as input or other languages
as interchange. Right now the tool allows performing experiments
using RDF(S) as the interchange language and rdf-utils*° as ontol-
ogy comparer; in this case, the RDF(S) Import Benchmark Suite [16]
could be used as input for the evaluation.

The assessment of the OWLinteroperability of eight well-known
Semantic Web tools has provided us with detailed results of the
behaviour of the tools not just regarding their interoperability with
other tools but also regarding their OWL compliance. These results
are publicly available on the Web in HTML and in RDF so anyone
can use them.

Publishing evaluation results in RDF will allow not only to
automatically reuse these results but also to integrate them with
evaluation results that cover other characteristics (e.g., scalabil-
ity, usability) in order to produce recommendations over semantic
technologies that support semantic technology selection.

The main conclusion drawn from the interoperability results is
that in general interoperability between the tools is very low, even
in interchanges between a tool and the tool itself, and the clusters
of interoperable tools are minimal.

Furthermore, interoperability using an interchange language
highly depends on the knowledge models of the tools. This said, we
can add that interoperability is better when the knowledge model
of the tools is similar to that of the interchange language. This can
be seen in the results where the tools that better interoperate are
those whose knowledge models fully cover the knowledge model
of the interchange language. In the cases where the knowledge

30 Version 0.3b http://wymiwyg.org/rdf-utils/.

290 R Garcia-Castro, A. Gémez-Pérez { Web Semantics: Science, Services and Agents on the World Wide Web 8 (2010) 278-291

models differ, interoperability can be only achieved by means of
lightweight ontologies.

This interoperability panorama, although disappointing, may
serve to promote the second of our goals: the improvement of the
tools. Even though tool improvement is out of our scope right now
because each tool is developed by independent organisations, we
hope, nevertheless, that the results provided may help improve the
tools. We can add that, since our goal was improvement, modifi-
cations on the participating tools were allowed at any time and,
in some cases, tools were improved while the experiments were
being executed.

Therefore, real interoperability in the Semantic Web requires
the involvement of tool developers. The developers of the tools par-
ticipating in the benchmarking activities have been informed of the
results of these activities and of the recommendations proposed for
improving their tools.

After analysing the results, we checked that the interoperability
problem not only depends on the ontology translation problem but
also on some robustness and specification problems. In some cases
interoperability problems are due to the representation formalisms
managed by the tools, but in others they are due to defects in the
tools or to the way of serializing ontologies, having the latter a high
impact in interoperability.

In addition, some tools instead of parsing ontologies on their
own, reuse ontology management frameworks for this task. In these
cases, while there is a dependency between the results of a tool and
those of the ontology management framework that it uses, using
a framework does not isolate a tool from having interoperability
problems. Besides inheriting existing problems in the framework (if
any), a tool may have more problems if it requires further ontology
processing (e.g., its representation formalism is different from that
of the framework or an extension of it) or if it affects the correct
working of the framework. For example, the version of Protégé OWL
that we evaluated uses the Jena ontology framework and we can
see in Table 8 that, while Jena does not have any execution problem
in the second step of the experiment, Protégé OWL does.

Considering the large number of existing Semantic Web tools,
only a fraction participated in the benchmarking activity presented
in this paper. We think that it would be desirable for the future to
continue these benchmarking activities with a higher number of
tools.

In future iterations of the benchmarking activity, the evaluation
could be updated to be more exhaustive, to cover other OWL sub-
languages (DL, Full or OWL 231), to include real-world ontologies,
or to focus on user interoperability needs.

Additionally, although we have already mentioned in Section 7
that we cannot directly reuse test cases from other evaluations (e.g.,
the OWL 1 and OWL 2 Test Cases), we could extend this work by
including those ontologies from existing test cases that are suitable
for evaluating interoperability.

To increase the usability of the benchmarking results, the main
improvement would be to facilitate effective ways of analysing and
exploiting the results by means of a web application, such as the
IRIBA application used in the RDF(S) Interoperability Benchmark-
ing, so that users could perform dynamic and personalised analyses
of the OWL interoperability results over time.

It would also be quite convenient that the IBSE tool provided
results that were easier to analyse and that included specific visu-
alizations of results for tools whose internal knowledge model does
not correspond with the interchange language. With such tools, the
analysis of the results is not straightforward and sometimes triples
are inserted or removed as intended by their developers, but this

31 http://www.w3.org/TR/ow]2-overview/.

correct functioning is difficult to evaluate or to distinguish in the
current results,

Acknowledgments

This work is partially supported by a FPI grant from the Spanish
Ministry of Education (BES-2005-8024), by the IST project Knowl-
edge Web (FP6-507482) and by the CICYT project Infraestructura
tecnolégica de servicios semanticos para la web semadntica
(TIN2004-02660).

Thanks to all the people that have participated in the OWL
Interoperability Benchmarking by adapting the IBSE tool for some
best-in-class Semantic Web tools: Stamatia Dasiopoulou, Danica
Damljanovic, Michael Erdmann, Christian Fillies, Roman Korf, Diana
Maynard, Jesis Prieto-Gonzalez, York Sure, Jan Wielemaker, and
Philipp Zaltenbach. Without their effort, this could have not been
possible.

Thanks to Rosario Plaza for reviewing the grammar of this paper.

References

[1] J. Arpirez, O. Corcho, M. Fernandez-L6pez, A. Gémez-Pérez, WebODE in a nut-
shell, Al Magazine 24 (3) (2003) 37-47.

[2] J. Barrasa, Modelo para la definicién automatica de correspondencias seman-
ticas entre ontologias y modelos relacionales, Ph.D. thesis, Universidad
Politécnica de Madrid. Facultad de Informatica, January 2007,

[3] K. Bontcheva, V. Tablan, D. Maynard, H. Cunningham, Evolving GATE to meet
new challenges in language engineering, Natural Language Engineering 10
(3-4) (2004) 349-373.

[4] P. Bouquet, M. Ehrig,]. Euzenat, E. Franconi, P. Hitzler, M. Krétzsch, L. Serafini,
G. Stamou, Y. Sure, S, Tessaris, D2.2.1 Specification of a common framework for
characterizing alignment, Tech. rep., Knowledge Web, December 2004.

[5] R. Brachmann, H. Levesque, Readings in Knowledge Representation, chap A
Fundamental Tradeoff in Knowledge Representation and Reasoning, Morgan
Kaufmann, San Mateo, 1985, pp. 31-40.

[6]]. Carroll, J.D. Roo (Eds.), OWL Web Ontology Language Test Cases, Tech. rep.,
W3(, February 2004.

[7] O. Corcho, A Layered Declarative Approach to Ontology Translation with
Knowledge Preservation, vol. 116 of Frontiers in Artificial Intelligence and its
Applications, 10S Press, 2005.

[8] S. David, R. Garcia-Castro, A. Gémez-Pérez, Defining a benchmark suite for
evaluating the import of OWL Lite ontologies, in: Proceedings of the OWL:
Experiences and Directions 2006 workshop (OWL2006), Athens, Georgia, USA,
2006.

[9] D.Dou, D. McDermott, P. Qi, Ontology translation onthe Semantic Web, Journal
of Data Semantics 2 (3360) (2004) 35-57.

[10] E. Duval, Learning technology standardization: making sense of it all, Inter-
national Journal on Computer Science and Information Systems 1 (1) (2004)
33-43.

[11] J. Euzenat, P. Shvaiko, Ontology Matching, Springer-Verlag, Heidelberg (DE),
2007.

[12] C Fillies, F. Weichhardt, Semantically correct Visio drawings, in: Proceedings
of the Workshop on User Aspects of the Semantic Web (UserSWeb2005), 2005,
pp. 85-92.

[13] R. Garcia-Castro, S. David, J. Prieto-Gonzalez, D1.2.2.1.2 Benchmarking the
interoperability of ontology development tools using OWL as interchange lan-
guage, Tech. rep., Knowledge Web, September 2007,

[14] R. Garcia-Castro, A. Gémez-Pérez, Guidelines for benchmarking the perfor-
mance of ontology management APIs, in: Proceedings of the 4th International
Semantic Web Conference (ISWC2005), No. 3729 in LNCS, Galway, Ireland,
2005, pp. 277-292.

[15] R.Garcia-Castro, A. Gémez-Pérez, Semantic Web Engineering inthe Knowledge
Society, chap Benchmarking in the Semantic Web, IGI Global, 2008.

[16] R. Garcia-Castro, A. G6mez-Pérez, Y. Sure, Benchmarking the RDF (S) inter-
operability of ontology tools, in: Proceedings of the Nineteenth International
Conference on Software Engineering & Knowledge Engineering (SEKE’2007),
Boston, USA, 2007, pp. 410-415.

[17] T. Gruber, A translation approach to portable ontology specifications, Knowl-
edge Acquisition 5 (2) (1993) 199-220.

[18] Y. Guo, Z. Pan,]. Heflin, LUBM: a benchmark for OWL knowledge base systems,
Journal of Web Semantics 3 (2) (2005) 158-182.

[19] J. Hammer, D. McLeod, An approach to resolving semantic heterogeneity in a
federation of autonomous, heterogeneous database systems, Journal for Intel-
ligent and Cooperative Information Systems 2 (1) (1993) 51-83.

[20] IEEE-STD-610, ANSI/IEEE Std 610.12-1990. IEEE Standard Glossary of Software
Engineering Terminology, IEEE, 1991.

[21] W. Kim,]. Seo, Classifying schematic and data heterogeneity in multidatabase
systems, Computer 24 (12) (1991) 12-18.

[22] M. Klein, Combining and relating ontologies: an analysis of problems and solu-
tions, in: Proceedings of the Workshop on Ontologies and Information Sharing
(IICAI2001), Seattle, USA, 2001.

[23] H. Knublauch, R. Fergerson, N. Noy, M. Musen, The Protégé OWL plugin: an
open development environment for Semantic Web applications, in: Proceed-
ings of the 3rd International Semantic Web Conference (ISWC2004), vol. 3298,
Springer, 2004, pp. 229-243.

[24] L. Ma, Y. Yang, Z. Qiu, G. Xie, Y. Pan, S. Liu, Towards a complete
OWL ontology benchmark, in: Proceedings of the 3rd European Semantic
Web Conference (ESWC 2006), vol. 4011 of LNCS, Budva, 2006, pp. 125-
139.

[25] D. Maynard, Benchmarking textual annotation tools for the Semantic Web,
in: Proceedings of the Sixth International Language Resources and Evalua-
tion (LREC'08), European Language Resources Association (ELRA), Marrakech,
Morocco, 2008.

[26] B. McBride, Jena: Implementing the RDF Model and Syntax Specification, in;
Proceedings of the Second International Workshop on the Semantic Web
(SemWeb2001), 2001.

[27] B. Motik, U. Sattler, A comparison of reasoning techniques for querying large
description logic ABoxes, in: Proceedings of the 13th International Conference
on Logic for Programming Artificial Intelligence and Reasoning (LPAR2006),
Phnom Penh, Cambodia, 2006.

[28] N. Noy, R. Fergerson, M. Musen, The knowledge model of Protégé-2000:
Combining interoperability and flexibility, in: Proceedings of the 2th Inter-
national Conference on Knowledge Engineering and Knowledge Management
(EKAW2000), Juan-les-Pins, France, 2000.

[29] OntoWeb, OntoWeb Deliverable 1.3: a survey on ontology tools, Tech. rep.,
OntoWeb Thematic Network, May 2002.

[30] A. Sheth, Interoperating Geographic Information Systems, chap. Changing
Focus on Interoperability in Information Systems: From System, Syntax Struc-
ture to Semantics, Kluwer, 1998, pp. 5-30.

[31] Y. Sure, O. Corcho (Eds.), Proceedings of the 2nd International Workshop on
Evaluation of Ontology-based Tools (EON2003), vol. 87 of CEUR-WS, Florida,
October 2003.

[32] V. Tamma, An ontology model supporting multiple ontologies for knowledge
sharing, Ph.D. thesis, University of Liverpool, 2001.

[33] P. Visser, D. Jones, T. Bench-Capon, M. Shave, An analysis of ontological
mismatches: heterogeneity versus interoperability, in: AAAI 1997 Spring Sym-
posium on Ontological Engineering, Stanford, USA, 1997.

[34] J. Wielemaker, Z. Huang, L. van der Meij, SWI-Prolog and the Web, Theory and
Practice of Logic Programming, 2008, pp. 1-30.

