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Abstract

Reproducibility is a crucial property of data since it allows users to understand and verify how data was derived, and therefore al-
lows them to put their trust in such data. Reproducibility is essential for science, because the reproducibility of experimental results
is a tenet of the scientific method, but reproducibility is also beneficial in many other fields, including automated decision making,
visualization, and automated data feeds. To achieve the vision of reproducibility, the workflow-based community has strongly ad-
vocated the use of provenance as an underpinning mechanism for reproducibility, since a rich representation of provenance allows
steps to be reproduced and all intermediary and final results checked and validated. Concurrently, multiple ontology-based repre-
sentations of provenance have been devised, to be able to describe past computations, uniformly across a variety of technologies.
However, such Semantic Web representations of provenance do not have any formal link with execution. Even assuming a faithful
and non-malicious environment, how can we claim that an ontology-based representation of provenance enables reproducibility,
since it has not been given any execution semantics, and therefore has no formal way of expressing the reproduction of compu-
tations? This is the problem that this paper tackles by defining a denotational semantics for the Open Provenance Model, which
is referred to as the reproducibility semantics. This semantics is used to implement a reproducibility service, leveraging multiple
Semantic Web technologies, and offering a variety of reproducibility approaches, found in the literature. The reproducibility ca-
pabilities are evaluated by means of a series of empirical experiments aimed at highlighting novel functionality. In particular, we
demonstrate the ability to reproduce computations involving multiple technologies, as is commonly found on the Web.
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1. Introduction of both the raw data and the computer code used in research®*.
This is in no way limited to climate science: in social science,
evidence-based policy refers to public policy that is informed
by rigorously established objective evidence [6]. Similar calls
exist for transparency in clinical trial results used in drug ap-
proval®. It is no surprise that novel initiatives [7] and recom-
mendations [8] that encourage the publication of data sets are
emerging. These are steps in the right direction, but by them-
selves, they do not ensure reproducibility of the scientific pro-
cess.

Provenance refers to the source or origin of something. In a
computational setting, provenance of a data item is an explicit
representation of the processes that led to that data item [9].
The workflow-based scientific community has strongly advo-
cated the use of provenance as an underpinning mechanism for
reproducibility: “reproducibility requires rich provenance in-
formation, so that researchers can repeat techniques and anal-
ysis methods to obtain scientifically similar results ... In order
to support reproducibility, workflow management systems must
capture and generate provenance information as a critical part
of the workflow-generated data.”[10]. The strong belief that

"http://www.telegraph.co.uk/technology/news/7484600/ provenance can support reproducibility is also echoed by the
Every-citizen-to-have-personal-webpage.html
2http://www.futuremedicine.com/doi/abs/10.2217/17410541.

The envisaged applications of science and technology are far
reaching, from Government personalised services for the cit-
izen' to personalised medicine?, from understanding climate
change, to its tackling by smart energy usage [1]. Technology
is revolutionising the way scientists undertake science, as il-
lustrated by Grid Computing [2], e-Science [3], or the Fourth
Paradigm [4]. While science is becoming computation and
data intensive, the fundamental tenet of the scientific method
remains unchanged: experimental results need to be repro-
ducible [5].

The fundamental principle of reproducibility is particularly
important given the importance of science in our life. This im-
portance is illustrated by the scientific advice on climate change
that has helped shape governmental policies. The mail contro-
versy of the Climatic Research Unit “Climate-Gate™? highlights
how global the impact of science has become. As a result,
calls for more transparency in climate science have been is-
sued; specifically, a parliament committee called for the release
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provenance community, with more than twenty papers cited by
a recent survey on provenance [11] mentioning reproducibility
in their abstract.

To relate reproducibility to provenance, various approaches
have emerged in which provenance is defined in the context
of specific execution semantics. Why-provenance [12] and lin-
eage [13] identify source tuples that “contributed” to a result re-
turned by a database query (within the relational and xml mod-
els). By applying the same query to such source tuples, the re-
sult could be reproduced. Souilah et al. [14] define a denotation
of provenance in the context of a m-calculus variant: this deno-
tation can replay the sending and receiving of data values across
processes. Cheney et al. [15] define a notion of traces faithful to
a program if they record enough information to recompute the
program when the inputs change; this definition is proposed in
the context of the Nested Relational Calculus. In workflow sys-
tems, the Virtual Data Systems [16] views provenance as con-
sisting of two components: all the aspects of the procedure or
workflow for creating a data object (referred to as prospective
provenance), and the information about the runtime environ-
ment in which these procedures were executed (retrospective
provenance), the combination of both offering reproducibility.
By means of a translation from provenance to its workflow lan-
guage [17], Taverna is also able to reproduce past results. All
of these approaches have in common that reproducibility is di-
rectly linked to a specific execution semantics, whether from a
given database engine, workflow system, or calculus. Unfortu-
nately, this is crucially problematic when provenance is to be
made available on the Web, where multiple execution technolo-
gies are inevitably involved.

The Open Provenance Vision [11] is a call for architectural
guidelines to support provenance inter-operability on the Web,
by means of open models, open serialization formats and open
APIs. As envisaged in the Open Provenance Vision, the prove-
nance from individual systems or components can be expressed,
connected in a coherent fashion, and queried seamlessly. Sev-
eral models for provenance have emerged to tackle this vision,
including Provenir [18, 19], the Provenance Vocabulary [20],
PASOA [21], and the Open Provenance Model [22]. All rely
on Semantic Web definitions, consisting of ontologies, vocab-
ularies or abstract models. Assuming that provenance based
on these models was generated faithfully and non-maliciously,
how can we claim provenance enables reproducibility, given
that there is no execution semantics attached to these models?
This is precisely the problem that this paper tackles, offering
a definition of reproducibility for the Open Provenance Model
(OPM) [22].

To address this problem, this paper offers the following con-
tributions:

1. Adopting a Semantic Web perspective to the problem, we
extend the Open Provenance Model with minimum execu-
tional information and assumptions related to execution.
In particular, we introduce the class of primitive proce-
dures and the notion of primitive environment that maps
such primitive procedures to something that can be exe-
cuted. OPM processes are themselves caused by primitive

procedure invocations.

2. We present the reproducibility semantics, a denotational
semantics for OPM graphs. This mathematical (and there-
fore technology independent) definition formulates how an
OPM graph can be seen as a mathematical function, taking
some inputs and a primitive environment, and resulting in
another OPM graph. This semantics is novel because it
tackles a substantial subset of OPM, and in particular, its
notion of account. With this semantics, we also identify a
class of OPM graphs that are reproducible, and at the same
time recognize that not all OPM graphs are by default re-
producible. This mathematical formulation also allows us
to specify variants of reproducibility, which help us pro-
vide formal groundings for other reproducibility proposals
found in the literature.

3. We propose a Semantic Web based architecture for a re-
producibility service, which can take OPM graphs and
check their reproducibility. This architecture, which relies
on an extended OWL ontology for OPM, SWRL rules, and
a set of SPARQL queries, is intended to act as a reference
for the reproducibility service.

4. We provide an evaluation of the approach by demonstrat-
ing: (i) how the reproducibility service is capable
of reproducing the results of the first provenance chal-
lenge [23]; (ii) how the reproducibility service can easily
be customized to invoke multiple execution technologies,
such as command line and web services, simply by chang-
ing its primitive environment; (iii) how it can be used with
different inputs.

There is no strong consensus on what reproducibility means,
and how it can be achieved. Hence, we start by surveying re-
lated work, by providing several definitions of reproducibil-
ity, and explain how this work compares against them (Sec-
tion 3). We then introduce the reproducibility semantics in
Section 4, first considering account-less OPM graphs, and then
multi-account OPM graphs. Next, we study the idea of a repro-
ducibility service in the context of the Semantic Web, overview
its architecture, and discuss the Semantic Web techniques that
we leveraged for its implementation (Section 5). We then un-
dertake a range of empirical evaluations aiming to demonstrate
the capability of the reproducibility service, and its suitability
for deployment in a multi-technology environment such as the
Web (Section 6). This is followed by a discussion of the ap-
proach (Section 7) before we conclude the paper and summa-
rize possible future work (Section 8). Beforehand, we summa-
rize the OPM terminology.

2. OPM Terminology in One Paragraph and Figure

We assume that the reader is familiar with the OPM spec-
ification [22]; a tutorial on OPM is also available from
openprovenance.org/tutorial. The following example
acts as a reminder for the OPM terminology. Figure 1 illustrates
an OPM graph describing the evaluation of a numeric expres-
sion (10 +20) % 30/9 resulting in value 100. Ovals represent ar-
tifacts and are here associated with numeric values; black rect-
angles denote processes. Plain edges represent data derivations


openprovenance.org/tutorial

(referred to as was-derived-from dependencies); dotted edges
represent the dependencies between processes and artifacts, de-
noting the consumption of the latter by the former (used edges)
or the generation of the latter by the former (was-generated-by
edges); they are annotated by their roles in bracket. Gray “post-
it” rectangles are annotations.

type:Integer | value:10 type:Integer | value: 20

value: 30

type:integer | value: 900 type:integer | value:9

prim: div

type:Integer | | value:100

Figure 1: OPM graph for Numeric Expression

3. Related Work

In this section, we first review several definitions of repro-
ducibility. We then discuss work on reproducibility that is not
provenance specific, before focusing on provenance based ap-
proaches. Finally, given that our work consists of a novel for-
malization of OPM, we review extant efforts in that field.

3.1. What is reproducibility?

There is no strong consensus on what reproducibility means
in the context of computational science or computer-based sys-
tems. Wikipedia defines reproducibility generally as follows:
“Reproducibility is one of the main principles of the scientific
method, and refers to the ability of a test or experiment to be
accurately reproduced, or replicated, by someone else working
independently to see if the reproduced experiments gives simi-
lar results to those originally reported”. Wikipedia further con-
trasts reproducibility from repeatability, which measures the
success rate in successive experiments, possibly conducted by
the same experimenters. Reproducibility relates to the agree-
ment of test results with different operators, test apparatus, and
laboratory locations.

In computer systems, experiments are encoded as programs
or workflows [10] that, like recipes, describe the various steps
of execution, and can be executed time and time again. In com-
puter systems, however, extensive logs of past activities, which
we will refer to as provenance, can provide an accurate descrip-
tion of what occurred in the past, and can be used to reproduce
experiments: the difference is that reproduction can be based
on the logs, rather than the recipe.

Bechhofer et al. [24] see the need for a framework that fa-
cilitates the reuse and exchange of digital knowledge. They put
forward the idea of Research Objects as containers for a princi-
pled aggregation of resources, produced and consumed by com-
mon services and shareable between scientists. In this context,
they distinguish the following terms:

e Repeatability: relies on sufficient information for the orig-
inal researchers or others to be able to repeat the study.
This may involve access to data or execution of services.

e Reproducibility of a result consists of starting with the
same materials and methods and see if a prior result can
be confirmed. It is a special case of repeatability, since it
contains complete information such that a final or interme-
diate result can be verified.

e Replayability allows the investigator to “go back and see
what happened”. It does not necessarily involve execution
or enactment of processes and services. It places a require-
ment on provenance of data.

From the above definitions, it is not entirely clear whether
Bechhofer’s repeatability and reproducibility draw on the orig-
inal recipe or provenance of a past execution, or a combination
of both. On the other hand, replayability seems to rely explic-
itly on provenance.

In their classification of provenance requirements, Miles et
al. [25] identify a use case (Use Case 17) that distinguishes
reenactment, i.e. performing the same experiment, but using
contemporary data and services, from repetition, which means
performing the same experiment with the same data and ser-
vices as before, e.g. to test that the results can be reproduced.
Whilst framed in the context of provenance, reenactment seems
to apply equally to provenance and workflows.

So, reproducibility is a multi-dimensional problem, where
several issues need to be taken into consideration: (i) which
scripts?: is this workflow or provenance based reproducibility?
(ii) which inputs?: is the experiment reproduced with the same
inputs or others? (by inputs, we include not only experimental
data, but also parameters) (iii) which primitives?: are the origi-
nal primitives or services invoked? (iv) which results?: are in-
termediary and final results comparable to the original ones? In
this paper, we fix the first dimension, focusing on provenance-
based reproducibility, while considering all other dimensions of
the problem.

3.2. Reproducibility without Provenance

Reproducibility has initially been researched without taking
provenance into consideration. We review some salient out-
comes, before focusing on provenance-based reproducibility.

Claerbout pioneered the concept of really reproducible re-
search, “ An article about computational science in a scientific
publication is not the scholarship itself, it is merely advertis-
ing of the scholarship. The actual scholarship is the complete
software development environment and the complete set of in-
structions which generated the figures.” [26].



This pioneering approach has led to the more recent Re-
Doc [27], a system for reproducing scientific computations in
electronic documents. It consists of three components, make-
files, make rules and naming conventions. Such an environ-
ment is akin to a workflow system, where the workflow script
is a makefile, which can be executed over any input. It however
does not describe a past execution and how a past result was
achieved. But this shows that under the term “reproducibility”,
one can find two very different understandings: regenerate a re-
sult by applying a recipe on arbitrary inputs vs reproduce all the
steps found in an evidence of a past execution.

In forensic investigations, a key factor is reproducibility,
defined as the ability to achieve a consistent level of quality
throughout the investigative process, no matter how many times
it is repeated under the same conditions [28]. Pan and Bat-
ten [28] propose a model based on read and write operations,
and associated timestamps, allowing them to be ordered in a
linear time flow. This model is targeted to forensic investiga-
tions and is not aimed to generic computations. An alternative
approach, which is provenance-based, is proposed by Levine
and Liberatore [29] and discussed in Section 3.3.

Stodden [30] defines reproducibility as the ability of others
to recreate and verify computational results, given appropriate
software and computing resources. Stodden investigates the le-
gal impediment to scientific reproducibility, and proposes a re-
producible research standard. We do not denigrate the impor-
tance of legal issues, but this article only focuses on the techni-
cal aspects of reproducibility.

3.3. Provenance-based Reproducibility

Davidson and Freire explain that a key benefit for maintain-
ing provenance of computational results is reproducibility: a
detailed record of the steps followed to produce a result allows
others to reproduce and validate these results [31]. Specifically,
with an explicit representation of provenance, so-called prove-
nance queries can be expressed to identify all the data objects
and the sequence of steps that have been used to produce a re-
sult [32].

Levine and Liberatore [29] seek to improve the reproducibil-
ity and comparison of digital forensic evidence. They propose
a simple canonical description of digital evidence provenance
that explicitly states the set of tools and transformations that
led from acquired raw data to the resulting product. This prove-
nance representation allows for the comparison and the repro-
duction of results. Inspired by the principle of N-version pro-
gramming, their approach allows multiple tools/libraries to be
used to reproduce a result, hereby increasing the confidence that
can be put in investigations.

Silva et al. [33] argue about the importance of reproducibil-
ity in visualization. Leveraging the Vistrails systems, they ex-
ploit the provenance it generates to ensure that users will be
able to reproduce the visualizations and let them easily navigate
through the space of visualization pipelines created for a given
exploration task. Vistrails adopts an action-based provenance
model, intended to help reproducibility. We conjecture that it
is based on replaying such actions, but it fails to include an ex-
plicit description of how it can be achieved outside the context

of Vistrails itself. Koop et al. [34] discuss the problem of man-
aging upgrades of tools and libraries, while still being able to
run a previous computation in a new environment; this work is
specifically focused on the Vistrails system and methods neces-
sary to automatically update workflows and provenance.

Mesirov [5] proposes a Reproducible Research System
(RRS), consisting of two components. The first is the Repro-
ducible Research Environment (RRE), which provides compu-
tational tools together with the ability to automatically track
the provenance of data, analyses, and results and to package
them (or pointers to persistent versions of them) for redistribu-
tion. The second element is a Reproducible Research Publisher
(RRP), which is a document-preparation system, such as stan-
dard word-processing software, that provides an easy link to the
RRE.

Cheney et al. [15] provide an operational semantics for the
Nested Relational Calculus (NRC) that generate traces, in-
tented to capture the execution history of a query. Such a notion
of trace is a representation of provenance which is directly in-
spired by the syntax of NRC constructs. They define properties
of such traces and NRC programs, such as consistency and fi-
delity. A trace is said to be consistent to a program, if it is
an explanation of what happened when the program was evalu-
ated. Fidelity is the property that holds when the trace records
enough information to recompute a program when the inputs
change.

The provenance approaches that have been reviewed in this
section are all grounded in a specific execution environment.
Hence, because of their dependencies to a specific technology
or execution semantics, they fail to meet a key requirement of
the Open Provenance Vision [11] for provenance on the Web.
Alternative provenance definitions are ontology-based and not
specific to an execution technology: Provenir [18, 19], the
Provenance Vocabulary [20], PASOA [21], and the Open Prove-
nance Model [22]. None of them, however, has been given a
semantics that is suitable for reproducibility purpose. This is a
shortcoming that we address for OPM in this paper. This work
complements other endeavours aiming to provide a formal un-
derpinning to OPM, which we survey in the following section.

3.4. Formal definitions of OPM

Moreau et al. [35] provide a set-theoretic definition of OPM,
as well as an illustration of how an abstract machine execution
can generate OPM-based provenance traces. The mapping from
execution to OPM graphs is not formally characterized, and no
attempt is made to provide a converse mapping. In the sub-
sequent version, Kwasnikowska et al. [36] provide a temporal
interpretation of OPM graphs, defined as the set of temporal in-
equalities implies by its edges. OPM inferences combined with
graph patterns are shown to be sound and complete with respect
to inferences that can be made over graph interpretations. This
temporal interpretation does not provide an understanding of
OPM from an execution perspective either.

Cheney [37] investigates the use of structural causal models
as a semantics for provenance graphs, and relates some OPM
concepts to notions of actual cause and explanation proposed
by Halpern and Pearl [38, 39]. At some level, the semantics



we propose here bears some similarity to Cheney’s since it is
also a denotation of a provenance graph, i.e., it sees a graph as
a mathematical function, resulting in a new provenance graph.
In practice, they differ for several reasons: (i) our seman-
tics conforms to OPM v1.1 and in particular handles OPM ac-
counts, whereas Cheney’s is account-less and regards single-
step derivation edges as inferrable, when they can only be as-
serted in OPM; (ii) our semantics builds on the Semantic Web
philosophy, where globally unique names are meant to capture
well understood concepts (in this case, primitives), which are
explicitly captured within a notion of primitive environment;
(iii) Cheney’s semantics attempts the more ambitious goal of
providing a global approximation (using the predictive nature
of causal models) for the program being executed (without hav-
ing its explicit code), so that its behaviour can be repeated for
any arbitrary input; (iv) our semantics allows us to explore and
characterize variants of reproducibility.

Missier and Goble [17] address the question of whether, for
any OPM graph, there exists a plausible workflow in the Tav-
erna workflow language, which could have generated the graph.
To this end, they identify the extra information that should be
captured as part of an OPM graph so that the mapping from
OPM to a workflow representation can be derived. Whilst this
work focuses on some specificities of the Taverna workflow lan-
guage, such as the implicit iterator semantics, it is similar in
spirit to ours, since it derives an executable semantics for OPM.
In their case, it is obtained by composing their translation to the
Taverna semantics [40]. It however does not tackle OPM in full,
ignoring accounts, and does not define reproducibility itself.

Various ontological definitions of the Open Provenance
Model have emerged. The OPM toolbox® supports bidirec-
tional conversions between XML and RDF serializations, re-
spectively defined according to an XML schema and an OWL
ontology [41]. This ontology was inspired by the OWL defini-
tion compatible with the OPM implementation of Tupelo’ [42].
During the third provenance challenge, the Tetherless team also
defined an OPM OWL ontology?®.

As part of the W3C Provenance Incubator activity [43], map-
pings of multiple provenance ontologies to OPM were de-
fined [44]. These mappings showed that concepts such as pro-
cesses, artifacts, and agents can be mapped quite naturally be-
tween the models. The mappings however do not characterize
the computational implications associated with those models,
and do establish whether reproducibility is preserved during
translation across models.

4. Reproducibility Semantics

In this section, we specify the reproducibility semantics for
OPM graphs, which we define as the mathematical meaning of
an OPM graph, seen as a program and whose execution results

Shttp://openprovenance.org
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in anew OPM graph. First, we study reproducibility in account-
less OPM graphs (Sections 4.2, 4.3 and 4.4) and then in multi-
account graphs (Sections 4.5 and 4.6).

4.1. Intuition of the Reproducibility Semantics

Before delving into the technical details of a denotational se-
mantics, we provide some intuition of how we propose to re-
produce the execution on an OPM graph. We assume that each
process in an OPM graph is annotated with the name of a prim-
itive, and that there is a primitive environment that maps primi-
tive names to actual functions, which take some inputs and pro-
duce some outputs. Here, function arguments are not identified
by their position in a sequence of arguments but by their roles;
likewise, outputs can be multiple and are identified by their role.

The inputs of an OPM graph are all the artifacts for which
there is no was-generated-by edge; likewise, its outputs are all
the artifacts that are not adjacent to a used edge. Given an
acyclic OPM graph, we assume the existence of a function that
returns a list of all its processes, sorted by order of execution:
by this, we mean that a process in the sorted list does not use
any artifact generated by a process that is subsequent in the list.

Reproducibility is achieved by recursively traversing the
sorted list of processes, executing each of them in turn. Execu-
tion of a process is achieved by invoking its associated primitive
function on the values of artifacts (paired with roles) it uses,
and results in values (also paired with roles), for which new ar-
tifacts are created. The reproducibility semantics constructs a
new OPM graph at the same time, describing the re-execution
of the graph. The new graph is initialized with the set of in-
put artifacts (with the same value as in the original graphs, or
different values, depending on the kind of reproducibility one
wants to achieve). Each process execution adds the process and
the output artifacts it generated, and all associated edges with
roles, where appropriate.

For comparing the original graph and the new graph, but also
for book-keeping, a mapping from nodes of the original graph
to those of the new graph is constructed. It allows us to check
whether all nodes have been mapped, and whether they have
the same associated values. Furthermore, in the case of multi-
account OPM graphs, the mapping allows us to decide whether
we are processing a node that has already been encountered.

So, in summary, the reproducibility semantics takes a set of
input artifacts (with their associated values), a primitive envi-
ronment, and an input graph, and returns a mapping and a new
OPM graph, which describes the reexecution of the input graph,
and a mapping. We now formalize this semantics.

4.2. Preliminary Definitions

Figure 2 displays the definition of an account-less OPM
graph. It consists of a set of nodes and a set of edges. Nodes can
be artifacts or processes’, whereas edges are of four permitted
types. Artifacts and processes respectively belong to primitive
sets Artifact and Process. Figure 2 is a stylised version of a

9Like [35], the semantics presented in this paper ignores agents, since their
role as catalyst does not directly affect computational reproducibility.
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Standard ML definition of this semantics, available for down-
load!®.

Artifact = primitive set of artifacts
Process = primitive set of processes
Role = primitive set of roles
Value = primitive set of values
PrimitiveName = primitive set of primitive names
Node = art of Artifact | proc of Process
Edge = used of (Process X Role X Artifact)
| wgb of (Artifact X Role X Process)
| wdf of (Artifact X Artifact)
| wtb of (Process X Process)
OPMGraph = P(Node)xP(Edge)
AResolver = Artifact — Value
PResolver = Process — PrimitiveName
FullOPMGraph = OPMGraph x AResolver x PResolver

Figure 2: Account-Less OPM Graph

Artifacts are associated with values (belonging to a prim-
itive set of values), whereas each process is associated with
the name of a primitive, whose invocation resulted in this pro-
cess. The association is defined by the mappings AResolver and
PResolver. A FullOPMGraph then refers to an OPMGraph
accompanied by the artifact and the process resolvers.

The OPM graph of Figure 1 can be formalized by G =
(G, V2, VP) as follows:

G = (ai,a2,a3,a4,0s,a6,a7, p1, p2, p3}, {used(pi,summandi,ap),
used(p;, summand2, a;), wgb(as, out, p1), used(py, factor1, az),
used(p», factor2, as), wgb(ag, product, ps), used(ps, divisor, as),
used(ps,dividend, ag), wgb(a7,quotient, p3), wdf(as,a;), wdf(as,an),
wdf(ag, a3), wdf(ag, as), wdf(ay, as), wdf(az, ag)}).

V¢ ={(ay, 10), (a2, 20), (a3, 30), (a4, 9), (as, 30), (ag, 900), (a7, 100)}

VP ={(p1,prim : sum), (p2, prim: mult), (p3, prim: div)}.

The inputs of an OPM graph are the artifacts that are not
adjacent to a was-generated-by edge, whereas graph outputs
are the artifacts that not adjacent to a used edge. In Figure 1,
ai, ay,as,ay are inputs, while ay is an output.

For the purpose of reproducibility, some topological con-
straints are introduced on OPM graphs. Ways of relaxing these
constraints are discussed further in Section 7.

Definition 1 (Reproducibility Graph Constraints).

1. OPM graphs are supposed to be well-formed as per OPM
vi.1 [22]: an artifact can be generated by at most one
process, and there exists no cycle formed of edges of type
was-derived-from.

2. For the purpose of the reproducibility semantics, we as-
sume that an OPM graph is fully acyclic, i.e., no cycle can
be formed with any edge.

3. We assume that there is no edge was-triggered-by.

4. We also assume that inputs and outputs are uniquely
identified by a role, for a given process: for any edges
used(p,r,ay),used(p,r,ay), then a; = ay, likewise, for
any edges wgb(ay, r, p), wgb(as, r, p), then a; = a,.

Onttp://www.ecs.soton.ac.uk/~lavm/reproducibility.sml
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Our semantics relies on partial maps, mapping roles to some
set (e.g., role-values or role-artifacts). For instance rv* €
Role — Value. Given arole r € DOM(rv*), then rv*(r) denotes
the value associated with r. For convenience, our notation also
allows for such a partial map to be seen as a finite sequence
of role-value pairs P(RoleValue), over which we can perform a
map operation.

4.3. Reproducibility of an Account-Less OPM Graph

Key to reproducibility is a definition for each of the primi-
tives referred to by processes of an OPM graph. To this end,
we introduce the concept of a primitive environment associat-
ing primitive names with primitives, which essentially produce
some output values for some input values. In OPM, values
(whether input or output of a process) are associated with a role.
Hence, primitives take sets of role-value pairs, and produce sets
of role-value pairs (cf. Figure 3, line 2).

Furthermore, in OPM, edges of type was-derived-from (wdf)
need to be asserted and cannot be inferred. The only compo-
nent that has knowledge of such dependencies is the primitive
itself. So we expect a primitive not only to return a set of role-
value pairs, but also which was-derived-from dependency ex-
ists between which output (identified by its role) and which
input (similarly identified). Such a pair of roles, an element
of EdgeSpec (cf. Figure 3, line 4), can be used to reconstruct
the appropriate was-derived-from edge in the resulting graph.
The intent of the type InvocationResult is similar, except that it
refers to role-artifact pairs rather than role-value pairs (cf. Fig-
ure 3, line 5).

Reproducing an OPM graph results in a new OPM graph.
There is some mundane activity involved in constructing such
a new OPM graph: how should artifacts and processes be cre-
ated? Hence, we assume the presence of factories: given a node
from the old graph and the current new graph that we are in the
process of building, such a factory results in a new node and
a new OPM graph containing that node (line 8-10). Parame-
terizing the reproducibility function by such factories allows us
to consider a range of options, such as the resulting graph has
the same nodes as the original or the resulting graph has fresh
nodes.

Finally, to be able to compare the results of the reproduced
computation and the original results (whether final or interme-
diary), we introduce a mapping function that maps nodes of
the original graph to nodes of the resulting graph. The pair of
mappers AMapper and PMapper is conveniently referred to as
Mappers (cf. Figure 3, lines 1-3).

The reproducibility semantics has a signature of type
Reproduce (cf. Figure 3, lines 16-18). Given a graph fac-
tory (i.e. how we construct nodes), a primitive environment,
an input OPM graph and some input artifacts, a reproducibility
function must produce a resulting OPM graph and mappings
from the input graph to the output graph. Such a reproducibil-
ity function recursively traverses the input graph, reproducing
the invocation of every primitive; to this end, it relies on an aux-
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1 PrimitiveEnv = PrimitiveName — Primitive AMapper = Artifact — Artifact
2 Primitive = P(RoleValue) — (P(RoleValue) x P(EdgeSpec)) PMapper = Process — Process
3 RoleValue = Role x Value Mappers = (AMapper x PMapper)
4 EdgeSpec = Role X Role

5 InvocationResult = P(Role X Artifact) X P(EdgeSpec) InputArtifacts = AResolver

6 Invocation = PrimitiveName X P(Role X Artifact) X P(Role X Artifact)

7

8 ArtifactFactory = Artifact > OPMGraph — Artifact x OPMGraph

9 ProcessFactory = Process — OPMGraph — Process X OPMGraph

10 GraphFactory = ArtifactFactory X ProcessFactory

11

12 Execute = GraphFactory — PrimitiveEnv

13 — Invocation — Process — FullOPMGraph — Mappers

14 — InvocationResult X FullOPMGraph X Mappers

15

16 Reproduce = GraphFactory — PrimitiveEnv

17 — FullOPMGraph — InputArtifacts

18 — Mappers x FullOPMGraph

Figure 3: Reproducibility in a single Account

iliary function of type Execute, reproducing the invocation of a
single process (cf. Figure 3, lines 12-14).

Having defined all the necessary sets, the reproducibility-
semantics can be expressed as in Figure 4. The reproducibility-
semantics is captured by function reproduce; of type
Reproduce, which relies on the auxiliary function reproduce,
to recursively execute each process of its input graph G|. Given
that OPM graphs are directed and acyclic, we assume the exis-
tence of sortProcesses a function that can obtain an ordered list
of processes, such that the invocation of a process in the list
does not require the outputs of any subsequent processes in the
list. The auxiliary function reproduce, relies on execute to in-
voke primitives, and for each such invocation, ensures that new
edges of the appropriated type are accumulated in the graph GJ.

The auxiliary function execute of type Execute invokes a
primitive, as per defined in the primitive environment & and
extends its input graph G” with new artifacts and processes,
created with the respective factories. It also ensures that the
mappers are suitably extended with new mappings and valua-
tions for the process and its output artifacts.

4.4. Reproducibility Properties

In this section, we establish some properties regarding the
reproducibility of OPM graphs. First, we define role-value map
equality and deterministic primitive.

Definition 2 (Role-Value Map Equality). Two role-value
maps rv] and rv; are equal if DOM(rv}) = DOM(rvy) and
rvi(r) = rvy(r) for any r € DOM(rvy). O

Definition 3 (Deterministic Primitive). A primitive pr is a
deterministic function, if for any rvi,rvi, if rvi = rvj, then
pr(rvy) = pr(rvy). O

Reproducibility of a graph can be defined as follows. Given
the same inputs, the reproducibility function produces another

graph that is equal “up to the mapping” between nodes, for a
given primitive environment.

Definition 4 (Reproducible Graph). Let G| be an OPM
graph. Let (F°,F7P) be artifact/process factories; let & be a
primitive environment, let in(G\) be the values of input artifacts
in GY. Let (My, G3) = reproduce, (F*, F7) & G in(G)).

The graph GY is reproducible in &, if the following holds:

G 2 G
O

Graph equality “up to mapping” is satisfied if graphs are iso-
morphic and have the same values for corresponding nodes,
formalized as follows.

Definition 5 (Graph Equality “up to mapping”). Let G| =
(G1,V{, V) and Gy = (G2, V5,V5) be two full OPM graphs.
Let M be a pair (M, MP) of bijections such that their domains
are the nodes in G| and their range the nodes in G,. Two graphs
G\, G} are equal “up to mapping M”, noted

G, ~M Gy,
if the following conditions hold:
o Forany a € G|, M%(a) € Gy and V(a) = V5(M*(a)).
e Forany p € G|, MP(a) € G, and V' (p) = V5(MP(p)).

e For any edge (n;,ny)y € G (or {(n;,r,m) € Gj),
(M(ny), M(nz)) € Gy (or (M(my), r, M(n2)) € Gy).

o For every edge (n|,n}) € Gy, there exists (n;,ny) € G
such that {M(ny), M(n2)) = (n},n}) (and likewise, for
edges with roles).



reproduce, : Reproduce p € Process process
reproduce, (F°, ¥7)E G| 0 = a € Artifact artifact
let (_, M, G}) = initGraphForlnputs ¥ (graphlnputs G}) My, 0 a* € P(Artifact) artifact set
in reproduce, (F°¢, ¥7) & (sortProcesses G\) G| My G G € OPMGraph OPM graph
end G" € FullOPMGraph Full OPM graph
& € PrimitiveEny primitive env.
reproduce, ¥ & [1 G} M, G5 = (M1, G) pr € Primitive primitive
reproduce, ¥ & (p :: ) Gy M, G} = F¢ e ArtifactFactory  artifact factory
let inv = extractlnvocation p G| M, FP e ProcessFactory process factory
(oru*, o) = inv F € GraphFactory graph factory
((rg*,sp"), G5, My) = execute F & inv p G5 M, sp € EdgeSpec edge specification
(Gs, V4, VD) = G, rv € RoleValue role-value pair
D2 = Myp rn* € Role — Value role value map
used” = map (A(r,a). used(p, r,a)) ru* rg € Role x Artifact role-generated artifact pair
wgb” = map (A(r,a). wgb(a, r, p)) rg* rg* € Role — Artifact  role generated artifact map
wdf™* = map (A(ry, rp). wd£(rg*(ry), ru*(rp))) sp* ru € Role X Artifact role-used artifact pair
G, = (G3 U wdf" U wgb" U used", V4, VY) ru* € Role — Artifact  role used artifact map
in reproduce; ¥ &1 Gy M, G, V¢ € AResolver artifact resolver
end VP € PResolver process resolver
M* € AMapper artifact mapper
execute : Execute MP e PMapper process mapper
execute (F¢,FP) Einv py (G, V4, VP) (M, MP) =
let (n,ru*,rg*) = inv
pr = &) flx — y] = Av.if v=uxtheny else f(v)
(rv*,sp*) = pr(map (A(r,a). (r, V(@) ru")
(rg5, Gy) = mapWithGraph (A(r,v).AG. let (a,G) =F*rg*(r) G flIxux="yuyl = flx-yllx" =" y]
in ((r,a), G) F10 =" 11 = f
end)
G extension by role
(p2.G2) = F7 po G flnw) i x =7y = flx =yl =" y°]
Vs = Vg =" '] Sl ="y = f
Vi = VP [pr—n]
M = M%rgt =" rg5]
M = M’ py— pal
in ((rgs,sp*), (G2, V4, VH), (M4, M) mapWithGraph : (¢ —  — v xB) = P(a) — 8 — P(y) X8
end mapWithGraph f [1 G = ([1, G)
mapWithGraph f (x :: x*) G =
initGraphForInputs ¥ a* (M*, MP) V* = let (y,G)) = fxG
let (a5,G) = mapWithGraph F¢ a* G 0", Gs) = mapWithGraph f x* G,
M = Ma" —" aj] in(y:y,Gs)
Vs = Vi.la =" (map V a*)] end
in (a5, (M5, MP), (G, V5, V) )
end getUsed(p, G) = {used(p, r, a) € G}

getGeneratedBy(p, G) = {wgb(a, r, p) € G}

extractInvocation p (G, V¢, VP) (M*, MP) : Invocation = sortProcesses : FullOPMGraph — list(Process)

let used®” = getUsed(p,G)

a = map (A(used(p, r,a)) => a) used”

a, = map M*a*

ru; = map, (A(used(p,r,a), a).(r,a2)) used” a;

rgs = map (A(wgb(a,r, p)).(r,a)) getGeneratedBy(p, G)
in (VP(p), ru3,rg5)
end

Figure 4: Reproducibility Semantics



Based on Definition 4, for given factories and primitive envi-
ronment, we can identify the class of reproducible OPM graphs.
We note that not all graphs are reproducible. Indeed, the repro-
ducibility function may not be defined, for different reasons,
which we discuss below and illustrate with simple examples
pertaining to Figure 1. (i) An incomplete set of inputs is
provided: e.g., {(a;, 10), (az,20), (a3,30)}.  (ii) Inputs or in-
termediary results are not in the domain of some primitives:
e.g., {(ay, 10), (az, 20), (as, 30), (a4, 0)}. (iii) Incorrect number
of inputs, incorrect roles or incorrect types are provided to a
primitive; e.g., for primitive environment mapping prim:sum
to the unary log function. We note that some of these failure
reasons can be checked statically without re-executing primi-
tives, if primitive signature and arity are available.

Checking that a graph is reproducible helps users to get con-
fidence in data. In Section 5, we investigate the implementation
of this semantics in a reproducibility service. Beforehand, we
focus on reproducibility in multi-account graphs.

4.5. Multi-Account OPM Graphs

So far, we have tackled account-less OPM graphs. In
this section, we provide a definition of multi-account graphs
with a view of defining the associated reproducibility seman-
tics. Figure 5 displays a definition of a multi-account graph
MAccOPMGraph. 1t is a triple consisting of a set of accounts,
a partial function mapping an account to an OPM graph, and a
refinement function.

Account = primitive set
Refinement = Account — Process — Account
MAccOPMGraph = P(Account)
X(Account - OPMGraph)
XRefinement
FullMAccOPMGraph = MAccOPMGraph X AResolver
XPResolver

Figure 5: Multi-Account OPM Graph

With this definition, the set of accounts known to a
MAccOPMGraph is given by the first component of the triple.
For each account, the multi-account OPM graph provides us
with one OPM graph. A FullMAccOPMGraph includes arti-
fact and process resolvers, mapping them to values or primitive
names, respectively.

Two OPM graphs in a multi-account OPM graph overlap if
they share some artifact or process. We see that in this defini-
tion a single value can be associated with an artifact in a multi-
account OPM graph.

The third component of a MAccOPMGraph is a refinement
function, which captures a very specific form of refinement,
corresponding to procedural abstraction. A process is allowed
to be refined into a subgraph (itself consisting of processes and
artifact and associated edges); if p is the process, « the ac-
count in which p occurs, the subgraph must correspond to an
account, say @’. In that case, the refinement function p is such
that p @ p = @’. To ensure reproducibility, we set some strict
constraints on the refinement function.

Definition 6 (Account Constraints). Let p oy p; = @, and
p az pr = ay4. We have that ay = a4 if and only if a1 = a3
and p1 = pp. O

This ensures that an account corresponds to the activation of
one and only one process.

4.6. Reproducibility of a Multi-Account OPM Graph

Figure 6 displays the reproducibility semantics for multi-
account OPM graphs, expressed by a function of type MAc-
cReproduce. Provided with the appropriate graph factories and
a primitive environment, for a given account and input artifacts,
it takes a FullMAccOPMGraph and returns another FullMAc-
cOPMGraph and a set of mapper functions. The account pro-
vided as input is the account in which computation needs to
be reproduced. Mappers now can map accounts of the original
graph to accounts in the resulting graph. Likewise, factories
comprise a factory for accounts.

The function reproduce, encodes the reproducibility seman-
tics, invoking the recursive function reproduce; after initial-
izing a FullMAccOPMGraph acting as an accumulator. The
function reproduce; relies on reproduce, (defined in Figure 4)
iteratively reproducing each account (and its refinements) en-
suring that nodes are properly shared across accounts in the re-
sulting graph.

To this end, we rely on the following operator, defining a
factory function that creates a new artifact only for those that
have not been mapped yet.

Mex, {IMx}UG) if M?x # L,

F? x G otherwise .

FN M =AxG.

We also introduce a combining operator, that takes the
“union” of two functions, preferring the first over the second.

Oix ifOx # L

6, W 0, = Ax. .
! 2 * 6,x otherwise.

Let « be an account, and @, a subaccount of @. The inputs
to @, (defined as 6, in Figure 6) is obtained by combining the
inputs to @ and the values of any artifact in a.

5. Semantic Web and Reproducibility

In this section, we investigate how to leverage the
reproducibility-semantics of Section 4 in order to define a re-
producibility service for the Semantic Web. First, we out-
line an architecture for a reference implementation of this ser-
vice. Then, we survey the Semantic Web techniques that are
exploited in this implementation. Finally, we summarize the
assumptions underlying OPM graphs for reproducibility in the
Semantic Web.

5.1. Reproducibility Service Architecture

Figure 7 displays the architecture of a reproducibility service.
It consists of four key components: (i) the reproducibility en-
gine, which implements the reproducibility semantics of Sec-
tion 4; (ii) a triple store containing representations of the OPM



AccMapper
AccountFactory
MAccGraphFactory
MAccMapper

MAccReproducelter

MAccReproduce

= Account — Account

Account - MAccOPMGraph — Account X MAccOPMGraph
= GraphFactory X AccountFactory
= Mappers X AccMapper

MAccGraphFactory — PrimitiveEnv — P(Account X InputArtifacts)
— FullMAccOPMGraph — MAccMapper — FullMAccOPMGraph
— MAccMapper X FullMAccOPMGraph

= MAccGraphFactory — PrimitiveEnv — (Account X InputArtifacts) — FullMAccOPMGraph
— MAccMapper X FullMAccOPMGraph

reproduce, : MAccReproducelter
reproduce;  E [1(G, V, V") M(G1, V], V) =M, (G, V], V)

reproduce; F & ((@,0) :: ) (G, V¢, VP) M (G, VY, (V‘l’) =

let

(- (
(M, M),

(o, ,p) = G
G = Ta
(0,G2) = FragG
M = Mla—asl

p* = sortProcesses(G,V*,VP)
Mé, Mg), G)) = initGraphForlnputs (F* \ M®) (graphlnputs (G, M*, M?)) (M, MP) 6
(Gz,(Vg,(VIZ’)) = reproduce, (F* \ M, F7)Ep* (G, V*,VP) (M, Mg) Gy

a* = map (p @) (processes G )

6, = 09 (V5o M)

in reproduce; ¥ & (1@ (map (Aa. (@, 6,)) @*)) (G, V*,VP) (M5, M‘;), M) (Galas — Go], Vi @ (V‘z’,(Vf (C] (Vg)

end

reproduce, : MAccReproduce

reproduce, F & (
reproduce; F &

7_"{!
Fp
Tﬂ/

7:’

m M M M

@,0) (G, V", V) =
(. 1 (G, V., V) Muic Grnies Viier Vi)

ArtifactFactory  artifact factory p € Refinement refinement
ProcessFactory process factory I' € Account -» OPMGraph account graph map
AccountFactory account factory 6 € InputArtifacts input artifacts

GraphFactory  graph factory

Figure 6: Reproducibility of a Multi-Account OPM Graph
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graph to reproduce, and of the OPM graph being generated, and
semantic declarations of primitives (iii) the primitive environ-
ment, which maps primitive names to actual primitives; (iv) the
execution engines, which are implementations of the primitive.
We now discuss them below.

input graph
Reproducibility
reproduced graph Engine
and mapping
D ———
Execution
Engines
Triple Primitive
Store Environment

Figure 7: Reproducibility Architecture

The reproducibility engine implements the reproducibility
semantics. Given an OPM graph, it extracts processes in their
invocation order (as specified by dependencies). Each pro-
cess is annotated with a primitive name. For instance, in the
First Provenance Challenge [23] workflow (discussed in Sec-
tion 6), process p1 results from the activation of the primitive
prim:align_warp.

@prefix opm: http://openprovenance.org/ontology#
@prefix prim: http://openprovenance.org/primitives#
@prefix pcl: http://www.ipaw.info/pcl/

pcl:pl opm:annotation pcl:anl_pl .
pcl:anl_pl a opm:Annotation;

opm:property pcl:pr_9 .
pcl:pr_9 a opm:Property ;

opm:uri  prim:primitive;
opm:value prim:align_warp.

Each primitive name is associated with an imple-
mentation of that primitive by the primitive environ-
ment. For instance, the default environment con-
tains a mapping from prim:align warp to the name
http://openprovenance.org/reproducibility/swift#align _warp,
which is itself mapped to an implementation procedure in the
execution engine. We have developed two types of execution
engines, inline in the Java virtual machine, or delegated to the
command line by means of the Swift workflow engine [45].

Swift encompasses Swift script, a declarative language al-
lowing the type of procedures to be declared, as well as the
necessary “plumbing” to invoke the executable on the com-
mand line. For instance, Figure 8 contains a declaration for
align warp specified as taking four inputs (i1, i2, i3, i4) and
producing an output (o). Each input/output element is associ-
ated with its OPM role, unique for this primitive. For instance,
the output o has role out, whereas the anatomy image i1 has
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role img. We note that the actual invocation makes explicit use
of the image files i1 and i2. On the other hand, the header files
are explicitly declared with roles hdr and hdrRef, but are not
passed explicitly to the executable align_warp since it derives
them automatically by replacing the extension img by hdr.

<procedure name="align_warp">

<output name="o" type="WarpParameters" opr:role="out"/>
<input name="il" type="AnatomyImage" opr:role="img"/>
<input name="i2" type="ReferenceImage" opr:role="imgRef"/>
<input name="i3" type="AnatomyHeader" opr:role="hdr"/>
<input name="i4" type="ReferenceHeader" opr:role="hdrRef"/>
<binding>

<application>

<executable>align_warp</executable>
<function name="filename">
<variableReference>il</variableReference>
</function>
<function name="filename">
<variableReference>i2</variableReference>
</function>
<function name="filename">
<variableReference>o</variableReference>
</function>
<stringConstant>-m</stringConstant>
<stringConstant>12</stringConstant>
<stringConstant>-q</stringConstant>
</application>
</binding>
</procedure>

Figure 8: Swift Script for align_warp

The invocation engine identifies all used artifacts. For in-
stance, pcl:al is declared as an artifact with type File, at lo-
cation /home/pcl/reference.img.
pcl:
opm:
opm:
opm:

al a opm:Artifact ;
account pcl:black ;
label "Reference Image"
type prim:File.

pcl:al opm:annotation pcl:anl_al .

pcl:anl_al a opm:Annotation;

opm:property pcl:pr_23 .

pcl:pr_23 a opm:Property ;
opm:uri prim:path ;
opm:value "/home/pcl/reference.img"

The artifact pc1:al is an input artifact to the reproducibility
function. We may want to use this exact file or another one.
The reproducibility engine also needs to be provided with the
actual value of this input, which is done by means of Swift con-
figuration containing the actual location where the file must be
retrieved from.
<variable name="var_il" type="Referencelmage">

<file name="//home/user/pcl/reference.img"/>
</variable>

Likewise, we do not necessarily want to write output files at
the same location, because we do not want to overwrite files,



or because we do not have the rights to do so. So, the repro-
ducibility engine also specifies the actual location where output
files must be stored into. In this example, they take place in the
current directory.

<variable name="var_o" type="WarpParameters">
<file name="./paramsl.warp"/>
</variable>

5.2. Semantic Web Techniques for Reproducibility

Multiple Semantic Web technologies have been exploited to
build a reference implementation of the reproducibility service.
Our baseline is a pre-existing OWL ontology for OPM [41].
We discuss the technologies that have been used, the purpose
for which they were used, and their limitations.

Queries. Having represented OPM graphs in RDF, it is natural
to use SPARQL [46] to express queries. This use of SPARQL is
well documented in the literature (e.g., MINDSWAP [47] and
Wings [48] in the first Provenance Challenge, Tetherless [49]
in the third Challenge). Two difficulties worth noting emerge.
Identifying all inputs of an OPM graph requires negation by
failure, which can be encoded in SPARQL as illustrated in Fig-
ure 9. Querying transitive properties is discussed next in this
section.

SELECT 7a

WHERE
7a a opm:Artifact
OPTIONAL {7a opm:_wasGeneratedBy 7p}
FILTER (!bound(?p))

Figure 9: SPARQL query: Inputs to an OPM Graph

Transitive Closures. When multiple or disconnected OPM
graphs co-exist in a triple store, and we wish to reproduce
a specific result, transitive closures are useful to identify
the inputs that indirectly cause some specific outputs. Fig-
ure 10 displays a possible definition of the multi-step edge
WasDerivedFrom# as a transitive property in OWL. First, we
note that a WasDerivedFrom OPM edge is expressed as an
OWL class and not an OWL property. Such an encoding fa-
cilitates the expressiveness of other OPM properties, such as
account membership, time information, and OPM annotations.
We then define an OWL property, _wasDerivedFrom with
Artifact as domain and range. Such a property can be in-
ferred'' by OWL by means of a property chain: if there is
an artifact that is effect of a WasDerivedFrom edge, itself
with another artifact as cause, then we can infer a property
_wasDerivedFrom between these two artifacts.

To specify this ontology, it was necessary to sacrifice elegance for decid-
ability. Instead of defining properties effect and cause from Edge to Node,
we had to define effectWasDerivedFrom and causeWasDerivedFrom from
Wasderivedfrom to Node; similar properties were also defined for other OPM
edges.
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Then, property _wasDerivedFrom_star is defined as tran-
sitive, with _wasDerivedFrom declared as a subproperty of
_wasDerivedFrom_star. Similar definitions can be adopted
for all multi-step inferences permitted by OPM.

Using OWL to encode OPM inferences presents some further
challenges. First, we note that OPM completion rules (artifact
and process introductions) are not expressible in OWL since
they require the inference of novel instances. Second, the tran-
sitive closure defined in Figure 10 ignores accounts: it could
infer a _wasDerivedFrom_star property by composing (prop-
erties inferred from) edges declared in two separate accounts,
which is not a legal inference in OPM. A solution to this prob-
lem is to consider named graphs [50] to capture assertions re-
lated to an account, and ensure that OWL inferences are limited
to a graph [51].

Ontological Definitions. An ontology has been designed and
is being used at design time. It allows us to express core con-
cepts, such as common artifacts (files with their path, numbers,
collections), processes (with a reference to a primitive name),
and kinds of primitives. This ontology (with prefix prim) ex-
tends the OPM OWL ontology, by subclassing its core classes
artifacts and processes. It allows us to check for consistency of
the various concepts.

Furthermore, still at design time, the ontology allows us to
define common derivations, corresponding to EdgeSpec in the
reproducibility semantics, and corresponding subtypes of the
WasDerivedFrom relation, and associate them with the cor-
responding primitives. For instance, the addition primitive
PrimitivePlus has two derivations SummandODerivation
and SummandiDerivation from its output (identified by role
out0) to its respective inputs identified by roles summand0 and
summandl. Figure 11 illustrate an excerpt of the Primitive on-
tology.

Hence, the use of ontologies facilitates the typing of primi-
tives (seen as functions operating over typed role-value pairs)
and their associated typed derivations. The kind of static type
checking of OPM graphs discussed in Section 4.4 can be im-
plemented by means of this ontology, and was referred to as
semantic validity by Miles et al. [52].

Runtime Rules. The reproducibility semantics expresses how
OPM edges can be constructed for every enacted process. Such
edges can be asserted by new SWRL rules '>. For instance, in
Figure 12,a new edge _wasDerivedFrom is added to an OPM
graph by means of a SWRL rule that checks the existence of
an input artifact a2 and an output artifact a1, respectively used

21t is important to note that OPM WasDerivedFrom edges cannot
be inferred from other edges, but must be asserted. By constructing
WasDerivedFrom edges by SWRL rules, we are not misinterpreting OPM se-
mantics. Indeed, these edges are constructed according to an ontological def-
inition of primitives, characterizing their semantics, and in particular, the as-
sociated dependencies. We note that the current version of this ontology only
supports static WasDerivedFrom edges, always between the same outputs and
inputs (identified by their roles), for whatever invocation of the primitive. An
alternative design supports conditional edges, according to the inputs to the
primitive.



// Class: http://openprovenance.org/ontology#WasDerivedFrom

SubClass0f (WasDerivedFrom
SubClass0f (WasDerivedFrom
SubClass0f (WasDerivedFrom
SubClass0f (WasDerivedFrom
SubClass0f (WasDerivedFrom

Edge)

ObjectSomeValuesFrom(effectWasDerivedFrom Artifact))
ObjectSomeValuesFrom(causeWasDerivedFrom Artifact))
ObjectAllValuesFrom(effectWasDerivedFrom Artifact))
ObjectAllValuesFrom(causeWasDerivedFrom Artifact))

// Object property: http://openprovenance.org/ontology#effectWasDerivedFrom-1

InverseObjectProperties(effectWasDerivedFrom-1 effectWasDerivedFrom)

InverseFunctionalObjectProperty(effectWasDerivedFrom-1)
ObjectPropertyDomain(effectWasDerivedFrom-1 Artifact)
ObjectPropertyRange (effectWasDerivedFrom-1 WasDerivedFrom)

// Object property: http://openprovenance.org/ontology#_wasDerivedFrom

SubObjectProperty0f (_wasDerivedFrom _wasDerivedFrom_star)
ObjectPropertyDomain(_wasDerivedFrom Artifact)
ObjectPropertyRange (_wasDerivedFrom Artifact)

// Sub property chain axiom

Sub0ObjectProperty0f (SubObjectPropertyChain(effectWasDerivedFrom-1 causeWasDerivedFrom) _wasDerivedFrom)

// Object property: http://openprovenance.org/ontology#_wasDerivedFrom_star

TransitiveObjectProperty(_wasDerivedFrom_star)
ObjectPropertyDomain(_wasDerivedFrom_star Artifact)
ObjectPropertyRange (_wasDerivedFrom_star Artifact)

Figure 10: Transitive _wasDerivedFrom_star

and generated by a process under some roles, process which
is associated with a primitive, declared to produce a derivation
between those roles.

5.3. Semantic Web Assumptions for Reproducibility

In this section, we summarize the assumption that underpin
OPM graphs for reproducibility in the Semantic Web.

o Well defined global names: Primitive names should be de-
fined by a global unique name, with a precise meaning.
Likewise, their implementations must be uniquely identi-
fied. In the Semantic Web tradition, such primitive names
and implementations can be identified by URIs. For in-
stance, we previously named the primitive align warp
with the URI prim:align _warp.

e Explicit representation of information: Each execution en-
gine may itself be configurable, and such configurations
need to be made explicit. For instance, Figure 8 displays
the Swift script for the implementation of align warp.
Furthermore, the Swift engine relies on a file tc.data to
map executable name to a specific executable in the file
system; this file must also be made explicit.

6. Evaluation

We have undertaken a range of empirical evaluations aim-
ing to demonstrate the capability of the reproducibility service,
and its suitability for deployment in a multi-technology envi-
ronment such as the Web. We discuss them in turn.
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1. Feasibility: First Provenance Challenge. Our first experi-
ence is designed to demonstrate that the reproducibility service
is capable of reproducing the results of a significant computa-
tion. We used the First Provenance Challenge workflow [23],
which has become a de-facto benchmark in the provenance
community.

By hand, we constructed pcltrace, an OPM provenance
trace of the First Provenance Challenge (see Figure A.17, in
Appendix). The trace pcltrace is minimal in the sense that it
is not annotated or decorated with any information that is not
necessary for reproducibility. Reproducing pcltrace resulted
in the following:

e an output trace with the same structure as pcltrace;

e a precise mapping of pcltrace node ids to the output
trace ids;

e aset of intermediary and final output files.

We have checked that the resulting trace is identical up to the
node ids, the locations of produced files, and the file contents.

Figure 13 summarizes the outcome of this experiment. The
input artifacts were chosen to be the same files (at a location of
our choice). The output artifacts a1l to a24 were shown to be
the same. We however observe that the artifacts following the
slicer stage differed. For instance, the artifact atlas-x.pgm
had 8 bytes that differed by one unit. Our only interpretation of
this difference is that we were using a more recent version of
the £s1 library.

The outcome of this experiment highlights the benefits of this
approach. By keeping explicit provenance and intermediary re-
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Figure 11: Primitive Ontology

sults (which in this example were four years old), we were able
to rerun the experiment and compare results. Reproducing the
experiment allowed us to identify a specific library, whose in-
stalled version was more recent, as the cause of the divergent
results.

2. Reproducibility Variants. In the second experiment, we es-
tablish that the reproducibility service can easily be customized
to invoke multiple execution technologies, such as command
line and Java code, simply by changing its primitive environ-
ment. Furthermore, the reproducibility service can be parame-
terized with different graph factories, to customize execution or
to ensure the uniqueness of the generated graph.

The results of this experiment are summarized in Figure 14.
The “Java Inline” execution refers to the ability to invoke Java
code directly. This was achieved by reproducing the OPM
graph of Figure 1, where the invoked primitives were imple-
mented in Java directly. Alternatively, the PC1 OPM graph
(Figure A.17) was reproduced using primitives implemented in
Swift, invoking command lines. Work is in progress to support
Web Services implementations of primitives; to this end, we are
planning to make use of the D-Profile [53] to minimize the size
of the OPM graph. We have also demonstrated that the repro-
ducibility service can be configured with mock-up implementa-
tion of primitives, which are hardwired and return specific out-
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Artifact(?al),
Artifact(?7a2),
_wasGeneratedBy(?7al,?p),
_used(?p,7a2),
effectWasGeneratedBy-1(%7a1,?g),
cause(7g,7p),
role(?g,?rl),

isKindOf (?r1,7rt1),
effectUsed-1(7p,7u),
cause(?u,?a2),
role(?u,?r2),

isKindOf (7r2,7rt2),
isKind0f (?p, 7pt),
hasDerivation(?7pt,?d),
effects(?d,?rtl),
causedBy(?d, ?rt2)

-> _wasDerivedFrom(?7al,?7a2)

Figure 12: SWRL rule to construct derivations according to the semantics of
primitives

artifact id success?  comments
inputs al,...,al0 v copies of originals of 2006-05-31
outputs all,..., 24 v checked to be the same
as originals of 2006-05-31
outputs a25, ..., 30 X different

Figure 13: Experiment 1: Result Comparability

puts for specific inputs (similarly to Bechhofer’s [24] replaya-
bility). Such replayability was demonstrated for the PC1 OPM
graph, with primitives returning directly the URLSs as per speci-
fied in the First Challenge; such primitives were then described
as “dummies” [23].

A driver for this paper is to provide a reproducibility seman-
tics for an ontology-based representation of provenance, allow-
ing a uniform representation of provenance, despite multiple
execution technologies being involved in executions across the
Web. To demonstrate this capability, we have configured the
reproducibility service, with implementation of PC1 primitives
using different technologies, e.g. Swift and Java, and have suc-
cessfully reproduced the experiment.

The second part of Figure 14 demonstrates how the repro-
ducibility service can be configured with various graph facto-
ries. The graph factory can be used to generate new ids for
nodes (and edges), but also to change the location of files to
be generated by the command line executables, so that they do
not overwrite previously existing files. Both were successfully

demonstrated with numeric wflow
implementation in progress
demonstrated with PC1 workflow
PC1 mock up with dummy primitives
demonstrated with PC1 workflow

Java Inline Execution
WebService Execution
Swift Execution
Replayability [24]
Multi Technology

Graph factory variant
Graph factory variant

output graph with different artifact ids

4
X
v
4
v
4
v/ output with different file locations

Figure 14: Experiment 2: Reproducibility Variants



demonstrated using the PC1 OPM graph.

3. Other Inputs. In the third experiment, we establish that the
reproducibility service can be used to reproduce experiments
with inputs that differ from those used in the original experi-
ment.

v demonstrated with numeric wflow
v demonstrated with numeric wflow
v Provenance Challenge 1

New inputs
Differently encoded inputs
Change of parameters

Figure 15: Experiment 3: Other Inputs

One should note that in this experiment we do not have the
original workflow but just a trace of its past execution. Given
the numeric expression OPM graph (Figure 1), one can recom-
pute the expression with alternate inputs. When the original
process makes decisions on its inputs, the outcome of such
decision-making may differ when new inputs are provided. In
that case, the provenance trace may not contain enough infor-
mation to reproduce the original process (essentially alternate
branches may be missing). This is an issue that Cheney et
al. tackle under their “fidelity property” [15], which relies on
a form of “continuation” [54], a data structure that combines
computational state and program structure, to allow computa-
tions to be resumed and continued.

OPM requires the encoding of artifact values to be made ex-
plicit. Hence, alternate encodings of a same input can be sup-
ported (e.g., an integer passed by reference in a file, instead
of by value). We note that this type of conversion, referred to a
“shim” by Duncan et al. [55], can be handled automatically and
systematically in a number of cases [56].

Finally, parameter sweeps are possible by changing work-
flow parameters, considered as an “input” by the reproducibility
service.

7. Discussion

7.1. OPM

This paper is the first to provide an executable semantics
for a substantial subset of OPM, independently of a given
execution technology. This formalization complements the
ones discussed in Section 3.4: Cheney’s causal perspective of
OPM [37], Moreau et al.’s set-theoretic definition of OPM [35],
Kwasnikowska et al.’s temporal interpretation of OPM [36],
and Missier and Goble’s translation of OPM to a workflow lan-
guage [17]. The fact that each formalization covers a different
subset of OPM, and that no equivalence between interpretations
has been established yet, is indicative of a lack of a “grand the-
ory of OPM”.

OPM introduced interesting features, such as the notions of
accounts and refinements. This paper has proposed a novel
definition for these, which corresponds to the nested invoca-
tion of procedures in programming languages: a process can
be refined into a subaccount (to some extent, the equivalent of
an activation frame in language runtime systems). Alternate
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definitions have been proposed, and their implication for re-
producibility need to be investigated. Kwasnikowska and Van
Den Bussche [57] propose a methodology to accommodate hi-
erarchical refinements in OPM. Their notion of refinement al-
lows for an OPM subgraph to be refined into another OPM sub-
graph. Groth and Moreau [53] propose the D-profile, a profile
to express details of execution in distributed systems, such as
communication and messages; the D-profile introduces an al-
ternative form of refinement, where an artifact is refined into
a subgraph. Whilst the notions of refinement defined in these
proposals are more general than the one presented here, no re-
producibility semantics of such refinements has been proposed.

This paper has introduced constraints on the topology of
OPM graphs to ensure their reproducibility (cf. Definitions 1
and 6). It is our belief that the acyclicity constraint could be
relaxed whilst still preserving reproducibility, for networks of
processes exchanging artifacts. Indeed, provided that there is no
cycle with was-derived-from edges, we can identify processes
in subaccounts that exchange such artifacts. The current seman-
tics would have to be extended in two different ways to sup-
port these: procedures would have to be called by “name” and
no longer “by value”, and processes would have to be ordered
across multiple accounts. A number of edges have been ignored
in the reproducibility semantics, because they hide execution
“details”, such as wtb and all multi-step edges. It would be
interesting to investigate how their temporal interpretation [36]
can be folded into the reproducibility semantics.

7.2. OPM and Semantic Web Technologies

McGrath and Futrelle [42] show limitations of SWRL and
OWL in expressing OPM inferences. They did not consider
property chains as we did in this paper. They propose a hy-
brid approach combining OWL, SWRL, RDF with extra tools
to handle all OPM requirements. We are following a similar
approach here.

Zhao’s Open Provenance Model Vocabulary (OPMYV) [58]
aims to encode OPM in RDF, attempting to leverage existing
vocabularies and ontologies such as Dublin Core, FOAF, and
the Provenance Vocabulary [59], its predecessor. OPMV is
work in progress, and does not support the full expressivity of
OPM yet. It may benefit from some of the encoding of relations
introduced by this paper.

A challenge brought by this work was putting Semantic
Web technologies into action, in order to implement the re-
producibility service. The challenge was both conceptual and
implementational. First, there is not a single Semantic Web
technology that allows us, today, to tackle all the issues we
have encountered: (i) SPARQL does not support recursive
queries over multi-step OPM edges; (ii) multi-step edges can
be inferred by SWRL rules or OWL property chains; (iii)
OPM n-ary relations are not naturally encoded in RDF; (iv)
RDF Named graphs go some way capturing OPM features [51]
such as account; (v) OPM completion rules require the in-
ference of individuals, which can only be supported by some
non-standardized extensions.  Adopting all these technolo-
gies together result in a framework, whose semantics are not
clear, and good properties such as decidability are lost. From a



practical point of view, at the time of writing, only a few rea-
soner could support the property chains described in this paper
(TROWL and Pellet were successful, whilst FACT++ and Her-
miT failed). Pellet supported many of the above technologies,
and was complemented by Java code, but performance of the
overall approach remains a serious concern.

7.3. Reproducibility

In this paper, we have essentially regarded an OPM graph as a
workflow, interpretable according to the reproducibility seman-
tics. Therefore, this work bears relation with the workflow lit-
erature [60]. Techniques such a workflow abstraction and elab-
oration [61], scheduling [60], and collection-support are also
applicable here [61].

The reproducibility semantics has been implemented using
the OPM toolbox'3. Its wrapping as a reproducibility service
service remains to be undertaken. We envisage this service
of being capable of taking OPM graphs, and reproducing their
execution, timestamping and signing the resulting provenance
trace, hereby confirming, in a non-forgeable way, that it is re-
ducible. Such a service would need to be scalable, and is obvi-
ously a good candidate for parallelization.

In Section 3.1, we introduced dimensions to the problem of
reproducibility: inputs, primitives, and results. They are cap-
tured by 6 (inputs), &, V7P (primitives), and V¢ (results) in the
reproducibility semantics. Figure 16 categorizes the various
kinds of provenance-based reproducibility found in the litera-
ture according to these dimensions.

Inputs Primitives  Results

same same same repetition (Miles et al. [25])
different different different  reenactment (Miles et al. [25])

same same — repeatability (Bechhofer er al. [24])

same same same reproducibilty (Bechhofer et al. [24])

same mockup same replayability (Bechhofer et al. [24])

same multiple same N-version reproducibility

variants (Levince et al. [29])
— different — upgrades (Koop et al. [34])

same same same consistency (Cheney et al. [15])

different different different  fidelity (Cheney et al. [15])

Figure 16: Classification of Reproduciblity Approaches

In multiple publications [9, 21, 11], our preferred definition
of provenance stated that it is an “explicit representation of the
processes that /ed to that data item”. In particular, we used the
past tense to indicate that some processes produced a data item.
In this paper, we looked at provenance as a program, which can
be executed in the future. Hence, to accomodate this new per-
spective on provenance, we propose the following revised defi-
nition: provenance of a data item is an explicit representation of
a computational activity, which in the past led to that data item,
and which can be reproduced in the future, to derive possibly
similar new data items. We are not the first to consider prove-
nance as a program. Cheney [37] considers a subset of OPM as
a series of nested let expressions, and Miles [62] introduces

Bhttp://github. com/lucmoreau/OpenProvenanceModel
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POEM, a textual notation to create OPM graphs. None of them
are investigating the problem of reproducibility.

Davidson et al. [63] study the problem of providing work-
flow data provenance without revealing the functionality of any
module. To this end, they focus on the Secure View problem,
which consists in ensuring privacy of all modules in a work-
flow, by hiding the smallest amount of data. The problem is
established to be NP-hard, and they propose a polynomial-time
approximation. We conjecture that there is a trade-off between
full-reproducibility and full-privacy, since the reproducibility
semantics expects primitive names (and implementations) to be
shared. However, there may be a useful class of reproducibil-
ity behaviour, possibly similar to replayability [24], that can be
performed on privacy-preserving provenance. Such an inves-
tigation has also to take into account the specific OPM graph
structure, including was-derived-from edges, which partially re-
veal the private behaviour of processes.

8. Conclusion

Results reproducibility is crucial in scientific and non-
scientific contexts to gain confidence in results and ensure their
quality. It is particularly important when such results are de-
rived from computations that make use of third-party services
across the Web. In this context, ontology-based representa-
tions of provenance offer a uniform description of past execu-
tions across such services. Provenance is usually considered
as a strong foundation for ensuring reproducibility, since its
rich representation encompasses the necessary details to repro-
duce execution steps, and check all results, whether intermedi-
ary or final. However, ontology-based representations of prove-
nance lack any formal link with execution, which makes it un-
clear why provenance is a sound foundation for reproducibility.
We have tackled this problem by providing the reproducibil-
ity semantics for the Open Provenance Model; this semantics
takes the form of a denotational semantics, which assigns well-
formed OPM graphs to a function, which for some inputs, pro-
duces an OPM graph describing the reproduction of the result.

The benefits of the reproducibility semantics are multifold.

1. It provides a strong, technology-neutral, understanding
of provenance by defining the mathematical meaning of
OPM graphs. It allows us to define reproducibility for-
mally, and classes of reproducible graphs. It is therefore
the basis of a theory of provenance-based reproducibility.
It is a specification of a reproducibility service, which we
envision as deployable on the Web or on Intranets. It al-
lows users who publish results and their provenance, to
check that their results are reproducible, and users who
discover data, to verify how they were produced. Hence,
it permits users to increase their confidence in such data.
3. From a methodological viewpoint, one always wonders
what should be included in provenance. The semantics
provides an algorithmic way to decide what needs to be
recorded in provenance to ensure past computation repro-
ducibility.


http://github.com/lucmoreau/OpenProvenanceModel

Our future work will address several concerns. From a the-
oretical perspective, we will aim to relax the topological con-
straints that we set on OPM graphs, and define a broader class
of reproducible OPM graphs. Better and more scalable Seman-
tic Web reasoning techniques are required to support the OPM
specific inferences, and the necessary inferences required for
reproducibility. Finally, we will seek to deploy a reproducibil-
ity service in the context of the Fourth Provenance Challenge,
as a means to validate, automatically, the provenance traces pro-
duced by the participating teams.
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Figure A.17: PC1 OPM graph (for illustrative purpose only)
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