
OWL-POLAR: A Framework for Semantic Policy
Representation and Reasoning

Murat Sensoya,∗ Timothy J. Normana Wamberto W. Vasconcelosa

Katia Sycarab

aDepartment of Computing Science, University of Aberdeen, AB24 3UE, Aberdeen, UK
bCarnegie Mellon University, Robotics Institute, Pittsburgh, PA 15213, USA

Abstract

In a distributed system, the actions of one component may lead to severe failures in the
system as a whole. To govern such systems, constraints are placed on the behaviour of
components to avoid such undesirable actions. Policies or norms are declarations of soft
constraints regulating what is prohibited, permitted or obliged within a distributed sys-
tem. These constraints provide systems-level means to mitigate against failures. A few
machine-processable representations for policies have been proposed, but they tend to be
either limited in the types of policies that can be expressed or are limited by the complex-
ity of associated reasoning mechanisms. In this paper, we present a language that suffi-
ciently expresses the types of policies essential in practical systems, and which enables
both policy-governed decision-making and policy analysis within the bounds of decidabil-
ity. We then propose an OWL-based representation of policies that meets these criteria
and reasoning mechanisms that use a novel combination of ontology consistency checking
and query answering. The proposed policy representation and reasoning mechanisms al-
low development of distributed agent-based systems that operate flexibly and effectively in
policy-constrainted environments.

Key words: Semantic Web, Policies, Norms, Conflict Resolution, Multi-agent Systems

∗ Corresponding author. Tel: +44 7522474621
Email addresses:m.sensoy@abdn.ac.uk (Murat Sensoy),

t.j.norman@abdn.ac.uk (Timothy J. Norman),
w.w.vasconcelos@abdn.ac.uk (Wamberto W. Vasconcelos),
katia@cs.cmu.edu (Katia Sycara).

Preprint submitted to Elsevier 14 November 2011

http://ees.elsevier.com/jws/viewRCResults.aspx?pdf=1&docID=1088&rev=2&fileID=24005&msid={0DFF95E0-2B15-4C04-A11F-03319F295F40}

1 Introduction

Multi-agent systems are distributed systems whose components are intelligent soft-
ware agents [37]. Each agent has a set of goals, capabilities and resources. Using
their capabilities and resources, agents within a multi-agent system execute actions
to achieve their goals. Individual actions, however, may result in undesirable con-
sequences within the system. It is, therefore, important to regulate the actions of
agents to reduce the risk of these undesirable consequences [9].

Authorities may enforcepoliciesto regulate actions of agents within a specific con-
text. Policies are soft constraints determining in which situations a certain action
is obliged, permitted, or prohibited [35]. Authoring polices for a specific domain
requires the ability to imagine all implications of policies within that domain. This
challenge may lead to policies that are inconsistent or incomplete and, possibly,
policies that do not fully capture the intentions of the authors. Furthermore, dif-
ferent authorities with different goals may enforce different policies in the same
context. For instance, governments enforce policies to promote health and safety,
while companies create their own policies to promote productivity and consumer
satisfaction. Policies of a single authority may be assumed to be consistent, how-
ever policies of different authorities may conflict in a specific context. With mecha-
nisms to reason with and about policies, one is able to anticipate contexts in which
conflicts may arise; these mechanisms should enable the resolution of conflicts at
design time, thus providing guarantees to systems before they are executed. With-
out such reasoning mechanisms, it would be difficult for policy authors to identify
the contexts in which their policies conflict. The identification and resolution of
policy conflicts are left to the agents operating in those contexts, with potentially
undesirable run-time effects.

In this paper, we present a novel and powerful OWL 2.0 [15] knowledge representa-
tion and reasoning mechanism for policies: OWL-POLAR (an acronym for OWL-
based POlicy Language for Agent Reasoning). Policies, which are also known as
norms, are system-level principles of ideal activity that are binding upon the com-
ponents of that system. Depending on the nature of the system itself, policies may
serve to control, regulate or simply guide the activities of components. In systems
security, for instance, the aim is typically to control behaviour such that the system
complies with the policies [31]. In real socio-technical systems, however, there are
important limits to this and the aim is to develop effective sets of policies along
with incentives to regulate behaviour [2]. In systems of autonomous agents, the
term norm is most prevalent, but the concept and issues remain the same [7]; for
example, norms are used to regulate the behaviour of agents representing disparate
interests in electronic institutions [13]. The objective of this research is to fulfil the
essential requirements of policy representation, reasoning, and analysis. In meeting
this objective three key requirements must be met:

2

(1) System/institutional policies must be machine understandable and underpinned
by a clear interpretation.

(2) The representation must be sufficiently expressive to capture the notion of a
policy across domains.

(3) Policies must be able to be effectively shared/interpreted at run-time.

The choice of OWL 2.0 as an underlying language addresses the first requirement,
but in meeting the second two, we must clearly outline what is required of a policy
language and what reasoning should be supported by it. The desiderata of a model
of policies that motivates the language OWL-POLAR are as follows:

• Representational adequacy.Policies (or norms) must capture the distinction be-
tween activities that are required (obliged), restricted (prohibited) and, in some
way, authorised but not necessarily expected (permitted) by some representa-
tional entity within the environment. It is essential to capture the authority from
which the policy/norm comes, the subject (agent) to whom it applies, the object
(activity) to which the policy/norm refers, and the circumstances within which it
applies.

• Supporting decisions.Any reasoning mechanism that is driven/guided by poli-
cies must support both the determination of what policies/norms apply in a given
situation, and what activities are warranted by the normative state of the agent if
it were to comply with these policies.

• Supporting analysis.Any reasoning mechanism that is driven/guided by nor-
mative/policy constraints must support the assessment of policies in terms of:
(i) whether a policy/norm is meaningful and (ii) whether norms conflict, and in
what circumstances they do conflict.

We believe that this desideratum of a model of policies can be met within the con-
fines of OWL-DL. If this claim can be shown to be valid (as we aim to do within this
paper), we believe that OWL-POLAR provides, for the first time, a sufficiently ex-
pressive policy language for which the key reasoning mechanisms required of such
a language are decidable. These mechanisms allow intelligent software agents and
policy authors to reason within context. Inconsistent and unfounded policies are
automatically identified. Heterogeneous knowledge across different authority do-
mains could be better integrated by revealing the context in which the policies they
enforce may be in conflict. Furthermore, the proposed mechanisms equip agents
with the capability to resolve such conflicts.

The paper is organised as follows: in Section 2 we formally specify the OWL-
POLAR language within OWL-DL; in Section 3 we describe how a set of active
policies may be computed, and how decisions about what activities are warranted
by some set of policies may be made; then in Section 4 we present in detail the
reasoning mechanisms that support the analysis of policies and conflict detection
between policies; in Section 5 we present conflict resolution mechanisms for poli-
cies. Section 6 discusses the computational complexity of the proposed reasoning

3

mechanisms. OWL-POLAR is then compared to existing languages for policies in
Section 7, and we present our conclusions in Section 8.

2 Semantic Representation of Policies

The proposed language for semantic representation of policies is based on OWL-
DL [15]. An OWL-DL ontologyo = (TBoxo, ABoxo) consists of a set of axioms
defining the classes and relations (TBoxo) as well as a set of assertional axioms
about the individuals in the domain (ABoxo). Concept axioms have the formC ⊑
D whereC andD are concept descriptions, and relation axioms are expressions
of the formR ⊑ S, whereR andS are relation descriptions. The ABox contains
concept assertions of the formC(a) whereC is a concept anda is an individual
name, and relation assertions of the formR(a, b), whereR is a relation anda andb
are individual names.

Conjunctive semantic formulas are used to express policies. A conjunctive seman-
tic formulaF o

~v =
∧n

i=0 φi over an ontologyo is a conjunction of atomic assertions
φi, where~v = 〈?x0, . . . , ?xn〉 represents a vector of variables used in these asser-
tions. For the sake of convenience, we assume

∧n
i=0 φi ≡ {φ1, . . . φn} in order to

consider a conjunctive formula as a set of atomic assertions. Based on this,F o
~v can

be considered asT o
~v ∪ Ro

~v ∪ Co
~v , whereT o

~v is a set of type assertions using the con-
cepts fromo, e.g.,{student(?xi), nurse(?xj)}; Ro

~v is set of relation assertions using
the relations fromo, e.g.,{marriedTo(?xi, ?xj)}; Co

~v is a set of constraint assertions
on variables. Each constraint assertion is of the form?xi ⊳ β, whereβ is a constant
and⊳ is any of the symbols{>,<,=, 6=,≥,≤}. A constant is either a data literal
(e.g, a numerical value) or an individual defined ino.

Variables are divided into two categories; datatype and object variables. A datatype
variable refers to data values (e.g., integers) and can be used only once inRo

~v. On the
other hand, an object variable refers to individuals (e.g., Universityof Aberdeen)
and can be used freely many times inRo

~v. Equivalence and distinction between
the values of object variables can be defined using OWL propertiessameAsand
differentFromrespectively, e.g.,owl:sameAs(?x,?y). In the rest of the paper, we use
the symbolsα, ρ, ϕ, ande as a short hand for semantic formulas. Given an ontology
o, a conditional policy is defined asα −→ Nχ:ρ (a : ϕ) /e, where

(1) α, a conjunctive semantic formula, is the activation condition of the policy.
(2) N ∈ {O,P, F} indicates if the policy is an obligation, permission or prohibi-

tion.
(3) χ is the policy addressee andρ describesχ using only therole concepts from

the ontology (e.g.,?x : student(?x) ∧ female(?x), wherestudentandfemale
are defined as sub-concepts of therole concept in the ontology). That is,ρ is
of the form

∧n
i=0 ri(χ), whereri ⊑ role. Note thatχ may directly refer to a

4

Table 1
A person has to leave a location when there is a fire risk.

α P lace(?b) ∧ hasF ireRisk(?b, true) ∧ in(?x, ?b)

N O

χ : ρ ?x : Person(?x)

a : ϕ ?a : LeavingAction(?a) ∧ about(?a, ?b) ∧ hasActor(?a, ?x)

e hasF ireRisk(?b, false)

specific individual (e.g.,John) in the ontology or a variable.
(4) a : ϕ describes what is prohibited, permitted or obliged by the policy. Specif-

ically, a is a variable referring to the action to be regulated by the policy
andϕ describesa as an action instance using the concepts and properties
from the ontology (e.g.,?a : SendFileAction(?a) ∧ hasReceiver(?a, John) ∧

hasFile(?a, TechReport218.pdf), whereSendFileActionis anactionconcept).
Each action concept has only a number of functional relations (aka. functional
properties) [15] and these relations are used while describing an instance of
that action.

(5) e defines the expiration condition.

Table 1 illustrates how a conditional policy can be represented using the proposed
approach. This policy states that a person is obliged to leave a location when there
is a fire risk.

Given a semantic representation for the state of the world, policies are used to
reason about actions that are permitted, obliged or prohibited. Let∆o be a semantic
representation for a state of the world based on an ontologyo. Each state of the
world is partially observable; hence∆o is a partial representation of the world.∆o

itself is represented as an ontology composed of(TBoxo, ABox∆) whereABox∆

is an extension ofABoxo.

3 Reasoning with Policies

When its activation conditions are satisfied, a conditional policy leads to an acti-
vated policy. Definition 1 summarizes how a conditional policy is activated using
ontological reasoning over a state of the world. Here we use query answering to
determine activated policies and reason about actions. The query answering mech-
anism we use in this work is DL-safe; i.e. variables are bound only to the named
individuals, to guarantee decidability [16]. In this section, we address some of the
key issues in supporting decisions governed by policies: activation and expiration,
and reasoning about interactions between policies and actions.

Definition 1 Let∆o be a state of the world represented based on a domain ontology
o. If there is a substitutionσ such that∆o ⊢ (α ∧ ρ) · σ, but there is no substitution

5

Person

Patient Doctor

BuildingRoom

John
Jane

CentralHospital

Room245

type type type

type

in

in

inChargeOf

hasFireRisk

in

TBOX

ABOX

Hospital

isA
isA isA

isA

Place

isA

in

in

HospitalRoom

isA

in

Action

isA

hasActor

LeavingAction

true

hasPatient

hasFireRisk

xsd:boolean

CurrentTime

t

type

hasValue

13:00:00

hasValue
xsd:time

xsd:boolean

hasAge

xsd:int

inChargeOf

marriedTo

Fig. 1. A partial state of the world represented based on a domain ontology.

σ′ such that∆o ⊢ (e · σ) · σ′, then the policy(Nχ (a : ϕ)) · σ becomes active. This
policy expires when there exists a substitutionσ′ such that∆o ⊢ (e · σ) · σ′.

3.1 Policy Activation

A policy is activated for a specific agent when the world state is such that the ac-
tivation condition holds for that agent and the expiration condition does not hold,
and expires when this latter condition holds. The above definition is rather stan-
dard [19], but we now describe how this is implemented efficiently through query
answering. A conjunctive semantic formula can be trivially converted to a SPARQL
query [26] and can be evaluated by OWL-DL reasoners with SPARQL-DL [30]
support such as Pellet [30] to find a substitution for its variables satisfying a spe-
cific state of the world. Therefore, we can test∆o ⊢ (α ∧ ρ) · σ by writing a query
for (α ∧ ρ) and testing whether it is entailed by∆o or not. Consider the conditional
policy in Table 1 and assume that we have the partially represented state of the
world in Figure 1. We can write the semantic query in Figure 2 to findσ for the
conditional policy. When we query the state of the world using SPARQL, each re-
sult in the result set provides a substitutionσ; in our case, we have twoσ values:
{?x/John, ?b/Room245} and{?x/Jane, ?b/Room245}, representing that there is a fire
risk in the room 245 of the Central Hospital and that John and Jane are in that room.

Now, using the computedσ values, we should try to find aσ′ such that∆o ⊢
(e · σ) · σ′. In our case, for this purpose, we can use the semantic query “q():- has-
FireRisk(Room245, false)”. When the SPARQL representation of this query is exe-
cuted over the state of the world shown in Figure 1, it returnsfalse; that is the RDF
graph pattern represented by the query could not be found in the ontology. This
means that the policy in Table 1 should be activated using the variable bindings
in σ. The result is activations ofOJohn(?a : LeavingAction(?a)∧ about(?a,Room245))
andOJane(?a : LeavingAction(?a)∧ about(?a,Room245)). These policies mean that
JohnandJaneare obliged to leave theroom 245; the obligation expires when the

6

Query:

q(?x, ?b):-

Place(?b) ∧

hasFireRisk(?b, true) ∧

Person(?x) ∧

in(?x,?b).

SPARQL SYNTAX:

PREFIX example: <http://www.example.com/ns#>

PREFIX rdf: <http://www.w3.org/...rdf-syntax-ns#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?x ?b

WHERE{

?b rdf:type example:Place.

?b example:hasFireRisk "true"ˆˆxsd:boolean.

?x rdf:type example:Person.

?x example:in ?b.

}

Fig. 2. Query for the activation of a policy.

fire risk is removed.

3.2 Reasoning about Actions

Let us assume that a specific actiona′ : ϕ′ will be performed byx, wherea′ is a
URI referring to the action instance andϕ′ is a conjunctive semantic formula de-
scribinga′ without using any variables. Let∆o be the current state of the world.
We can test if the actiona′ is permitted, forbidden or prohibited in∆o. For this
purpose, based on∆o, we create a “sandbox” (hypothetical) state of the world∆′

o

to makewhat-if reasoning [34], i.e.,∆′
o shows what happens if the action is per-

formed. This is achieved by simply adding the described action instance to∆o, i.e.,
∆′

o = ∆o ∪ ϕ′. For example, the state of the world in Figure 1 is extended using
action instanceLeaveAct1: LeavingAction(LeaveAct1) ∧ hasActor(LeaveAct1,John)∧
about(LeaveAct1,room245). The resulting state of the world is shown in Figure 3.

For each active policyNx(y : ϕy), we test the expiration conditions on∆′
o as

explained before. If the policy’s expiration conditions are satisfied, we can conclude
that the actiona′ : ϕ′ leads to the expiration of the policy. Otherwise, a semantic
queryQ of the formq(~vϕy

):- ϕy is created, where~vϕy
is the vector of variables in

ϕy. Then,∆′
o is queried withQ. Let the query return a result setrs; each result

r ∈ rs is a substitution such that∆′
o ⊢ ϕy · r. If y · r = a′ for any suchr, then

a′ is regulated by the policy. In this case, we can interpret the policy based on its
modality as follows:

(1) Nx = O: In this case, the policy represents an obligation; that is,x is obliged
to performa′. Performinga′ will remove this obligation.

(2) Nx = P : Performinga′ is explicitly permitted.
(3) Nx = F : Performinga′ is prohibited.

After examining the active policies as described above, we can identify a number
of possible normative positions with respect to the action instancea′: (i) doing a′

7

Person

Patient Doctor

BuildingRoom

John
Jane

CentralHospital

Room245

type type
type

type

in

in
inChargeOf

hasFireRisk

in

TBOX

ABOX

Hospital

isA
isA isA

isA

Place

isA

in

in

HospitalRoom

isA

in

Action

isA

hasActor

LeavingAction

true

hasPatient

hasFireRisk

xsd:boolean

LeaveAct_1

type

hasActor

about

CurrentTime

t

type

hasValue

13:00:00

hasValue
xsd:time

xsd:boolean

hasAge

xsd:int

inChargeOf

marriedTo

Fig. 3. The “sandbox” (hypothetical) state of the world.

may be explicitly permitted if there is a policy permitting it; (ii) doinga′ may be
obligatory if there exists a policy obliging it; (iii) doinga′ may be prohibited if
there is a policy prohibiting it; and (iv) there may be a conflict in the normative
position with respect toa′ if it is either both prohibited and explicitly permitted, or
both prohibited and obliged.

4 Reasoning about Policies

In this section, we demonstrate reasoning techniques to support the analysis of
policies in terms of their meaningfulness (Section 4.2) and possibility of conflict
(Section 4.3), and hence address our third desideratum. Prior to this, however, we
propose methods for reasoning about semantic formulas to underpin our mecha-
nisms for policy analysis.

4.1 Reasoning about Semantic Formulas

Here, we introduce methods for reasoning about semantic conjunctive formulas
using query freezing and constraint transformation.

4.1.1 Conjunctive Queries

There is an important relationship between conjunctive formulas and conjunctive
queries that we exploit in this reasoning model. Conjunctive semantic formula can
trivially be converted into a conjunctive semantic query. For example,Ao

~v1
can be

converted into the queryqA():- Ao
~v1

. In this way, we can use query reasoning tech-
niques to reason about semantic formulas. For instance, in order to reason about
the subsumption between semantic formulas, we can use query subsumption (con-
tainment).

8

PersonPatient DoctorJanetype
marriedToTBOX

ABOX
isA isAActionisA hasA ctorLeavingAction hasAgexsd:int XtypemarriedTo C

typehasChild
hasChild

Fig. 4. The ontology created forqB in Example 1.

In the conjunctive query literature, in order to test whetherqA subsumesqB, the
standard technique ofquery freezingis used to reduce the query containment prob-
lem to query answering in Description Logics [22,33]. For this purpose, we build a
canonical ABoxΦqB from the queryqB():- Bo

~v2
in three steps. First, for each vari-

able in ~v2, we put a fresh individual intoΦqB using the type assertions about the
variable. Note that this individual should not exist ino. Second, we add each indi-
vidual appearing inqB into ΦqB . This is done using information about the individ-
ual from theABoxo (e.g., type assertions). Third, relationships between individuals
and constants defined inqB are inserted intoΦqB . As a result of this process,ΦqB

contains a pattern that exists only in ontologies that satisfyqB. We combineΦqB

and ourTBoxo to create a new canonical ontology,o′ = (TBoxo,ΦqB). Example 1
demonstrates a simple case. Based on [33,22], we conclude thato ⊢ qB ⊑ qA if
and only ifo′ entailsqA. In order to test whethero′ entailsqA or not, we queryo′.
That is,o′ entailsqA if there exists at least one match forqA in o′. This can easily be
achieved by convertingqA to SPARQL syntax and use Pellet’s SPARQL-DL query
engine to answerqA ono′ [30].

Example 1 Let queryqA be q():- Person(?p)∧ marriedTo(?p,?x)∧ Patient(?x)
and queryqB beq():- Doctor(?x)∧ marriedTo(?x,Jane)∧ hasChild(?x,?c). Then,
ΦqB contains an individualx, which is created for the variable?x. The individualx
is defined as of typeDoctor. In ΦqB , we also have another individualJane, which
is defined in the originalABoxo as an instance of thePatientclass; we get all of
its type assertions from theABoxo. Then, we insert the object propertymarriedTo
between the individualsx andJane. Lastly, we create another individualc for the
variable?c in ΦqB and insert thehasChild object property betweenx andc. The
resulting ontology is shown in Figure 4.

The query freezing method described above enables us to create a canonical ABox
for a semantic conjunctive formula; this ABox represents a pattern which only ex-
ists in ontologies satisfying the semantic formula. On the other hand, this method
assumes that variables in queries can be assigned fresh individuals in a canonical

9

ABox. However, in OWL-DL, individuals can refer to objects, but not data val-
ues [32]. Therefore, the proposed query freezing method can be used to test for
subsumption betweenqA and qB only if the variables inqA and qB refer to ob-
jects. A variable can refer to an object if it is used as the domain of an object
or datatype property (e.g.,hasAge(?x,10)) or if it is used as the range of an object
property (e.g.,marriedTo(John,?x)). Unfortunately, in many real-life settings, queries
may have variables referring to data values with various constraints, which we refer
to here asdatatype variables. In these settings, the query freezing described above
cannot be used to test subsumption. Example 2 illustrates a simple scenario.

Example 2 Let queryqA beq():- Person(?p)∧ hasChild(?p,?c)∧ hasAge(?c,?y)
∧ ?y≥ 12 ∧ ?y≤ 16 and queryqB be q():- Doctor(?x)∧ marriedTo(?x,Jane)∧
hasChild(?x,?c)∧ hasAge(?c,?a)∧ ?a≥ 10∧ ?a≤ 20. In this example, the query
freezing method cannot be used directly to test subsumption betweenqA andqB,
because the variables?y and?a refer to data values, which cannot be represented
by individuals in an OWL-DL ontology.

4.1.2 Constraint Transformation

Here, we proposeconstraint transformation. It is a preprocessing step which en-
ables us to create a canonical ABox for semantic formulas with datatype variables.
Note that a datatype variable is used in a semantic formula to constrain one datatype
property, e.g.,?y is used to constrain thehasAge datatype property inqA of Exam-
ple 2. Constraint transformation in contrast usesdata-rangesintroduced in OWL
2.0 [15] to transform each constrained datatype property to a named OWL class.
As a result, datatype variables and related datatype properties and constraints are
replaced with type assertions. This procedure is detailed in Algorithm 1.

The algorithm takes a conjunctive semantic formulaF o
~v and the ontologyo as input

(line 1).F o
~v is of the formT o

~v ∪ Ro
~v ∪ Co

~v , whereT o
~v , Ro

~v, andCo
~v are sets of type,

relation and constraint assertions respectively. The output of the algorithm is the
transformed semantic formulaF φ

~u (containing no datatype variables) and the up-
dated ontologyφ (line 2). Initially, F φ

~u is set as equal toT o
~v andφ is the same aso

(line 3). For each relation assertionr(a, b) in Ro
~v, we do the following (line 4). First,

we check ifb is a datatype variable (line 5). If so, this means thatr is a datatype
property with a variable in its range. In this case, we extract the set of constraints
related tob fromCo

~v , which is referred byγd (line 6). Based onr andγd, we create a
conceptc in TBoxφ using thecreateConceptfunction (line 7). This function works
as follows:

(1) If γd 6= ∅, thenb implies some restrictions on the range ofr. In this case,c
should refer to objects that have the propertyr with the restrictions defined in

10

Algorithm 1 Constraint transformation.
1: Input: FormulaF o

~v ≡ T o
~v ∪Ro

~v ∪ Co
~v ,

Ontologyo ≡ (ABoxo, TBoxo)

2: Output: FormulaFφ
~u ,

Ontologyφ ≡ (ABoxo, TBoxφ)

3: Initialization: Fφ
~u = T o

~v , TBoxφ = TBoxo
4: for all (r(a, b) ∈ Ro

~v) do
5: if (isDatatypeV ariable(b)) then
6: γd = getConstraints(b, Co

~v)
7: c = createConcept(r, γd, TBoxφ)
8: τ = createTypeAssertion(a, c)

9: Fφ
~u = Fφ

~u ∪ τ
10: else
11: Fφ

~u = Fφ
~u ∪ r(a, b)

12: γb = getConstraints(b, Co
~v)

13: if (γb 6= ∅ & ¬(γb ⊂ Fφ
~u)) then

14: Fφ
~u = Fφ

~u ∪ γb
15: end if
16: end if
17: end for

11

<owl:Class rdf:about="# AgeConst1">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasAge"/>

<owl:allValuesFrom>

<rdfs:Datatype>

<owl:onDataRange rdf:resource="&xsd;nonNegativeIntege r"/>

<xsd:minInclusive rdf:datatype="&xsd;int">10</xsd:min Inclusive>

<xsd:maxExclusive rdf:datatype="&xsd;int">20</xsd:max Exclusive>

</rdfs:Datatype>

</owl:allValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

Fig. 5. A concept namedAgeConst1is created forhasAge(?c, ?a) ∧ ?a ≥ 10 ∧ ?a ≤ 20.

γd on its range. While creatingc in TBoxφ, we usedata-ranges1 introduced
in OWL 2.0 to restrict the range ofr accordingly. For example, ifr(a, b) cor-
responds tohasAge(?c, ?a) andγd = {?a ≥ 10, ?a≤ 20}, then a concept
namedAgeConst1can be described as shown in Figure 5. For more sophisti-
cated constraints, we create more complex class expressions using the OWL
constructorsowl:unionOf, owl:intersectionOf, andowl:complementOf.

(2) If γd = ∅, thenb has no constraints, which means that the data-range ofb
is equivalent to the range of its datatype (i.e., forxsd:int, the range is min
inclusive−2147483648 and max inclusive2147483647).

After creating the conceptc in TBoxφ, we create a type assertionτ to declarea
as an instance ofc (e.g.,AgeConst1(?c)) (line 8). This type assertion is added toF φ

~u

in order to substituter(a, b) andγd in F o
~v (line 9). On the other hand, ifb is not a

datatype variable (line 10), there are two possibilities: (1)r is a datatype property
but b is not a variable, or (2)r is an object property. In both cases, we directly
add r(a, b) to F φ

~u (line 11). If b has constraints defined inCo
~v , we extract these

constraints and add them toF φ
~u if they are not already added (lines 12-15).

In order to test subsumption betweenqA andqB in Example 2, we should transform
the bodies of these queries and update the ontology they are based on. For this
purpose, we use constraint transformation twice. That is, we first update the ontol-
ogy by adding the conceptAgeConst1 to handlehasAge(?c,?y)∧ ?y≥ 10 ∧ ?y≤
20 and transformqB to q():- Doctor(?x)∧marriedTo(?x,Jane)∧ hasChild(?x,?c)∧ Age-
Const1(?c). Then, we add conceptAgeConst2 to the ontology to handlehasAge(?c,?y)
∧ ?y≥ 12 ∧ ?y≤ 16 and transformqA to q():- Person(?p)∧ hasChild(?p,?c)∧ Age-

1 http://www.w3.org/TR/2008/WD-owl2-syntax-20081008/#DataRanges

12

PersonPatient DoctorJanetype
marriedToTBOX

ABOX
isA isAActionisA hasA ctorLeavingAction hasAgexsd:int XtypemarriedTo C

typehasChild
AgeConst1hasChildtypeAgeConst2

Fig. 6. The Ontology created forqB in Example 2.

Const2(?c). After this preprocessing step, we use query freezing to testqB ⊑ qA; the
ontology with a canonical ABox created during query freezing is shown in Figure 6.

With these techniques in place, we are now in a position to address the issue of
policy analysis supported by OWL-POLAR. It is descried in the following sections.

4.2 Idle Policies

A policy is idle if it is never activated or the policy’s expiration condition is satis-
fied whenever the policy is activated. This condition is formally described in Defi-
nition 2. If a policy is idle, it cannot be used to regulate any action, because either
it never activates or whenever it activates an obligation, permission, or prohibition
about an action, the activated policy expires. While designing policies, we may take
domain knowledge into account to avoid idle policies.

Definition 2 A policy α −→ Nχ:ρ (a : ϕ) /e is an idle policy if it does not activate
for any state of the world∆o or there is a substitutionσ′ such that∆o ⊢ (e · σ) · σ′,
whenever there is a substitutionσ such that∆o ⊢ (α ∧ ρ) · σ.

Let us demonstrate idle policies with a simple example. Assume that object prop-
ertyhasParentis an inverse property ofhasChild. Also, let us assume in the domain
ontology, we have a SWRL rule such ashasSponsor(?c, true)← hasParent(?c, ?p)

∧ hasAge(?c, ?age) ∧ ?age < 18, which means that children under18 have a sponsor
if they have a parent. Now, consider the policy in Table 2. This policy is activated
when a person?p has a child?c, which is a student under18. The activated policy
expires when?c has a sponsor. Interestingly, whenever the policy is activated, the
domain knowledge implies that?c has a sponsor. That is, whenever the policy is
activated, it expires.

13

Table 2
A simple idle policy example.

α hasChild(?p, ?c) ∧ Student(?c)∧ hasAge(?c, ?age)∧?age < 18

N O

χ : ρ ?p : Person(?p)

a : ϕ ?a : PayTuitionsOfStudent(?a) ∧ about(?a, ?c) ∧ hasActor(?a, ?p)

e hasSponsor(?c, true)

Table 3
A doctor cannot leave a room containing patients if he is in charge of the room.

α Room(?r) ∧ hasPatient(?r, true) ∧ inChargeOf(?d, ?r)

N F

χ : ρ ?d : Doctor(?d)

a : ϕ ?x : LeavingAction(?x) ∧ about(?x, ?r) ∧ hasActor(?x, ?d)

e hasPatient(?r, false)

In order to detect idle policies, we reason about the activation and expiration con-
ditions of policies. Specifically, a policyα −→ Nχ:ρ (a : ϕ) /e is an idle policy
if (α ∧ ρ) is unrealistic or impliese using the knowledge in the domain ontology.
More formally, we can show that the policy is idle if we show(α ∧ ρ) never holds
or (α ∧ ρ)→ e. This can be achieved as follows. First, we freeze(α ∧ ρ) and create
a canonical ontologyo′. If the resultingo′ is not a consistent ontology, then we can
conclude that the policy is an idle policy, because(α ∧ ρ) never holds. Leto′ be
consistent andσ be a substitution denoting the mapping of variables in(α ∧ ρ) to
the fresh individuals ino′. If there exists a substitutionσ′ such thato′ ⊢ (e · σ) · σ′,
we conclude that(α ∧ ρ) → e. We can testo′ ⊢ (e · σ) · σ′ by queryingo′ with
q() : − (e · σ).

4.3 Anticipating Conflicts between Policies

In many settings, policies may conflict. In the simplest case, one policy may pro-
hibit an action while another requires it. There are, however, many less obvious
interactions between policies that may lead to logical conflicts [17,27,20,12]. Fur-
ther developing our earlier example, consider the policy presented in Table 3 that
states that a doctor cannot leave a room with patients if he is in charge of the room.
This policy conflicts with the policy in Table 1 under some specific conditions. For
example, in the scenario described Figure 1,room 245of Central Hospital has a fire
risk andDr. Johnis in charge of the room, in which there are some patients. In this
setting, the policy in Table 1 obligates Dr. John to leave the room while the policy
in Table 3 prohibits this action until the room has no patient.

If we can determine possible logical conflicts while designing policies, we can cre-
ate better policies that are less likely to raise conflicts at run time. Furthermore, we
can use various conflict resolution strategies such as setting a priority ordering be-

14

tween the policies to solve conflicts [19,34,35], once we determine that two policies
may conflict.

In this section, we propose techniques to anticipate possible conflicts between
policies at design time. Suppose we have two non-idle policiesPi = αi −→
Aχi:ρi (a

i : ϕi) /ei andPj = αj −→ Bχj :ρj (a
j : ϕj) /ej . These policies are ac-

tive for the same policy addressee in the same state of the world∆ if the following
requirements are satisfied:

(1) ∆ ⊢ (αi ∧ ρi) · σi, but noσ′
i such that∆ ⊢ (ei · σi) · σ

′
i

(2) ∆ ⊢ (αj ∧ ρj) · σj , but noσ′
j such that∆ ⊢ (ej · σj) · σ

′
j

(3) χi · σi = χj · σj

The policiesPi andPj conflict if the following requirements are also satisfied:
(4) (ϕi · σi) ⊑ (ϕj · σj) or (ϕj · σj) ⊑ (ϕi · σi)
(5) A conflicts withB. That is,A ∈ {P,O} whileB ∈ {F} or vice versa.

Algorithm 2 Anticipate ifPi may conflict withPj .

1: Input: PolicyPi = αi −→ Aχi:ρi
(

ai : ϕi
)

/ei,
PolicyPj = αj −→ Bχj :ρj

(

aj : ϕj
)

/ej

2: if ((A ∈ {O,P} and B ∈ {F}) or (A ∈ {F} andB ∈ {O,P})) then
3: 〈∆, σi〉 = freeze(αi ∧ ρi)
4: 〈o′, 〉 = freeze(ϕi · σi)
5: rs = query(o′, ϕj)
6: for all (σk ∈ rs) do
7: 〈∆, σj〉 = update(∆,

(

αj ∧ ρj
)

· σk)
8: if (isConsistent(∆)) then
9: if (query(∆, ei · σi) = ∅ and query(∆,

(

ej · σk
)

· σj) = ∅) then
10: returntrue
11: end if
12: end if
13: end for
14: end if
15: returnfalse

We can use Algorithm 2 to test if it is possible to have such a state of the world
wherePi conflicts withPj. The first step of the algorithm is to test ifA conflicts
with B (line 2). If they are conflicting, we continue with testing the other require-
ments. We create a canonical state of the world∆ in whichPi is active by freezing
(αi ∧ ρi) with a substitutionσi mapping the variables in(αi ∧ ρi) to the fresh in-
dividuals in∆. Given that(ϕj · σ) ⊑ ϕj for any substitutionσ mapping variables
into individuals, the requirement (iv) implies that(ϕi · σi) ⊑ ϕj . We test this as
follows. First, we create a canonical ontologyo′ by freezing(ϕi · σi) (line 4) and
then queryo′ with ϕj (line 5). Each answer to this query defines a substitutionσk

mapping variables inϕj into the terms in(ϕi · σi), so that(ϕi · σi) ⊑ (ϕj · σk). If
ϕj does not have any variable but it repeats ino′ as a pattern, the result set contains
only one empty substitution. If the query fails, the result set is an empty set (∅),

15

Person

Patient Doctor

BuildingRoom

TBOX

ABOX

Hospital

isA
isA isA

isA

Place

isA

in

in

HospitalRoom

isA

in

Action

isA

hasActor

LeavingAction

hasPatient

hasFireRisk

xsd:boolean

CurrentTime

hasValue
xsd:time

xsd:boolean

hasAge

xsd:int

x

type

b

type

in hasFireRisk

true

hasPatient

inChargeOf

inChargeOf

true

marriedTo

Fig. 7. The canonical state of the world where the policies of Table 1 and Table 3 conflict.

which means that it is not possible to have aσk such that(ϕi · σi) ⊑ (ϕj · σk).

For eachσk satisfying(ϕi ·σi) ⊑ (ϕj ·σk), we test the other requirements as follows.
First, we update∆ by freezing(αj ∧ ρj) ·σk without removing any individual from
its existingABox (line 7). Note that as a result of this process,σj is the substitution
mapping the variables in(αj ∧ ρj) · σk to the new fresh individuals in the updated
∆, so thatχi · σi = (χj · σk) · σj . We test the consistency of the resulting state
of the world∆ (line 8). If this is not consistent, we can conclude that it is not
possible to have a state of the world satisfying the requirements. If the resulting∆
is consistent, we check the expiration conditions of the policies. If both are active
in the resulting state of the world (line 9), the algorithm returnstrue (line 10). If
any of these requirements do not hold, the algorithm returnsfalse(line 15).

As described above, the algorithm transforms the problem of anticipating conflict
between two policies into an ontology consistency checking problem. To check the
consistency of the constructed canonical state of the world∆, we have used the
Pellet [30] reasoner. This reasoner adopts theopen world assumptionand does not
have Unique Name Assumption (UNA). Hence, it searches for a model2 of ∆,
also considering the possible overlapping between the individuals (i.e., individuals
referring the same object). If there is no model of∆, it is not possible to have a
state of the world satisfying the requirements stated above. We should also note
that, while anticipating the conflict, Algorithm 2 tests only the case(ϕi · σi) ⊑
(ϕj ·σj). However, we also need to test(ϕj ·σj) ⊑ (ϕi ·σi) to capture the possibility
of conflict. Therefore, if the algorithm returnsfalse, we should swap the policies
and run the algorithm again. If it returnstrue with the swapped policies, we can
conclude that there is a state of the world where these policies may conflict.

To demonstrate the algorithm, let us use the policies presented in Tables 1 and
3 and refer to them asPi andPj respectively. In this example,Pj is a prohibi-
tion while Pi is an obligation, so the algorithm proceeds as follows (line 2). We
create a canonical state of the world∆ by freezingPerson(?x) ∧ P lace(?b) ∧

2 A model of an ontologyo is an interpretation ofo satisfying all of its axioms [1].

16

hasF ireRisk(?b, true) ∧ in(?x, ?b) with a substitutionσi = {?x/x, ?b/b} (line
3). Now we create a canonical ontologya′ by freezingϕi · σi with substitution
{?a/a} (line 4). This ontology has the followingABox assertions:LeavingAction(a),
about(a, b),hasActor(a, x). We queryo′ withLeavingAction(?x) ∧ about(?x, ?r)∧
hasActor(?x, ?d) (line 5). The result set is composed of only one substitution:
σk = {?x/a, ?r/b, ?d/x}. The next step is to update∆ by freezingDoctor(x) ∧
Room(b)∧ hasPatient(b, true) ∧ inChargeOf (x , b)without removing the current
ABox of ∆ (line 7). The resulting canonical state of the world is shown in Figure 7.
Lastly, we check whether both policies remain in effect by checking their expira-
tion conditions (line 9). In this example, we query∆ with hasF ireRisk(b, false)
andhasPatient(b, false). Both of these queries return∅, hence we conclude that
there is a state of the world where these policies conflict (line 10).

5 Conflict Resolution

Legal theory and practice provide some doctrines to resolve conflict between norms [36,4].
These doctrines can also be used when a conflict arises between policies (aka
norms). These doctrines are shortly described as follows:

• Lex Superior: The norm issued by a more important legal entity prevails when
in conflict with another norm.

• Lex Posterior: The newer norm is preferred over the older one.
• Lex Specialis: The norm governing a specific subject matter overrides the norm

which governs general matters.

Lex superioruses the hierarchy between the authorities issuing norms while re-
solving conflicts between these norms. Hence, it cannot be used to resolve conflicts
between norms issued by one same authority or norms issued by authorities without
hierarchical relationships between them. For instance, let us assume that the policy
of Table 1 is issued by the government and the policy of Table 3 is issued by the
hospital management. In this case, the policy of Table 1 would override the policy
of Table 3, based on thelex superiorprinciple.

Lex posteriorassumes newer norms are preferred over the older ones. This assump-
tion may hold only in certain conditions. In most of the cases, the lex posterior
principle may not be useful. Especially if the conflicting norms are issues by differ-
ent authorities, temporal relationships between these norms would be misleading.
However, if these norms belong to the same authority, this principle may be ap-
plicable under some circumstances. For instance, let us assume that the policy of
Table 3 is issued after the policy of Table 3 by the hospital management. Then, the
policy of Table 3 would override the policy of Table 1.

17

Lex specialisconsiders a more specific norm as an exception of a more general one.
This principle may work especially if these norms belong to the same organization.
Unlike the other two doctrines, Lex specialis requires some non-trivial reasoning
process that allow us to reason about the subsumption relationships between poli-
cies. In the next Section 5.1, we propose a subsumption reasoning mechanism for
OWL-POLAR policies.

5.1 Policy Subsumption

Suppose we have two non-idle policiesPi = αi −→ Aχi:ρi (a
i : ϕi) /ei andPj =

αj −→ Bχj :ρj (a
j : ϕj) /ej . The policyPi subsumesPj if wheneverPj is active

for a policy addressee regarding an action,Pi is also active for the same policy
addressee and action. This can be described formally as follows. For each state∆
such that∆ ⊢ (αj ∧ ρj) · σj , there is a substitutionσi such that

(1) ∆ ⊢ (αi ∧ ρi) · σi

(2) χi · σi = χj · σj

(3) ϕj · σj ⊑ ϕi · σi

(4) there is no substitutionσ′
i such that∆ ⊢ (ei · σi) · σ

′
i

Based on this definition, in this section, we propose Algorithm 3 to check ifPi sub-
sumesPj. The algorithm first creates a canonical state of the world characterizing
all the states wherePj is active (line 2). Then, it checks ifPj is also active in this
canonical state by finding all substitutions satisfying activation and role constraints
of Pj (line 3). Lastly, it checks if any of these substitutions satisfies the require-
ments listed above (lines 4-8). The algorithm returns true if such a substitution
exists (lines 5-7); otherwise it returns false (line 9).

Algorithm 3 Check ifPi subsumesPj.

1: Input: PolicyPi = αi −→ Aχi:ρi
(

ai : ϕi
)

/ei,
PolicyPj = αj −→ Bχj :ρj

(

aj : ϕj
)

/ej

2: 〈∆, σj〉 = freeze(αj ∧ ρj)
3: rs = query(∆, αi ∧ ρi)
4: for all (σi ∈ rs) do
5: if χi · σi = χj · σj and ϕj · σj ⊑ ϕi · σi and query(∆,

(

ei · σi
)

) fails then
6: returntrue
7: end if
8: end for
9: returnfalse

18

5.2 On Conflict Avoidance and Resolution

If one of two conflicting policies subsumes the other,Lex specialiscan be used to
resolve the conflict. However, in many scenarios, there is no subsumption relation-
ship between conflicting policies. These policies conflict only in certain cases, in
which the activation conditions of both policies hold and their expiration condi-
tions do not hold. To anticipate such policy conflicts, we have proposed the rea-
soning mechanisms presented in Section 4.3. These mechanisms try to construct a
consistent state of the world satisfying the condition necessary for the conflict.

A policy addressee may wish to avoid a conflict between two specific policies by
simply avoiding states of the world in which their activation conditions hold at
the same time. This requires him to examine available courses of action, to avoid
those actions that would trigger the activation conditions of conflicting norms. If
the activation conditions of the policies concerned are in full control of the pol-
icy addressee, this may be feasible. In many cases, however, the agent may have
limited control over the satisfaction of policy activation conditions. For instance,
a doctor has limited ability to control the fire risk in a hospital. That is, he cannot
control the activation of the policy in Table 1. On the other hand, he may control
some of his responsibilities in the hospital. To avoid the possibility of conflict, he
could avoid being in charge of any room in the hospital. This is a rather radical
approach to conflict avoidance, and, of course, will lead to other conflicts with, for
example, a duty of care. The doctor behaves as if there will indeed be a fire risk in
the hospital, regardless of its actual probability. A more reasonable approach may
be to consider the probability of specific world states occurring. That is, the doctor
may avoid being in charge of any room in the hospital if the probability of fire risk
in the hospital becomes greater than a threshold. However, this solution involves
significant overhead of estimating likelihoods of policy activations.

Unless there is a subsumption relation between two conflicting policies, a conflict
between them may occur only under certain circumstances. Hence, it may be more
feasible to resolve a policy conflict once it occurs rather than trying to avoid it in the
first place. This is especially the case when there are some predefined conflict res-
olution strategies available to resolve the policy conflict. For instance, if the policy
of Table 1 is enforced by an authority with more power (or hierarchically superior)
than that enforcing the policy of Table 3, then a conflict between these policies can
be resolved using theLex superiorstrategy. However, this would be disregarding
the rationale behind the policy of Table 3, i.e., always having patients under the
care of medical staff. A better approach would be to refine the expiration condi-
tions of the policies concerned. If one of the two conflicting policies expires, the
conflict would be automatically resolved without making one policy override the
other. Hence, the problem of conflict resolution turns into the problem of satisfying
policy expiration conditions once a conflict occurs between two policies.

19

A policy addressee may have certain actions to change the state of the world and
achieve his goals (e.g., desired states of the world). Existing automated planning
systems [23] can be used to find a plan (i.e., sequence of actions) to achieve a
certain goal. These systems are given an initial state, a list of available actions
(i.e., operators), and a goal state. Actions typically have preconditions and post-
conditions. If the preconditions of an action hold in a specific state of the world,
the action specification states that if it were performed in this state, the state is
expected to change according to the postconditions. Given a state where two con-
flicting policies are activated at the same time for the same policy addressee, the
policy addressee may use an automated planner to find a plan whose actions will
cause the state of the world to change in a way that the expiration condition of
one of the policies holds. The planner considers only actions available to the policy
addressee while composing plans. Consider the previous example where a doctor
is in charge of a room in a hospitalH with fire risk, i.e.,hasFireRisk(H, true). In
this situation, the policies of Tables 1 and 3, which are conflicting, will be active
at the same time. The first policy expires if the goal statehasFireRisk(H, false)is
achieved. However, a planner cannot produce a plan to achieve this state, since a
doctor does not have actions available. On the other hand, the expiration conditions
for the second policy ishasPatient(R,false). This state of affairs can be achieved
by the doctor if the doctor follows a plan for evacuating the patients in the room.
Such a plan can easily be computed by an off-the-shelf planner [23]. Hence, in this
example, it is possible to come up with a plan for the policy addressee to expire one
of the conflicting active policies and resolve the conflict.

Algorithm 4 Obtain plans to expire active policiesN1
x(ϕ1)/e

1 andN2
x(ϕ2)/e

2.
1: Input: N1

x(ϕ1)/e
1, N2

x(ϕ2)/e
2, state, normstate, A, policies

2: Output: R
3: R = ∅
4: plans = ∅
5: for all (i = 1; i ≤ 2; i++) do
6: plans = plans ∪ getP lansForGoal(ei, state,A)
7: end for
8: for all (p ∈ plans) do
9: s = clone(state)

10: ns = clone(normstate)
11: for all (a ∈ p) do
12: applyActionToState(a, s)
13: updateNormativeState(ns, s, policies)
14: end for
15: R = R ∪ {〈p, ns〉}
16: end for
17: returnR

Note that, there can be more than one plan to resolve a conflict.However, each plan
may have a different cost for the policy addressee, so plans can be ranked based
on their cost. Moreover, plans to be used to resolve a conflict between two poli-

20

Policy Reasoner

Planner
Planning Domain
Representation

Agent

TBox ABox

Current state of the world

 act
reason

plans

mapping

operators to actions
Normative State

goal state

sandbox state
of the world

Fig. 8. Interaction between planner, policy reasoner, and the agent.

cies may contain actions whose execution violates some other policies. Therefore,
before choosing and executing a plan among possibilities, it is important to esti-
mate the outcomes of plans in terms of policy violations. Algorithm 4 formalises
this procedure. The input of this algorithm is the conflicting active policies of the
policy addresseex, as well asx’s currentstateandnormative state, actions avail-
able tox (A) andpoliciesapplicable tox. The normative state ofx containsx’s
existing active policies (i.e., prohibitions, permissions, obligations) and policy vio-
lations (e.g., violated prohibitions). The algorithm firstly computes plans to satisfy
expiration conditions of the active policies (lines 5-7). To estimate how the norma-
tive state ofx would change if a specific planp is followed, the algorithm creates
copies of the current state of the world (i.e., sandbox state) andx’s normative state
(lines 9-10). Then, it updates the sandbox state by applying the actions inp and up-
dates the normative state based on the sandbox state and policies ofx (lines 11-14).
As a result of the action, new active policies may be added to the normative state,
some active policies in the normative state may become violated or expired, and
some obligations may become satisfied. The algorithm associates each plan with
the normative state it leads to (line 15) and lastly it returns all such associations as
the output (line 17). Using Algorithm 4, a policy addressee not only finds plans to
resolve conflicts but also gets informed about the outcomes of these plans in terms
of policy activations, violations and fulfilments. Hence, he can review each plan
based on this information and pick the one most suitable for himself if there is any.

Figure 8 illustrates the interactions between policy reasoner, planner, and an agent.
Let us explain how these interactions take place through an example. Consider
the state of the world in Figure 1 and policies of Tables 1 and 3. Then,John is
obliged to leave the room 245 of Central hospital by the policy of Table 1 and he
is prohibited to do so by the policy of Table 3 since the patientJaneis in the room.
Let us assume that the planning domain has a simple operatorsendPatientToas
described in Tables 4. Operators in AI planning correspond to atomic actions that
can be performed to change state of the world. During planning, the planner tries
to achieve the goal state by finding a sequence of actions with suitable parameters.

Operators are described using their precondition and post conditions (i.e., addition

21

Table 4
Description ofsendPatientTooperator in a planning domain.

Operator sendPatientTo(?p, ?from, ?to)

Precondition in(?p, ?from) ∧ patient(?p) ∧differentFrom(?from, ?to)

Deletions in(?p, ?from)

Additions in(?p, ?to)

Table 5
Additional TBox and ABox axioms

TBox ABox

sendPatientTo ⊑ Action in(room246, CentralHopital)

sendPatientTo ⊑ ∃about.Patient SafeP lace(backyard)

sendPatientTo ⊑ ∃from.P lace

sendPatientTo ⊑ ∃to.P lace

SafeP lace ⊑ P lace

UnsafeP lace ⊑ ¬SafeP lace

∃hasF ireRisk.{true} ⊑ UnsafeP lace

and deletions). Hence, we need a language more complex than Description Logics
to properly describe complex operators [23]. To combine planning with ontologies,
researchers usually keep descriptions of operators in a planning domain file, but
they map these operators to action classes within the ontology [29]. Table 5 de-
scribessendPatientToclass added toTBox to represent the operator described in
Table 4. This class inTBox is externally mapped to thesendPatientTooperator in
the planning domain. Whenever the agent execute an instance of this operator, an
instance ofsendPatientToclass is added to the current state of the world, which is
represented as an ontology.

To resolve the conflict between the policies of Tables 1 and 3, John interacts with
the planner by requesting the plans to achieve the goalhasPatient(room245 , false).
Given the additional ABox axioms in Table 5, the planners returns two plans:
〈sendPatientTo(Jane, room245 , room246)〉 and〈sendPatientTo(Jane, room245 , backyard)〉.
Both of these plans expire the policy of Table 3 for John. When John executes the
first plan, an instancei of sendPatientTo concept is created within the state of the
world and described further using the triples〈i, hasActor, John〉, 〈i, about, Jane〉,
〈i, from, room245〉, and〈i, to, room246〉. In this example, the addition of this action
instance does not lead to any policy violation for John. However, it would not be
case if Central hospital has the policy of Table 6.

Let us describe how changes in normative state of John is determined, given Cen-
tral hospital has the policy of Table 6. While selecting operations to add to the
current plan, the planner creates a sandbox state of the world as described in [29].
That is, triples are removed from and added to the current state of the world based
on operation descriptions. For instance, the planner starts with an empty plan and
the state of the world in Figure 1. Then,sendPatientTo(Jane, room245 , room246)

is added to the plan and the state of the world is changed by removing the triple
〈Jane, in, room245 〉 and adding the triple〈Jane, in, room246 〉. Lastly, the planner

22

Table 6
A doctor is prohibited to send a patient to an unsafe place.

α Patient(?p) ∧ in(?p, ?from) ∧ UnsafeP lace(?to)

N F

χ : ρ ?x : Doctor(?x)

a : ϕ ?a : SendPatientTo(?a) ∧ about(?a, ?p) ∧ hasActor(?a, ?x) ∧ from(?a, ?from) ∧ to(?a, ?to)

e SafeP lace(?to)

sends the resulting sandbox state of the world to the policy reasoner for violation
detection based on the methods described in Section 3.2. The policy reasoner re-
veals that the policy of Table 6 would be violated if this plan is executed. Therefore,
the plan is annotated with this violation. However, the second plan does not lead
to any violation, since backyard is defined as an instance ofSafePlacein Table 5.
Hence, for John, it would be more beneficial to follow the second plan to resolve
the conflict between the policies of Tables 1 and 3. To quantitatively compare nor-
mative states, we may need to add penalties to policies [3]. The penalties determine
the cost of policy violations and allows policy addresses to prefer violating one
policy to another based on utility [35]. Penalties are not in the scope of this paper
and this issue is set as a future work.

6 Complexity of reasoning mechanisms

The computational complexity of the methods and algorithms proposed in this pa-
per can be summarised as follows. Policy activation described in Section 3.2 is
based on testing activation and expiration conditions of the policy through con-
junctive query answering in OWL-DL, which has been shown to be decidable under
DL-safety restrictions [16]. Reasoning about actions is based on creating a sandbox
state of the world from the description of an action, which isO(n) in size of terms
in action description, and testing activation and expiration conditions of policies.
Hence, the complexity of this reasoning is equivalent to that of conjunctive query
answering. Constraint transformation introduced in Section 4.1 has a complexity
O(n2) in the size of terms in policy description.

Testing idle policies, policy subsumption, and anticipating conflicts require con-
straint transformation, query freezing, consistency checking, and query answering.
Query freezing has complexityO(n) in the size of terms in the policy’s activation
and role descriptions. Reasoning about idle policies, policy subsumption, and con-
flicts are decidable but not tractable, because of the complexities of consistency
checking and query answering in OWL-DL [14].

We may note that although worst-case complexity of consistency checking and con-
junctive query answering in OWL-DL is NEXPTIME-complete [1], there are sub-
languages of OWL-DL such as DL-lite with a better complexity. For instance, rea-

23

soning services such as consistency and instance checking and conjunctive query
answering in DL-lite have PTIME-complexity [14]. Furthermore, it has been shown
that reasoning performance in most of the existing ontologies is much better than
their worst-case complexities [30].

In this paper, planning is proposed as a tool to resolve conflicts under specific
conditions. Complexity of planning significantly depends on the restrictions put
on the planning domain representation [23]. Worst-case complexity of planning
is PSPACE-complete in the set-theoretic representation [5]. Implementations such
as GraphPlan [23] achieves significant speed-up and contributes the scalability of
planning by backward constraint-directed search.

In summary, the reasoning mechanisms proposed in this paper are decidable, but
if we use OWL-DL they are not tractable, in the worst case. If, however, we limit
our language to DL-lite, we have decidability (although our expressiveness is cur-
tailed).

7 Related Work and Discussion

We have proposed OWL-POLAR in [10] as an OWL-DL based policy language
that supports decidable policy analysis. One key feature of OWL-POLAR is the
reasoning mechanisms that allow anticipation of possible conflicts between poli-
cies. In this paper, we have extended [10] as follows. First, we have described how
existing conflict resolution strategies can be used for OWL-POLAR policies. For
this purpose, we have proposed a subsumption reasoning algorithm for policies,
which allows us to determine if one policy is a specialization of another one. Then,
we have discussed in which situations existing conflict resolution strategies may
not be useful and proposed an automated planning-based approach to resolve pol-
icy conflicts under specific circumstances. In this work, we have also discussed the
computational complexity of the proposed reasoning mechanisms and showed that
these mechanisms are decidable.

There have been several policy languages proposed that are built upon Semantic
Web technologies. Rei [18] is a policy language based on OWL-Lite and Prolog.
It allows logic-like variables to be used while describing policies. This gives it the
flexibility to specify relations likerole value mapsthat are not directly possible
in OWL. The use of these variables, however, makes DL reasoning services (e.g.,
static conflict detection between policies) unavailable for Rei policies. KAoS [34]
is, probably, the most developed language for describing policies that are built
upon OWL. KAoS was originally designed to use OWL-DL to define actions and
policies. This, however, restricts the expressive power to DL and prevents KAoS
from defining policies in which one element of an action’s context depends on
the value of another part of the current context. For example, KAoS cannot be

24

used to represent a policy liketwo soldiers are allowed to communicate only if
they are in the same team. To handle such situations, KAoS has been enhanced
with role-value mapsusing Stanford JTP, a general purpose theorem prover [34].
Unfortunately, subsumption reasoning is undecidable in the presence of arbitrary
role-value-maps [1].

KAoS distinguishes between (positive and negative) obligation policies and (pos-
itive and negative) authorization policies. Authorization policies permit (positive)
or forbid (negative) actions, whereas obligation policies require (positive) or do not
require (negative) action. Thus the general types of policies that can be described
are similar to those that we have discussed in this paper. Actions are also the object
of a KAoS policy, and conditions on the application of policies can be described
(context), although the subject (individual/role) of the policy is not explicit (it is,
however, in Rei). In common with OWL-POLAR in its present form, KAoS does
not capture the notion of the authority from which/whom a policy comes, but there
is a notion of the priority of a policy which partially (although far from adequately)
addresses this issue. Unlike OWL-POLAR, Rei and KAoS do not provide means
to explicitly define expiration conditions of the policies.

Policy analysis within both KAoS and Rei is restricted to subsumption. A policy in
KAoS is expressed as an OWL-DL class regulating an action, which is expressed
as an OWL-DL class expression (e.g., using restrictions on properties such asper-
formedByandhasDestination). Two policies are regarded in conflict if their actions
overlap (one subsumes another) while the modality of these policies conflict (e.g.,
negative vs. positive authorization). Similarly, if there exist two policies within Rei
that overlap with respect to the agent and action concerned and they are obligued
and prohibited, then a conflict is recognised. In such a situation, meta-policies are
used to resolve the conflict. Policy conflicts can also be detected within the Ponder2
framework [31,38], where analysis is far more sophisticated than that developed for
either KAoS or Rei, but analysis is restricted to design time. In general, different
methods can be used to resolve conflicts between policies. This issue has been ex-
plored in detail elsewhere [19].

The expressiveness of OWL-POLAR is not restricted to DL. Using semantic con-
junctive formulas, it allows variables to be used while defining policies. However,
in semantic formulas, OWL-POLAR allows only object variables to be compared
usingowl:sameAsandowl:differentFromproperties. On the other hand, datatype
variables can be used to define constraints on the datatype properties. In other
words, semantic formulas are restricted to describe states of the world, each of
which can be represented as an OWL-DL ontology. Therefore, when a semantic
formula is frozen, the result is a canonical OWL-DL ontology. OWL-POLAR con-
verts problems of reasoning with and about policies into query answering and on-
tology consistency checking problems. Then, it uses an off-the-shelf reasoner such
as Pellet [30] to solve these problems. It is known that consistency checking in
OWL-DL is decidable [30], and query answering in OWL-DL has also been shown

25

to be decidable under DL-safety restrictions [16].

Ontology languages like KAoS are built on OWL 1.0, which does not support data-
ranges. Therefore, while defining policies, they either do not allow complex con-
straints to be defined on datatype properties or use non-standard representations
for these constraints, which prevents them from using the off-the-shelf reasoning
technologies. The clear distinctions between OWL-POLAR and KAoS, however,
are manifest in the fact that data ranges are exploited in OWL-POLAR to enable
the expression of more complex constraints on policies, and the sophistication of
the reasoning mechansims described in this paper.

To the best of our knowledge, OWL-POLAR is the first policy framework that for-
mally defines and detects idle policies. Existing approaches like KAoS and Rei
analyse policies only to detect some type of conflict, considering only subsumption
between policies. On the other hand, OWL-POLAR provides advanced policy anal-
ysis support that is not limited to subsumption checking. Consider the following
policies: (i)Dogs are prohibited from entering to a restaurant, and (ii) A member
of CSI team is permitted to enter a crime scene. There is no subsumption rela-
tionship between these policies, and so KAoS and Rei could not detect a conflict.
However, OWL-POLAR anticipates a conflict by composing a state of the world
where these policies are in conflict, e.g., the crime scene is a restaurant and there is
a dog in the CSI team.

Deontic logics study representation and relationships among formal constructs as-
serting that certain actions or states of affairs are obligatory, permitted, or forbid-
den [21]. Standard Deontic Logic (SDL) builds upon propositional logic and is
the most studied system of deontic logic. Especially, SDL is traditionally used to
analyse and identify ambiguities in sets of legal rules. For instance, Sergotat al.
represented aspects of the British nationality act using SDL [28]. Cholvy and Cup-
pens used SDL to represent security policies to detect conflicts in policy specifica-
tion [8]. Their approach is based on translating SDL into first order predicate logic
to perform the necessary conflict detection and analysis. SDL has been criticized
as having some inherent paradoxes [21]. For instance, one axiom of SDL implies
that an obligation can imply a permission while another axiom indicates that a per-
mission implies no obligation. Extensions of deontic logic have been proposed to
handle these paradoxes [25]. However, even with these extensions, deontic logics,
as a formalism, pose challenges on humans who experience difficulties creating and
understanding their (and others’) policies [11]. On the other hand, in this paper, we
have proposed an expressive policy specification language based on Semantic Web,
which builds upon W3C standards and clear semantics both for humans and ma-
chines.

In order to achieve decidability and improve reasoning performance, we have im-
posed some restrictions in OWL-POLAR. First, we have limited representation of
constraints in conjunctive formulas so that two datatype variables cannot be com-

26

pared. This allows us to convert these constraints into DL class expressions using
data-ranges. Without this restriction, a policy language would be undecidable [1],
since such constraints could be used to implement role-value maps. Therefore, poli-
cies requiring comparisons of datatype variables cannot be expressed using OWL-
POLAR, for the sake of decidability. Second, we have only considered conjunctive
semantic formulas while representing activation conditions of policies, because in-
clusion of disjunctions in these formulas may lead to more than one canonical states
of the world during policy analysis. Disjunctions in activation conditions do not af-
fect the decidability of OWL-POLAR, since a policy containing disjunctions in its
activation conditions can be converted into a set of policies with only conjunctions
in their activation conditions. However, we stick to conjunctive semantic formulas
in this paper for clarity and simplicity. Another limitation of OWL-POLAR is its
monotonicityduring conflict analysis. To anticipate conflicts between two policies,
OWL-POLAR creates a canonical state of the world, where these two policies are
active at the same time. Then, standard OWL-DL consistency checking is used to
test the possibility of such state. However, standard reasoning in OWL-DL is mono-
tonic [1]. That is, if we know thatx is an instance ofA, then adding more informa-
tion to the model cannot cause this to becomefalse. Therefore, currently conflict
detection between policies cannot be done using OWL-POLAR when it requires
non-monotonic reasoning. However, this limitation would be relieved when non-
monotonic reasoning mechanisms becomes available in standard OWL-DL reason-
ers [6].

8 Conclusions

Policies provide useful abstractions to constrain and control the behaviour of com-
ponents in loosely coupled distributed systems. Policies, also called norms, help de-
signers of large-scale, open, and heterogenous distributed systems (including multi-
agent systems) to specify, in a concise fashion, acceptable (or policy-compliant)
global and individual computational behaviours, thus providing guarantees for the
system as a whole. In this paper, we have presented a semantically-rich repre-
sentation for policies as well as efficient mechanisms to reason with/about them.
OWL-POLAR meets all the essential requirements of policies, as well as achieving
an effective balance between expressiveness (realistic policies can be adequately
represented) and computational complexity of associated reasoning for decision-
making and analysis (reasoning with and about policies operate in feasible time).

The mechanisms proposed in this paper allow policy authors to detect inconsistent
or unfounded policies. These mechanisms provide means to determine the context
in which different policies may conflict. This kind of reasoning with context allows
policy authors and agents to resolve the conflict before they occur. We have describe
how conflict resolution doctrines from legal theory and practice could be used to
resolve policy conflicts. We have proposed a policy subsumption algorithm to allow

27

Lex Specialisto be used as a conflict resolution strategy for OWL-POLAR policies.
Furthermore, first time in the literature, we have used AI planning for policy conflict
resolution. Lastly, we have showed that all these mechanisms are decidable.

Building upon this research, we plan to explore various extensions to OWL-POLAR.
We will explore extending the representation of policies to include deadlines and
penalties associated with their violation, along the lines of [3]. Also, we would like
to investigate how policing mechanisms [24] could make use of our representation
and associated mechanisms to foster welfare in societies of self-interested com-
ponents/agents. Two further extensions should address policies over many actions
(as in, for instance, “ξ is obliged to performϕ1 andϕ2”) and disjunctions (as in,
for instance, “ξ is obliged to performϕ1 or ϕ2”). Finally, we are exploring the use
of OWL-POLAR in support of human decision-making, including joint planning
activities in hybrid human-software agent teams.

References

[1] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. F. Patel-Schneider (eds.), The
Description Logic Handbook: Theory, Implementation and Applications, Cambridge
University Press, 2003.

[2] A. Beautement, D. Pym, Structured systems economics for security management,
in: Proceedings of the Ninth Workshop on the Economics of Information Security,
Harvard, USA, 2010.

[3] G. Boella, J. Broersen, L. Torre, Reasoning about constitutive norms, counts-as
conditionals, institutions, deadlines and violations, in: PRIMA ’08: Proceedings of the
11th Pacific Rim International Conference on Multi-Agents, Springer-Verlag, Berlin,
Heidelberg, 2008.

[4] A. Boer, T. van Engers, R. Winkels, Mixing legal and non-legal norms, in: Proceeding
of the 2005 conference on Legal Knowledge and Information Systems: JURIX 2005:
The Eighteenth Annual Conference, 2005.

[5] T. Bylander, Complexity results for planning, in: Proceedings of the 12th international
joint conference on Artificial intelligence (IJCAI’91), 1991.

[6] G. Casini, U. Straccia, Defeasible inheritance-based description logics, in: IJCAI,
2011.

[7] C. Castelfranchi, Modelling social action for AI agents, Artificial Intelligence 103
(1998) 157–182.

[8] L. Cholvy, F. Cuppens, Analyzing consistency of security policies, in: Proceedings of
the 1997 IEEE Symposium on Security and Privacy, SP ’97, IEEE Computer Society,
Washington, DC, USA, 1997.

28

[9] C. Chopinaud, A. E. Fallah-seghrouchni, P. Taillibert, Prevention of harmful behaviors
within cognitive and autonomous agents, in: Proceedings of the European Conference
on Artificial Intelligence, 2006.

[10] M. Şensoy, T. J. Norman, W. W. Vasconcelos, K. Sycara, OWL-POLAR: Semantic
policies for agent reasoning, in: Proceedings of the 9th International Semantic Web
Conference (ISWC’10), 2010.

[11] N. Damianou, A. K. Bandara, M. Sloman, E. C. Lup, A survey of policy specification
approaches, Tech. rep., Department of Computing, Imperial College (2002).
URL http://www.doc.ic.ac.uk/ mss/Papers/PolicySurvey.pdf

[12] A. Elhag, J. Breuker, P. Brouwer, On the formal analysis of normative conflicts,
Information & Communications Technology Law 9 (3) (2000) 207–217.

[13] A. Garcı́a-Camino, J. A. Rodrı́guez-Aguilar, C. Sierra, W. Vasconcelos, Constraint
rule-based programming of norms for electronic institutions, Autonomous Agents and
Multi-Agent Systems 18 (1) (2009) 186–217.

[14] B. C. Grau, OWL 2 web ontology language tractable fragments,
http://www.w3.org/2007/OWL/wiki/TractableFragments (December 2007).

[15] W. O. W. Group, OWL 2 web ontology language: Document overview,
http://www.w3.org/TR/owl2-overview (October 2009).

[16] P. Haase, B. Motik, A mapping system for the integration of owl-dl ontologies,
in: IHIS ’05: Proceedings of the first international workshop on Interoperability of
heterogeneous information systems, ACM, New York, NY, USA, 2005.

[17] H. Hill, A functional taxonomy of normative conflict, Law and Philosophy 6 (2) (1987)
227–247.

[18] L. Kagal, T. Finin, A. Joshi, A policy language for a pervasive computing environment,
in: POLICY ’03: Proceedings of the 4th IEEE International Workshop on Policies for
Distributed Systems and Networks, 2003.

[19] M. J. Kollingbaum, T. J. Norman, Norm adoption and consistency in the NoA agent
architecture, Lecture Notes in Artificial Intelligence 3067 (2004) 169–186.

[20] E. Lupu, M. Sloman, Conflicts in policy-based distributed systems management, IEEE
Transactions on software engineering 25 (6) (1999) 852–869.

[21] J.-J. C. Meyer, R. J. Wieringa (eds.), Deontic logic in computer science: normative
system specification, John Wiley and Sons Ltd., Chichester, UK, 1993.

[22] B. Motik, Reasoning in description logics using resolution and deductive databases,
Ph.D. thesis, Universitt Karlsruhe (TH), Karlsruhe, Germany (January 2006).

[23] D. Nau, M. Ghallab, P. Traverso, Automated Planning: Theory & Practice, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

[24] J. Patelet. al, Agent-based virtual organisations for the grid, Int. Journal of Multi-
Agent and Grid Systems 1 (4) (2005) 237–249.

29

[25] H. Prakken, M. Sergot, Dyadic deontic logic and contrary-to-duty obligations., 1997,
pp. 223–262.

[26] E. Prud’hommeaux, A. Seaborne, SPARQL Query Language for RDF, Tech. rep.,
W3C, http://www.w3.org/TR/rdf-sparql-query/ (2006).

[27] G. Sartor, Normative conflicts in legal reasoning, Artificial Intelligence and Law 1 (2)
(1992) 209–235.

[28] M. J. Sergot, F. Sadri, R. A. Kowalski, F. Kriwaczek, P. Hammond, H. T. Cory, The
british nationality act as a logic program, Commun. ACM 29 (1986) 370–386.

[29] E. Sirin, Combining description logic reasoning with AI planning for composition of
web services, Ph.D. thesis, College Park, MD, USA (2006).

[30] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, Y. Katz, Pellet: A practical OWL-DL
reasoner, Web Semant. 5 (2) (2007) 51–53.

[31] M. Sloman, E. Lupu, Policy specification for programmable networks, in: IWAN
’99: Proceedings of the First International Working Conference on Active Networks,
Springer-Verlag, London, UK, 1999.

[32] M. K. Smith, C. Welty, D. L. McGuinness, OWL: Web ontology language guide,
http://www.w3.org/TR/owl-guide (February 2004).

[33] J. D. Ullman, Information integration using logical views, Theoretical Computer
Science 239 (2) (2000) 189–210.

[34] A. Uszok, J. M. Bradshaw, J. Lott, M. Breedy, L. Bunch, P. Feltovich, M. Johnson,
H. Jung, New developments in ontology-based policy management: Increasing the
practicality and comprehensiveness of KAoS, in: POLICY ’08: Proceedings of the
2008 IEEE Workshop on Policies for Distributed Systems and Networks, 2008.

[35] W. W. Vasconcelos, M. J. Kollingbaum, T. J. Norman, Normative conflict resolution
in multi-agent systems, Autonomous Agents and Multi-Agent Systems 19 (2) (2009)
124–152.

[36] E. Vranes, The definition of norm conflict in international law and legal theory,
European Journal of International Law 17 (2) (2006) 395–418.

[37] M. Woolridge, M. J. Wooldridge, Introduction to Multiagent Systems, John Wiley &
Sons, Inc., New York, NY, USA, 2001.

[38] H. Zhao, J. Lobo, S. M. Bellovin, An algebra for integration and analysis of ponder2
policies, in: POLICY ’08: Proceedings of the 2008 IEEE Workshop on Policies for
Distributed Systems and Networks, IEEE Computer Society, Washington, DC, USA,
2008.

30

