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Abstract

Ontology-based data access (OBDA) is receiving great attention as a new
paradigm for managing information systems through semantic technologies. Ac-
cording to this paradigm, a Description Logic ontology provides an abstract and
formal representation of the domain of interest to the information system, and
is used as a sophisticated schema for accessing the data and formulating queries
over them. In this paper, we address the problem of dealing with inconsisten-
cies in OBDA. Our general goal is both to study DL semantical frameworks
that are inconsistency-tolerant, and to devise techniques for answering unions
of conjunctive queries under such inconsistency-tolerant semantics. Our work
is inspired by the approaches to consistent query answering in databases, which
are based on the idea of living with inconsistencies in the database, but trying
to obtain only consistent information during query answering, by relying on
the notion of database repair. We first adapt the notion of database repair to
our context, and show that, according to such a notion, inconsistency-tolerant
query answering is intractable, even for very simple DLs. Therefore, we propose
a different repair-based semantics, with the goal of reaching a good compromise
between the expressive power of the semantics and the computational com-
plexity of inconsistency-tolerant query answering. Indeed, we show that query
answering under the new semantics is first-order rewritable in OBDA, even if
the ontology is expressed in one of the most expressive members of the DL-Lite
family.

1. Introduction

Ontology-based data access [50] (OBDA) is receiving great attention as a
new paradigm for managing information systems through semantic technologies.
An OBDA system is structured according to a three-level architecture, which
consists of the ontology, the data sources, and the mapping between the two.
The ontology is an abstract and formal description of the domain of interest,
and is used as a sophisticated schema for accessing the data and formulating
queries over them. The data sources are the repositories storing the data used
in the organization by the various processes and the various applications. The
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mapping explicitly specifies the relationships between the domain concepts on
the one hand and the data sources on the other hand. Like in data integration
systems [49], the mapping is crucial for keeping the conceptual representation of
the domain independent from the implementation issues, and for masking the
user from all the details and the idiosyncrasies of the data sources.

In most formal approaches to OBDA, the ontology is expressed in terms of a
Description Logic TBox. Description Logics (DLs) are logics specifically defined
for describing knowledge bases in terms of objects, concepts, representing classes
of objects, and relations between objects. represented by roles. A DL knowledge
base consists of two components, called TBox and ABox. A DL TBox is a set
of axioms, typically in the form of universally quantified statements, describing
general properties of the concepts and the relationships that are relevant in the
domain of interest. A DL ABox is a set of membership assertions stating the
instances of concepts and relations. The most important service provided by an
OBDA system is query answering, which amounts to computing the answers to
a query posed in terms of the ontology.

In order to compute such answers, the system should reason about the on-
tology, the mapping, and the data at the source, with the goal of returning the
tuples that satisfy the query in all the models of the system. Usually, the size
of the ontology and the mapping in an OBDA system is limited with respect
to the size of the data stored at the sources. For this reason, the crucial pa-
rameter for measuring the complexity of query answering in OBDA is the size
of the data. Various languages for specifying the ontology in OBDA have been
proposed [22, 4, 43, 17], which are designed with the goal of allowing for query
answering algorithms that scale with the size of the data, and therefore are
tractable with respect to data complexity, i.e., the complexity measured with
respect to the size of the data only. Among these, the members of the DL-
Lite family of lightweight DLs present the distinguishing feature of first-order
rewritable query answering for unions of conjunctive queries (UCQs), which
means that such a reasoning service can be realized through the evaluation of a
suitable first-order query (called the rewriting of the original query, and directly
translatable into SQL) over the data sources. We observe that, by virtue of its
relevance in OBDA, the DL-Lite family is at the basis of OWL2 QL [58], one of
the tractable profiles of OWL2.

Query rewriting is indeed the most popular approach to query answering in
OBDA systems. According to this approach, query answering is divided into
three steps:

1. The original query is first rewritten with respect to the ontology into a
new query, again expressed over the ontology; we call this step the ontology
rewriting of the query;

2. The query thus obtained is then rewritten into a source database query
using the mapping assertions; we call this step the mapping rewriting of
the query.

3. The query resulting from mapping rewriting is evaluated over the data
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sources.

As observed in [24], when DL-Lite is used for expressing the ontology, first-
order rewritability of query answering is guaranteed if the mapping is of type
“global-as-view”, i.e., each mapping assertion maps a query over the sources to
a single element of the ontology. Under this assumption, it is well-known that
mapping rewriting can be based on unfolding, which amounts to substituting
every atom of the query with the corresponding query in the mapping1. In
turn, it is easy to see that the whole query answering process can be based on
the following strategy: (i) use the mapping bottom-up and compute, from the
data, an ABox A containing all the instance assertions implied by the mapping;
(ii) compute the answers to the query by evaluating the ontology rewriting on
the computed ABox, seen simply as a relational database. This observation
leads to the conclusion that, if we are not interested in optimizing the mapping
rewriting step, we can simply ignore the mapping. Since the purpose of this
paper is to study fundamental issues in dealing with inconsistencies in OBDA,
in what follows we indeed abstract from the presence of mappings, and we
consider simple DL knowledge bases consisting of a TBox and an ABox.

It is well-known that inconsistency causes severe problems in logic-based
Knowledge Representation. In particular, since an inconsistent logical theory
has no classical model, it logically implies every formula (ex falso quodlibet),
and therefore query answering over an inconsistent knowledge base becomes
meaningless under classical logic semantics. Similarly, when a database does
not satisfy the integrity constraints defined on its schema, even the task of
giving a meaning to the answers of queries becomes non-obvious.

There are various approaches for devising inconsistency-tolerant inference
systems [10], originating from different areas, including Logic, Artificial Intelli-
gence, and Databases. Roughly speaking, there are two main strategies behind
such approaches. The most direct strategy is to clean the knowledge base of
all contradictions [65, 56] so as to restore consistency. Another strategy is to
leave the knowledge base unchanged, and to consider inconsistency as a natural
phenomenon in realistic settings, which are to be handled by the logic used to
express knowledge [61, 72, 55, 54]. An important class of such logics are called
paraconsistent, and are based on the use of additional truth values standing,
for example, for underdefined (i.e., neither true nor false), or overdefined (or
contradictory, i.e., both true and false). Another class of such logics use the
standard Boolean truth values, but tries to obtain only “meaningful” answers
when evaluating queries. In the context of data and knowledge bases, this ap-
proach has been pursued first in the Database community and is commonly
known as consistent query answering [3, 26].

In this paper, we address the problem of dealing with inconsistencies in
OBDA, by starting with the consistent query answering approach, and adapting

1Obviously, unfolding might not be the most efficient strategy, and therefore, more sophis-
ticated techniques for mapping rewriting have been studied (See, for example, [29]).
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it to the context of DL knowledge bases. Depending on the expressive power of
the underlying DL, the TBox alone might be inconsistent, or the TBox might be
consistent, but the axioms in the ABox might contradict the axioms in the TBox.
Here, we focus on the case where the TBox is consistent, while the instance-
level information in the ABox may contradict the knowledge represented in
the TBox. Indeed, in the OBDA scenario, it is appropriate to assume that
the ontology is a high quality representation of the domain, designed in such
a way to avoid inconsistencies in the modeling of concepts and relationships.
On the contrary, as we said before, the ABox is defined through the mapping
from the concrete data sources of the information system. Since such sources
are often distributed, autonomous, and independent from the conceptualization
represented by the TBox, they likely contain data that are not coherent with the
TBox. In other words, assuming a consistent TBox and a possibly contradicting
ABox is the appropriate setting for realistic OBDA applications.

In consistent query answering, the fundamental tool for obtaining consis-
tent information from an inconsistent data or knowledge base, is the notion of
repair [3, 18, 10, 26]. A repair of a database contradicting a set of integrity
constraints is a database obtained by applying a “minimal” set of changes that
restores consistency. There are several interpretations of the notion of “mini-
mality”, and different interpretations give rise to different inconsistency-tolerant
semantics. Under most interpretations of minimality, there are many possible
repairs for the same database, and the approach sanctions that what is consis-
tently true is simply what is true in all possible repairs of the database. Thus,
inconsistency-tolerant query answering amounts to computing the tuples that
are answers to the query in all possible repairs.

In this paper we use the notion of repair in DL knowledge bases. Since we
accept inconsistencies only in the ABox, we call this notion ABox repair, and
ABox Repair (AR) semantics the corresponding semantics. For a DL knowledge
base constituted by the TBox T and the ABox A, we define an ABox repair to
be an inclusion-maximal subset of A that is consistent with T . Unfortunately,
we show that, even for what is considered to be the simplest logic of the DL-
Lite family, inconsistency-tolerant query answering under the AR-semantics is
coNP-complete with respect to data complexity, and therefore can be quite
problematic in real-world applications.

To address this problem, we propose a new inconsistency-tolerant semantics
for DL knowledge bases (KBs), which is the first contribution of this paper.
The basic idea of the new semantics, called Intersection ABox Repair (IAR)
semantics, is simple: instead of considering all the possible repairs of the KB as
relevant for inconsistency-tolerant query answering, we consider the intersection
of such repairs as the ABox to use in query answering, in the spirit of the well-
known “When In Doubt, Throw It Out” principle [31]. Obviously, since all
repairs are consistent, their intersection is also consistent, and query answering
over the intersection can be done by resorting to the classical semantics. In other
words, inconsistency-tolerant query answering in this new semantics is reduced
to classical query answering over the intersection of all repairs of the original
ABox. We show that the IAR-semantics enjoys several desirable properties.
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In particular, we show that this semantics is a sound approximation of the
AR-semantics, and that query answering under the IAR-semantics is first-order
rewritable for unions of conjunctive queries, thus showing that the problem can
be solved in polynomial time, in fact AC 0, in data complexity. This is the
second contribution of this paper.

The first-order rewritability result concerns one of the most expressive logics
in the DL-Lite family. This logic, called DL-LiteA,id,den, includes the typical
constructs of the DL-Lite family, and adds two distinguished features, namely
identification assertions and denial assertions. Identification assertions are
mechanisms for specifying a set of properties that can be used to identify in-
stances of concepts [23]. Such assertions allow for sophisticated forms of object
identification, which may include paths realized through the chaining of roles,
their inverses, and attributes. Denial assertions are used to impose that the
answer to a certain Boolean conjunctive query over the ontology is false, anal-
ogous to negative constraints in [16], thus forbidding that certain combinations
of facts can occur in an ABox. This is particularly useful for specifying general
forms of disjointness, that, like identification assertions, are not supported in
traditional ontology languages. In all OBDA projects we have carried out in
the last years (see, e.g., [69, 2]), the importance of these two constructs clearly
emerged. Therefore, we believe that showing that these kinds of constraints
can be added to DL-Lite without losing first-order rewritability of conjunctive
queries even under inconsistency-tolerant semantics is crucial for promoting the
adoption of OBDA in real applications.

We have implemented our algorithm and tested it over the LUBM bench-
mark ontology. In fact, we had to slightly modify the LUBM ontology to make it
suitable for our testing aims by introducing in it denial and identification asser-
tions, as well as some other forms of assertions possibly causing inconsistency.
We made use of the LUBM data generator to obtain ABoxes of various size,
ranging from around 100,000 facts to more than 2.7 million facts, and manually
introduced in such ABoxes various percentages of inconsistency. We tested sev-
eral queries, some taken from the LUBM benchmark, some others specifically
defined by us. Our results, in terms of both rewriting and evaluation times, are
encouraging and support the practical feasibility of inconsistency-tolerant query
answering in an OBDA scenario.

The paper is organized as follows. In Section 2 we present the logic
DL-LiteA,id,den and provide some preliminaries on query answering over DL
knowledge bases (some details on first-order rewritability are deferred to Ap-
pendix 1). In Section 3 we briefly describe the algorithm for consistency check-
ing in DL-LiteA,id,den under the classical first-order semantics. The correctness
of the algorithm is proved in Appendix 2. In Section 4 we introduce the AR-
semantics and in Section 5 we show that query answering under such semantics is
intractable for both DL-LiteA,id,den and DL-Litecore , i.e., the simplest DL-Lite
logic. In Section 6 we present the IAR-semantics and in Section 7 we show
that query answering under such semantics for UCQs is first-order rewritable in
DL-LiteA,id,den. In Section 8 we illustrate our experiments with the LUBM on-
tology, and in Section 9 we discuss related work. Section 10 concludes the paper.

5



The results presented in this paper appeared in preliminary form in [46, 47, 45].

2. Preliminaries

Description Logics [5] are decidable fragments of first-order logic (FOL) that
can be used to represent the knowledge of a domain of interest in a structured
and formally well-understood way. They model the domain of interest in terms
of objects, i.e., individuals, concepts, that are abstractions for sets of objects,
and roles, that denote binary relations between objects. In addition, some DLs
distinguish concepts from value-domains, that denote sets of values, and roles
from attributes, that denote binary relations between objects and values.

We consider an overall alphabet Γ, partitioned in two disjoint alphabets,
namely, ΓP , containing symbols for predicates, and ΓC , containing symbols for
individual (object and value) constants. We further partition ΓP into four dis-
joint sets containing symbols denoting atomic concepts, atomic roles, attributes,
and value-domains, respectively, and partition ΓC into two disjoint sets, called
ΓO and ΓV , which are the set of constants denoting objects, and the set of
constants denoting values, respectively. In the rest of the paper, when it is clear
from the context, we often implicitly refer to Γ.

Complex concept, role, and attribute expressions are constructed by applying
suitable operators to atomic concepts and roles, attributes, and value-domains.
Different DL languages allow for different operators in the constructs.

Given a DL language L, an L knowledge base, or simply a DL knowledge
base when L is clear from the context, over an alphabet Γ is a pair K = 〈T ,A〉,
where:

• T , called the TBox of K, is a finite set of intensional assertions (also called
TBox assertions) over Γ expressed in L;

• A, called the ABox of K, is a finite set of extensional assertions (also called
ABox assertions) over Γ expressed in L.

Intuitively, T contains axioms specifying general properties of concepts,
roles, and attributes, while A contains axioms about individual objects, thus
specifying extensional knowledge. Again, different DL languages allow for dif-
ferent forms of TBox and ABox assertions.

The semantics of a DL knowledge base is given in terms of FOL interpre-
tations (cf. [5]). Then, the notions of interpretation satisfying a FOL sentence,
and of entailment of a sentence by a KB are given in the standard way.

In this paper, we consider DL-LiteA,id,den, which is the most expressive
member of the DL-Lite family of lightweight DLs2 [22]. DL-LiteA,id,den has
been recently introduced in [68, 45] as an extension with denial assertions of the
logic DL-LiteA,id, given originally in [23]. In the rest of this section, we provide

2Not to be confused with the set of DLs studied in [4], which is called the extended DL-Lite
family.

6



syntax and semantics of DL-LiteA,id,den. Since some of the hardness complexity
results we give in the next sections hold already for DL-Litecore , i.e., the least
expressive member of the DL-Lite family (which can be seen as a fragment of
DL-LiteA,id,den), we also recall the syntax of DL-Litecore . Finally, recall the
basic notions related to query answering, and FO-rewritability.

2.1. DL-LiteA,id,den

Concepts, roles, attributes, and value-domains in DL-LiteA,id,den are formed
according to the following syntax:

B −→ A | ∃R | δ(U) E −→ ρ(U)
R −→ P | P− F −→ >D | T1 | · · · | Tn

where A denotes an atomic concept, P an atomic role, P− the inverse of an
atomic role P , and U an attribute. B and R denote a basic concept and a basic
role, respectively. The concept ∃R, also called unqualified existential restriction,
denotes the domain of a role R, i.e., the set of objects that R relates to some
object. Similarly, δ(U) denotes the domain of an attribute U , i.e., the set
of objects that U relates to some values. Furthermore, E and F are value-
domain expressions, ρ(U) denotes the range of an attribute U , i.e., the set of
values to which U relates some object, T1, . . . , Tn denote unbounded pairwise
disjoint predefined value-domains, and >D is the universal value-domain. In
the following, when R is a basic role, the expression R− stands for P− when R
is of the form P , while R− stands for P when R is of the form P−. The symbols
A,P, U,B,R, Ti will be used throughout the paper with the above meaning.

As stated earlier, the semantics of a DL-LiteA,id,den KB is given in terms of
FOL interpretations. All such interpretations agree on the semantics assigned to
each predefined value-domain Ti and to each constant in ΓV . More precisely, we
assume to have a fixed non-empty domain of values ∆V , and to interpret each
value-domain Ti ∈ {T1, . . . , Tn} as the set val(Ti). Furthermore, we interpret
each constant cv ∈ ΓV as one specific value, denoted val(cv), and assume that
there is exactly one Ti ∈ {T1, . . . , Tn} such that val(cv) ∈ val(Ti). Also, we
denote by type(cv) the Ti such that val(cv) ∈ val(Ti). As usual in DL-Lite, we
also assume that the set of value-domains T1, . . . , Tn corresponds to any subset
of the data types adopted by the Resource Description Framework (RDF) [42],
having the following characteristics:

(i) the extension of each Ti is unbounded;
(ii) the extensions of value-domains are pairwise disjoint, i.e., val(Ti) ∩

val(Tj) = ∅ for each 1 ≤ i < j ≤ n;
(iii) the extension of the complement in ∆V of the extensions of all value-

domains is unbounded, i.e., the set ∆V \
⋃n
i=1 val(Ti) is unbounded.

The above assumptions allow us to treat value-domains as atomic concepts, and
attributes as atomic roles when answering queries posed over DL-LiteA,id,den
KBs, as we will discuss later on in this section.
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AI ⊆ ∆ I
O

P I ⊆ ∆ I
O ×∆ I

O

U I ⊆ ∆ I
O ×∆V

T Ii = val(Ti)
>ID = ∆V

(∃R)I = {o | ∃o′. (o, o′) ∈ RI}
(δ(U))I = {o | ∃v. (o, v) ∈ U I}
(ρ(U))I = {v | ∃o. (o, v) ∈ U I}

(P−)I = {(o, o′) | (o′, o) ∈ P I}

Figure 1: Semantics of the DL-LiteA,id,den constructs

An interpretation I = (∆I , ·I) for a DL-LiteA,id,den KB over an alphabet
Γ consists of an interpretation domain ∆I = ∆ I

O ∪ ∆V , where ∆ I
O is a non-

empty set, disjoint from ∆V , called the domain of objects, and an interpretation
function ·I . Such a function coincides with the function val in the interpretation
of value domains and value constants, while it assigns a subset CI of ∆ I

O to each
concept C, a subset RI of ∆ I

O ×∆ I
O to each role R, a subset U I of ∆ I

O ×∆V to
each attribute U , and an element cI of ∆ I

O to each constant c ∈ ΓO. Each such
interpretation I respects the Unique Name Assumption (UNA), i.e., I assigns
each constant from ΓO to a distinct element of ∆ I

O , and each constant from ΓV
to a distinct element of ∆V .

Given an interpretation I of the form described above, the semantics for
DL-LiteA,id,den concepts, roles, and attributes is specified in Figure 1.

We now turn to the definition of DL-LiteA,id,den TBox assertions, which have
the following form3:

B1 v B2 R1 v R2 U1 v U2 E v F
B1 v ¬B2 R1 v ¬R2 U1 v ¬U2

(funct R) (funct U)
∀~y.conj(~y)→ ⊥
(id B π1, . . . , πn)

Assertions of the first row are called positive inclusion assertions (or, sim-
ply, positive inclusions) specified, from left to right, between concepts, roles,
attributes, and value-domains, respectively. Given a TBox T , we denote with
Tinc the set of concept, role, and attribute positive inclusions occurring in T ,
and with Ttype the set of positive inclusions between value-domains occurring
in T .

Assertions of the second row are negative inclusion assertions (or, simply,
negative inclusions), also called disjointnesses, specified, from left to right, be-
tween concepts, roles, and attributes, respectively. The set of all negative in-
clusions in a TBox T is denoted by Tdisj .

3In fact, DL-LiteA,id,den also allows for the use of positive qualified existential restric-
tions [5] in the right-hand side of inclusions. This, however, can be easily encoded in
DL-LiteA,id,den without qualified existential restrictions (cf. [22]).
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Assertions of the third row, from left to right, are role and attribute function-
ality assertions, respectively, which state that a role or an attribute is functional.
We denote with Tfunct the set of the functional assertions of a TBox T .

The assertion in the fourth row, i.e., ∀~y.conj(~y) → ⊥, is a denial assertion
(or, simply, a denial). In such assertion, conj(~y) denotes a conjunction of atoms
of the form A(t1), P (t1, t2), or U(t1, t3), where t1, t2 are either variables in ~y or
constants in ΓO, and t3 is either a variable in ~y or a constant in ΓV . Notice that
such assertions correspond to Horn clauses having a false head. Intuitively, they
allow one to specify that certain patterns of objects cannot occur as instances
of the knowledge base. Interestingly, the form of these patterns is arbitrary,
i.e., they are not limited to be tree-shaped, as usual in Description Logics. By
means of denial assertions, we enrich DLs of the DL-Lite family with general
forms of disjointnesses, otherwise not expressible in these languages, and with
the ability of specifying irreflexivity of roles. For example, the denial assertion
∀x.(hasFather(x, x) → ⊥) implies that the role hasFather is irreflexive, i.e.,
that a person cannot be father of himself. In what follows, we denote with Tden
the set of the denial assertions belonging to a TBox T .

The last kind of assertion, i.e., (id B π1, . . . , πn), is an identification assertion
(or, simply, an identification), stating that a set of properties identifies the
instances of a basic concept B. In an identification assertion, πi is a path, i.e.,
an expression built according to the following syntax:

π −→ S | D? | π1 ◦ π2

where S denotes a basic role (i.e., an atomic role or the inverse of an atomic
role), or an attribute, π1 ◦ π2 denotes the composition of paths π1 and π2, and
D?, called test relation, represents the identity relation on instances of D, which
can be a basic concept or a value-domain expression. Test relations are used to
impose that a path involves instances of a certain concept or value-domain. The
length of a path π, denoted length(π), is 0 if π has the form D?, is 1 if π has the
form S, and is length(π1) + length(π2) if π has the form π1 ◦ π2. In our logic,
identification assertions are local, i.e., at least one πi ∈ {π1, ..., πn} is of length 1,
i.e., it is an atomic role, the inverse of an atomic role, or an attribute (possibly
composed only with test relations). The term “local” emphasizes that at least
one of the paths refers to a local property of B [23]. Intuitively, an identification
assertion of the above form asserts that for any two different instances o, o′ of B,
there is at least one πi such that o and o′ differ in the set of their πi-fillers, that is
the set of objects that are reachable from o and o′ by means of πi. For example,
the identification assertion (id Match homeTeam, visitorTeam) says that there
are not two different matches with the same home team and visiting team (which
is indeed what happens, for instance, in a season schedule of a football league).
In what follows, we denote the set of the identification assertions belonging to
a TBox T with Tid.

We are now ready to present the definition of DL-LiteA,id,den KB.

Definition 1. A DL-LiteA,id,den KB is a pair K = 〈T ,A〉, such that:
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• the TBox T consists of the finite sets Tinc, Ttype, Tdisj, Tfunct, Tden, and
Tid, as described above;

• the ABox A is a finite set of assertions of the forms A(a), P (a, b) and
U(a, v), where a and b are constants in ΓO, and v is a constant in ΓV ;

• each role or attribute that either is functional in T , i.e., it occurs in a
functionality assertion in T , or appears (in either direct or inverse direc-
tion) in a path of an identification assertion in T , is not specialized, i.e.,
it does not appear on the right-hand side of assertions of the form R v R′
or U v U ′.

Note that, as shown in [25], the last condition of the above definition is
necessary for keeping query answering first-order rewritable (see later).

To complete the definition of the semantics of a DL-LiteA,id,den KB, we first
define when an interpretation satisfies a TBox assertion, and then we extend
the definition to satisfaction of ABox assertions. As usual, we denote by I |= α
the fact that I satisfies α, where α is either an ABox or a TBox assertion.

Concerning the satisfaction of TBox assertions, we analyze here the various
cases:

• If α is a positive inclusion assertion of the form B1 v B2, then I |= α if
BI1 ⊆ BI2 . The definition for the other positive inclusions is analogous.

• If α is a negative inclusion assertion of the form B1 v ¬B2, then I |= α if
BI1 ∩BI2 = ∅. The definition for the other negative inclusions is analogous.

• If α is a role functionality assertion of the form (funct R), then I |= α
if for each o1, o2, o3 ∈ ∆ I

O we have that (o1, o2) ∈ RI and (o1, o3) ∈ RI
implies o2 = o3. The definition for attribute functionality assertions is
analogous.

• If α is a denial assertion of the form ∀y.conj(~y), then I |= α if the FOL
sentence ∃~y.conj(~y) evaluates to false in I (i.e., is not satisfied by I in the
standard FOL sense).

• If α is an identification assertion of the form (id B π1, . . . , πn), then I |= α
if for all o, o′ ∈ BI , πI1(o) ∩ πI1(o′) 6= ∅ ∧ · · · ∧ πIn(o) ∩ πIn(o′) 6= ∅ implies
o = o′, where πIi (o) denotes the set of πi-fillers for o in I, i.e., πIi (o) =
{o′ | (o, o′) ∈ πIi }, with πI defined as follows:

– if π = S, then πI = SI ,
– if π = D?, then πI = {(o, o) | o ∈ DI},
– if π = π1 ◦ π2, then πI = πI1 ◦ πI2 , where ◦ denotes the composition

operator on relations.

An interpretation I satisfies an ABox assertion A(a) if aI ∈ AI , an ABox
assertion P (a, b) if (aI , bI) ∈ P I , and an ABox assertion U(a, c) if (aI , val(c)) ∈
U I . A model of a DL-LiteA,id,den KB K = 〈T ,A〉 is an interpretation I that
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satisfies all assertions in T and A. We denote with I |= K the fact that I is a
model for K, and with Mod(K) the class of all models of K. A KB is satisfiable
if it has at least one model, i.e., Mod(K) 6= ∅, unsatisfiable otherwise. For a KB,
we also use the term consistent (resp. inconsistent) to mean satisfiable (resp.
unsatisfiable). A set A′ of ABox assertions is said to be T -consistent if the KB
〈T ,A′〉 is satisfiable, T -inconsistent otherwise.

A KB K entails (or logically implies) a FOL sentence φ, and therefore a
TBox or ABox assertion, written K |= φ, if all models of K are also models of
φ. This notion naturally extends to a set of sentences. The KB satisfiability
problem is defined as follows: given a DL KB K, verify whether it is satisfiable.

Example 1. In this example, we present a TBox that models a (very small
portion of) the network managed by a telecommunication company, extracted
from an ontology we developed within a real-world experimentation [21]. In par-
ticular, our KB focuses on the connections between telecommunication devices
(cf. concept Device in the ontology), which is realized by connecting device ports
(Port). Each port belongs to (of) exactly one device. Among various kinds of
ports, there are incoming ports (PortIn) and outgoing ports (PortOut), which
are disjoint sets of ports. Each port is associated with a number (number),
and there do not exist two ports of the same device with the same number. A
port can be connected to (connectedTo) another port, according to the following
rules:

(a) every port is connected to at most one other port;
(b) two ports of the same device cannot be connected to each other;
(c) there cannot exist an incoming port and an outgoing port of one device

that are connected to ports of the same device.

The following DL-LiteA,id,den TBox T captures our domain:

• the set Tinc consists of the following assertions:

− PortIn v Port − PortOut v Port
− ∃connectedTo v Port − ∃of v Port
− ∃connectedTo− v Port − ∃of− v Device
− Port v δ(number) − Device v ∃of−

− δ(number) v Port − Port v ∃of

• the set Ttype consists of the following assertion:

− ρ(number) v xsd:integer

• the set Tdisj consists of the following assertions:

− PortIn v ¬PortOut − Port v ¬Device

• the set Tfunct consists of the following assertions:
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− (funct connectedTo) − (funct of )
− (funct connectedTo− ) − (funct number)

• the set Tid consists of the following assertion:

− (id Port number, of )

• the set Tden consists of the following assertions:

− ∀x, y, z.Port(x) ∧ Port(y) ∧ of(x, z) ∧ of(y, z) ∧ connectedTo(x, y)→ ⊥
− ∀x, y, z, k,w, v.PortOut(x) ∧ of(x, y) ∧ connectedTo(x, z) ∧ of(z, k)

∧ PortIn(w) ∧ of(w, y) ∧ connectedTo(w, v) ∧ of(v, k)→ ⊥

Notice that the identification assertion models the fact that there do not exist
two ports with the same number in the same device. Moreover, the functionality
assertions on both the role connectedTo and its inverse encode the above rule
(a), while the first denial assertion copes with the above rule (b), and the second
denial assertion formalizes the above rule (c).

2.2. DL-Litecore

DL-Litecore is the least expressive member of the DL-Lite family, and its
constructs are shared among all logics of the a family. In this sense, it can
be seen as a fragment of DL-LiteA,id,den, where denial, identification and func-
tionality assertions are not allowed, and no distinction is made between roles
and attributes. More precisely, concepts and roles in DL-Litecore are formed
according to the following syntax:

B −→ A | ∃R R −→ P | P−

A DL-Litecore TBox T is a finite set of assertions of the form

B1 v B2 B1 v ¬B2

that is, it is a finite set of positive and negative inclusions between basic con-
cepts. A DL-Litecore ABox has the same form of a DL-LiteA,id,den ABox, and
a DL-Litecore knowledge base K is simply a pair 〈T , A〉 where T and A are a
TBox and ABox in DL-Litecore , respectively.

The semantics of a DL-Litecore KB coincides with that of DL-LiteA,id,den,
limited to the constructs and assertions allowed in DL-Litecore . The notions
of model of a KB, KB satisfiability, and entailment of a sentence by a KB are
obviously the same as those given for DL-LiteA,id,den.
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2.3. Query Answering

A FOL query over a DL KB is a possibly open FOL formula over the KB
alphabet. A conjunctive query (CQ) is a FOL query of the form ∃~y.conj(~x, ~y),
where ~y and ~x are disjoint sets of variables, called existential and free variables,
respectively, and conj(~x, ~y) is a conjunction of atoms of the form A(z), Ti(z

′),
P (z, z′), U(z, z′), where z, z′ are either constants or (possibly non-distinct)
variables from ~x or ~y. A union of conjunctive queries (UCQ), is a FOL query
of the form

∨n
i=1 ∃~yi.conji(~x, ~yi) such that each ∃~yi.conji(~x, ~yi) is a conjunctive

query. With a little abuse of notation, we will sometime treat a UBCQ (possibly
enriched with inequalities) as a set of CQs.

A Boolean FOL query is a FOL query with no free variables, i.e., a FOL
sentence. The notion of satisfaction of a Boolean query q in an interpretation
I and the notion of entailment by a DL KB K are the usual ones: we write
I |= q when q is satisfied in the interpretation I, and K |= q when q is entailed
by K, i.e., q is satisfied in all models of K. For a non-Boolean query q with free
variables 〈x1, . . . , xn〉, a tuple of constants 〈a1, . . . , an〉 is a certain answer to
q over K if K |= q[x1/a1, . . . , xn/an], where q[x1/a1, . . . , xn/an] is the Boolean
query obtained by replacing each xi in q with ai.

Query answering for a non-Boolean CQ q over a KB K is the task of com-
puting all certain answers to q over K, and it is this task that we aim to study in
this paper. As we have just noticed, this task can be straightforwardly reduced
to entailment of Boolean conjunctive queries. Thus, for ease of exposition, and
as usually done in the studies of query answering over KBs (see, e.g., [35]), we
consider in the following only Boolean conjunctive queries (BCQs) and unions
of Boolean conjunctive queries (UBCQs), and we define the query answering
reasoning service as follows: given a DL KB K and a Boolean query q (either
a BCQ or a UBCQ) over K, verify whether K |= q. A simplified form of query
answering is instance checking, defined as follows: given a DL KB K and an
ABox assertion α, verify whether K |= α. We notice that, according to what
we have said above, despite the fact that we limit our investigation to Boolean
queries, all the results we achieve on query answering over a DL KB can be
easily extended in the standard way to the presence of free variables in queries.

In this paper we are interested in the so-called data complexity of query
answering (and of KB satisfiability, as well), which is a notion borrowed from
the database literature [73]. According to data complexity, both the TBox and
the query are not considered as inputs to the query answering problem, and
the complexity is therefore measured with respect to the size of the ABox only.
This complexity measure is of particular interest in all those cases where the
size of the intensional level of the KB (i.e., the TBox) is negligible with respect
to the size of the data (i.e., the ABox), as in ontology-based data access [64].

We now introduce some notions related to query answering that will be
used in the rest of the paper. In particular, the following definition provides a
database-like interpretation of an ABox.

Definition 2. Let A be a set of ABox assertions. The interpretation DB(A) =
〈∆DB(A), ·DB(A)〉 is defined as follows:
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− ∆DB(A) = ∆
DB(A)
O ∪ ∆V , where ∆

DB(A)
O is the set of all object constants

occurring in A,

− T
DB(A)
i = val(Ti) for each value-domain Ti ∈ {T1, . . . , Tn}, and cDB(A) =

val(c) for each constant c ∈ ΓV ,
− aDB(A) = a, for each object constant a occurring in A,
− ADB(A) = {a | A(a) ∈ A}, for each atomic concept A,
− PDB(A) = {(a1, a2) | P (a1, a2) ∈ A}, for each atomic role P , and
− UDB(A) = {(a, val(c)) | U(a, c) ∈ A}, for each attribute U .

The notion of image of a Boolean conjunctive query in an ABox is given
as follows. For a BCQ q = ∃~y. conj(~y), we denote with conj-set(~y) the set of
atoms occurring in the conjunction conj(~y). Given an ABox A, an image of q
in A is a set G ⊆ A such that there exists a substitution σ from the variables ~y
in conj-set(~y) to constants in G such that the set of atoms in σ(conj-set(~y)) is
equal to G and the formula σ(conj(~y)) evaluates to true in DB(G), i.e., DB(G) |=
σ(conj(~y)). Obviously, we have that DB(A) |= q if and only if there exists an
image of q in A. We use images(q,A) to denote the set of all images of q in
A. The notion of image naturally extends to BCQ with inequalities. More
precisely, if q′ = ∃~y. conj(~y) ∧ φ 6=(~y′), where variables in ~y′ occur also in ~y and

φ 6=(~y′) contains all inequality predicates of q′, and G, conj-set(~y), and σ are as

above, G is an image of q′ in A if DB(G) |= σ(conj(~y) ∧ φ 6=(~y′))).

2.4. The notion of FO-rewritability

In this paper we study the crucial property of first-order rewritability (FO-
rewritability) for both KB satisfiability and query answering. Intuitively, FO-
rewritability of KB satisfiability (resp., query answering) captures the property
that we can reduce satisfiability checking (resp., query answering) to evaluating
a FOL query over the ABox A considered as a relational database, i.e., over
DB(A). The definitions follow.

Definition 3. KB satisfiability in a DL L is FO-rewritable if, for every TBox T
expressed in L, one can effectively compute a Boolean FOL query qs over T such
that, for every ABox A, the KB 〈T ,A〉 is satisfiable if and only if DB(A) 6|= qs.

Definition 4. Query answering in a DL L is FO-rewritable, if for every TBox
T expressed in L and every query q over T , one can effectively compute a FOL
query qr over T such that for every ABox A for which 〈T ,A〉 is satisfiable, we
have that 〈T ,A〉 |= q if and only if DB(A) |= qr. We call such qr a perfect
FOL rewriting (or simply perfect rewriting) of q w.r.t. T .

We remark that the FOL query considered in the above definitions depends
only on the TBox (and the query), but not on the ABox. Since the evaluation of
a FOL query over an ABox is in AC0 in data complexity [1], we can state that,
both for KB satisfiability and query answering, the property of FO-rewritability
implies that the problem is in AC0 in data complexity.

FO-rewritability of query answering for various logics of the DL-Lite family
has been shown in [22, 20]. In these papers, the algorithm PerfectRef has been
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presented, which takes as input a DL-LiteA,id TBox T and a UCQs Q and
returns a perfect rewriting of Q w.r.t. T . In this paper, we consider the case
in which PerfectRef takes as input a DL-LiteA,id,den TBox, and acts exactly
as in [22, 20]. Then, the following proposition immediately follows from the
analogous result given in [20] for DL-LiteA,id.

Proposition 1. If T be a DL-LiteA,id,den TBox, and Q is a UCQs over T ,
then PerfectRef(Q, T ) is a perfect rewriting of Q w.r.t. T .

Instances of execution of PerfectRef can be found in Example 3, whereas the
description of PerfectRef is recalled in Appendix 2.

3. Satisfiability of DL-LiteA,id,den KBs

We now deal with KB satisfiability in DL-LiteA,id,den and show that this
problem is FO-rewritable (cf. Definition 3), and thus in AC0 in data complexity.

We first notice that FO-rewritability of the satisfiability check for
DL-LiteA,id, i.e., DL-LiteA,id,den without denial assertions, has been already
claimed in [20]. In that paper, however, the role of assertions of the set Ttype
has been overlooked, and therefore the algorithm for KB satisfiability given
in [20] does not identify inconsistencies caused by the value-domain inclusions
of the TBox. Notice that such inconsistencies may arise from the fact that
the extensions of value-domains are pairwise disjoint, as shown in the following
example.

Example 2. The TBox assertion ρ(U) v Ti implies that ρ(U) is disjoint from
every value-domain distinct from Ti. Thus, the ABox assertion U(a, v) such
that v ∈ ΓV and val(v) ∈ val(Tj), with Tj 6= Ti, is inconsistent with the above
TBox assertion, and the KB 〈{ρ(U) v Ti}, {U(a, v)}〉 is unsatisfiable. As a
further example, consider the KB 〈{ρ(U1) v Ti, ρ(U2) v Tj , U1 v U2, A v
δ(U1)}, {A(d)}〉. The TBox implies that U1 has an empty interpretation in
every TBox model, and therefore the above KB is unsatisfiable.

Our algorithm for KB satisfiability makes use of a function ϕ that associates
(unions of) Boolean conjunctive queries with inequalities to assertions in Ttype∪
Tdisj ∪ Tfunct ∪ Tid ∪ Tden. Such a function, which extends to value-domain
inclusions and denial assertions an analogous function given in [20], is defined
as follows.

- ϕ((funct P )) : ∃x, x1, x2.P (x, x1) ∧ P (x, x2) ∧ x1 6= x2
- ϕ((funct P−)) : ∃x, x1, x2.P (x1, x) ∧ P (x2, x) ∧ x1 6= x2
- ϕ((funct U)) : ∃x, x1, x2.U(x, x1) ∧ U(x, x2) ∧ x1 6= x2
- ϕ(B1 v ¬B2) : ∃x.γ(B1, x) ∧ γ(B2, x)
- ϕ(R1 v ¬R2) : ∃x1, x2.η(R1, x1, x2) ∧ η(R2, x1, x2)
- ϕ(U1 v ¬U2) : ∃x1, x2.U1(x1, x2) ∧ U2(x1, x2)
- ϕ(ρ(U) v Ti) :

∨
j∈{1,...,n}∧j 6=i ∃x1, x2.U(x1, x2) ∧ Tj(x2)

- ϕ(∀~x.conj(~x)→ ⊥) : ∃~x.conj(~x)
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- ϕ((id B π1, . . . , πm)) : ∃x, x′.γ(B, x) ∧ γ(B, x′) ∧ x 6= x′∧∧
1≤i≤m ∃xi.ξ(πi, x, xi) ∧ ξ(πi, x′, xi)

In the above definition, x, x′, x1, x2, . . . , xm are variables and ~x is a sequence
of variables, and γ and ξ are two functions, that we now define. In what follows,
(ynew denotes fresh variable symbol, i.e., a variable symbol not occurring else-
where in the query. The function γ takes care of atoms built on basic concepts,
whereas the function η takes care of atoms built on roles:

γ(B, x) =


A(x) if B = A,

∃ynew.P (x, ynew) if B = ∃P,
∃ynew.P (ynew, x) if B = ∃P−,
∃ynew.U(x, ynew) if B = δ(U)

and

η(R, x1, x2) =

{
P (x1, x2) if R = P,

P (x2, x1) if R = P−.

The function ξ takes care of paths π in identification assertions, and is defined
inductively on the structure of π.

- if π = R, then ξ(π, x1, x2) = η(R, x1, x2),

- if π = U , then ξ(π, x1, x2) = U(x1, x2),

- if π = D?, then ξ(π, x1, x2) = D(x1),

- if π = π1 ◦ π2, and π1 = D?, then ξ(π, x1, x2) = D(x1) ∧ ξ(π2, x1, x2),

- if π = π1 ◦ π2, and π1 is not of the form D?, then ξ(π, x1, x2) =
∃ynew.ξ(π1, x1, ynew) ∧ ξ(π2, ynew, x2).

Intuitively, if α is an assertion in Tdisj ∪ Tfunct ∪ Tid ∪ Tden, then the query
ϕ(α) encodes the negation of α, i.e., searches for violations of α. For exam-
ple, if α is the identification assertion (id Port number, of ), then ϕ(α) =
∃x, x′, x1, x2.Port(x) ∧ Port(x′) ∧ x 6= x′ ∧ number(x, x1) ∧ number(x′, x1) ∧
of(x, x2) ∧ of(x′, x2). Similarly, if α = ρ(U) v Ti, i.e., α ∈ Ttype, then ϕ(α) en-
codes the negation of all disjointnesses between the range of U and each Tj 6= Ti.
We are now ready to present the algorithm UnsatQuery (Algorithm 1), which

Input: DL-LiteA,id,den TBox T
Output: UBCQ with inequalities
begin

return
∨
α∈T \Tinc

PerfectRefIdC(ϕ(α), Tinc ∪ Ttype)
end

Algorithm 1: UnsatQuery

takes as input a DL-LiteA,id,den TBox T , and returns the FOL query (more pre-
cisely the UBCQ with inequalities) that we evaluate over an ABox A, whenever
we want to verify the satisfiability of the KBs K = 〈T ,A〉.
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The algorithm UnsatQuery computes the perfect rewriting with respect to
the positive knowledge in T , i.e., Tinc ∪ Ttype, of each query associated by the
function ϕ to the assertions in Tdisj ∪ Tden ∪ Ttype ∪ Tfunct ∪ Tid. By taking the
union of all such perfect rewritings, UnsatQuery(T ) encodes the negation of all
disjointnesses, functionalities, identifications, and denials inferred by (and not
only asserted in) the TBox T . To compute perfect rewritings, UnsatQuery makes
use of the algorithm PerfectRefIdC given in [20], which rewrites CQs with (limited
forms of) inequalities, like those that ϕ associates to identification assertions
and functionalities. This algorithm is a variant of PerfectRef (algorithm 6).
More precisely, rewriting steps in PerfectRefIdC are exactly as in PerfectRef,
with the proviso that inequality is treated as an atomic role and inequality
atoms are never rewritten, since no assertions in the TBox involve the inequality
predicate. Moreover, PerfectRefIdC does not unify query atoms if the variables
involved in the unification occur also in inequality atoms. Obviously, if q is a
CQ without inequalities, then PerfectRefIdC(q, T ) = PerfectRef(q, T ). Observe
that the query returned by PerfectRefIdC is still a UBCQ with inequalities over
the alphabet of T .

Termination of the algorithm UnsatQuery follows from termination of
PerfectRefIdC, which is shown in [20]. The property of UnsatQuery estab-
lished by the following theorem states that satisfiability in DL-LiteA,id,den is
FO-rewritable. The proof of the theorem is given in Appendix 2.

Theorem 1. A DL-LiteA,id,den KB K = 〈T ,A〉 is unsatisfiable if and only if
DB(A) |= UnsatQuery(T ).

The following result is then a direct consequence of the above theorem and
of Proposition 1.

Proposition 2. KB satisfiability and query answering in DL-LiteA,id,den are
FO-rewritable, and are therefore in AC0 in data complexity.

An easy consequence of Theorem 1 is that a DL-LiteA,id,den KB of the form
〈T , ∅〉 is always consistent. Furthermore, a T -inconsistent set V ⊆ A exists in
K = 〈T ,A〉 if and only if DB(A) |= UnsatQuery(T ). This property leads us to
formalize the notion of K-clash, which will be useful in the following.

Definition 5. If K = 〈T ,A〉 is a DL-LiteA,id,den KB, then a set of ABox
assertions V ⊆ A is a K-clash if there exists a q ∈ UnsatQuery(T ) such that
V ∈ images(q,A).

We conclude this section with an example illustrating the whole procedure
for checking satisfiability of a DL-LiteA,id,den KB.

Example 3. Let K = 〈T ,A〉 be a DL-LiteA,id,den-KB, where T is the TBox of
Example 1, and A is the ABox formed by the following assertions:

PortIn(p1), PortOut(p1), connectedTo(p1, p2).

In words, A states that p1 is both an incoming and an outgoing port, and that
p1 is connected to p2. It is immediate to verify that K is inconsistent, since the
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assertion PortIn v ¬PortOut in T is contradicted by the assertions PortIn(p1)
and PortOut(p1).

For this example, let us focus only on the following two assertions in T \Tinc.

α1 = PortIn v ¬PortOut;
α2 = ∀x, y, z, k, w, v.PortOut(x) ∧ of(x, y) ∧ connectedTo(x, z) ∧ of(z, k)

∧ PortIn(w) ∧ of(w, y) ∧ connectedTo(w, v) ∧ of(v, k)→ ⊥.

The queries associated to α1 and α2 by the function ϕ are:

ϕ(α1) = ∃x.PortIn(x) ∧ PortOut(x);
ϕ(α2) = ∃x, y, z, k, w, v.PortOut(x) ∧ of(x, y) ∧ connectedTo(x, z) ∧ of(z, k)

∧ PortIn(w) ∧ of(w, y) ∧ connectedTo(w, v) ∧ of(v, k).

UnsatQuery(T ) contains, among others, the following queries:

q1 = ∃x, y, z, k, w, v.PortOut(x) ∧ of(x, y) ∧ connectedTo(x, z)∧
of(z, k) ∧ PortIn(w) ∧ of(w, y) ∧ connectedTo(w, v) ∧ of(v, k);

q2 = ∃x, y, z, w.PortOut(x) ∧ of(x, y) ∧ connectedTo(x, z)∧
PortIn(w) ∧ of(w, y) ∧ connectedTo(w, z);

q3 = ∃x, y.PortIn(x) ∧ PortOut(x) ∧ connectedTo(x, z);
q4 = ∃x.PortIn(x) ∧ PortOut(x).

The first three queries come from the rewriting of ϕ(α2). In particular,

• q1 coincides with ϕ(α2).

• q2 is obtained from q1 by various iterations of the algorithm PerfectRef,
which proceeds in this way4: (i) it first unifies atoms of(z, k) and of(v, k),
and thus substitutes v with z throughout the query, and k with , since
in the resulting atom k is unbound; (ii) then, it rewrites the atom of(z, )
through the assertions Port v ∃of, thus obtaining the atom Port(z); (iii)
after, it rewrites Port(z) into connectedTo( , z), where denotes a new
unshared existentially quantified variable in the query, by applying the
assertion ∃connectedTo− v Port; (iv) finally, it unifies connectedTo( , z)
with connectedTo(w, z), thus returning q2.

• q3 is obtained from q2 by first unifying atoms of(x, y) and of(w, y), and
then applying Port v ∃of (as in step (ii) above), and subsequently
PortOut v Port, thus returning q3.

The query q4 coincides instead with ϕ(α1). Such a query is not touched
by the algorithm PerfectRef, since no inclusion assertions exist in Tinc having
PortIn or PortOut in their right-hand side, and no unifications can be performed
on it.

4In fact, q2 can be obtained from q1 in various ways, and we just describe here one of such
possible options.
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It is easy to verify that, for the queries considered in this example, we have:

DB(A) 6|= q1; DB(A) 6|= q2;
DB(A) |= q3; DB(A) |= q4.

Hence, we conclude that the KB K is inconsistent since the assertions in A
violate under T both the negative inclusion α1, witnessed by DB(A) |= q4, and
the denial α2 witnessed by DB(A) |= q3. Finally, the following sets are two
K-clashes:

{ PortIn(p1), PortOut(p1) }
{ PortIn(p1), PortOut(p1), connectedTo(p1, p2) }

4. The ABox Repair semantics

In this section we present our first proposal of inconsistency-tolerant seman-
tics for DL knowledge bases. Our aim here is to allow a DL KB K to be inter-
preted with a non-empty set of models even in the case where K is inconsistent
under the classical FOL semantics.

As already said, the inconsistency-tolerant semantics we propose is based on
the notion of repair, borrowed from the database literature [26, 8]. Intuitively,
given a possibly inconsistent DL KB K = 〈T ,A〉, a repair Ar for K is an
ABox such that the KB 〈T ,Ar〉 is consistent under the FOL semantics, and
Ar “minimally” differs from A. Thus a repair is a T -consistent ABox which
“is as close as possible” to A. Different notions of “‘minimality” may give rise
to different inconsistency-tolerant semantics. Here, we consider as repairs of K
the T -consistent ABoxes that can be obtained by eliminating from A as few
assertions as possible in order to gain consistency. In other terms, a repair is
an inclusion-maximal T -consistent subset of A, as formalized in the following
definition.

Definition 6. Let K = 〈T ,A〉 be a DL-LiteA,id,den KB. An ABox repair (AR-
repair) of K is a set A′ of ABox assertions such that:

• A′ ⊆ A,
• Mod(〈T ,A′〉) 6= ∅,
• no A′′ exists such that A′ ⊂ A′′ ⊆ A, and Mod(〈T ,A′′〉) 6= ∅.

It is easy to see that more than one AR-repair of a KB K may exist. More-
over, there is always a finite number of AR-repairs, and each AR-repair is finite,
since A is finite. In what follows, we denote by AR-Set(K) the set of AR-repairs
of K.

We now present an example illustrating the notion of AR-repair.
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Example 4. Consider K = 〈T ,A〉, where T is the TBox from Example 1, and
A is the ABox formed by the following assertions:

PortIn(p1), PortOut(p1), connectedTo(p1, p2), of(p1, p2), Device(d).

It is easy to verify that the ABox A is T -inconsistent, as it contains the following
K-clashes (cf. Definition 5):

V1 = { PortIn(p1), PortOut(p1) }
V2 = { connectedTo(p1, p2), of(p1, p2) }
V3 = { PortIn(p1), PortOut(p1), connectedTo(p1, p2) }

where: V1 and V3 are the K-clashes of Example 3, and V2 is obtained from the
query ϕ(Port v ¬Device).

According to Definition 6, the set AR-Set(K) consists of the following T -
consistent sets of ABox assertions:

AR-rep1 = { PortIn(p1), connectedTo(p1, p2),Device(d) }
AR-rep2 = { PortOut(p1), connectedTo(p1, p2),Device(d) }
AR-rep3 = { PortIn(p1), of(p1, p2),Device(d) }
AR-rep4 = { PortOut(p1), of(p1, p2),Device(d) }

The following proposition immediately follows from the fact that
Mod(〈T , ∅〉) 6= ∅ for any DL-LiteA,id,den TBox T (cf. Theorem 1). This im-
plies that the set of (inclusion-maximal) T -consistent subsets of any ABox is
always non-empty.

Proposition 3. If K = 〈T ,A〉 is a (possibly inconsistent) DL-LiteA,id,den KB,
then AR-Set(K) 6= ∅.

With the notion of AR-repair in place, we can present the ABox Repair
semantics (AR-semantics).

Definition 7. Let K = 〈T ,A〉 be a possibly inconsistent DL-LiteA,id,den
KB. The set of ABox Repair Models, or simply AR-models, of K, denoted
ModAR(K), is defined as follows:

ModAR(K) = {I | I ∈ Mod(〈T ,Ai〉), for some Ai ∈ AR-Set(K)}

The next proposition easily follows from Definition 6 and Definition 7.

Proposition 4. If 〈T ,A〉 is a consistent DL-LiteA,id,den KB, then
ModAR(〈T ,A〉) = Mod(〈T ,A〉).

We notice that the AR-semantics coincides with the loosely-sound semantics
studied in [18] in the context of inconsistent and incomplete databases.

The following notion of consistent entailment is the natural generalization
of classical entailment to the AR-semantics.
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Definition 8. Let K be a possibly inconsistent DL-LiteA,id,den KB, and let φ
be a first-order sentence. We say that φ is AR-consistently entailed, or simply
AR-entailed, by K, written K |=AR φ, if I |= φ for every I ∈ ModAR(K).

In other words, we say that K |=AR φ if for every AR-repairAr ∈ AR-Set(K),
the consistent KB 〈T ,Ar〉 entails φ.

Example 5. Consider the DL KB K = 〈T ,A〉 presented in Example 4, and
the following BCQs:

q1 : ∃xPort(p1) ∧ of(p1, x) ∧Device(x);
q2 : ∃xPort(x) ∧ of(x, d) ∧Device(d).

q1 asks for the existence of a device to which port p1 belongs, and q2 asks for
the existence of a port which belongs to the device d. By looking at the set
AR-Set(K) presented in Example 4, one can easily verify that K AR-entails
both q1 and q2.

We next introduce the notion of minimal inconsistent set and provide a
theorem characterizing AR-entailment.

Definition 9. Let 〈T , V 〉 be a DL-LiteA,id,den KB. We say that V is minimal
T -inconsistent if V is T -inconsistent, and there is no proper subset V ′ of V
such that V ′ is T -inconsistent.

In other words, the above definition says that for each assertion α in a
minimal T -inconsistent set V , the ABox V \ {α} is T -consistent. Given a KB
K = 〈T ,A〉, we denote by minIncSets(K) the set of minimal T -inconsistent
sets contained in A.

It is worth noticing that minimal inconsistent sets correspond to justifi-
cations (also known as minAs) [39, 62, 63, 6]: in particular, a minimal T -
inconsistent sets contained in A corresponds to an explanation (or minimal
justification) of the inconsistency of 〈T ,A〉 at the extensional level. We will
further analyze this aspect in Section 9.

Theorem 2. If K = 〈T ,A〉 is a possibly inconsistent DL-LiteA,id,den KB, and
α ∈ A, then there exists an AR-repair A′ of K such that α 6∈ A′ if and only if
there exists V ∈ minIncSets(K) such that α ∈ V .

Proof. (⇒) From Definition 6 it follows that A′ ∪{α} is T -inconsistent. If it is
also a minimal T -inconsistent set, then the claim is directly proved. Otherwise,
there must exist V ′ ⊂ A′ ∪ {α} that is minimal T -inconsistent. Since A′ does
not contain α and obviously does not contain any T -inconsistent set, it follows
that V ′ contains α, and therefore the claim is shown also in this case.

(⇐) Towards a contradiction, suppose that every AR-repair of K contains α.
Since V ∈ minIncSets(K), we have that V \ {α} is T -consistent. We have
two possible cases: (i) V \ {α} is an AR-repair, but this contradicts the as-
sumption above; or, (ii) there exists an AR-repair A′′ such that V \ {α} ⊂ A′′,
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but A′′ contains α by the hypothesis, which means that A′′ ⊃ V , which is a
contradiction.

We point out that, even though in the above definitions, properties, and
theorems we refer to DL-LiteA,id,den, the results of this section apply also to
more general languages. More precisely, Definitions 6–9, Proposition 3, and
Theorem 2 (limited to KBs with satisfiable TBoxes), as well as Proposition 4
apply also to KBs specified in a different DL L, provided that the semantics for
L adopts the unique name assumption.

5. Query answering in DL-LiteA,id,den under the AR-semantics

In this section we deal with the problem of answering UBCQs posed to
DL-LiteA,id,den KBs under the AR-semantics. We first notice that from the re-
sults presented in [48, Theorem 1 and Theorem 2], we know that UBCQ entail-
ment is coNP-complete in data complexity under the AR-semantics for DL-LiteR
and DL-LiteF , two DLs of the DL-Lite family which extend DL-Litecore respec-
tively with role hierarchies and functionality assertions [22]. Both such DLs are
indeed subsumed by DL-LiteA,id,den, and therefore the lower bound for data
complexity given in [48] applies also to DL-LiteA,id,den.

Here, we strengthen this result, and show that instance checking, i.e., an-
swering single-atom ground queries under AR-semantics is already coNP-hard
in data complexity even if the KB is expressed in DL-Litecore , i.e., the least
expressive logic of the DL-Lite family.

Theorem 3. Let K be a DL-Litecore KB and let α be an ABox assertion.
Deciding whether K |=AR α is coNP-hard with respect to data complexity.

Proof. We exhibit a reduction from unsatisfiability of a 3-CNF to CQ entailment
in DL-Litecore under AR-semantics.

Let φ be a 3-CNF of the form c1 ∧ . . .∧ cn with ci = l1i ∨ l2i ∨ l3i , where every

lji is a literal from a set of propositional variables {x1, . . . , xm}. Given a literal
`, let s(`) denote the sign of `, i.e., s(`) = t if ` is a positive literal, and s(`) = f
otherwise; moreover, let v(`) denote the propositional variable occurring in the
literal `.

We define the following DL-Litecore TBox T :

T = {∃R v Unsat , ∃R− v ¬∃L−t , ∃R− v ¬∃L−f , ∃Lt v ¬∃Lf}

and the following ABox A:

A = {R(a, ci) | 1 ≤ i ≤ n} ∪ {Ls(lji )(v(lji ), ci) | 1 ≤ i ≤ n, 1 ≤ j ≤ 3}

We now prove that 〈T ,A〉 |=AR Unsat(a) if and only if φ is unsatisfiable.
First, if φ is satisfiable, then there exists an interpretation J for {x1, . . . , xm}

such that J is a model for φ. Now consider the ABox

A′ = {Lt(xj , ci) | Lt(xj , ci) ∈ A and J(xj) = true} ∪
{Lf (xj , ci) | Lf (xj , ci) ∈ A and J(xj) = false}
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It is immediate to see that 〈T ,A′〉 is satisfiable. Moreover, since J is a model
for φ, for every conjunct ci of φ, there exists a propositional variable xj such
that either the literal xj occurs positively in ci and J(xj) = true, or xj occurs
negatively in ci and J(xj) = false. This implies that, for every 1 ≤ i ≤ n,
A′ ∪ {R(a, ci)} is T -inconsistent. Then, due to the presence of ∃Lt v ¬∃Lf in
T , it immediately follows that, for every assertion α of the form Lt(xj , ci) or
Lf (xj , ci) such that α ∈ A \A′, A′ ∪ {α} is T -inconsistent. Therefore, A′ is an
inclusion-maximal T -consistent subset of A. And since 〈T ,A′〉 6|= Unsat(a), it
follows that 〈T ,A〉 6|=AR Unsat(a).

Next suppose 〈T ,A〉 6|=AR Unsat(a). Then there exists A′ ⊆ A such that
A′ is an inclusion-maximal T -consistent subset of A and 〈T ,A′〉 6|= Unsat(a).
Now let J be the interpretation of {x1, . . . , xn} defined as follows: J(xj) = true
if there exists Lt(xj , ci) ∈ A′ for some i, and J(xj) = false if there exists
Lf (xj , ci) ∈ A′ for some i. Now, since 〈T ,A′〉 6|= Unsat(a), it follows that no
assertion of the form R(xj , ci) is in A′, and since A′ is inclusion-maximal T -
consistent, it follows that, for every 1 ≤ i ≤ n, there exists an assertion of the
form Lt(xj , ci) or Lf (xj , ci) in A′ for some j. In turn, this immediately implies
that the conjunct ci of φ is satisfied in J , therefore J is a model of φ, which
proves the claim.

We notice that Theorem 3 corrects a wrong result presented in [48], which
asserts tractability of instance checking under AR-semantics for DL-LiteF and
DL-LiteR, both subsuming DL-Litecore . In fact, the technique presented in [48]
is able to properly manage inconsistencies arising from the presence of functional
assertions only, i.e., it is correct for DL-Litecore without negative inclusions, but
enriched with functionalities on roles.

The following theorem provides a matching upper bound for DL-LiteA,id,den,
thereby establishes the exact complexity of query answering for this logic under
the AR-semantics.

Theorem 4. Let K = 〈T ,A〉 be a DL-LiteA,id,den KB, and let Q be a UBCQ.
Deciding whether K |=AR Q is coNP-complete with respect to data complexity.

Proof. coNP-hardness follows from Theorem 3. To prove membership in coNP
we provide the following algorithm

Algorithm AR-Entailment(K, Q)
Input: DL-LiteA,id,den KB K = 〈T ,A〉, UBCQ Q
Output: true or false
begin

if there exists A′ ⊆ A such that
(1) A′ is T -consistent, and
(2) for each α ∈ A \ A′, A′ ∪ {α} is T -inconsistent, and
(3) 〈T ,A′〉 6|= Q

then return false
else return true

end

23



and show that AR-Entailment(K, Q) returns true if and only if K |=AR Q.
By Definition 7, we know that if K |=AR Q, then 〈T ,A′〉 |= Q for each A′ ∈

AR-Set(K). Since conditions (1) and (2) together check that A′ ∈ AR-Set(K),
it is immediate to verify that, if K |=AR Q, then AR-Entailment(K, Q) returns
true. Conversely, if AR-Entailment(K, Q) returns true, then no A′ ∈ AR-Set(K)
exists such that 〈T ,A′〉 6|= Q. By Definition 7 it follows that I |= Q for each
I ∈ ModAR(K), i.e., K |=AR Q.

From the algorithm AR-Entailment, it directly follows that the problem of
establishing whether K 6|=AR Q, which is the complement of our problem, can be
carried out by guessing an ABox A′ ⊆ A, and checking conditions (1), (2), and
(3). Proposition 2 implies that steps (1) and (3) can be carried out in polynomial
time (in fact in AC0), and therefore we easily conclude that the entire check is
polynomial. Thus, K 6|=AR Q can be checked by an NP algorithm, which proves
the claim.

The computational complexity results given in this section show that there
is no hope of finding interesting cases for which conjunctive query answering
is tractable in data complexity under the AR-semantics. Indeed, we get in-
tractability even if we reduce to the least expressive DL-Lite logic, i.e., a very
simple DL, and consider only instance checking, i.e., a very limited form of
query answering. The only mentioned tractable case, i.e., instance checking
over DL-Litecore KBs without negative inclusions, has very limited expressivity
both in the KB and in the query language, thus it seems to be not suited for
real-world applications.

6. The Intersection ABox Repair semantics

Towards the definition of practical solutions to the treatment of inconsisten-
cies in DL KBs, in this section we introduce a new semantics, called Intersection
ABox Repair (IAR) semantics, which is an approximation of the AR-semantics
given in Section 4.

In a nutshell, this semantics is based on a new notion of repair obtained by
following the WIDTIO (When In Doubt Throw It Out) principle, proposed in
the area of belief revision and update [76, 31]. More precisely, it allows us to
deal with a single repair, the intersection of all the AR-repairs of the KB, rather
than the multiple repairs that may exist under the AR-semantics.

At the end of this section we will show that answering unions of conjunctive
queries over a DL-LiteA,id,den KB under such semantics is tractable in data
complexity.

Definition 10. Let K = 〈T ,A〉 be a possibly inconsistent DL-LiteA,id,den KB.
The Intersection ABox Repair (or IAR-repair) of K, denoted by IAR-Repair(K),
is defined as

IAR-Repair(K) =
⋂

Ai∈AR-Set(K)

Ai
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Then, the set of IAR-models of K, denoted ModIAR(K), is defined as follows:

ModIAR(K) = Mod(〈T , IAR-Repair(K)〉)

Analogously to what we have done for the AR-semantics, we give below the
notion of consistent entailment under the IAR-semantics.

Definition 11. Let K be a possibly inconsistent DL-LiteA,id,den KB, and let φ
be a first-order sentence. We say that φ is IAR-consistently entailed, or simply
IAR-entailed, by K, written K |=IAR φ, if I |= φ for every I ∈ ModIAR(K).

Example 6. Let K = 〈T ,A〉 be the KB presented in Example 4. According to
Definition 10, and considering the set AR-Set(K) presented in Example 4, we
have:

IAR-Repair(K) = { PortIn(p1), connectedTo(p1, p2),Device(d) }
∩ { PortOut(p1), connectedTo(p1, p2),Device(d) }
∩ { PortIn(p1), of(p1, p2),Device(d) }
∩ { PortOut(p1), of(p1, p2),Device(d) }
= { Device(d) }

and then:

ModIAR(K) = Mod(〈T , IAR-Repair(K)〉) = Mod(〈T , {Device(d)}〉)

We point out that in computing IAR-Repair(K) all the knowledge about the
fact that p1 and p2 are ports is lost, while we preserve the knowledge about the
device d. Indeed, if we consider the BCQs q1 and q2 of Example 5, we have that
K 6|=IAR q1 and K |=IAR q2.

Next we discuss three relevant properties of the IAR-semantics. The first
property states that the IAR-semantics is a sound approximation of the AR-
semantics, in the sense that, for any knowledge base K, every interpretation that
is a model of K according to the AR-semantics is also a model of K according
to the IAR-semantics.

Theorem 5. If K = 〈T ,A〉 is a DL-LiteA,id,den KB, then, ModAR(K) ⊆
ModIAR(K).

Proof. As stated by Proposition 3, it holds that AR-Set(K) 6= ∅. Since
IAR-Repair(K) is the intersection of all Ai ∈ AR-Set(K), clearly, for each
Ai ∈ AR-Set(K) we have that IAR-Repair(K) ⊆ Ai, and since the logic
DL-LiteA,id,den is monotonic, we have that for each Ai ∈ AR-Set(K),
Mod(〈T ,Ai〉) ⊆ Mod(〈T , IAR-Repair(K)〉). Finally, since by definition
ModIAR(K) = Mod(〈T , IAR-Repair(K)〉), and ModAR(〈T ,A〉) is the union of
all the models of the various AR-repairs, it follows that ModAR(〈T ,A〉) ⊆
ModIAR(〈T ,A〉).

The above theorem clearly implies that the logical consequences of K, and
thus also the answer to queries over K, under the IAR-semantics are contained in
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those obtained under the AR-semantics. Conversely, as Examples 5 and 6 show
(cf. query q1), there are sentences entailed by a KB K under the AR-semantics
that are not entailed by K under the IAR-semantics.

The second property of the IAR-semantics that we discuss characterizes the
notion of IAR-entailment, and will be used in the next sections.

Theorem 6. Let K = 〈T ,A〉 be a possibly inconsistent DL-LiteA,id,den KB,
and let φ be a first-order sentence. Then K |=IAR φ if and only if there exists
A′ ⊆ A such that:

(i) 〈T ,A′〉 |= φ;

(ii) there is no minimal T -inconsistent set V in A such that A′ ∩ V 6= ∅.

Proof.
(⇒) Let A′ =

⋂
Ai∈AR-Set(K)Ai. Suppose that K |=IAR φ. From Definition 11

we have that 〈T ,A′〉 |= φ. Let β ∈ A′. Clearly, β ∈ Ai for eachAi ∈ AR-Set(K).
Theorem 2 guarantees that there is no minimal T -inconsistent set V in A such
that β ∈ V . This means that A′ is a subset of A for which both condition
(i) and (ii) holds. (⇐) Let A′ ⊆ A such that 〈T ,A′〉 |= φ and such that for
every minimal T -inconsistent set V ⊆ A we have that A′ ∩ V = ∅. Again, from
Theorem 2 we have that A′ ⊆

⋂
Ai∈AR-Set(K)Ai. So, since 〈T ,A′〉 |= φ, then

〈T ,
⋂
Ai∈AR-Set(K)Ai〉 |= φ, which means that K |=IAR φ.

Notice that for each A′ mentioned in Theorem 6, we have that A′ ⊆
IAR-Repair(K), and condition (ii) tell us that every α belonging to the
IAR-Repair(K) does not belong to any minimal T -inconsistent set.

Moreover, analogously to what we have said at the end of Section 4 for
the AR-semantics, we point out that the definitions of IAR-repairs and IAR-
entailment can be generalized to any DL language L, and that both Theorems 5
and 6 apply also to KBs specified in L, provided that the semantics for L adopts
the unique name assumption, and the KBs considered have a satisfiable TBox.

Finally, the third property of the IAR-semantics states that the IAR-repair
of a DL-LiteA,id,den knowledge base can be computed in polynomial time with
respect to the size of the ABox. Indeed, we conclude this section by presenting a
PTIME algorithm for computing the IAR-repair of a DL-LiteA,id,den knowledge
base. In order to present the algorithm, we need to introduce the notion of the
size of a disjointness, functionality, denial or identification assertion as follows:
(i) the size of every disjointness assertion is 2; (ii) the size of every functional-
ity assertion is 2; (iii) the size of a denial assertion α is the number of atoms
occurring in α; (iv) the size of an identification assertion α is 2k, where k is
the number of occurrences of atomic concepts, atomic roles, and attributes in α.
Intuitively, the size of an assertion α of the above forms coincides with the num-
ber of atoms (excluding inequalities) occurring in the query ϕ(α) which encodes
the negation of α (cf. Section 3). Given a DL-LiteA,id,den TBox T , we denote
by maxIncSize(T ) the maximum size of a disjointness, functionality, denial or
identification assertion in T . The following lemma states that maxIncSize(T )
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bounds the cardinality of a minimal set of ABox assertions that are inconsistent
with α.

Lemma 1. Let K = 〈T ,A〉 be a DL-LiteA,id,den KB. For every V ∈
minIncSets(K) we have that |V | ≤ maxIncSize(T ).

Proof. The property can be easily proved by looking at the algorithm
UnsatQuery (Algorithm 1), which makes use of the algorithm PerfectRefIdC. No
conjunctive query in PerfectRefIdC(ϕ(α), Tinc∪Ttype) has a size which is greater
than the size of the CQ with inequalities represented by ϕ(α), for α ∈ T \ Tinc.
It follows that the size of every disjunct of UnsatQuery(T ) is not greater than
maxIncSize(T ). Consequently, by Theorem 1, it follows that the maximum size
of every minimal T -inconsistent subset of A is maxIncSize(T ), which proves the
claim.

We are now ready to present the algorithm Compute-IAR-Repair (Algorithm
2) that, given a DL-LiteA,id,den KB K = 〈T ,A〉, computes the IAR-repair of K.

Input: DL-LiteA,id,den KB K = 〈T ,A〉
Output: an ABox
begin
A′ ← A;
k = maxIncSize(T );
foreach subset S of A such that |S| ≤ k do

if S is a T -inconsistent set, and every subset of S
obtained by removing one fact from S is T -consistent

then A′ ← A′ \ S;
return A′

end

Algorithm 2: Compute-IAR-Repair

Essentially, the algorithm deletes from A all assertions belonging to at
least one minimal T -inconsistent set. In order to single out the minimal T -
inconsistent subsets of A, the algorithm exploits Lemma 1 and only considers
the subsets of A whose size is not greater than maxIncSize(T ).

The following theorem establishes the termination and the correctness of
Compute-IAR-Repair. The proof is omitted since it directly follows from Theo-
rem 2 and Lemma 1.

Theorem 7. If K = 〈T ,A〉 is a DL-LiteA,id,den KB, the
Compute-IAR-Repair(K) is the IAR-repair of K.

As for the data complexity of computing the IAR-repair of a DL-LiteA,id,den
KB, the following theorem states that this is a PTIME task.

Theorem 8. If K = 〈T ,A〉 is a DL-LiteA,id,den KB, then the algorithm
Compute-IAR-Repair on input K runs in polynomial time with respect to the
size of A.
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Proof. First, observe that the maximum length k of an identification or denial
assertion in T is of course independent of the size of the ABox. Consequently,
the number of subsets of A that are considered by the algorithm is polynomial
with respect to data complexity.

By Proposition 2, deciding whether a subset S of A is T -consistent is in
PTIME (in fact in AC0). Moreover, deciding whether a T -inconsistent subset
S of A is a minimal T -inconsistent set can be done by checking whether there
is some α ∈ S such that S \ {α} is T -inconsistent. Therefore, the algorithm
Compute-IAR-Repair on input K runs in polynomial time with respect to A.

We observe that the above theorem immediately implies that query answer-
ing under the IAR-semantics is also in PTIME in data complexity. Indeed, if
A′ is the ABox returned by Compute-IAR-Repair(T ,A), Theorem 7 tells us that,
for any UBCQ Q, K |=IAR Q iff 〈T ,A′〉 |= Q, and Theorem 8 together with
Proposition 2 tells us that this can be decided in PTIME with respect to the
size of A.

In the next section, we show that we can avoid computing the IAR-repair
in order to answer queries under the IAR-semantics. Indeed, we present a
rewriting technique that shows that answering UBCQs under the IAR-semantics
in DL-LiteA,id,den is in AC0 in data complexity.

7. Query answering in DL-LiteA,id,den under the IAR-semantics

In this section, we show that conjunctive query answering under the IAR-
semantics in DL-LiteA,id,den is FO-rewritable. We notice that this property is
particularly interesting, since it allows us to obtain the consistent answers to
a query without the need to compute the IAR-repair of the inconsistent KB
over which the query is issued. Also, by virtue of this result, we can rely on a
framework in which inconsistency-tolerant query answering in DL-LiteA,id,den
has the same complexity as standard query answering under FOL semantics for
this logic.

We start by providing the formal definition of FO-rewritability of query
answering under the IAR-semantics, which is the natural generalization of the
notion of FO-rewritability under classical DL semantics given in Definition 4.

Definition 12. Query answering in a DL L is FO-rewritable under IAR-
semantics, if for every TBox T expressed in L and every query q over T , one
can effectively compute a FOL query qr over T such that, for every ABox A,
〈T ,A〉 |=IAR q if and only if DB(A) |= qr. We call qr the IAR-perfect FOL
rewriting (or simply IAR-perfect rewriting) of q w.r.t. T .

7.1. Overview of the query rewriting technique

Our technique can be summarized as follows. Given a UBCQ Q over a
DL-LiteA,id,den TBox T , we first rewrite Q ignoring possible inconsistencies. To
this aim, we make use of the algorithm PerfectRef, which allows us to obtain
a perfect rewriting Qr of Q w.r.t. T under the standard FOL semantics (cf.
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Section 2). We notice that, by definition of perfect rewriting, and by definition
of image of a query in an ABox (cf. Section 2.3), 〈T ,A〉 |= Q if and only if
DB(A) |= Qr, i.e., if and only if there is a CQ qr ∈ Qr that has an image in A,
i.e., such that one of the patterns represented by qr (ground instantiation of qr)
appears in A′. Thus, 〈T ,A〉 |=IAR q if and only if there is a CQ qr ∈ Qr such
that at least one of the patterns represented by qr appears in the intersection
of all AR-repairs of 〈T ,A〉. Therefore, to properly take inconsistencies into
account, the problem we have to solve is as follows: given a query qr ∈ Qr, does
one of the patterns represented by qr appear in the intersection of all AR-repairs
of 〈T ,A〉? To solve this problem we need to address two issues:

• How do we filter out patterns that cannot contribute to answer qr because
they do not appear in the intersection of all AR-repairs of 〈T ,A〉?

• How do we make sure that we consider all the relevant patterns represented
by a query qr ∈ Qr?

To address the first issue, we have to filter out those patterns that are
“corrupted” by at least one inconsistency. We know from Theorem 6 that
such patterns are those with a non-empty intersection with a minimal T -
inconsistent set in A. This means that, among the patterns represented by
qr ∈ Qr, we have to disregard those patterns A′ such that A′ ∩ V 6= ∅ for
some V ∈ minIncSets(〈T ,A〉). We therefore further rewrite each atom g of
qr into a FOL formula gr such that, for any substitution σ from variables of
g to constants in ΓC such that σ(g) is an image of g in A, DB(A) |= σ(gr) if
only if σ(g) does not belong to any minimal T -inconsistent set in A. To obtain
this “inconsistency-aware component” of the rewriting, we devise an algorithm,
called IncRewrIAR that, given a CQ q, adds to each atom g ∈ q the rewriting gr.

To address the second issue, since the check that a ground atom from qr
does not belong to a minimal T -inconsistent set in A is done by checking
that the atom does not appear in an image of a conjunctive query possibly
with inequalities (coming from denial and identification assertions), we have to
make sure that the atom does not have incomplete knowledge about the in-
equality of its terms. To this end, instead of computing the perfect rewriting
of Q under the IAR-semantics starting from PerfectRef(Q, T ), we start from
Saturate(PerfectRef(Q, T )), where Saturate is the algorithm that takes care of
this issue. In particular, Saturate takes as input a UBCQ Q, and rewrites it into
the union of all its possible inequality-based saturations, where a saturation of a
query is obtained by choosing the pairs of variables to equate, and then adding
an inequality atom x 6= y for each pair of variables that have not been equated.

In the following we first describe the algorithm Saturate, then we present the
algorithm IncRewrIAR and all the sub-routines it uses, and finally we illustrate
the overall query rewriting algorithm.

7.1.1. The algorithm Saturate

In this subsection, we illustrate the algorithm Saturate, whose basic idea is
to rewrite a UBCQ into an equivalent UBCQ containing disjuncts, in which
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different variables denote different objects or values. This can be obtained by
simply substituting each CQ in the original query with an equivalent UCQ
with inequalities, each one obtained by equating a subset of variables in q, and
imposing that the remaining variables are not equal. To formalize this process
we need the following preliminary definition.

Given a Boolean query q, we say that a term t occurs in an object position
of q if q contains an atom of the form A(t), P (t, t′), P (t′, t), or U(t, t′), whereas
we say that t occurs in a value position of q if q contains an atom of the form
U(t′, t) or Ti(t).

Given two different terms t1 and t2 occurring in a query q, we say that t1
and t2 are compatible in q if at least one of t1 and t2 is a variable, and one of the
following conditions holds: (i) both t1 and t2 appear only in object positions of
q or, (ii) both t1 and t2 appear only in value positions of q.

We now present the algorithm Saturate that takes as input a UBCQ with
inequalities Q and returns a UBCQ with inequalities that we call the inequality
saturation of Q. In the algorithm, we represent a UBCQ with inequalities as a
set of BCQs with inequalities. Saturate(Q) first computes the set Q′ by unifying
compatible terms in each query q ∈ Q in all possible ways; then, for any query
q′ in Q′ and for each pair of terms t1 and t2 in q′ that are syntactically different
and compatible, it adds the inequality atom t1 6= t2 to q′. In the algorithm
q[t1/t2] denotes the query obtained by replacing in q every occurrence of the
term t1 with the term t2.

Input: a UBCQ with inequalities Q
Output: a UBCQ with inequalities
begin
Q′ ← ∅;
while Q 6= Q′ do

Q′ ← Q;
foreach q ∈ Q do

foreach pair of different terms t1 and t2 in q do
if t1 6= t2 does not occur in q and
t1 and t2 are compatible in q

then Q← Q ∪ {q[t1/t2]};
Q′′ ← ∅;
foreach q ∈ Q′ do

foreach pair of different terms t1 and t2 that are compatible in q do
q ← q ∧ (t1 6= t2);

Q′′ ← Q′′ ∪ {q};
return Q′′

end

Algorithm 3: Saturate

Example 7. Let T be the DL-LiteA,id,den TBox presented in Example 1. Con-
sider the following queries belonging to UnsatQuery(T ).
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q1 = ∃x, y, z.Port(x) ∧ Port(y) ∧ of(x, z) ∧ of(y, z) ∧ connectedTo(x, y);
q2 = ∃x, y, z.of(x, z) ∧ of(y, z) ∧ connectedTo(x, y);
q3 = ∃x.connectedTo(x, x).

It is easy to see that Saturate(q1 ∨ q2 ∨ q3) is the disjunction of the following
queries:

q11 = ∃x, y, z.Port(x) ∧ Port(y) ∧ of(x, z) ∧ of(y, z) ∧ connectedTo(x, y) ∧ x 6= y∧
x 6= z ∧ y 6= z;

q21 = ∃x, y.Port(x) ∧ Port(y) ∧ of(x, y) ∧ of(y, y) ∧ connectedTo(x, y) ∧ x 6= y;
q31 = ∃x, y.Port(x) ∧ Port(y) ∧ of(x, x) ∧ of(y, x) ∧ connectedTo(x, y) ∧ x 6= y;
q41 = ∃x, z.Port(x) ∧ of(x, z) ∧ connectedTo(x, x) ∧ x 6= z;
q51 = ∃x.Port(x) ∧ of(x, x) ∧ connectedTo(x, x);
q12 = ∃x, y, z.of(x, z) ∧ of(y, z) ∧ connectedTo(x, y) ∧ x 6= y ∧ x 6= z ∧ y 6= z;
q22 = ∃x, y.of(x, y) ∧ of(y, y) ∧ connectedTo(x, y) ∧ x 6= y;
q32 = ∃x, y.of(x, x) ∧ of(y, x) ∧ connectedTo(x, y) ∧ x 6= y;
q42 = ∃x, z.of(x, z) ∧ connectedTo(x, x) ∧ x 6= z;
q52 = ∃x.of(x, x) ∧ connectedTo(x, x)
q13 = ∃x.connectedTo(x, x).

Termination of Saturate(Q) is guaranteed by the fact that Q is a disjunction
of a finite number of BCQs with inequalities in which there is a finite num-
ber of atoms and terms. The next lemma shows that the process applied by
Saturate(Q) to a UBCQ Q does not affect the result of evaluating Q.

Lemma 2. Let A be an ABox, and let Q be a UBCQ with inequalities. Then,
DB(A) |= Q if and only if DB(A) |= Saturate(Q).

Proof. Let q be a BCQ with inequalities in Q. For each pair of t1 and t2 terms
in Q, the following cases are conceivable:

(i) t1 and t2 are two variables compatible in q. In this case the algorithm first
adds to Q a new query q′ obtained from q by unifying t1 and t2, and then
transforms the query q into q 6= obtained by adding the inequality atom
t1 6= t2. Since q ≡ q′ ∨ q6=, the claim follows.

(ii) t1 and t2 are not compatible in q. In this case the algorithm transforms
the query q into q6= by adding the inequality atom t1 6= t2 to q. Since
t1 and t2 are not compatible in q, it follows that they are two different
constants, or one of the two occurs in an object position in q and the other
one occurs in a value position in q. Since for every interpretation I we
have that: (1) ∆IO ∩∆V = ∅; (2) for every pair of different constants c1
and c2 in ΓO, cI1 6= cI2 ; and (3) for every pair of different constants v1
and v2 in ΓV , val(v1) 6= val(v2), we conclude that t1 and t2 are always
interpreted as different in I. Hence q ≡ q 6=, and the claim follows.

Note that as a consequence of Lemma 2, we have that a DL-LiteA,id,den KB
〈T ,A〉 is unsatisfiable if and only if DB(A) |= Saturate(UnsatQuery(T )), and
DB(A) |= PerfectRef(Q, T ) if and only if DB(A) |= Saturate(PerfectRef(Q, T )).
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7.2. The algorithm IncRewrIAR

The goal of this subsection is to present the algorithm IncRewrIAR. As we
said before, given a CQ q, and a TBox T , IncRewrIAR adds to each atom g ∈ q
the FOL formula gr that ensures that, for any ABox A, such an atom does not
belong to any minimal T -inconsistent set in A.

The basic building block of IncRewrIAR is the algorithm MinIncSet, that,
given an atom g ∈ q, builds a FOL formula that checks whether there exists
a minimal T -inconsistent set in A that includes g. Obviously, IncRewrIAR will
use the negation of the formula computed by MinIncSet.

In turn, the algorithm MinIncSet relies on another algorithm, called
MinUnsatQuery, that computes a FOL query whose evaluation over the inter-
pretation DB(A) characterizes all sets of facts in the ABox A that form a
minimal T -inconsistent set. In the following, we first describe the algorithm
MinUnsatQuery, and then we go back to the definition of both MinIncSet and
IncRewrIAR.

7.2.1. The algorithm MinUnsatQuery

As shown in Section 3, a DL-LiteA,id,den KB 〈T ,A〉 is inconsistent if and
only if there is at least one query q ∈ UnsatQuery(T ) such that DB(A) |= q (cf.
Theorem 1). As already mentioned, we call every image of each such query q in
A a K-clash. Now, one may wonder whether a K-clash corresponds to a minimal
T -inconsistent set (and vice-versa), so that we can directly exploit UnsatQuery
to obtain the set minIncSets(K). The following example shows that, in general,
this is not the case.

Example 8. Let T be the DL-LiteA,id,den TBox presented in Example 1. We
focus on the following denial assertion in T .

∀x, y, z.(Port(x) ∧ Port(y) ∧ of(x, z) ∧ of(y, z) ∧ connectedTo(x, y)→ ⊥).

Consider the following ABox:

A = { Port(p1), Device(d1), of(p1, d1), connectedTo(p1, p1),
Port(p2), of(p2, d1), Port(p3), of(p3, d1), connectedTo(p2, p3) }

It is not difficult to verify that the DL-LiteA,id,den KB K = 〈T ,A〉 is not con-
sistent. Indeed, the set of queries UnsatQuery(T ) contains, among others, the
following Boolean queries:

q1 = ∃x, y, z.Port(x) ∧ Port(y) ∧ of(x, z) ∧ of(y, z) ∧ connectedTo(x, y);
q2 = ∃x, y, z.of(x, z) ∧ of(y, z) ∧ connectedTo(x, y);
q3 = ∃x.connectedTo(x, x).

from which we obtain the following K-clashes:

V1 = { Port(p2), of(p2, d1), Port(p3), of(p3, d1), connectedTo(p2, p3) };
V2 = { Port(p1), of(p1, d1), connectedTo(p1, p1) };
V3 = { of(p2, d1), of(p3, d1), connectedTo(p2, p3) };
V4 = { of(p1, d1), connectedTo(p1, p1) };
V5 = { connectedTo(p1, p1) }.
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It is easy to see that only the sets V3 and V5 are minimal T -inconsistent sets.

The following theorem gives the condition under which aK-clash is a minimal
T -inconsistent in A.

Lemma 3. Let K = 〈T ,A〉 be an inconsistent DL-LiteA,id,den KB, and let V
be a K-clash. Then V ∈ minIncSets(K) if and only if for every proper subset
V ′ of V , and every query q ∈ UnsatQuery(T ), we have that DB(V ′) 6|= q.

Proof. (⇒) Let V ∈ minIncSets(K). Suppose, by way of contradiction, that
there exists a query q ∈ UnsatQuery(T ) and a proper subset V ′ of V , such that
DB(V ′) |= q. From Theorem 1 it follows that V ′ is a T -inconsistent set, but
this contradicts the fact that V ∈ minIncSets(K).
(⇐) Let V be a K-clash such that for every V ′ ⊂ V and for every q ∈
UnsatQuery(T ), DB(V ′) 6|= q. Toward a contradiction, suppose that V 6∈
minIncSets(K). Since V is a T -consistent set, we conclude that there is a
proper subset V ′′ of V that is T -inconsistent. From Theorem 1 it follows that
there exists a query q in UnsatQuery(T ) such that DB(V ′′) |= q. Hence, we
have a contradiction.

Based on the above results, we present, in this section, the algorithm
MinUnsatQuery which, starting from the set of queries computed by the al-
gorithm UnsatQuery, computes a new set of Boolean queries. Intuitively,
our goal is to design the algorithm in such a way that the resulting UBCQ
MinUnsatQuery(T ) enjoys the following properties:

(P1) For every Boolean query q ∈ MinUnsatQuery(T ) and every ABox A,
DB(A) |= q if and only if there exists in UnsatQuery(T ) a query q′

such that DB(A) |= q′. This guarantees that Theorem 1 also holds with
MinUnsatQuery(T ) in place of UnsatQuery(T ).

(P2) For every Boolean query q ∈ MinUnsatQuery(T ) and every ABox A, if
DB(A) |= q, then for every set of ABox assertions V ∈ images(q,A),
and every V ′ such that V ′ ⊂ V , we have that DB(V ′) 6|= q′ for every q′ ∈
MinUnsatQuery(T ). This guarantees that if a query q ∈ MinUnsatQuery(T )
is such that DB(A) |= q, then every image of q in A is a minimal T -
inconsistent set.

Intuitively, this is achieved by basing the algorithm on the following two
steps:

1) executing Saturate(UnsatQuery(T )) to obtain the UBCQ Qstr, where Qstr
characterizes the T -inconsistent sets;

2) modifying Qstr in such a way that it characterizes only T -inconsistent sets
that are minimal.

In the next paragraphs, we provide the details of the above step 2. For ease of
exposition, we distinguish between two cases: the case of KBs without value-
domain inclusions, and the case of KBs with value-domain inclusions.
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KBs without value-domain inclusions. For the sake of exposition, we ig-
nore, for the moment, inconsistencies caused by value-domain inclusions (cf.
Example 2), i.e., we assume Ttype = ∅.

Firstly, we need to introduce the notion of proper syntactical subset of a
query. Let q and q′ be two Boolean queries. We say that q is a proper syntactical
subset of q′, written q ≺% q′, if there exists an injective function % from the
variables in q to the variables in q′, such that every atom S(~t) occurring in
%(q) occurs also in q′, where %(q) denotes the query obtained by replacing every
variable x in q with %(x), and an analogous injective function from q′ to q does
not exist. We denote with Q≺%

str the set of queries obtained by removing from
Qstr every query q such that there exists in Qstr a query q′ such that q′ ≺% q.

The following example illustrates the role of the notion of proper syntactical
subset of a query.

Example 9. Consider the set of queries q11 , . . . , q
1
3 of Example 7, and call it

Qstr. It is easy to verify that the following hold:

q12 ≺% q11 q22 ≺% q21 q32 ≺% q31
q42 ≺% q41 q52 ≺% q51 q13 ≺% q41
q13 ≺% q51 q13 ≺% q42 q13 ≺% q52

Hence, Q≺%

str contains the following queries:

q12 = ∃x, y, z.of(x, z) ∧ of(y, z) ∧ connectedTo(x, y) ∧ x 6= y ∧ x 6= z ∧ y 6= z;
q22 = ∃x, y.of(x, y) ∧ of(y, y) ∧ connectedTo(x, y) ∧ x 6= y;
q32 = ∃x, y.of(x, x) ∧ of(y, x) ∧ connectedTo(x, y) ∧ x 6= y;
q13 = ∃x.connectedTo(x, x).

Let A be the ABox of Example 8. We have that the only queries in Q≺%

str

that evaluate to true over DB(A) are q12 and q13 . Their images in A are:

V 1
2 = { of(p2, d1), of(p3, d1), connectedTo(p2, p3) };
V 1
3 = { connectedTo(p1, p1) };

that coincide respectively with the V3 and V5 minimal T -inconsistent sets of
Example 8.

We now provide a lemma showing that, if T is a TBox expressed in
DL-LiteA,id,den, then, for every ABox A, we can use the set Q≺%

str for check-
ing the satisfiability of the KB 〈T ,A〉.

Lemma 4. Let T be a DL-LiteA,id,den TBox, and let A be an ABox. Then, the

KB 〈T ,A〉 is unsatisfiable if and only if DB(A) |= Q≺%

str.

Proof. (⇒) Since 〈T ,A〉 is unsatisfiable, then by Theorem 1 we get DB(A) |=
UnsatQuery(T ). Then, by Lemma 2 we get that DB(A) |= Qstr, where Qstr =
Saturate(UnsatQuery(T )). Hence, there is a query q ∈ Qstr such that DB(A) |=
q. Suppose, by way of contradiction, that DB(A) 6|= Q≺%

str. This means that for
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every query q≺ in Q≺%

str, DB(A) 6|= q≺. It follows that q 6∈ Q≺%

str. This means
that there exists in Q≺%

str a query q′ such that q′ ≺% q.
Since DB(A) |= q, then there exists a substitution σ from the variables

in q to constants in A such that the formula σ(q) evaluates to true in the
interpretation DB(A). But this means that also σ(%(q)) evaluates to true in
DB(A), then we have a contradiction.
(⇐) If DB(A) |= Q≺%

str, then there is a query q ∈ Q≺%

str such that DB(A) |= q.
Since Q≺%

str ⊆ Qstr, then q ∈ Qstr, and then DB(A) |= Qstr. Finally, from
Theorem 1 and Lemma 2 it follows thatDB(A) |= UnsatQuery(T ), which implies
that 〈T ,A〉 is unsatisfiable.

The next lemma guarantees that, given a DL-LiteA,id,den KB K = 〈T ,A〉
with Ttype = ∅ and a query q in Q≺%

str such that DB(A) |= q, every image V of
q in A is a minimal T -inconsistent set.

Lemma 5. Let K = 〈T ,A〉 be a DL-LiteA,id,den KB with Ttype = ∅, and let q

be a query in Q≺%

str. Then, for every V ′ ⊂ V , where V ∈ images(q,A), and for
every q′ ∈ Q≺%

str, DB(V ′) 6|= q′.

Proof. Since Ttype = ∅, then every query in q belonging to UnsatQuery(T ) is of

the form ∃z1, . . . , zk.
∧n
i=1Ai(t

1
i )∧

∧m
i=1 Pi(t

2
i , t

3
i )∧

∧`
i=1 Ui(t

4
i , t

5
i )∧

∧h
i=1 t

6
i 6= t7i ,

where every Ai, Pi, and Ui are as usual, every tei is a term (i.e., either a constant
or a variable), and z1, . . . , zk are all the variables appearing in q. In what follows,
given a query q, we denote by atoms(q) the set of atoms occurring in q.

If K is consistent, then Lemma 4 guarantees that for every query q ∈ Q≺%

str,
DB(A) 6|= q. Hence there is no minimal T -inconsistent set in A. Let K be
inconsistent. The proof proceeds by contradiction as follows. Let q be a query
in Q≺%

str such that DB(A) |= q, and let V ∈ images(q,A). Hence, there is a
substitution σ from the variables in q to constants in A such that the formula
σ(q) evaluates to true in the interpretation DB(V ). Obviously, every constant
occurring in q occurs also in V . Since Q≺%

str ⊆ Qstr, then we have constrained
t1 6= t2 for each pair of terms t1 and t2 in q. Hence, for each pair of different
variables x and y in q, σ substitutes the variable x with a constant c1 in V and
the variable y with a constant c2 in V such that c1 6= c2. Now, let σ−1 be the
inverse of the function σ and suppose that there is a query q′ ∈ Q≺%

str such that
DB(V ′) |= q′, where V ′ is a proper subset of V . Clearly, since σ−1 essentially
performs a renaming of the constants in V without unifying any constant, we
have that DB(σ−1(V ′)) |= q′. But this means that there is a substitution σ′

from the variables in q′ to the terms in q such that each atom in σ′(q′) is in
atoms(q). Moreover, since q′ ∈ Q≺%

str, from the observations above, we have that
for each pair of variables x′ and y′ in q′, σ′ substitutes the variable x′ with the
term t1 in q and the variable y′ with the term t2 in q with t1 6= t2; and since
V ′ ⊂ V , then σ′(q′) ⊂ atoms(q). Hence, σ′ constitutes an injective function
from the variables in q′ to the variables in q, such that every atom occurring in
σ′(q′) occurs also in q′ and an analogous function from q′ to q does not exist.
This means that q′ ≺% q, which contradicts that q ∈ Q≺%

str.
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KBs with value-domain inclusions. We now turn our attention to the case
where Ttype may be non-empty, i.e., when the TBox T contains value-domain
inclusion assertions.

We recall that value-domains are pairwise disjoint, and inconsistency may
arise because data in the ABox together with the TBox may imply a violation
of such disjointnesses. The next example shows that the technique described
in the previous subsection does not allow us to identify minimal T -inconsistent
sets when Ttype is non-empty. Namely, Lemma 5 no longer holds.

Example 10. Let T be the TBox presented in Example 1. Specifically, here,
we are interested in the following TBox assertions:

Ttype = { ρ(number) v xsd:integer }
Tid = { (id Port number, of ) }

In words, the assertion in Ttype states that the range of the attribute number
is restricted to be an integer, while the identification assertion imposes no two
different ports of the same device exist having the same number. For ease of ex-
position, we assume to have only xsd:integer, xsd:string, and xsd:dateTime

as value-domains.
The queries in UnsatQuery(T ) originated from the assertions above are the

following (see algorithm UnsatQuery in Section 3).

q1 = ∃x, y, d, n.Port(x) ∧ of(x, d) ∧ number(x, n)∧
Port(y) ∧ of(y, d) ∧ number(y, n) ∧ x 6= y;

q2 = ∃x, y, d, n.of(x, d) ∧ number(x, n) ∧ of(y, d) ∧ number(y, n) ∧ x 6= y;
q3 = ∃x, y.number(x, y) ∧ xsd:string(y);
q4 = ∃x, y.number(x, y) ∧ xsd:dateTime(y).

Now consider the following ABox:

A = {Port(p1), of(p1, d1),number(p1, ‘9XK11’),
Port(p2), of(p2, d1),number(p2, ‘9XK11’) }

where ‘9XK11’ is a value of domain xsd:string, and therefore incoherent with
respect to Ttype. Thus, the DL-LiteA,id,den KB K = 〈T ,A〉 is inconsistent, and
the following K-clashes can be pinpointed.

V1 = {Port(p1), of(p1, d1),number(p1, ‘9XK11’),
Port(p2), of(p2, d1),number(p2, ‘9XK11’) }

V2 = {of(p1, d1),number(p1, ‘9XK11’), of(p2, d1),number(p2, ‘9XK11’) }
V3 = {number(p1, ‘9XK11’) }
V4 = {number(p2, ‘9XK11’) }

It is easy to see that only V3 and V4 are minimal T -inconsistent sets. However,
if we apply the technique described above, we get the following set Q≺Rn

str .

q12 = ∃x, y, d, n.of(x, d) ∧ number(x, n) ∧ of(y, d) ∧ number(y, n)∧
x 6= y ∧ x 6= d ∧ x 6= n ∧ y 6= d ∧ y 6= n ∧ d 6= n;
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q22 = ∃x, y, n.of(x, y) ∧ number(x, n) ∧ of(y, y) ∧ number(y, n)∧
x 6= y ∧ x 6= n ∧ y 6= n;

q32 = ∃x, y, n.of(x, x) ∧ number(x, n) ∧ of(y, x) ∧ number(y, n)∧
x 6= y ∧ x 6= n ∧ y 6= n;

q13 = ∃x, y.number(x, y) ∧ xsd:string(y);
q14 = ∃x, y.number(x, y) ∧ xsd:dateTime(y).

Observe that both q12 and q13 evaluate to true over DB(A), although, as we
said before, only for each V ∈ images(q13 ,A) we have that V is minimal T -
inconsistent.

Intuitively, in the above example the problem arises since in q12 we do not con-
sider the fact that the range of the attribute number is xsd:integer, and there-
fore we single out a violation of the identification assertion (id Port number, of)
which is not minimal. The problem can be solved by simply adding to q12 an
atom imposing that the variable n is an integer, as shown below:

q12 = ∃x, y, d,n.of(x, d) ∧ number(x, n) ∧ of(y, d) ∧ number(y, n)∧
x 6= y ∧ x 6= d ∧ x 6= n ∧ y 6= d ∧ y 6= n ∧ d 6= n ∧ xsd:integer(n)

According to the above considerations, we modify our rewriting method as
follows: for each query q in Saturate(UnsatQuery(T )), and for each atom U(t1, t2)
in q, if T |= ρ(U) v Ti, and there exists no atom of the form Tj(t2) in q, then
we add the atom Ti(t2) to q.

The definition of MinUnsatQuery. We are now ready to present the algorithm
MinUnsatQuery (Algorithm 4). The algorithm proceeds as follows. First, it
computes the inequality saturation of UnsatQuery(T ) through the algorithm
Saturate (step 1 and step 2), and calls Qstr the result. Then, in step 3 it
computes the set Q′str by substituting each query q ∈ Qstr with the query
obtained as follows: for each atom U(x, y), where U is an attribute name, if
no atom Tj(y) appears in q, where Tj is a value-domain, then for each Ti ∈
{T1 . . . Tn}, if T |= ρ(U) v Ti, the algorithm builds a new query by substituting
the atom U(x, y) with the conjunction of atoms U(x, y) ∧ Ti(y). Note that
checking whether T |= ρ(U) v Ti can be done through any off-the-shelf DL
reasoner. Step 4 is an optimization step in which some queries which are always
false are removed from Q′str. Finally, in step 5, the algorithm removes from
Q′str every query q′ such that there exists a query q in Q′str such that q ≺% q′,
and returns as result the set Q′str in step 6. By analyzing each step of the
algorithm, it is immediate to see that the algorithm terminates when applied to
a DL-LiteA,id,den TBox.

Example 11. Let us focus on the same portion of the TBox T of Example 1
considered in Example 10. The set MinUnsatQuery(T ) contains, among others,
the following queries:

q12 = ∃x, y, d,n.of(x, d) ∧ number(x, n) ∧ of(y, d) ∧ number(y, n)∧
xsd:integer(n) ∧ x 6= y ∧ x 6= d ∧ x 6= n ∧ y 6= d ∧ y 6= n ∧ d 6= n;
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Input: a DL-LiteA,id,den TBox T
Output: a UBCQ with inequalities
begin
QunsatT ← UnsatQuery(T ); /* step 1 */
Qstr ← Saturate(QunsatT ); /* step 2 */
Q′str ← Qstr;
foreach q ∈ Q′str do /* step 3 */

foreach atom U(t, t′) in q do
if there exists no atom of the form Tj(t

′) in q then
foreach value-domain Ti in {T1, . . . Tn} do

if T |= ρ(U) v Ti then
Q′str ← (Q′str \ {q}) ∪ {q ∧ Ti(t′)};

foreach q ∈ Q′str do /* step 4 */
foreach term t occurring in q do

if Ti(t) and Tj(t) occur in q, with i 6= j then
Q′str ← Q′str \ {q};

foreach q and q′ in Q′str do /* step 5 */
if q ≺% q′ then Q′str ← Q′str \ {q′};

return Q′str /* step 6 */
end

Algorithm 4: MinUnsatQuery

q22 = ∃x, y, n.of(x, y) ∧ number(x, n) ∧ of(y, y) ∧ number(y, n)∧
xsd:integer(n) ∧ x 6= y ∧ x 6= n ∧ y 6= n;

q32 = ∃x, y, n.of(x, x) ∧ number(x, n) ∧ of(y, x) ∧ number(y, n)∧
xsd:integer(n) ∧ x 6= y ∧ x 6= n ∧ y 6= n;

q13 = ∃x, y.number(x, y) ∧ xsd:string(y);
q14 = ∃x, y.number(x, y) ∧ xsd:dateTime(y).

Note that the above queries are those in Example 10 to which step 3 of the
algorithm MinUnsatQuery is applied.

The following lemmas show that the algorithm MinUnsatQuery enjoys the
properties (P1) and (P2) previously introduced in this subsection.

Lemma 6. Let K = 〈T ,A〉 be a possibly inconsistent DL-LiteA,id,den KB. Then,
DB(A) |= MinUnsatQuery(T ) if and only if DB(A) |= UnsatQuery(T ).

Proof. The proof can be straightforwardly derived from the one of Lemma 4, by
simply observing that for each constant c in ΣV , the sentence T1(c)∨ . . .∨Tn(c)
evaluates to true under every interpretation, and that T1(c) ∧ . . . ∧ Tn(c) is a
contradiction.

Note that, from the lemma above, it directly follows that Theorem 1 also
holds with MinUnsatQuery(T ) in place of UnsatQuery(T ).
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The following crucial lemma guarantees that one can use the queries pro-
duced by MinUnsatQuery(T ) in order to compute every minimal T -inconsistent
set in A.

Lemma 7. Let K = 〈T ,A〉 be a possibly inconsistent DL-LiteA,id,den KB, and
let q be a query in MinUnsatQuery(T ). If DB(A) |= q, then every image of q in
A is a minimal T -inconsistent set.

Proof. The proof can be straightforwardly derived from the one of Lemma 5,
by considering Lemma 6 in place of Lemma 4 and by observing that for each
constant c in ΣV , the sentence T1(c)∨ . . .∨ Tn(c) evaluates to true under every
interpretation, and that T1(c) ∧ . . . ∧ Tn(c) is a contradiction.

7.2.2. The algorithm MinIncSet and the definition of IncRewrIAR

Our next goal is to describe the algorithm MinIncSet. To this aim, we intro-
duce the notion of compatibility between atoms. Let S(~t), S(~t′) be two atoms,
where S is a symbol denoting an atomic concept, an atomic role, or an at-
tribute. We say that S(~t′) is compatible with S(~t) if there exists a mapping µ

from the variables occurring in S(~t′) to the terms occurring in S(~t) such that

µ(S(~t′)) = S(~t) (and in this case we denote the above mapping µ with the symbol
µS(~t)/S(~t′)). Given an atom S(~t) and a query q, we denote by CompSet(S(~t), q)

the set of atoms of q which are compatible with S(~t).
Then, we define MinIncSet as the algorithm that, given a DL-LiteA,id,den

TBox T and an atom S(~t), returns the following FOL query:

MinIncSet(S(~t), T ) =∨
q∈MinUnsatQuery(T )∧CompSet(S(~t),q)6=∅

 ∨
S(~t′)∈CompSet(S(~t),q)

µS(~t)/S(~t′)(q)


Intuitively, given a possibly inconsistent DL-LiteA,id,den KB 〈T ,A〉, MinIncSet
exploits the ability of MinUnsatQuery(T ) to detect all the minimal T -
inconsistent sets in A so as to compute a rewriting of the atom S(~t) that al-
lows for deciding if there is a minimal T -inconsistent set V in A such that
DB(V ) |= S(~t). The crucial property of MinIncSet is stated in the following
lemma.

Lemma 8. Let 〈T ,A〉 be a possibly inconsistent DL-LiteA,id,den KB, and let
S(~c) be an ABox assertion. There exists a minimal T -inconsistent set V in A
such that S(~c) ∈ V if and only if DB(A) |= MinIncSet(S(~c), T ).

Proof. (⇒) Suppose that S(~c) belongs to a minimal T -inconsistent set
V ⊆ A. Lemma 6 and Lemma 7 guarantee that there exists a query q in
MinUnsatQuery(T ) such that DB(A) |= q and that there is an image of q
in A to which S(~c) belongs. This means that there is a query q′ in the
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set computed by substituting S(~c) to the compatible terms in q such that
DB(A) |= q′. Hence DB(A) |=

∨
S(~t′)∈CompSet(S(~c),q)(µS(~c)/S(~t′)(q)) and then

DB(A) |= MinIncSet(S(~c), T ).
(⇐) Let us consider MinIncSet(S(~c), T ) as a set of queries. Suppose that
there is query q′ ∈ MinIncSet(S(~c), T ) such that DB(A) |= q′. Let q ∈
MinUnsatQuery(T ) be the query from which q′ is obtained from. From Lemma 7
it directly follows that there exists in A a minimal T -inconsistent set that con-
tains S(~c).

With the algorithm MinIncSet in place, we are ready to provide the definition
of algorithm IncRewrIAR.

Let T be a DL-LiteA,id,den TBox, and let q be a BCQ with inequalities of
the form

∃z1, . . . , zk.
n∧
i=0

Ai(t
1
i )∧

m∧
i=0

Pi(t
2
i , t

3
i )∧

∧̀
i=0

Ui(t
4
i , t

5
i )∧

k∧
i=0

Ti(t
6
i )∧

h∧
i=0

t7i 6= t8i (1)

where every tei is a term (i.e., either a constant or a variable), z1, . . . , zk are all
the variables appearing in q, such that q contains at least one atom not using
inequality, and t7i and t8i for any i appear also in some atom not using inequality.

We denote by IncRewrIAR the algorithm that, given the above q and T ,
returns the following FOL query:

IncRewrIAR(q, T ) = ∃z1, . . . , zk.
∧n
i=1Ai(t

1
i ) ∧ ¬MinIncSet(Ai(t

1
i ), T ) ∧∧m

i=1 Pi(t
2
i , t

3
i ) ∧ ¬MinIncSet(Pi(t
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7
i 6= t8i

7.3. The overall query rewriting algorithm

We now have all the ingredients for illustrating the algorithm IAR-PerfectRef
(Algorithm 5), whose goal is to compute the perfect rewriting of a UBCQ Q
w.r.t. a DL-LiteA,id,den TBox T under the IAR-semantics.

Input: UBCQ Q, DL-LiteA,id,den TBox T
Output: a FOL query over T
begin

Q′ = PerfectRef(Q, Tinc ∪ Ttype);
Q′′ = Saturate(Q′);
return

∨
q∈Q′′ IncRewrIAR(q, T )

end

Algorithm 5: IAR-PerfectRef

Using PerfectRef, the algorithm first computes the perfect rewriting Q′ of
Q with respect to T (cf. Section 2). Then, the UBCQ Q′ is passed to the
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algorithm Saturate, producing a set Q′′ of BCQs with inequalities of the form
(1); as explained above, this step is indispensable for exactly identifying, for
each query atom g, the queries in MinUnsatQuery(T ) whose images correspond
to inconsistent sets containing g. Finally, each query in the set Q′′ is passed to
the algorithm IncRewrIAR: the disjunction of all the FOL queries returned by
IncRewrIAR is the final FOL query returned by the algorithm IAR-PerfectRef.

Termination of IAR-PerfectRef follows from the following properties: (i) the
algorithm PerfectRef terminates as shown in [22, 20]; (ii) the algorithm Saturate
terminates (see subsection 7.1.1); (iii) the algorithm IncRewrIAR terminates;
this follows immediately from the termination of the algorithm MinUnsatQuery.
Correctness of IAR-PerfectRef is proved in the following theorem.

Theorem 9. Let T be a DL-LiteA,id,den TBox, and let Q be a UBCQ. Then,
IAR-PerfectRef(Q, T ) is a IAR-perfect FOL rewriting of Q with respect to T .

Proof. We already observed that IAR-PerfectRef(Q, T ) is a FOL query. It
remains to prove that for every ABox A, 〈T ,A〉 |=IAR Q if and only if DB(A) |=
IAR-PerfectRef(Q, T ).
(⇒) Let Q be a UBCQ. Suppose 〈T ,A〉 |=IAR Q. From Theorem 6, we have
that there exists a query q ∈ Q and a T -consistent ABox A′ ⊆ A, such that:
(i) 〈T ,A′〉 |= q, and (ii) A′ ∩ V = ∅ for every V ∈ minIncSets(K). Since A′ is
T -consistent, Proposition 1 guarantees that we can use the PerfectRef algorithm
for computing its perfect FOL rewriting. Let Q′ = PerfectRef(q, Tinc ∪ Ttype).
We have that DB(A′) |= Q′. Let Q′′ = Saturate(Q′). Lemma 2 guaran-
tees that DB(A′) |= Q′′. Hence, there exists a query q′ in Q′′, such that
DB(A′) |= q′. Clearly, since A′ ⊆ A, DB(A) |= q′. Let G be an im-
age of q′ in A′. Since A′ ∩ V = ∅ for every V ∈ minIncSets(K), also
G ∩ V = ∅ for every V ∈ minIncSets(K). Lemma 8 guarantees that for
every assertion α ∈ G, DB(A) 6|= MinIncSet(α, T ). Let IncRewrIAR(q′, T ) =
q′ ∧

∧
S∈q′ ¬MinIncSet(S, T ), where S is an atom in q′ built over an atomic

concept, atomic role, or an attribute. Since DB(A) |= q′ and DB(A) |=
¬MinIncSet(α, T ) α ∈ G, then DB(A) |= IncRewrIAR(q′, T ). Hence, one can
conclude that DB(A) |= IAR-PerfectRef(Q, T ).
(⇐) Suppose that DB(A) |= φ, where φ = IAR-PerfectRef(Q, T ). Let q be
a FOL query corresponding to a disjunct of φ such that DB(A) |= q (since
DB(A) |= φ such a query q exists). Let’s write q as follows:

∃~z.
n∧
i=0

Si(~ti) ∧ ¬MinIncSet(Si(~ti), T ) ∧
m∧
i=0

Ti(t
′
i) ∧

h∧
i=0

t′i 6= t′′i

Since DB(A) |= q, then there is an image of q in A. Let G be such an image.
Let q′ be the query in Saturate(Q′), where Q′ = PerfectRef(Q, Tinc∪Ttype), such
that q = IncRewrIAR(q′, T ). Since DB(G) |= q, then DB(G) |= q′. Moreover,
from Proposition 1 and Lemma 2, it directly follows that 〈T ,J 〉 |= Q. Since
DB(G) 6|= MinIncSet(Si(~ti), T ) for every atom Si(~ti) of q′, then from Lemma 8
it follows that G ∩ V = ∅ for every V ∈ minIncSets(K). But this means that
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G is a subset of A satisfying both conditions (i) and (ii) of Theorem 6. Hence,
〈T ,A〉 |=IAR Q.

Finally, the following complexity result is an immediate consequence of the
termination of the algorithm IAR-PerfectRef and of Theorem 9.

Corollary 1. Let K be a DL-LiteA,id,den KB and let Q be a UBCQ. Deciding
whether K |=IAR Q is in AC 0 in data complexity.

Proof. The proof follows from Theorem 9 and from the fact that evaluation of
FOL queries over relational databases is in AC 0 in data complexity.

We conclude the section with an observation on the size of the rewriting
computed by IAR-PerfectRef(Q, T ). It is well-known that the size of the perfect
reformulation of a query q ∈ Q computed by PerfectRef is polynomial with re-
spect to |T |, and exponential with respect to |q| [22]. It is easy to see that the
size of Q′′ = Saturate(PerfectRef(Q, Tinc ∪ Ttype)) remains polynomial with re-
spect to |T |, and exponential with respect to |Q|. Since query IncRewrIAR(q, T )
makes use of MinIncSet(S(~t), T ) for each atom S(~t) in q ∈ Q′′, and the size
of MinIncSet(S(~t), T ) is exponential with respect to |T | (see Algorithm 1), we
can conclude that the size of the rewriting computed by IAR-PerfectRef(Q, T )
is exponential with respect to both |T | and |Q|.

8. Experimental evaluation

In this section we illustrate the results of the experiments we carried out
on the query rewriting technique for the IAR-semantics presented above5. To
test the technique, we implemented IAR-PerfectRef through a JAVA program,
which produces SQL encodings of the first-order rewritings computed by the
algorithm. The ABoxes over which we executed such rewritings have been stored
as relational databases under the DBMS PostgreSQL 9.0. Experiments have
been run on a 2.6 GHz quad-core Intel Core i7 MacBook Pro laptop equipped
with 8 GB ram.

We used the LUBM benchmark ontology6 as test-bed. The LUBM TBox
contains 43 atomic concepts, 25 atomic roles, 7 attributes, and about 200 as-
sertions. Since its expressivity goes beyond DL-LiteA,id,den, due to the use of
conjunctions and qualified existential restrictions in the left-hand side of pos-
itive inclusion assertions, we first approximated it in DL-Lite, which in fact
required to eliminate very few inclusion assertions from the TBox. Then, since
the LUBM TBox does not contain axioms that can be contradicted by ABox
assertions, we slightly modified it by adding some assertions that can cause in-
consistency. Namely, we added 10 negative inclusions, 5 identifications, and 3
denials to the TBox.

5More details on the experiments can be found at http://www.dis.uniroma1.it/~ruzzi/

JWS/.
6http://swat.cse.lehigh.edu/projects/lubm/
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Percentage of inconsistency
Univ. Cons. 1 5 10 20

1 90,711 91,875 94,668 99,123 107,883
5 563,095 569,612 585,824 605,876 649,664
10 1,146,997 1,160,128 1,192,564 1,232,656 1,320,244
20 2,422,559 2,449,604 2,514,476 2,594,648 2,769,836

Figure 2: Size of the ABoxes used in the experiments (number of ABox assertions)

Turning our attention to data, we initially produced 4 different ABoxes of
increasing size by means of the UBA Data Generator provided by the LUBM
website. Such tool can generate ABoxes of varying size according to specific
input parameters. In particular, we used the generator to produce ABoxes
containing data regarding 1, 5, 10, and 20 universities, respectively, which we
denote with Ai, where 1 ≤ i ≤ 5. These ABoxes turned out to be consistent
with the TBox of our experiments. Therefore, we modified them to introduce
inconsistency, and created four different versions of each such Ai, containing
increasing percentages of inconsistency.

More precisely, we created four different inconsistent versions of each Ai,
which we denote with Aji , where j ∈ {1, 5, 10, 20} indicates the percentage of

inconsistency in each Aji . Such ABoxes are such that Ai ⊂ A1
i and Aji ⊂ A

j′

i , for

j < j′. Furthermore, let Kji = 〈T ,Aji 〉 be a KB where T is our DL-LiteA,id,den
version of the LUBM TBox, we have that all the assertions in Aji \ Ai are

involved in some Kji -clash and all the assertions of Ai are not involved in any

Kji -clash. In other words, in each Aji we add only assertions that are inconsistent

among them, and leave Ai as a consistent nucleus. We finally notice that all Aji
are such that the inconsistency they generate is uniformly distributed over the
axioms that we added to the original LUBM TBox.

Figure 2 shows the size (number of assertions) of all the ABoxes we used in
the experiments. Every row reports the size of the ABox Ai and of its modified
inconsistent versions Aji , and is labeled with the number of universities given as
input to the UBA Data Generator used to produce Ai. For each row i, column
Cons. shows the number of assertions in Ai, whereas columns 1, 5, 10, and 20
give the number of assertions of A1

i ,A5
i , A10

i , and A20
i , respectively, i.e., modified

ABox containing respectively the 1%, 5%, 10% and 20% of assertions involved
in some clash with the TBox.

We then issued 17 conjunctive queries over the test ontologies, which are
taken from the LUBM benchmark query set (containing 14 queries) or adapted
from it7. The first part of the experiments consisted in verifying the effective
computability of the IAR-PerfectRef algorithm, as well as estimating the over-
head it introduces with respect to the PerfectRef algorithm for query rewriting
under the standard FOL semantics. Figure 3 gives us some information on the

7All queries are listed at http://www.dis.uniroma1.it/~ruzzi/JWS/

43



Query Qsize PRsize MISsize IARPRsize
Q1 2 1 34 9 KB
Q2 2 2 58 13 KB
Q3 4 3 256 111 KB
Q4 1 4 82 19 KB
Q5 2 48 4,087 916 KB
Q6 4 2 2,516 716 KB
Q7 4 6 1,047 455 KB
Q8 4 2 238 77 KB
Q9 4 1 234 158 KB
Q10 3 2 280 97 KB
Q11 5 4 2,696 659 KB
Q12 6 6 4,636 1,740 KB
Q13 4 18 2,700 936 KB
Q14 2 1 21 10 KB
Q15 4 18 12,469 5,939 KB
Q16 4 2 468 316 KB
Q17 6 2 868 262 KB

Figure 3: Query rewriting sizes

size of the test queries and of their rewritings obtained through either PerfectRef
or IAR-PerfectRef. More precisely, for each query Qi the table contains the fol-
lowing information:

• column Qsize indicates the number of atoms of the conjunctive query;

• column PRsize reports the number of CQs contained in the rewriting
returned by PerfectRef;

• column MISsize shows the number of disjuncts produced by all the ex-
ecutions of the MinIncSet algorithm done in the IncRewrIAR step of the
rewriting, which gives us a measure of how much the processing of the
query is affected by possible inconsistency. Intuitively, large values for
MISsize correspond to queries whose perfect FOL rewriting returned by
PerfectRef contains many atoms with predicates occurring in assertions of
Ttype, Tdisj , Tfunct, Tid, or Tden;

• column IARPRsize reports the size of the binary files storing the final SQL
rewriting produced by our implementation of IAR-PerfectRef.

As we can notice, the size of the rewriting produced by IAR-PerfectRef largely
exceeds the one computed by PerfectRef. This is not surprising, since, as already
said, the size of the rewriting that IAR-PerfectRef returns is exponential in the
size of both the query and the TBox, whereas the size of the rewriting produced
by PerfectRef is exponential only in the size of the query. We also notice that,
as expected, the MISsize can vary a lot for queries with the same PRsize. For
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Query T1 T2 Total
Q1 16 1 17
Q2 15 48 63
Q3 16 94 110
Q4 15 16 31
Q5 187 499 686
Q6 78 282 360
Q7 31 266 297
Q8 16 82 98
Q9 15 15 30
Q10 16 63 79
Q11 16 142 158
Q12 47 266 313
Q13 78 361 439
Q14 16 1 17
Q15 46 680 726
Q16 16 67 83
Q17 15 125 140

Figure 4: Query rewriting times (milliseconds)

example, queries Q13 and Q15 have the same PRsize, but the MISsize for Q13

significantly lower than the analogous value for Q15. Indeed, Q13 is less affected
than Q15 by the inconsistency.

Let us now consider rewriting times, which we give in Figure 4. For each
query Qi the table contains the following information:

• column T1 indicates the time needed to run PerfectRef;

• column T2 shows the time needed for all the executions of IncRewrIAR;

• Total indicates the total time that the IAR-PerfectRef algorithm takes for
the input query.

Notice that we do not indicate the time needed for query saturation (execution
of the algorithm Saturate) because it is negligible w.r.t. T1 and T2.

We recall that to compute the query MinIncSet used in the IncRewrIAR al-
gorithm, we first need to execute the algorithm MinUnsatQuery. The result of
this last algorithm is independent of the specific query at hand, and therefore
we can execute it off-line, before query rewriting. Therefore, we do not include
the time needed for its execution in the results shown in Figure 4. According
to our experiments, the total time for executing it is 48,188 milliseconds. From
the figures about rewriting times presented above, we can conclude that in our
experiments the time overhead caused by the inconsistency treatment proposed
in this paper with respect to the standard query rewriting technique, i.e., dis-
regarding inconsistency, is acceptable, and does not constitute a bottleneck of
the approach.
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Univ.
Perc.*
Inc. 0 1 5 10 20 0 1 5 10 20 0 1 5 10 20 0 1 5 10 20
Q1 0.17 0.11 0.11 0.11 0.11 0.19 0.21 0.18 0.18 0.19 0.34 0.32 0.32 0.33 0.34 0.61 0.60 0.64 0.75 0.63
Q2 0.08 0.07 0.08 0.07 0.07 0.07 0.08 0.08 0.08 0.08 0.07 0.08 0.09 0.10 0.09 0.08 0.08 0.11 0.09 0.11
Q3 1.14 1.15 1.16 1.15 1.14 1.26 1.28 1.25 1.26 1.23 1.30 1.29 1.33 1.30 1.30 1.34 1.26 1.31 1.30 1.26
Q4 4.13 5.17 10.4 17.0 32.1 170 282 408 t/o t/o t/o t/o t/o t/o t/o t/o t/o t/o t/o t/o
Q5 22.8 22.6 22.9 22.9 23.3 315 318 323 330 342 t/o t/o t/o t/o t/o t/o t/o t/o t/o t/o
Q6 5.82 9.61 20.4 18.6 24.2 7.03 34.05 189 340 t/o 7.45 117 t/o t/o t/o 8.41 472 t/o t/o t/o
Q7 1.89 1.89 1.90 1.99 2.02 2.34 2.34 2.88 2.90 2.94 2.57 2.56 2.58 2.58 4.00 2.57 2.58 2.65 2.63 2.64
Q8 0.50 0.49 0.49 0.49 0.49 0.61 0.61 0.60 0.61 0.61 0.65 0.65 0.67 0.65 0.65 0.75 0.75 0.75 0.76 0.76
Q9 1.84 1.83 2.38 2.35 2.20 1.31 1.27 1.23 1.09 1.06 1.47 1.49 1.50 1.46 1.50 2.42 2.36 2.45 2.44 2.49
Q10 0.47 0.45 0.47 0.47 0.47 0.88 0.88 0.93 0.95 0.95 1.27 1.36 1.41 1.41 1.46 2.20 2.33 2.61 2.72 2.59
Q11 4.99 4.94 4.95 4.95 5.03 5.15 5.18 5.20 5.18 5.27 5.30 5.34 5.26 5.23 5.26 5.26 5.26 5.26 5.24 5.23
Q12 25.2 23.0 22.9 22.6 22.9 24.0 24.6 24.3 24.2 24.0 25.3 26.5 25.6 25.6 26.0 29.1 28.5 27.6 28.1 28.3
Q13 3.92 3.95 3.93 3.96 3.97 9.10 9.57 11.3 13.5 18.6 10.4 11.2 15.0 20.6 41.3 17.9 19.2 24.4 45.1 77.3
Q14 0.05 0.06 0.06 0.06 0.05 0.10 0.11 0.11 0.10 0.11 0.16 0.17 0.16 0.17 0.17 0.29 0.29 0.29 0.29 0.29
Q15 129 123 127 127 128 123 123 123 124 t/o t/o t/o t/o t/o t/o t/o t/o t/o t/o t/o
Q16 2.43 2.41 2.62 2.63 2.64 1.79 1.83 1.90 1.84 1.88 2.18 2.20 2.35 2.40 2.41 3.19 3.32 3.50 3.60 3.58
Q17 4.30 4.24 4.27 3.22 3.27 4.82 4.93 6.02 6.21 6.30 7.66 8.19 6.88 12.4 12.7 17.6 19.4 12.5 39.5 38.7

1 5 10 20

Figure 5: IAR-perfect rewriting evaluation times (seconds)

We now turn our attention to the evaluation of the rewriting. We computed
the answers of each IAR-perfect rewriting produced by IAR-PerfectRef over all
20 test ABoxes described above. Evaluation times (in seconds) are given in
Figure 5. The results are grouped according to the number of universities used
to generate the ABoxes through the UBA data generator of the benchmark
(supercolumns 1, 5, 10, and 20). For each such group we provide five columns,
labeled with 0, 1, 5, 10, and 20, respectively, that indicate the percentage
of inconsistency of each ABox in the group (notice that for group i, column
0 contains results obtained over Ai). We established a 10 minute timeout for
every single rewriting evaluation.

To give an idea of the overhead caused by our inconsistency-tolerant query
answering approach based on the IAR-semantics, with respect to standard query
answering under FOL semantics, we also provide the times needed to evaluate
the rewriting returned by PerfectRef over all the 20 test ABoxes. Of course,
the answers we get in this case are not meaningful, since we are disregarding
the inconsistency and naively query the KB as it was consistent. Results we
obtained (in milliseconds) are given in Figure 6.

Each value given in Figure 5 and Figure 6 represents the average time over
four evaluations of the same rewriting over the same ABox. To avoid that
possible caching strategies adopted by the underlying DBMS affected our ex-
periments, we executed four experiment rounds, and in each round we evaluated
each rewriting over all the ABoxes.

Looking at the IAR-perfect rewriting evaluation times of Figure 5, we notice
that we could execute successfully almost 90% of the evaluations, and that we
experienced very good performances (only 3% of the successful cases took more
than 4 minutes). Only 4 out of 17 rewritings reached the timeout, and only for
ABoxes containing high levels of inconsistency or more than one million tuples.

The trend of the evaluation time is essentially constant or increasing within
each group of ABoxes. In some cases (e.g., Q6 or Q13) it shows an increment
when moving from a group containing smaller ABoxes to one containing larger
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Univ.
Perc.*
Inc. 0 1 5 10 20 0 1 5 10 20 0 1 5 10 20 0 1 5 10 20
Q1 23 15 15 15 14 40 41 45 42 43 78 77 78 79 79 162 154 157 157 161
Q2 5 5 5 6 7 7 7 8 10 11 8 8 11 13 15 8 8 16 15 22
Q3 10 10 10 10 10 17 18 21 12 13 23 25 14 15 19 35 37 16 19 10
Q4 31 18 18 19 20 189 180 197 193 217 362 360 382 391 431 748 746 762 790 807
Q5 94 89 91 91 94 319 332 337 341 354 615 645 652 662 679 1,039 1,098 1,115 1,124 1,167
Q6 14 14 7 7 8 7 8 8 8 80 7 7 7 151 155 8 8 8 312 316
Q7 10 11 10 11 11 18 19 19 16 16 26 26 27 22 23 46 46 49 51 57
Q8 6 7 7 7 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7
Q9 17 17 17 17 17 63 63 63 65 66 120 119 120 123 125 248 248 248 250 255
Q10 7 7 7 7 7 64 65 119 120 122 123 123 236 239 241 247 252 488 492 502
Q11 23 22 23 22 22 24 22 22 22 22 23 23 22 22 22 23 23 23 22 22
Q12 39 39 39 38 40 48 46 46 45 45 43 44 45 43 42 44 46 45 44 44
Q13 49 49 49 50 51 2,911 2,903 2,914 2,906 2,949 15,132 14,956 15,190 14,842 15,071 17,295 17,377 17,391 17,428 17,638
Q14 8 8 8 8 7 24 24 24 24 24 42 42 42 42 42 83 83 82 83 83
Q15 78 78 79 80 80 89 92 94 97 103 98 101 106 109 125 113 117 122 134 157
Q16 26 19 27 27 27 65 68 118 121 123 121 124 235 238 241 248 256 491 491 500
Q17 40 40 40 43 44 407 423 424 442 536 890 997 905 911 1,137 2,001 1,980 2,214 2,472 2,274

1 5 10 20

Figure 6: Perfect rewriting evaluation times (milliseconds)

ABoxes, but the trend is always increasing for equal percentages of inconsis-
tencies. For only two cases, involving queries Q4 and Q5, we notice a large
increment in evaluation time when moving from a group to another, disregard-
ing the percentage of inconsistency. The same behavior for these two queries
can be observer also in Figure 6, which indicates that the jump in this case is
somehow amplified by the PerfectRef component of the rewriting. This makes
us to conclude that in general the evaluation time is more affected by the incre-
ment of inconsistency in the ABox than by the only increment of the size of the
ABox. We also notice that less performing rewritings have in general a large
number of disjuncts generated by MinIncSet (cf. column MISsize of Figure 3).
This is however not always the case, as it can be verified looking at evaluation
times for the rewriting of query Q4, which has a small MISsize. Conversely,
query Q12 has a quite large MISsize but its IAR-perfect rewriting is always
evaluated in less than 30 seconds. This is not completely surprising, since eval-
uation times are also affected by the distribution of data and the features of the
DBMS managing them. On the other hand, for most of the cases we observed
a certain correspondence between the size of the IAR-perfect reformulation and
the evaluation time of the rewriting (the larger the former the slower the latter).

Comparing the results in Figure 5 and Figure 6 we notice that using
IAR-PerfectRef for query answering instead of PerfectRef makes query answering
times to increase of some degree of magnitude. This was expected, because of
the complex structure and large dimension of the former rewriting compared to
the latter. On the other hand, an increase in the computation time is the price to
pay to rely on a principled treatment of the inconsistency rather than obtaining
spurious answers from an inconsistent ontology. These results, however, clearly
call for optimized methods for query answering under the IAR-semantics. We
further notice that no general correlation exist between the time needed to an-
swer a query under the standard FOL semantics and what is needed under the
IAR-semantics, by using our query rewriting techniques. Indeed, even though
queries that we tested to be easy under the FOL semantics have been evaluated
quite quickly also under the IAR-semantics, there are queries, like Q13, which
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turned out to be the most difficult under the FOL semantics, but definitely
manageable under the IAR-semantics. In other words, we experienced that the
presence of inconsistency and the way it is distributed heavily change the query
answering performances.

We conclude by noticing that the rewriting technique proposed in this pa-
per is only the starting point of our investigation on rewriting methods for
inconsistency-tolerant query answering under the IAR-semantics, which has
been mainly devised as a means to show FO-rewritability of this task for
DL-LiteA,id,den. We are currently working on optimization techniques in order
to obtain more compact rewritings, thus limiting the price to pay for moving
from standard query answering to inconsistency tolerant processing of queries.
Nonetheless, we believe that the results we obtained in the experiments pre-
sented in this section are very encouraging, and set the stage for applicability
of consistent-query answering technique in real-world OBDA scenarios.

9. Related work

Inconsistency management has been addressed in various forms in several ar-
eas, including Logic, Artificial Intelligence, and Databases. In Logic, several se-
mantics have been proposed with the aim of providing more meaningful notions
of logical entailment for classically inconsistent theories. Some notable examples
come from the field of multi-valued and paraconsistent logics [61, 72, 55, 54].
Each of the proposals has advantages and drawbacks, and the choice of the
paraconsistent logic depends on the requirements of the application at hand.
The techniques adopted in these works are however quite different from the
ones we use in the present paper, and therefore we do not discuss them further.
Instead, in this section we concentrate on the approaches that are most related
to OBDA, and in particular we consider the studies dealing with inconsistency
handling in ontologies, belief revision, and databases.

9.1. Inconsistency handling in ontologies

Several works of the Semantic Web community focus on the issue of deal-
ing with inconsistencies in the knowledge base. In [40], the authors present a
framework for reasoning with inconsistent KBs. At the basis of such a frame-
work is the notion of selection function, that allows for choosing some consistent
sub-theory from an inconsistent KB. Standard reasoning is then applied to the
selected sub-theory. An instantiation of the framework, based on a syntactic
relevance-based selection function is also briefly described. In [38], a more ex-
tended framework that generalizes four approaches to inconsistency handling is
presented. In particular, consistency of KB evolution, repairing inconsistency,
reasoning with inconsistent KBs, and KB versioning are considered.

In [21], a tool is presented that allows for verifying whether a KB expressed
in DL-Lite is consistent: the check is reduced to the evaluation of first-order
queries over the ABox. However, the kind of support to inconsistency manage-
ment provided by these approach mostly consists of identifying inconsistencies.
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Furthermore, with the exception of [21], they are mainly focused on inconsis-
tencies at the intensional level (or do not distinguish between intensional and
instance level).

The form of inconsistency tolerance studied in this paper is related to the
work on justification and pinpointing in Description Logic ontologies. In fact,
minimal inconsistent subsets of the ABox can be seen as explanations, or min-
imal justifications (at the extensional level) of the inconsistency of the knowl-
edge base. Given this connection, some computational properties of pinpointing
(e.g., [62, 63, 6]) are related to the complexity of reasoning under inconsistency-
tolerant semantics, although the two problems are different and are studied un-
der different assumptions. Some works have explicitly focused on the problem of
finding justifications for inconsistency. In [60], the authors present a framework
for detecting and diagnosing errors in OWL ontologies. In [70], the authors
discuss a number of alternative methods to explain incoherence of TBoxes, un-
satisfiability of concepts and concept subsumption, in order to provide support
to knowledge engineers who are building terminologies using Description Logic
reasoners. Then, in [7] a visual tool is presented that allows the user to check
consistency of formal KBs. In [39], the authors present an algorithm for com-
puting justifications for inconsistent ontologies in OWL 2. To summarize, none
of the above mentioned works provides concrete techniques, or complexity re-
sults for inconsistency-tolerant query answering in the framework considered in
this paper.

9.2. Belief revision

The form of inconsistency tolerance considered in this work is deeply con-
nected to the study of update in databases and belief revision/update. Consider
a consistent knowledge base K and a new piece of information N . Suppose that
our intention is to changeK with the insertion ofN . IfK∪N is inconsistent, then
the revision/update semantics assume that the original knowledge base K has
to be modified in order for the result of the change to be consistent. The studies
in belief revision appear very relevant for reasoning over inconsistent KBs. For
instance, if K′ = 〈T ,A〉 is a possibly inconsistent knowledge base, with respect
to the knowledge base revision/update framework, we can consider the ABox A
as the initial knowledge, whereas the TBox T represents the incoming knowl-
edge. Based on such a correspondence, the inconsistency-tolerant semantics
presented in this work are strictly related to the work presented in [32, 33, 59].
However, none of these papers provides specific techniques for DL KBs. In [65],
an algorithm is proposed for handling inconsistency in DL KBs based on a revi-
sion operator. This approach allows for resolving conflicts changing the original
knowledge base by weakening both ABox and TBox assertions. Similarly, in [57]
inconsistency is resolved by transforming every concept inclusion assertion in
the TBox into a cardinality restriction. Then, if a cardinality restriction is in-
volved in a conflict, one weakens it by relaxing the restrictions of the number
of elements it may have. To the best of our knowledge, the approach studied in
this work, based on instance-level repair only, is novel for Description Logics,
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and it is inspired by the work on inconsistency tolerance in Databases discussed
next.

9.3. Inconsistency tolerance in databases

Traditionally, in databases, consistency is preserved by forbidding malicious
update operations. Clearly, such an approach is not applicable in those scenar-
ios where the aim is to merge information coming from different data sources,
as in data integration. Data cleaning techniques provide in this case a clas-
sical procedural means for restoring consistency [15, 65, 56]. These solutions
are procedural in nature and require to collect additional application-specific
information, which can be a serious drawback in many contexts.

Besides traditional data cleaning, the research in databases has also pursued
a declarative approach to the problem, concentrating on two main issues: restor-
ing consistency through the computation of a new consistent database, starting
from an inconsistent one, and computing meaningful answers to queries without
necessarily modifying the database in order to resolve inconsistency. The sec-
ond approach is known under the name of consistent query answering, following
the seminal work of Arenas, Bertossi and Chomicki [3], and is the approach we
explore in this paper in the context of OBDA.

The main notion at the basis of declarative approaches to inconsistency tol-
erance in databases is that of a repair [3]. A repair for an inconsistent database
is defined as a database instance that satisfies integrity constraints and min-
imally differs from the original database. Various criteria of minimality have
been proposed in the literature. In [28], the authors show how the notion of
minimality can be interpreted in different ways, depending on the kinds of con-
straints that are considered. Indeed, for the large class of denial constraints, the
only way to restore the integrity of a database is to retract a part of it. On the
other hand, if the information is both incorrect and incomplete, as in the case
where also inclusion dependencies are considered, both insertions and deletions
of pieces of information should be considered. Alternatively, some data integra-
tion approaches give up the completeness assumption [44, 19], and therefore do
not consider violations of inclusion dependencies by the underlying database as
a real inconsistency. In [27] the authors study inconsistency in presence of both
denial constraints and inclusion dependencies, and present a semantics in which
only tuple elimination is allowed, and it is therefore used also for repairing vio-
lations of inclusions, differently from [44, 19]. In other works, repairs are given
in terms of tuple updates, rather than tuple deletions or insertions (see, e.g.,
[74, 9]). The papers mentioned so far, as well as the present paper, adopt a min-
imality criterion for repairs based on set containment. An alternative approach
is the one in which repairs are defined through a cardinality-based minimality
criterion (see e.g., [51]).

In the last 15 years, several studies have analyzed the computational com-
plexity of consistent query answering under various inconsistency-tolerant se-
mantics and various classes of constraints [18, 28, 71, 75], and many algorithms
to solve it have been proposed. Some of such approaches aim at rewriting the
input query into a new query whose evaluation over the inconsistent database
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returns the consistent answers (similar to the approach we follow in the present
paper). Depending on the complexity of the problem, such rewritings are spec-
ified as (possibly optimized) logic programs allowing for the use of negation or
disjunction (as in [19, 36, 30]), or as first-order logic queries (as in [3, 37, 34]).
Notice, however, that this last approach can be pursued only in very lim-
ited settings, since under the semantics proposed for inconsistency tolerance
in databases the problem easily becomes intractable. Thus, even if relevant for
the present paper, the rewriting techniques proposed in the context of databases
cannot be adapted to the setting we consider. For an overview of the work on
consistent query answering, we refer the reader to [26, 8].

9.4. Instance-level inconsistency tolerance in DLs

We finally survey some recent works that, similarly to our approach, are
specifically tailored to the study of “instance-level” inconsistency-tolerant se-
mantics for DL knowledge bases.

In [48] a repair-based inconsistency-tolerant semantics for DLs is pro-
vided and data complexity of query answering under such semantics is stud-
ied for DL-LiteR and DL-LiteF , two logics of the DL-Lite family captured
by DL-LiteA,id,den. As already said (cf. Section 5), the notion of repair given
in [48] coincides with our notion of AR-repair, and then, their inconsistency-
tolerant semantics coincides with our AR-semantics. The objective of [48] was
however different from ours, since it aimed at identifying tractable cases of
inconsistency-tolerant query answering under the AR-semantics, and thus fo-
cused on inconsistency-tolerant instance checking. As noticed, our complexity
lower bound for DL-Litecore given in Theorem 3 corrects the results in [48], as-
serting tractability of instance checking under AR-semantics for DL-LiteF and
DL-LiteR. It can be shown that the technique presented in [48] is in fact cor-
rect only for DL-Litecore KBs without negative inclusions, but enriched with
functionalities on roles.

More recently, in [11] the author carries out an investigation for DL-Lite KBs,
with the aim of better understanding the cases in which inconsistency-tolerant
query answering under AR-semantics is feasible, and in particular, can be done
using query rewriting. Specifically, the author formulates some general condi-
tions that can be used to prove that a first-order reformulation for inconsistency-
tolerant query answering does or does not exist for a given DL-Litecore TBox
and instance query. Subsequently, in [12, 13], the same author conducts a com-
plexity analysis of the AR-semantics with the aim of characterizing the com-
plexity of inconsistency-tolerant query answering based on the properties of the
KB and the conjunctive query at hand. In particular, in [12], by focusing on
a very simple language, which is a fragment of DL-Litecore , the author iden-
tifies the number of quantified variables in the query as an important factor
in determining the complexity of inconsistency-tolerant query answering. To
be more precise, it is shown that inconsistency-tolerant query answering under
AR-semantics: (i) is always first-order rewritable for conjunctive queries with
at most one quantified variable; (ii) has polynomial data complexity when the
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query has two quantified variables; (iii) is coNP-hard for queries having three
(or more) quantified variables.

In the same paper, the author proposes a novel inconsistency-tolerant seman-
tics that is a sound approximation of the AR-semantics. This semantics, named
intersection of closed repairs (ICR), corresponds to closing AR-repairs with re-
spect to the TBox before intersecting them. The ICR-semantics approximates
the AR-semantics better than the IAR-semantics: however, query answering un-
der the ICR semantics in DL-Lite logics is in general intractable. In particular,
[12] shows that first-order rewritability of inconsistency-tolerant query answer-
ing under ICR-semantics is guaranteed only for DL-Litecore ontologies without
inverse roles. For full DL-Litecore , the problem is instead coNP-hard [12].

We observe that the ICR-semantics is similar in spirit to the ICAR-
semantics we investigated in [46, 47]. Analogously to the ICR-semantics, in the
ICAR-semantics we close the AR-repairs with respect to the TBox, but instead
of taking their intersection, we consider the union of such closures and com-
pute the IAR-repair of this union, which we call the ICAR-repair. We remark
that the rewriting technique presented in this paper can be adapted to compute
perfect rewritings under the ICAR-semantics, thus showing that inconsistency-
tolerant query answering for UBCQs is first-order rewritable also in this case.
To ease readability, we preferred to not discuss this issue in the present work.
Some hints on how to modify the IAR-PerfectRef algorithm to obtain a query
rewriting procedure for the ICAR-semantics can be found in [47], where first-
order rewritability of query answering for DL-LiteA is shown for both the IAR-
and the ICAR-semantics: we point out, however, that the technique presented
in that paper is different from the one we present here, which is able to deal
also with identification and denial assertions.

In [66] the author presents a computational analysis of the problems of in-
stance checking and conjunctive query answering under AR- and IAR-semantics
(and other inconsistency-tolerant semantics) for a wide spectrum of DLs, rang-
ing from tractable ones (EL) to very expressive ones (SHIQ), showing that
reasoning under the above semantics is inherently intractable, even for very
simple DLs. In particular, these results imply that the tractability of query
answering under IAR-semantics that we have shown for the DL-Lite logics does
not extend to other tractable DLs like EL.

In addition, [14] presents two parameterized inconsistency-tolerant semantics
for DLs, called k-support and k-defeater semantics. The k-support semantics
can be seen as a generalization of the IAR-semantics, in the sense that is a sound
approximation of the AR-semantics: it converges to the AR-semantics for k suf-
ficiently large and in the case when k = 1 it coincides with the IAR-semantics.
The k-defeater semantics is a complete approximation of the AR-semantics: in
the case when k = 0 it coincides with the “brave” version of the AR-semantics,
and converges to the AR-semantics in the limit. The authors prove that, in the
case of DL-Lite ontologies, query answering under both semantics is tractable
(actually, first-order rewritable). These results in principle allow for improv-
ing the expressive abilities of the IAR-semantics while keeping its good com-
putational properties. However, the applicability of this approach is still not
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clear: in particular, practical query rewriting algorithms for the parameter-
ized semantics have not been defined yet. This paper also presents a sufficient
condition for the FO-rewritability of conjunctive queries under the above pa-
rameterized semantics, which includes, as a special case, query answering in the
logic DL-LiteA,id,den under the IAR-semantics.

Then, [52] presents an approach that is also very close to the present work.
In fact, it proposes an application of the IAR-semantics to the framework of
Datalog+/- [17]. In particular, a fragment of Datalog+/- is considered that
comprises linear tuple-generating dependencies (TGDs), negative constraints
(NCs) and a restricted form of equality-generating dependencies (EGDs). Then,
a technique for query answering under such dependencies is presented, which
is technically very similar to the one presented in Section 7. In fact, the de-
pendencies considered in [52] have a tight connection with the TBox assertions
of DL-LiteA,id,den, in particular: linear TGDs correspond to a generalized form
of positive inclusion assertions, NCs correspond to denial assertions, and EGDs
are related to identification assertions. However, there are two main differences:
first, the framework of [52] does not consider value-domains, hence many of
the issues dealt with by our technique are not present in the above Datalog+/-
framework; moreover, although identification constraints correspond to EGDs,
they are not captured by the restricted form of EGDs (called non-conflicting
EGDs) considered in [52]. The work of [52] has been further extended in [53],
which presents a set of complexity results about reasoning in Datalog+/- pro-
grams under both the IAR-semantics and the ICR-semantics.

Furthermore, in [67] an algorithm for materializing the IAR-repair of a
DL-LiteA KB is defined. This work also presents an experimental compari-
son in DL-LiteA of the query rewriting approach and the materialized approach
to query answering under the IAR semantics. A similar comparison for the
framework studied here, although very interesting in principle, is outside the
scope of the present paper, and is left for future work (cf. Section 10). We only
note that, ABox repairs in DL-LiteA appear much easier to compute than in
the case of DL-LiteA,id,den, because minimal inconsistent subsets have a cardi-
nality of at most 2, which implies that computing IAR-repairs in DL-LiteA is
in PTime with respect to combined complexity. Conversely, in DL-LiteA,id,den,
due to the presence of denial assertions and identification assertions, the mini-
mal inconsistent subsets of the ABox may have size larger than 2 (only bounded
by the length of the above assertions). By virtue of this property, it can eas-
ily be shown that computing IAR-repairs in DL-LiteA,id,den cannot be done in
polynomial time with respect to combined complexity, unless PTime = NP. For
these reasons, the query rewriting techniques considered in [67] are significantly
different from the one presented in this paper. Finally, as observed in [67], the
ABox cleaning approach might not always be possible or easily realizable in real
applications, especially in OBDA scenarios where the ABox is virtually defined
through views over autonomous databases. In these cases, the OBDA system
can typically only read such databases. Another reason that may prevent the
applicability of the ABox cleaning approach is that several organizations do not
want their data to be replicated, thus preventing from building a cleaned replica
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of data. Indeed, data replication comes with the additional cost due to the need
of keeping the replica up-to-date with respect to the original copy.

10. Discussion and conclusion

In this paper, we have addressed the problem of inconsistency tolerance for
DLs of the DL-Lite family, particularly suited for ontology representation in
an OBDA scenario, where data at the sources to be accessed, stored in au-
tonomous and independent systems, typically contradict the conceptualization
provided by the ontology. We have therefore analyzed inconsistency-tolerant
semantics suited to deal with this situation, i.e., semantics that preserve the
knowledge provided by the ontology TBox, considered a faithful representa-
tion of the domain, and repair ABox data to make them consistent with the
TBox. We have first studied query answering under the AR-semantics, a nat-
ural adaptation to DLs of repair-based semantics proposed for incomplete and
inconsistent databases, and have shown that this task is intractable in data
complexity even for very simple queries and DL languages of limited expressive
power. We have therefore proposed an approximation of the AR-semantics,
called IAR-semantics, with the goal of reaching a compromise between the ex-
pressive power of the semantics, the ontology and the query language, and the
computational complexity of inconsistency-tolerant query answering. We have
then shown that query answering under such semantics is first-order rewritable
for one of the most expressive logic of the DL-Lite family, and provided some
first experiments involving ontologies with large inconsistent ABoxes, based on
an implementation of our rewriting algorithm.

As for future work, we plan to continue the work on the IAR-semantics
in different ways. First, we have implemented the query rewriting algorithm
presented in Section 7 in the MASTRO system [21], with the goal of testing
the algorithm in real-world scenarios. Such tests will allow us to investigate
in detail suitable strategies for optimizing the rewritten query produced by the
algorithm.

Also, we plan to experiment our technique in OBDA settings where the
relationship between the ontology and the data sources is expressed in terms of
suitable mappings, rather than a DL ABox. In this setting, the goal of devising
an efficient inconsistency-tolerant query answering technique is complicated by
the fact that the rewritten query produced by our algorithm should be the input
to a further rewriting step that takes into account the mappings.

Finally, we would like to investigate approaches that materialize instance-
level repairs in DL-LiteA,id,den. In particular, it would be very interesting to
define techniques for ABox cleaning in DL-LiteA,id,den and to extend the ex-
perimental comparison presented in [67] between virtual and materialized ap-
proaches to query answering under the IAR-semantics.
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Appendix 1

In this appendix we recall the algorithm PerfectRef for query rewriting of
UCQs over DL-Lite TBoxes. This algorithm has been originally presented
in [22] for DL-Lite logics without attributes, and then used as is in [20] for
DL-LiteA. Indeed, as clarified below, by virtue of the assumptions on value-
domains adopted in DL-LiteA (and its variants), for query rewriting it is possi-
ble to treat DL-LiteA TBoxes as DL-Lite TBoxes without attributes, provided
some obvious syntactic transformations. In this paper, we assume that it takes
as input a DL-LiteA,id,den TBox T and a UCQ Q.

PerfectRef returns the perfect rewriting of Q w.r.t. T (cf. Proposition 1). To
compute such rewriting, it exploits only the positive inclusion assertions in the
TBox. In a DL-LiteA,id,den TBox, these are the assertions in Tinc and Ttype.
In particular, PerfectRef treats predefined value-domains as atomic concepts,
attributes as atomic roles, and each assertion in Ttype as an inclusion between
an unqualified existential restriction over a role and an atomic concept. In other
words, in PerfectRef concepts of the form δ(U) are seen as concepts of the form
∃U , and value-domains of the form ρ(U) are seen as concepts of the form ∃U−.
This is possible by virtue of the assumptions made on value-domains (cf. Section
2.1), through which the distinction between objects and values does not have
any impact on query answering. Thus, in PerfectRef we do not need to introduce
any special treatment for attributes and value-domains. We only notice that,
since input queries can contain atoms of the form Ti(t), with Ti value-domain
in ΓP and t a term, we also make use of inclusions of the form ρ(U) v Ti
(interpreted as ∃U− v Ti) to rewrite the query.

PerfectRef (cf. Algorithm 6) consists of two main steps, applied repeatedly
to each q ∈ Q until a fixpoint is reached: step (a) uses positive inclusions as
rewriting rules applied from right to left, to rewrite query atoms one by one, each
time producing a new conjunctive query to be added to the final rewriting; step
(b) unifies query atoms. The aim of step (b) is to make step (a) executable over
atoms resulting from unification. At the end of the process, all the knowledge
of the TBox that is necessary to answer q is encoded in the returned rewriting,
which can be then evaluated over the underlying ABox to return the answer.

In the algorithm, q[g/g′] denotes the CQ obtained from a CQ q by replacing
the atom g with a new atom g′. Also, gr(g, α) denotes the atom obtained from
the atom g by applying the inclusion α. Roughly speaking, an inclusion α is
applicable to an atom g if: (i) the predicate of g is equal to the predicate in the
right-hand side of α; (ii) in the case when α is an inclusion assertion between
concepts, the atom g has at most one bound argument, which corresponds to
the object that is implicitly referred to by the inclusion α, where an argument is
bound if it is a constant or a variable occurring elsewhere in the query (we refer
to [22, 20] for further details). In PerfectRef, we substitute each non-bound vari-
able with the symbol . For example, the inclusion A v ∃P− is not applicable
to any of the atoms in ∃x, y.P (x, y) ∧ P (x′, y) ∧ x 6= x′, whereas the inclusion
∃P1 v ∃P2 is applicable to the atom P2(x, z) in the query ∃x.P3(x, ), P2(x, ).
In this case, we have gr(P2(x, ),∃P1 v ∃P2) = P1(x, ). Again, we refer

62



Input: UCQ Q, DL-LiteA,id,den TBox T
Output: UCQ
begin
PR← {Q};
repeat
PR′ ← PR;
for each q ∈ PR′ do
(a) for each g in q do

for each positive inclusion α in T do
if α is applicable to g
then PR← PR ∪ { q[g/gr(g, α)] }

(b) for each g1, g2 in q do
if g1 and g2 unify
then PR← PR ∪ {τ(reduce(q, g1, g2))};

until PR′ = PR;
return PR;

end

Algorithm 6: The algorithm PerfectRef

to [22, 20] for the exact definition of the function gr. Finally, reduce is a func-
tion that takes as input a conjunctive query q and two atoms g1 and g2 occurring
in the body of q, and returns a conjunctive query q′ obtained by applying to q
the most general unifier between g1 and g2, whereas the function τ substitutes
with the symbol each non-bound variable in the query it takes as argument.

Appendix 2

The goal of this appendix is to present the proof of Theorem 1. To show
the only-if direction, we construct a DL-LiteR KB that encodes the positive
knowledge specified in a DL-LiteA,id,den KB. Then we make use of the notions
of chase and canonical structure for DL-LiteR KBs, and exploit some of their
basic properties. Such notions and properties have been originally given in [22].
For the sake of completeness, we repeat them below8.

The canonical structure for DL-LiteR KBs

We recall that a DL-LiteR KB can be seen as a particular DL-LiteA,id,den
KB without attributes and value-domains, where functionalities, identifications,
and denials are not allowed. We assume DL-LiteR KBs to be constructed over
an overall alphabet of predicates ΓRP = ΓRA ∪ ΓRL , where ΓRA is the alphabet of

8Canonical structures are called canonical interpretations in [22]. Since, as we will see in
the following, they are not interpretations for DL-LiteA,id,den KBs, in this paper we prefer
to use the term structure.
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atomic concepts and ΓRL is the alphabet of atomic roles, and an alphabet of
(object) constants ΓRC , such that with ΓRA ∩ ΓRL = ∅ and ΓRP ∩ ΓRC = ∅.

First of all we provide the notion of structure induced by a set of ABox
assertions, which in DL-LiteR are only of form A(a) and P (a, b). Notice that
this definition is a specialization to DL-LiteR of Definition 2, which considers
DL-LiteA,id,den ABox assertions. Differently from Definition 2, below we do
not provide any special interpretation of value constants, value-domains and
attributes, which do not exists in DL-LiteR. For the rest, the two definitions
coincide.

Definition 13. Let S be a set of DL-LiteR ABox assertions. The structure
DBR(S) = 〈∆DBR(S), ·DBR(S)〉 is defined as follows:

− ∆DBR(S) coincides with the set of constants occurring in S,
− aDBR(S) = a, for each constant a occurring in S,
− ADBR(S) = {a | A(a) ∈ S}, for each atomic concept A ∈ ΓRA,
− PDBR(S) = {(a1, a2) | P (a1, a2) ∈ S}, for each atomic role P ∈ ΓRL .

The canonical structure of a KB in DL-LiteR is constructed according to the
chase of the KB [1, 41]. We thus first recall the notion of chase, and to this aim
we start by defining the notion of applicable positive inclusion assertions (PIs),
which in DL-LiteR are only of form B1 v B2 and R1 v R2. In the following,
similar to Section 3, we make use of the function η that takes as input a basic
role and two constants and returns an ABox assertion, as specified below

η(R, a, b) =

{
R(a, b), if R = P
R(b, a), if R = P−

Definition 14. Let S be a set of DL-LiteR ABox assertions, and let Tp be a set
of DL-LiteR PIs. Then, a PI α ∈ Tp is applicable in S to an ABox assertion
β ∈ S if

• α = A1 v A2, β = A1(a), and A2(a) /∈ S;

• α = A v ∃R, β = A(a), and there does not exist any constant b such that
η(R, a, b) ∈ S;

• α = ∃R v A, β = η(R, a, b), and A(a) /∈ S;

• α = ∃R1 v ∃R2, β = η(R1, a, b), and there does not exist any constant c
such that η(R2, a, c) ∈ S;

• α = R1 v R2, β = η(R1, a, b), and η(R2, a, b) /∈ S.

Applicable PIs can be used, i.e., applied, in order to construct the chase of a
KB. In the following we assume to have an infinite set ΓN of constant symbols
disjoint from the alphabets ΓRC and ΓRP . Then, our notion of chase is defined
inductively as follows.
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Definition 15. Let K = 〈T ,A〉 be a DL-LiteR KB. We define chase0(K) = A.
Then, for every non-negative integer i, let β be an ABox assertion in chasei(K),
let α be a PI in T such that α is applicable to β in chasei(K), and let anew be a
fresh constant from ΓN , i.e., a constant not occurring in chasei(K), we define
chasei+1(K) = chasei(K) ∪ βnew, where βnew is an ABox assertion defined as
follows

• if α = A1 v A2, β = A1(a) then βnew = A2(a)

• if α = A v ∃R and β = A(a) then βnew = η(R, a, anew)

• if α = ∃R v A and β = η(R, a, b) then βnew = A(a)

• if α = ∃R1 v ∃R2 and β = η(R1, a, b) then βnew = η(R2, a, anew)

• if α = R1 v R2 and β = η(R1, a, b) then βnew = η(R2, a, b).

Then, we call chase of K, denoted chase(K), the set of ABox assertions
obtained as the infinite union of all chasei(K), i.e.,

chase(K) =
⋃
i∈N

chasei(K).

We notice that, given a DL-LiteR KB K, a number of syntactically distinct
chases for K can be obtained according to the above definition, depending on
the order with which applicable PIs are applied in each chasei(K). For ease of
exposition, in Definition 15 we did not explicitly indicate the ordering to follow
in the application of the PIs, but assume that it is implicitly established an
ordering that guarantees that if a PI α is applicable to an ABox assertion β in a
certain chasei(K), then there exists j > i such that α is no longer applicable to
β in chasej(K). It can be shown that all chases produced adopting an ordering
that guarantees the above property are unique up to renaming of constants from
ΓN (we refer the reader to [22, 41] for more details on these aspects).

With the notion of chase in place, we can define the canonical structure
can(K) of a DL-LiteR KB K as the strucure induced by chase(K) according to
Definition 13, i.e., can(K) = DBR(chase(K)).

The following lemmas adapted from [22] state that can(K) satisfies all PIs
in a DL-LiteR KB K and that can(K) is indeed a canonical model for query
answering.

Lemma 9 (Lemma 7 of [22]). Let K = 〈T ,A〉 be a DL-LiteR KB and let Tp be
the set of PIs in T . Then, can(K) is a model of 〈Tp,A〉.

Lemma 10 (Theorem 29 of [22]). Let K be a satisfiable DL-LiteR KB, and let
Q be a UBCQ over K. Then, K |= Q if and only if can(K) |= Q.
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Consider now DL-LiteR KBs equipped also with role functionality assertions,
with the proviso that functional roles are not specialized (i.e., they do not occur
in the right-hand side of role inclusions). Notice that KBs of this form are
DL-LiteA KBs without attributes and value-domains (cf. the third condition
in Definition 1), and we call them DL-LiteFR KBs. In such KBs, PIs and
ABox assertions are exactly as in DL-LiteR KBs. Therefore, Definition 13 and
Definition 15 apply also to DL-LiteFR KBs. The following lemma, adapted
from [20], will be used in the proof of Theorem 1.

Lemma 11 (Lemma 4.6 of [20]). Let K = 〈T ,A〉 be a DL-LiteFR KB, and let
Tfunct be the set of functionality assertions in T . Then, can(K) is a model of
〈Tfunct,A〉 if and only if DBR(A) is a model of 〈Tfunct,A〉.

Similarly to what we have done before, we consider now DL-LiteR KBs
equipped also with identification assertions, with the proviso that each role
appearing (in either direct or inverse direction) in a path of an identification
assertion is not specialized. Notice that KBs of this form are DL-LiteA,id KBs
without attributes, value-domains and functionalities on roles (cf. the second
condition in Definition 1), and we call them DL-LiteR,id KBs. Again, in such
KBs, PIs and ABox assertions are exactly as in DL-LiteR KBs. Therefore,
Definition 13 and Definition 15 apply also to DL-LiteR,id KBs. The following
lemma, adapted from [20], will be used in the proof of Theorem 1.

Lemma 12 (Lemma 5.19 of [20]). Let K = 〈T ,A〉 be a DL-LiteR,id KB. Then,
can(K) is a model of K if and only if K is satifsfiable.

Proof of Theorem 1

Before attacking the proof, we first need to mention a property of the algo-
rithm PerfectRefIdC that has been proved in [20], and that we specialize below
to the case of DL-LiteR,id KBs.

Lemma 13 (Theorem 5.20 of [20]). Let K = 〈T ,A〉 be a satisfiable DL-LiteR,id
KB, let Tp be the set of PIs in T and Tid be the set of identification assertions in
T , and let qTid =

⋃
α∈Tid{ϕ(α)}. Then, K is satisfiable if and only if DBR(A) 6|=

PerfectRefIdC(qTid , Tp).

We have now all the ingredients needed for our proof.
Theorem 1. A DL-LiteA,id,den KB K = 〈T ,A〉 is unsatisfiable if and only if
DB(A) |= UnsatQuery(T ).

Proof. (⇒) Let K = 〈T ,A〉 be a DL-LiteA,id,den KB and assume that DB(A) 6|=
UnsatQuery(T ). To prove the claim we first construct a DL-LiteR KB KR =
〈T R,AR〉, with the aim of encoding in KR the positive knowledge specified in
K; then, based on the canonical structure of KR, we identify a structure I and
prove that I is a model of K.

We start by defining the DL-LiteR KB KR = 〈T R,AR〉. We call ΓA, ΓL, ΓT ,
ΓU , ΓO, and ΓV the pair-wise disjoint alphabets, used respectively for atomic
concepts, atomic roles, value-domains, attributes, object constants, and value
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constants, over which the DL-LiteA,id,den KB K is specified. As said, we instead
call ΓRA, ΓRL , and ΓRC the pair-wise disjoint alphabets for atomic concepts, atomic
roles, and (object) constants over which the DL-LiteR KB KR is specified, and
have that ΓRA = ΓA ∪ΓT , ΓRL = ΓL ∪ΓU , and ΓRC = ΓO ∪ΓV . In other terms, in
KR we consider predefined value-domains in K as atomic concepts and attributes
in K as atomic roles. Consequently, inclusions involving attributes and value-
domains in K as treated as concept and role inclusions, respectively. More
precisely, T R contains all the inclusions in the sets Tinc and Ttype of T provided
that each occurrence of δ(U) is replaced by ∃U and each occurrence of ρ(U) is
replaced by ∃U−. Also, AR contains all the assertions in A, plus an assertion of
the form Ti(v) for each value constant v ∈ ΓV and value-domain Ti ∈ ΓT such
that Ti = type(v).

Consider now the structure DBR(AR) induced by AR according to Defini-
tion 13 and the DL-LiteA,id,den interpretation DB(A) induced by A according
to Definition 2. It is easy to see that DBR(AR) and DB(A) are two isomorphic
structures, since they are identical, modulo renaming objects interpreting value
constants in ΓV .

Then, we construct the chase of KR according to Definition 15, and consider
the canonical structure can(KR) induced by the chase. We remark that can(KR)
is an interpretation for KR but it is not an interpretation of K, since it does
not obey the assumptions on the interpretation of value-domains we impose in
DL-LiteA,id,den KBs (cf. Section 2.1). We will show in the following how to
construct from can(KR) one such interpretation that is a model for K, thus
proving that K is satisfiable.

We first show that the assumption DB(A) 6|= UnsatQuery(T ) implies that
can(KR) satisfies all the assertions in T . In doing this, we can disregard for the
moment the fact that can(KR) is not an interpretation for K.

Satisfaction of assertions in Tinc ∪ Ttype by can(KR) follows from Lemma 9.
Indeed, such lemma states that can(KR) satisfies all PIs in T R, which corre-
spond to those in Tinc ∪Ttype modulo the syntactical transformations described
above. Notice that above property implies that KR is satisfiable.

To show satisfaction of functionalities in Tfunct we exploit the as-
sumption that DB(A) 6|= UnsatQuery(T ), which implies that DB(A) 6|=
PerfectRefIdC(ϕ(α), Tinc ∪ Ttype) for each α ∈ Tfunct. Since all arguments in
the atoms of ϕ(α) are bound, and since functional roles and attributes are
never specialized in T , no PIs exist in Tinc ∪ Ttype that PerfectRefIdC can apply
to atoms in ϕ(α) (cf. Section 3). Also, PerfectRefIdC cannot unify atoms, since
such unification would involve terms occurring in an inequality atom. As a con-
sequence, in this case DB(A) 6|= ϕ(α). By the isomorphism between DB(A) and
DBR(AR) it follows that DBR(AR) 6|= ϕ(α) for each α ∈ Tfunct. This means
that DBR(AR) is a model of 〈Tfunct,AR〉, and thus, since 〈T R ∪ Tfunct,AR〉
is a DL-LiteFR KB, from Lemma 11 it follows that can(KR) satisfies all the
functionalities in Tfunct.

We now show that can(KR) satisfies the assertions in Tdisj . From DB(A) 6|=
UnsatQuery(T ), and from the fact that, for each disjointness α, ϕ(α) is a CQ
without inequalities, it follows that DB(A) 6|= PerfectRef(ϕ(α), Tinc ∪ Ttype)
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for each α ∈ Tdisj . By the isomorphism between DB(A) and DBR(AR)
and the correspondence between T R and Tinc ∪ Ttype, we then have that
DBR(AR) 6|= PerfectRef(ϕ(α), T R) for each α ∈ Tdisj . From Proposition 1
(notice that DL-LiteR KBs are particular DL-LiteA,id,den KBs, and that KR is
satisfiable) we have that KR 6|= ϕ(α) for each α ∈ Tdisj . From Lemma 10 it
follows that can(KR) 6|= ϕ(α) for each α ∈ Tdisj , from which it follows that
can(KR) satisfies all the assertions in Tdisj .

As for denials, which analogously to negative inclusions are associated to
BCQs by the function ϕ, we can proceed exactly as done above for assertions
in Tdisj , and thus show that can(KR) satisfies all the assertions in Tden.

We now prove that can(KR) satisfies the assertions in Tid. From DB(A) 6|=
UnsatQuery(T ) it follows that DB(A) 6|= PerfectRefIdC(ϕ(α), Tinc ∪ Ttype) for
each α ∈ Tid. By the isomorphism between DB(A) and DBR(AR) and
the correspondence between T R and Tinc ∪ Ttype we have that DBR(AR) 6|=
PerfectRefIdC(qTid , T R), where qTid =

⋃
α∈Tid{ϕ(α)}. Since KR,id = 〈T R ∪

Tid,AR〉 is a DL-LiteR,id KB, then Lemma 13 states that KR,id is satisfiable.
From Lemma 12 it then follows that can(KR) satisfies all the assertions in Tid
(notice that can(KR) = can(KR,id)).

We now turn back to our construction of a model for K. Of course, we want
this model to preserve satisfaction of all assertions in T proved for can(KR),
and at the same time be compliant with the assumptions of the interpretation of
value-constants and value-domains in a DL-LiteA,id,den KB. We thus construct
such a model starting from can(KR) (and from chase(KR)). Similar to Section
7.1.1, we say that a constant c occurs in an object position in chase(KR) if
chase(KR) contains an assertion of the form A(c), P (c, a), P (a, c), or U(c, v),
and we say that c occurs in a value position if chase(KR) contains an assertion of
the form U(a, c) or Ti(c). It is easy to see that, due to the syntactic restrictions
on the form of both ABox assertions and TBox assertions in DL-LiteA,id,den,
in chase(KR) no constant exists that can occur in both an object and a value
position. Then, we define a structure I = 〈∆I , ·I〉 as follows:

• ∆I = ΓO ∪ ΓN ∪∆V ,

• aIo = a
can(KR)
o = ao, for each constant ao ∈ ΓO,

• aIno = a
can(KR)
no = ano, for each constant ano ∈ ΓN occurring in an object

position in chase(KR),
• aIv = val(av), for each constant av ∈ ΓV ,
• aInv = ov, where ov belongs to ∆V \

⋃n
1=1 val(Ti) and ov is a fresh object,

i.e., it has not been used in I to interpret other constants occurring in
chase(KR), for each constant anv ∈ ΓN occurring in a value position such
that chase(KR) does not contain an atom of the form Ti(anv) (notice that
one such ov always exists, since ∆V \

⋃n
1=1 val(Ti) is infinite, as stated in

Section 2.1),
• aInv = ov, where ov belongs to val(Ti) and is a fresh object, i.e., it

has not been used in can(KR) to interpret other constants occurring in
chase(KR), for each constant anv ∈ ΓN occurring in a value position such
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that Ti(anv) ∈ chase(KR) and Ti precedes in lexicographic order every
other Tj such that Tj 6= Ti and Tj(anv) ∈ chase(KR) (notice that one such
ov always exists, since each val(Ti) is infinite, as stated in Section 2.1),

• AI = Acan(KR), for each atomic concept A,

• P I = P can(KR), for each atomic role P ,
• UI = {(aI , aIv ) | U(a, av) ∈ chase(KR)}, for each attribute U ,
• T Ii = val(Ti), for each value-domain Ti.

It is easy to see that I is a DL-LiteA,id,den interpretation. Indeed, its domain
is partitioned into two disjoint sets ΓO ∪ ΓN and ∆V , used to interpret object
constants and value constants, respectively. Furthermore, each av ∈ ΓV is such
that aIv = val(av) and each value-domain Ti ∈ ΓT is such that T Ii = val(Ti).
However, there can be assertions of the form Ti(c) in chase(KR) such that
cI 6∈ T Ii , for some value-domain Ti. Therefore, differently from can(KR), we
cannot directly conclude that I satisfies all the assertions in Ttype. We show
below that this cannot happen when DB(A) 6|= UnsatQuery(T ), i.e., in this
case I is a model of a DL-LiteA,id,den KB 〈Ttype,A〉. Let us assume for a
contradiction that I 6|= 〈Ttype,A〉. This means that there exists an assertion
α = ρ(U) v Ti, where U is an attribute and Ti is a value-domain, such that
there exist o1, o2 ∈ ∆I such that (o1, o2) ∈ UI and o2 6∈ T Ii . Since T Ii = val(Ti),
and the interpretations in I of value-domains are pairwise disjoint, this means
that o2 ∈ val(Tj) with Ti 6= Tj . This implies, by definition of I, that there is
an assertion U(a, b) in chase(KR), with a = oI1 and b = oI2 , such that one of the
following conditions holds:

(i) b ∈ ΓV and val(b) ∈ val(Tj), with Tj 6= Ti,
(ii) b ∈ ΓN , α′ = ρ(U) v Tj is in T together with α, and Tj precedes Ti in

lexicographic order. This means that chase(KR) contains both Ti(b) and
Tj(b) and I picks from val(Tj) a fresh symbol to interpret b.

It is easy to see that in both cases can(KR) |= ϕ(α) (indeed, in both cases
chase(KR) contains both Ti(b) and Tj(b)). Then, from Lemma 9 it follows
that DBR(AR) |= PerfectRef(ϕ(α), T R), which in turn implies that DB(A) |=
PerfectRefIdC(ϕ(α), Tinc ∪ Ttype), which is a contradiction, thus showing that
I |= 〈Ttype,A〉.

Since I is isomorphic to can(KR) in the interpretation of atomic concepts,
atomic roles, and attributes, and can(KR) satisfies all the assertions in T , we
can then conclude that I is a model for K, and thus K is satisfiable.

(⇐) if DB(A) |= UnsatQuery(T ), then there exists at least a query qu =
PerfectRefIdC(ϕ(α), Tinc ∪ Ttype) in UnsatQuery(T ) such DB(A) |= qu. Various
cases are possible: (i) α is an assertion in Tdisj∪Ttype∪Tden. Since ϕ(α) is a CQ
without inequalities, in this case qu = PerfectRef(ϕ(α), Tinc∪Ttype). By Proposi-
tion 1, we have that qu is a perfect rewriting of ϕ(α) with respect to Tinc∪Ttype,
and therefore DB(A) |= qu implies that 〈Tinc∪Ttype,A〉 |= ϕ(α). Since ϕ(α) en-
codes the negation of α, it follows that 〈Tinc∪Ttype∪{α},A〉 is unsatisfiable, and
therefore K is unsatisfiable. (ii) α ∈ Tfunct. As shown during the proof of the
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other direction of this theorem, in this case PerfectRefIdC(ϕ(α), Tinc ∪ Ttype) =
ϕ(α). Then, from DB(A) |= ϕ(α) it immediately follows that 〈{α},A〉 is unsat-
isfiable, and therefore K is unsatisfiable. (iii) α ∈ Tid. As done in the proof of
the other direction of this theorem, we construct a DL-LiteR KBKR = 〈T R,AR〉
where T R encodes the PI knowledge of K, i.e., Tinc ∪ Ttype, and AR encodes
the ABox A. From DB(A) |= qu it follows that DBR(AR) |= qu. From
Lemma 13 it follows that 〈T R ∪ {α},AR〉 is unsatisfiable, which means that
〈Tinc ∪ Ttype ∪ {α},A〉 is unsatisfiable, and therefore K is unsatisfiable.
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