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Abstract

While the problem of answering positive existential queries, in particular, conjunctive queries (CQs) and unions of CQs, over
description logic ontologies has been studied extensively, there have been few attempts to analyse queries with negated atoms.
Our aim is to sharpen the complexity landscape of the problem of answering CQs with negation and inequalities in lightweight
description logics of the DL-Lite and EL families. We begin by considering queries with safe negation and show that there is a
surprisingly significant increase in the complexity from AC0 to undecidability (even if the ontology and query are fixed and only
the data is regarded as input). We also investigate the problem of answering queries with inequalities and show that answering
a single CQ with one inequality over DL-Lite with role inclusions is undecidable. In the light of our undecidability results, we
explore syntactic restrictions to attain efficient query answering with negated atoms. In particular, we identify a novel class of local
CQs with inequalities, for which query answering over DL-Lite is decidable.
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1. Introduction

In recent years, the use of ontologies to access data has be-
come one of the most prominent applications of description
logic (DL) technologies in the Semantic Web. In the ontology-
based data access (OBDA) setting, the ‘plain’ data is enriched
with the background domain knowledge, which is represented
in the form of a DL ontology. This distinguishing feature of
the OBDA paradigm provides the user with a friendlier vocab-
ulary for accessing data and extends information systems with
a means of querying potentially incomplete data.

In classical database theory, conjunctive queries (CQs) have
long played a key role due to their attractive theoretical prop-
erties. Following in these footsteps, a vast amount of research
on answering CQs in the context of OBDA has been conducted
in the last decade, so that we now have a fairly clear landscape
of the computational complexity of answering CQs over both
lightweight and expressive ontology languages. Moreover, with
the aim of achieving a realistic use of OBDA in data-intensive
Web applications, special efforts have been invested into the
design of ontology languages with the following two desirable
properties. First, they must be expressive enough to capture
essential modelling aspects of the application domain. Sec-
ond, they must allow OBDA systems to scale to large amounts
of data. The latter can be achieved, for example, by delegat-
ing query evaluation to a relational database management sys-
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tem (RDBMS) or a datalog engine. DLs in the DL-Lite (Cal-
vanese et al., 2007b; Artale et al., 2009) and EL (Baader et al.,
2005) families were designed to meet these two requirements
and underpin, respectively, the OWL 2 QL and OWL 2 EL
profiles of the OWL 2 ontology language.1 Notably, answer-
ing CQs and unions of CQs (UCQs) over OWL 2 QL ontolo-
gies is in AC0 in data complexity, which enables a pure query
rewriting approach to query answering in this case. Intuitively,
one can rewrite a given query by including the knowledge pro-
vided by the ontology into an SQL query, which can then be
answered by the RDBMS; see, e.g., (Calvanese et al., 2007b;
Kikot et al., 2012) and references therein. Answering CQs
(and UCQs) over OWL 2 EL ontologies is more complex, P-
complete, and a pure query rewriting approach is not possible
anymore. However, the so-called combined approach (Lutz
et al., 2009; Kontchakov et al., 2010) allows one still to del-
egate query evaluation to the RDBMS. Roughly speaking, in
the combined approach, not only the given query is rewritten
but also the data is ‘completed’ with the knowledge of the on-
tology. A number of OBDA systems implementing these (and
other) ideas have been developed; see, e.g., (Rodrı́guez-Muro
et al., 2013; Lutz et al., 2013) and references therein.

Conjunctive queries belong to the positive existential frag-
ment of first-order logic and therefore, lack any means of ex-
pressing ‘complementation’ or ‘difference’. However, some
natural queries require these constructs: for instance, retrieve
‘all staff members who do not belong to any trade union’ or re-
trieve ‘all students whose month of birth is not (i.e., different

1www.w3.org/TR/owl2-profiles
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from) September’. In order to overcome these shortcomings,
extensions of CQs with some form of negation have been in-
vestigated in classical database theory and in different areas re-
lated to management of (incomplete) information, such as data
exchange and reasoning about semi-structured data. In particu-
lar, the following three forms of negation have been advocated
in the literature as important extensions of CQs: safe negation
(CQ¬s), guarded negation (GNCQ) and inequalities (CQ,). Re-
cently, the DL community, with a similar motivation, have also
taken a look at extensions of CQs with safe negation and in-
equalities (Rosati, 2007; Gutiérrez-Basulto et al., 2012, 2013).

A well-known fact from database theory is that answering
CQs with negated atoms can be much harder than answering
plain CQs; this is the case, for instance, for open-world query
answering under integrity constraints (Rosati, 2006), query an-
swering in the context of data exchange (Fagin et al., 2005)
or query answering using materialised views (Abiteboul and
Duschka, 1999). Rosati (2007) and Gutiérrez-Basulto et al.
(2012) showed that the increase in the complexity is unfortu-
nately dramatic in the OBDA setting: in striking contrast to the
highly tractable AC0 upper bound for data complexity of unions
of CQs, the problems of answering unions of CQs, and unions
of CQs¬s turned out to be undecidable even over a very basic
ontology language of DL-Litecore. The situation is similar for
safe negation over EL: answering unions of CQs¬s is undecid-
able. Remarkably, Klenke (2010) showed that in the language
of EL extended with the empty concept (⊥) or, alternatively,
under the standard unique name assumption (UNA), answering
a single CQ, is also undecidable. Interestingly, extending CQs
and UCQs with negation has an effect not witnessed before in
ontological query answering: there is a difference in the compu-
tational behaviour of unions of CQs and single CQs. In particu-
lar, a proof of undecidability of answering UCQs¬s (or UCQs,)
cannot be straightforwardly adapted to the case of CQs¬s (re-
spectively, CQs,). The intuitive reason is that, in the reduction
of undecidable problems (such as the N × N-tiling problem),
each component of the union takes care of one of the several
‘conditions’ in the undecidable problem (colouring condition,
matching condition, etc.), and it is not entirely obvious how to
obtain a similar effect using a single query instead.

The addition of negation to CQs not only brings an increase
in the computational complexity but also introduces further
technical difficulties for the development of algorithmic ap-
proaches since negated atoms are not preserved under homo-
morphisms (Deutsch et al., 2008). As a consequence, to devise
algorithms for answering CQs, and CQs¬s over lightweight
DLs we cannot directly use techniques based on the construc-
tion of the canonical model or the chase (Calvanese et al.,
2007b; Kontchakov et al., 2010). Due to this reason, up to
now, the only known results for answering CQs with negation
over lightweight DLs are coNP-hardness for answering CQs,

and CQs¬s over DL-Litecore (Rosati, 2007; Gutiérrez-Basulto
et al., 2012), and the remarkable undecidability for CQs, over
EL⊥ (Klenke, 2010). Hence, the aim of this article is to sharpen
the complexity picture for answering queries with safe negation
and inequalities over lightweight ontologies.

In view of the additional complexity introduced by the pres-

ence of negative atoms in CQs, we also explore different syn-
tactic restrictions on CQs¬s and CQs, proposed in the literature.
A robust approach to attain decidability for undecidable logics
is to allow only for guarded quantification; this is the case, for
example, of the guarded fragment of first-order logic and its
extension with fixpoint operators (Andréka et al., 1998; Grädel
and Walukiewicz, 1999). Inspired by these ideas, the notion
of guarded negation was recently introduced in the context of
decidable fragments of first-order logic, and later studied as an
extension of positive existential queries (Bárány et al., 2011,
2012). In particular, Bárány et al. (2012) showed that, under
the open-world semantics, answering first-order queries with
guarded negation over frontier-guarded tuple-generating depen-
dencies (fg-tgds) is decidable. Using this result as a departure
point, we study the impact of guarded negation on answering
CQs¬s over lightweight DLs. In another line, we look at re-
strictions on inequality atoms. Specifically, in the spirit of Are-
nas et al. (2011), we investigate possible ways of limiting the
‘binding’ of the variables occurring in inequalities. Finally, it
has been observed that the number of negated atoms in a query
can have an impact on the complexity (Klug, 1988; Fagin et al.,
2005; Arenas et al., 2011; Bárány et al., 2012). So, we analyse
the influence of this parameter on the complexity of answering
CQs with negated atoms over lightweight DLs.

Summary of the Obtained Results. Our contributions can
roughly be divided according to the two different forms of nega-
tion we explored: safe (including guarded) negation and in-
equalities; see Table 1 for a summary.

For CQs with safe negation, we first construct a CQ¬s with
a single negated atom and an ontology in ELI⊥, an expressive
member of the EL family, such that answering the query over
the ontology amounts to checking whether the Turing machine
encoded in the ontology terminates on the input encoded in the
data. It follows that answering CQs¬s over ELI⊥ is undecidable
even in the case where only the data is regarded as input (the
ontology and the query are fixed, which corresponds to the data
complexity). Having this result at hand, we describe how ELI⊥
concept inclusions can be translated into a union of CQs¬s over
a DL-Litecore ontology and thereby establish undecidability of
answering unions of CQs¬s over DL-Litecore. We then show
that the union of CQs¬s constructed in our undecidability proof
can be replaced (preserving answers) by a single CQ¬s but at a
price of adding a number of concept and role inclusions to the
ontology. Consequently, answering CQs¬s over DL-LiteHcore is
undecidable. (We note in passing that the transformation, how-
ever, is more general and applicable to a large class of unions
of CQs¬s and CQs, over ontologies in languages with role in-
clusions). Finally, we refine the borderline of undecidability for
answering unions of CQs¬s and observe that the result holds for
a fixed union of three CQs¬s over DL-Litecore and a fixed union
of two CQs¬s over EL⊥.

In the light of these negative results for safe negation we turn
to a more restricted form of negation, guarded negation. Since
frontier-guarded tuple-generating dependencies subsume ELI
and CQs with guarded negation can express negative constraints
in the ontology (concept and role inclusions with ⊥), the results
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DL-Litecore DL-LiteHcore EL⊥ ELI⊥

UCQ¬s undec. [Cor. 5] undec. undec. Rosati (2007) undec.

CQ¬s
coNP-hard a undec. [Thm. 8] coNP-hard b undec. [Thm. 3]

UCQ / CQ
with guarded

negation

any coNP ≥ [Lem. 11] coNP coNP coNP ≤ Bárány et al. (2012)

≤ 1 negation
per CQ P ≥ [Lem. 10] P P P ≤ Bárány et al. (2012)

UCQ, undec. [Thm. 14] undec. Rosati (2007) undec. undec.

CQ, coNP-hard c undec. [Thm. 13] undec. Klenke (2010) undec.

UCQ / CQ
with local

inequalities

any coNP-hard [Thm. 16]
in coNExpTime

coNP-hard
in coNExpTime [Thm. 20]

coNP-hard coNP-hard

≤ 1 inequality
per CQ

P-hard [Thm. 15]
in ExpTime

P-hard
in ExpTime

P-hard P-hard

a Thm. 9: undecidable for a union of three CQs¬s, each with one negated atom.
b Cor. 6: undecidable for a union of two CQs¬s, each with one negated atom (one of the components has guarded negation).
c Thm. 14: undecidable for a union of three CQs,, each with one inequality (two of the components have local inequalities).

Table 1: Summary of the data complexity results: C stands for C-complete; ≥ and ≤ with references indicate where, respectively, the lower and upper complexity
bounds are established.

by Bárány et al. (2012) apply to both ELI⊥ and DL-LiteHcore:
answering unions of CQs with guarded negation is in coNP in
data complexity and in P if each of the constituent CQs contains
at most one negated atom. We thus concentrate on establishing
the matching lower complexity bounds: we construct an ontol-
ogy with one negative concept inclusion (which belongs to all
our DLs) and a CQ with one unary negated atom for P-hardness
and a CQ with two unary negated atoms for coNP-hardness in
data complexity.

The second form of negation in CQs we consider is inequal-
ities. First, we prove that answering CQs, over DL-LiteHcore is
undecidable. This result could be established using the method
mentioned above: since answering unions of CQs, over DL-
Litecore is undecidable (Gutiérrez-Basulto et al., 2012), one
could use additional concept and role inclusions to ‘encode’ the
union into a single query. Following this route we would, how-
ever, obtain a query with multiple inequalities. Instead, we pro-
vide a more elaborate but direct proof using a CQ, with a single
inequality. Using the ideas developed for safe negation, we also
establish undecidability of answering unions with at least three
CQs, over DL-Litecore.

As the next step, we consider a restriction on the ‘binding’
of variables occurring in inequality atoms and identify a novel
class of CQs,, local CQs,, for which the query answering prob-
lem over DL-LiteHcore ontologies is decidable. We also establish
the lower complexity bounds over DL-Litecore: P-hardness with
one local inequality and coNP-hardness with two local inequal-
ities; only coNP-hardness over DL-LiteHcore was known (Rosati,
2007).

Related Work. Inequalities in the OBDA setting were first in-
troduced by Calvanese et al. (1998, 2008a), who showed, in par-
ticular, that in contrast to answering CQs, answering CQs, over
a very expressive DLDLR is undecidable. Later, Rosati (2007)
proved undecidability of answering CQs with safe negation and
inequalities over a fairly inexpressive DL AL. As discussed

above, lightweight DLs were also analysed by Rosati (2007)
and Gutiérrez-Basulto et al. (2012). A non-monotonic epis-
temic query language, EQL-Lite, was proposed by Calvanese
et al. (2007a): it was shown that extensions of a number of
query languages with negation over the epistemic S5 modality
come with no increase in the complexity of query answering.
In the context of Datalog±, ontology languages with equali-
ties in the head of the rules have also been considered. No-
tably, Calı̀ et al. (2012) investigated a restriction on the interac-
tion of equalities (in the form of equality-generating dependen-
cies) with Datalog± constraints that warranties decidability of
the query answering problem. Recently, Hernich et al. (2013)
presented extensions of Datalog± with non-monotonic negation
under the well-founded semantics for normal logic programs.

It is worth noting that other extensions of conjunctive queries
have also been considered in the framework of OBDA. In
particular, Calvanese et al. (2008b) and Kostylev and Reutter
(2013) studied aggregate queries; Bienvenu et al. (2013, 2014)
and Kostylev et al. (2015) explored regular path queries (RPQs)
and their further extensions.

Plan of the Article. In Section 2, we introduce the basics of our
DLs and query languages. In Section 3, we focus on queries
with safe negation. We begin by presenting our undecidabil-
ity results for answering CQs¬s and then show the lower com-
plexity bounds for answering CQs with guarded negation. In
Section 4, we present our results on answering queries with in-
equalities. We first establish undecidability of answering CQs,

with one inequality over DL-LiteHcore. Then, in order to attain
decidability, we introduce a syntactic restriction on inequalities,
show the lower complexity bounds for this case and develop a
decision procedure to prove decidability of the restricted prob-
lem.

This article is an extended and improved version of the con-
ference paper (Gutiérrez-Basulto et al., 2013). Specifically, we
extend our results along two directions: the range of DLs in-
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cludes ontology languages of the EL family; the range of query
languages includes CQs with guarded negation (Section 3.3)
and local inequalities (which is a novel class that guarantees
decidability, see Section 4.3). We also improve the presentation
of the proofs, establish close connection between ELI⊥ con-
cept inclusions and CQs with safe negation over DL-LiteHcore
ontologies and sharpen the undecidability boundary in terms of
the number and structure of CQs with safe negation over DL-
Litecore and extensions of EL.

2. Preliminaries

2.1. Ontology Languages

Ontology languages use a vocabulary that comprises individ-
ual names c1, c2, . . ., concept names A1, A2, . . ., and role names
P1, P2, . . .. Ontologies (TBoxes in the DL parlour) consist of
concept and role inclusions built from concepts and roles us-
ing the constructors available in the ontology language, as de-
scribed below.

Roles R and basic concepts B in DL-Lite (Artale et al., 2009)
are defined by the following grammar:

R ::= Pi | P−i , (1)
B ::= > | Ai | ∃R. (2)

Roles of the form P−i are called inverse roles and concepts of
the form ∃R are called unqualified existential restrictions. We
identify R− with Pi if R = P−i . A TBox in DL-Litecore is a finite
set of positive and negative concept inclusions of the following
form, respectively:

B1 v B2, B1 u B2 v ⊥.

A TBox in DL-LiteHcore can also contain a finite number of pos-
itive and negative role inclusions of the form

R1 v R2, R1 u R2 v ⊥.

Concepts in ELI (Baader et al., 2005) are constructed from
concept names by means of (qualified) existential restrictions
and intersection; more precisely, they are defined by the fol-
lowing grammar:

C ::= > | Ai | ∃R.C | C1 uC2,

where R is a role; see (1). An ELI⊥ TBox is a finite set of
positive and negative concept inclusions of the form

C1 v C2, C v ⊥.

An ELI TBox contains only positive inclusions. Existential re-
strictions of DL-Lite are a particular kind of existential restric-
tions in ELI: ∃R is a shortcut for ∃R.>. Thus, every concept
inclusion in DL-Lite is also a concept inclusion in ELI⊥.

Concepts in EL are defined in the same way as in ELI ex-
cept that they cannot use inverse roles. An EL⊥ TBox is a set
of positive and negative inclusions for EL concepts, while an
EL TBox contains only positive inclusions.

An ABoxA is a finite set of assertions of the form Ai(c j) and
Pi(c j, ck). A knowledge base (KB) K is a pair (T ,A), where T
is a TBox and A an ABox. The size |T | (respectively, |A|) of
a TBox T (respectively, an ABoxA) is the number of symbols
required to write it down.

An interpretation I = (∆I, ·I) is a non-empty domain ∆I

with an interpretation function ·I that assigns an element cIi ∈
∆I to each individual name ci, a subset AIi ⊆ ∆I to each con-
cept name Ai, and a binary relation PIi ⊆ ∆I × ∆I to each role
name Pi.

Remark 1. We do not adopt the unique name assumption
(UNA), which requires cIi , cIj , for all distinct individual names
ci and c j. Our results on safe and guarded negation in Sec-
tion 3 clearly do not depend on this choice. For inequalities,
the proofs in Section 4, which concern DL-Lite, are applicable
to the case of UNA as well. Some undecidability and lower
complexity bounds constructions, however, can be streamlined
if the UNA is adopted (possible simplifications are indicated in
the proofs). It is of interest to note that CQ, answering over
EL is tractable in general (Rosati, 2007) and undecidable if the
UNA is adopted (Klenke, 2010). In the DL-Lite family, on the
other hand, the UNA does not make such a drastic effect be-
cause the languages have negative concept inclusions (which
can express a sort of local UNA).

The interpretation function ·I is extended to roles and com-
plex concepts in the standard way:

(P−i )I =
{
(d′, d) ∈ ∆I × ∆I | (d, d′) ∈ PIi

}
,

>I = ∆I,

(∃R.C)I =
{
d ∈ ∆I | there is d′ ∈ CI with (d, d′) ∈ RI

}
,

(C1 uC2)I = CI1 ∩CI2 .

The satisfaction relation |= is also standard:

I |= C1 v C2 iff CI1 ⊆ CI2 ,

I |= C v ⊥ iff CI = ∅,

I |= R1 v R2 iff RI1 ⊆ RI2 ,

I |= R1 u R2 v ⊥ iff RI1 ∩ RI2 = ∅,

I |= Ai(c j) iff cIj ∈ AIi ,

I |= Pi(c j, ck) iff (cIj , c
I
k ) ∈ PIi .

A KB K = (T ,A) is consistent (satisfiable) if there is an inter-
pretation I satisfying all inclusions in T and assertions in A.
In this case we write I |= K (as well as I |= T and I |= A) and
say that I is a model of K (as well as of T and A). We also
write T |= α if a concept or role inclusion α is satisfied in all
models of T ; in this case we say that α is entailed by T .

Remark 2. In DL-LiteHcore TBoxes, we will often use concept
inclusions of the form B v C, where B is a basic concept and C
an ELI concept. This is justified because, given such a concept
inclusion, one can construct (in polynomial time) a DL-LiteHcore
TBox T which is a model conservative extension of α: that is,
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– T |= α and,

– conversely, every model of α can be extended to a model
of T by giving an interpretation to the fresh names in T .

Indeed, a concept inclusion of the form B v C1 u C2 is equiva-
lent to two concept inclusions B v Ci, for i = 1, 2; and a concept
inclusion of the form B v ∃R.C can be replaced by two concept
inclusions B v ∃RC , ∃R−C v C and a role inclusion RC v R; for
more details see, e.g., (Artale et al., 2009). Therefore, the pres-
ence of concept inclusions of the form B v C does not affect
any of our results on DL-LiteHcore.

Note, however, that such a shortcut is not available in DL-
Litecore because it contains no role inclusions.

2.2. Query Languages
A conjunctive query (CQ) q(x) is a first-order formula of the

form ∃yϕ(x, y), where x and y are tuples of variables and ϕ is a
conjunction of concept atoms Ai(t) and role atoms Pi(t, t′) with
t and t′ terms, i.e., individual names or variables from x, y. We
call variables in x answer variables and those in y (existentially)
quantified variables.

A conjunctive query with safe negation (CQ¬s) is an expres-
sion of the form ∃yϕ(x, y), where ϕ is a conjunction of literals,
that is, positive (concept and role) atoms and negated atoms,
such that each variable occurs in at least one positive atom. A
CQ¬1 s is a CQ¬s with at most one negative atom. A CQ¬s is
said to be a conjunctive query with guarded negation (GNCQ)
if, for each negative atom, the query contains a positive atom,
a guard, containing all the variables of the negative atom (thus,
in contrast to general CQs¬s, all variables of any negative atom
in a GNCQ must occur in the same positive atom).

A conjunctive query with inequalities (CQ,) is an expres-
sion of the form ∃yϕ(x, y), where ϕ is a conjunction of positive
atoms and inequalities t , t′, for terms t and t′.

A union of conjunctive queries (UCQ) is a disjunction of
CQs that share the same tuple of answer variables; a UCQ¬s

and UCQ, are defined accordingly. Without loss of generality,
in this article we always assume that the tuples of quantified
variables in UCQ components are pairwise disjoint.

Given a query q(x), we usually write q if x is clear from
the context (or irrelevant). The size |q| of q is the number of
symbols required to write it down.

We will often regard a CQ q (possibly, with negative atoms)
as a set of its atoms and assume that q contains P−i (t, t′) if it
contains Pi(t′, t) (and similarly for the negative atoms). We ex-
tend this convention to basic concepts and assume that q con-
tains unary ‘atoms’ B(t) and B′(t′) if it contains R(t, t′), where
B = ∃R and B′ = ∃R−. We will also associate with q an undi-
rected graph, called the primal graph of q, whose vertices are
the terms of q and which has an edge between t and t′ if and
only if the query contains a positive atom of the form R(t, t′)
(note that the negative atoms are not taken into account).

A query q(x) is called Boolean if x is empty. A Boolean
CQ¬s q is tree-shaped if does not contain individuals as terms
and its primal graph is a tree (a tree is any connected undirected
graph without simple cycles).

Let q(x) = ∃yϕ(x, y) be a query with x = x1, . . . , xk, I an
interpretation and π a map from the set of terms of q to ∆I

with π(c) = cI, for all individual names c in q. We call π a
match for q in I if I (as a first-order model) satisfies ϕ under
a variable assignment mapping each variable z of ϕ to π(z). A
k-tuple of individual names c = c1, . . . , ck is an answer to q in
I if there is a match for q in I with π(xi) = cIi (in this case π
is also a match for the Boolean query q(c) in I). We say that c
is a certain answer to q over a KB K and write K |= q(c) if c
is an answer to q in all models of K . For a Boolean query q, if
there is a match for q in every model of K , that is, if the empty
tuple is a certain answer, then we say that the certain answer is
yes (or that q has a positive answer over K).

2.3. Canonical Interpretation for DL-LiteHcore

Let K = (T ,A) be a DL-LiteHcore knowledge base. We can
consider the ABox A as an interpretation and extend the nota-
tion for the satisfaction relation |= to roles: A |= R(c, c′) ab-
breviates P(c, c′) ∈ A if R = P and P(c′, c) ∈ A if R = P−.
Similarly, for a basic concept B, we useA |= B(c) as a shortcut
for A(c) ∈ A if B = A and for A |= R(c, c′), for some c′, if
B = ∃R.

The canonical interpretation CK of K is an interpretation
with the domain ∆CK comprising all elements of the form
dcR1...Rn , for an individual name c and roles R1, . . . ,Rn, n ≥ 0,
such that

– if n ≥ 1 then there is a basic concept B with A |= B(c)
and T |= B v ∃R1 but A 6|= R(c, c′), for all c′ and R with
T |= R v R1;

– T |= ∃R−i−1 v ∃Ri but T 6|= R−i−1 v Ri, for each i, 1 < i ≤ n,

and the interpretation function ·CK defined for individual names
c, concept names A and role names P as follows:

cCK = dc,

ACK = { dc | A |= B(c) and T |= B v A } ∪

{ dcR1...Rn | n ≥ 1, T |= ∃R−n v A },

PCK = { (dc1 , dc2 ) | A |= R(c1, c2) and T |= R v P } ∪

{ (dcR1...Rn−1 , dcR1...Rn ) | n ≥ 1, T |= Rn v P } ∪

{ (dcR1...Rn , dcR1...Rn−1 ) | n ≥ 1, T |= Rn v P− }.

It is well-known (see e.g., Artale et al. 2009) that a DL-
LiteHcore knowledge baseK is consistent if and only if its canon-
ical interpretation satisfies all negative concept and role inclu-
sions in the TBox. Moreover, ifK is consistent then the canon-
ical interpretation is a universal model in the sense that it can
be homomorphically mapped to any other model of K . This
means, in particular, that CK provides all the information re-
quired for computing certain answers to any CQ or UCQ q(x)
over K :

K |= q(c) iff CK |= q(c).

The analogous claim fails for queries with negative atoms be-
cause only sentences equivalent to positive existential formulas
are preserved under homomorphisms (Homomorphism Preser-
vation Theorem; for more recent results, see, e.g., Rossman
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2008). In the sequel we shall see that it has a dramatic effect
on the complexity of query answering.

Finally, we note that canonical interpretations could similarly
be defined in ELI⊥ and its fragments but they are not needed
in this article.

2.4. Data Complexity

In OBDA scenarios the size of the query and the TBox (on-
tology) is usually much smaller than the size of the ABox
(data). This is why we explore the data complexity (Vardi,
1982) of the query answering problem, that is, we assume that
only the ABox is considered as part of the input. Formally, let
T be a TBox and q(x) a query in one of the classes defined
above. We are interested in the following family of problems:

CertainAnswers(q,T )

Input: An ABoxA and a tuple of individuals c.
Question: Is c a certain answer to q(x) over (T ,A)?

3. Answering CQs with Safe and Guarded Negation

In this section we study queries with safe and guarded nega-
tion. Rosati (2007) established initial results on the complexity
of answering such queries. Specifically, it was shown that an-
swering CQs¬s over knowledge bases that admit so-called satu-
rated models (and, in particular, contain no negative inclusions)
has the same complexity as answering CQs; this result thus ap-
plies to EL, ELI and the RDFS fragment of DL-Litecore. It was
also shown that, in contrast, answering unions of CQs with safe
negation over DL-LiteHcore and EL is undecidable. The proofs
of the undecidability results regard, along with the ABox, both
the TBox and the query as part of the problem input, which
corresponds to the combined complexity (Vardi, 1982). We be-
gin this section by a transparent reduction of the halting prob-
lem for deterministic Turing machines to answering a single
fixed Boolean CQ¬1 s over ELI⊥ KBs with a fixed TBox (The-
orem 3), which proves undecidability of CQ¬1 s answering over
ELI⊥ even in data complexity. Then, in Lemma 4 we estab-
lish a close correspondence between ELI⊥ TBoxes and unions
of CQs¬1 s over DL-Litecore TBoxes, which in particular implies
undecidability of answering unions of CQs¬1 s over DL-Litecore
in data complexity (Corollary 5). Another result following from
Theorem 3 is undecidability of answering unions of two CQs¬1 s

over EL⊥ (Corollary 6); the case of one CQ¬s is, however, left
open.

We then proceed to show, in Lemma 7, that the union of tree-
shaped CQs¬s in the proof of Corollary 5 can be replaced by a
single CQ¬s and a number of role inclusions. Thus, we extend
the undecidability result to the problem of answering CQs with
safe negation over DL-LiteHcore. We point out that the transfor-
mation of Lemma 7 is general and may be of wider interest;
in particular, it is also applicable to plain CQs and CQs with
inequalities.

In Theorem 9, we explore the limits of undecidability and
prove that answering unions of three CQs¬1 s over DL-Litecore

x1 y1

z1 u1

S

T

S

T

Figure 1: Completing the square with Boolean CQ¬1 s (3).

(without role inclusions) is undecidable. We leave the case of
unions with one or two disjuncts as an open problem.

Finally, we turn to the problem of answering CQs with
guarded negation, which is known (Bárány et al., 2012) to be
decidable and in coNP in data complexity (in P for GNCQs with
one negated atom) over lightweight DLs, and establish match-
ing lower bounds over a DL-Litecore TBox with a single nega-
tive concept inclusion.

3.1. Safe Negation: Undecidability over ELI⊥

Our undecidability results are obtained by reduction of the
halting problem for deterministic Turing machines. The key
observation is that a configuration of a Turing machine (that is,
the content of the tape, the current state and the position of the
head at a particular step of a computation) can be written down
on a sequence of domain elements with a role, T , pointing to the
representation of the next cell of the tape. Then a computation
of the Turing machine can be thought of as a two-dimensional
grid, where another role, S , points to the representation of the
cell in the successive configuration.

In order to establish the required two-dimensional grid, we
are going to use the following Boolean CQ¬1 s q1:

∃x1, y1, z1, u1
(
S (x1, y1)∧T (x1, z1)∧S (z1, u1)∧¬T (y1, u1)

)
. (3)

It can be readily seen that in any interpretation Iwhere q1 has a
negative answer, that is, I 6|= q1, for every four elements form-
ing the three sides of a square, there is a T -edge that completes
the square, as shown in Fig. 1. This property can also be ex-
pressed by the following first-order sentence:

S (x1, y1) ∧ T (x1, z1) ∧ S (z1, u1)→ T (y1, u1), (3¬)

where all variables are universally quantified. Indeed, sen-
tence (3¬) holds in every model of a KB K if and only if
query (3) has a negative answer over K . In other words, sen-
tence (3¬) is equivalent to the negation of the query. In the
sequel, we will often prefer to represent Boolean CQs with safe
negation (as well as with inequalities) in their negated form,
that is, as implications with all variables universally quantified.

Once the grid has been established, we can use the expressive
description logic ELI⊥ to ensure that the elements of the grid
encode successive configurations in a computation of a given
deterministic Turing machine. This observation leads us to our
first undecidability result.

Theorem 3. There are a Boolean CQ¬1 s q and an ELI⊥ TBox
T such that the problem CertainAnswers(q,T ) is undecidable.
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Figure 2: Encoding computations of a Turing machine.

Proof. Given a deterministic Turing machine M, we construct
a TBox T and a query q such that M does not accept an input w
encoded as an ABox Aw if and only if (T ,Aw) 6|= q; note that
neither q nor T depends on w. By applying this construction to
a fixed deterministic universal Turing machine, i.e., a machine
that accepts its input w iff the Turing machine encoded by w
accepts the empty input, we shall obtain the required undecid-
ability result.

Let M = (Γ,Q, q0, q1, δ) be a deterministic Turing machine,
where Γ is an alphabet (containing the blank symbol ), Q is
a set of states, q0 ∈ Q and q1 ∈ Q are an initial and accept-
ing state, respectively, and δ : Q × Γ → Q × Γ × {−1,+1} is
a transition function. Computations of M can be thought of
as sequences of configurations, with each configuration deter-
mined by the content of all (infinitely many) cells of the tape,
the state and the head position. We are going to encode a com-
putation by domain elements arranged, roughly speaking, into
a two-dimensional grid.

More precisely, we use the following signature:

– role T points to the representation of the next cell on the
tape (within the same configuration) and role S points to
the representation of the same cell in the successive con-
figuration;

– concepts Ca, for a ∈ Γ, encode the contents of cells in the
sense that a domain element belongs to the interpretation
of Ca if the cell contains symbol a;

– concepts Hq, for q ∈ Q, indicate both the current state and
the position of the head: a domain element belongs to the
interpretation of Hq if the cell is under the head and the
machine is in state q;

– concept H∅ marks all other cells on the tape (that is, cells
that are not under the head of the machine);

– concepts Dq
σ and Dσ, for q ∈ Q and σ ∈ {−1,+1}, prop-

agate the head and no-head markers backwards and for-
wards along the tape, respectively;

– concept I is required to ensure that the tape is initially
blank beyond the input word.

The grid is illustrated in Fig. 2, where the nodes are domain ele-
ments and the grey rectangle highlights an initial configuration:
initially, the infinite tape contains the input padded with and
the head is positioned over the first cell in state q0.

Let q be the Boolean CQ¬1 s given by (3) and let T be an
ELI⊥ TBox containing the following concept inclusions:

Hq uCa v ∃S .(Ca′ u Dq′
σ ), for δ(q, a) = (q′, a′, σ), (4)

H∅ uCa v ∃S .Ca, for a ∈ Γ, (5)
Hq v D−1 u D+1, for q ∈ Q, (6)

∃T.Dq
−1 v Hq, for q ∈ Q, (7)

∃T−.Dq
+1 v Hq, for q ∈ Q, (8)

∃T.D−1 v H∅ u D−1, (9)
∃T−.D+1 v H∅ u D+1, (10)

I v ∃T.(I uC ), (11)
Hq1 v ⊥. (12)

For every input w = a1 . . . an ∈ Γ∗, we take the following ABox
Aw with individual names c1, . . . , cn:

Hq0 (c1), Cai (ci) and T (ci, ci+1), for 1 ≤ i < n, I(cn).

We claim that (T ,Aw) 6|= q if and only if M does not accept w.

Consider a modelI of (T ,Aw) withI 6|= q. Then, by the def-
inition of the ABox and (11), there exists an infinite sequence
of (not necessarily distinct) domain elements d1, d2, . . . that en-
code the initial configuration in the sense that (di, di+1) ∈ TI

for all i ≥ 1, d1 ∈ HIq0
, di ∈ CIai

, for each 1 ≤ i ≤ n, and
di ∈ CI for all i > n. By (6) and (10), di ∈ HI∅ for all i > 1.
Then, by (4) and (5), there exist elements d′1, d

′
2, . . . such that

(di, d′i ) ∈ S I. Since I 6|= q, they form another T -connected
sequence, that is, (d′i , d

′
i+1) ∈ TI for all i, which represents the

second configuration of the computation. Indeed, by (5), the
symbols in the cells not under the head are preserved by the
transition. On the other hand, by (4), the symbol in the cell un-
der the head is changed according to the transition function δ
of M, and the new head position and state are recorded in the
concept Dq′

σ . By (7) and (8), the recorded head position and the
state are passed onto the correct cell. Then, by (6), the domain
element representing the head, say, d′k, belongs to DI

+1, whence,
by (10), all d′i with i > k belong to DI

+1 and HI∅ . Similarly,
by (6) and (9), d′i ∈ HI∅ , for all i < k. Therefore, again, all
cells that are not under the head belong to HI∅ . By the same ar-
gument, there exists a respective sequence of elements for each
configuration of the computation. Finally, (12) guarantees that
the accepting state never occurs in the computation, that is, M
does not accept w.

Conversely, if the computation of M on w is non-accepting
then we can encode it by an infinite two-dimensional grid inter-
pretation satisfying (T ,Aw) but not q.

Since the problem of deciding whether a given deterministic
machine accepts a given input is undecidable, we obtain the
claim of the theorem. q

Unlike ELI⊥, DL-Litecore does not have qualified existential
restrictions and so, we cannot propagate information about the
contents of the tape and the position of the head using concept
inclusions (4)–(5) and (7)–(11). Nevertheless, we show that
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ELI⊥ concept inclusions can be ‘encoded’ over DL-Litecore
with the help of additional concept inclusions and unions of
CQs¬s.

We illustrate the main idea of our second undecidability re-
sult for answering unions of CQs¬1 s over DL-Litecore on two
examples. Consider first the following Boolean CQ¬1 s q2:

∃x2, y2
(
T (x2, y2) ∧ ¬R(y2, x2)

)
, (13)

or in negated form:

T (x2, y2)→ R(y2, x2). (13¬)

It can be easily seen that I 6|= q2 if and only if I |= T− v R, for
any interpretation I. Thus, one can think of a role inclusion as
a negated CQ¬1 s. Then, by Remark 2, we can encode any ELI⊥
concept inclusion of the form B v C, for a basic concept B, as
a DL-Litecore TBox and a Boolean UCQ¬1 s. Note that a set of
role inclusions is true in an interpretation I if and only if none
of the corresponding queries have a positive answer in I, that
is, their union has a negative answer in I.

For our second example, consider an ELI concept inclusion
B1 u ∃R.B2 v A. Evidently, this concept inclusion is satisfied
in I if and only if the following Boolean CQ¬1 s has a negative
answer in I:

∃x, y
(
B1(x) ∧ R(x, y) ∧ B2(y) ∧ ¬A(x)

)
.

So, we can also think of concept inclusions of the form C v A,
for an ELI concept C and a concept name A, simply as (tree-
shaped) Boolean queries with one safe negation.

Taking stock, any ELI⊥ concept inclusion can be encoded as
a DL-Litecore TBox and a Boolean UCQ¬s, and we thus arrive
at the following lemma.

Lemma 4. For any ELI⊥ TBox T , one can construct a DL-
Litecore TBox T ′ and a Boolean UCQ¬1 s q′ such that

– every model I of T ′ with I 6|= q′ is also a model of T , and

– every model of T can be extended to a model I of T ′ with
I 6|= q′ by interpreting fresh names in T ′.

As a corollary of Theorem 3 and Lemma 4 we immediately
obtain undecidability of answering unions of CQs¬1 s over DL-
Litecore KBs.

Corollary 5. There is a Boolean UCQ¬1 s q and a DL-Litecore
TBox T such that CertainAnswers(q,T ) is undecidable.

Observe that the TBox in the proof of Theorem 3 belongs to
EL except for concept inclusions (8), (10) and (12). Consider
now a UCQ¬1 s comprising ∃x Hq1 (x) and queries (3) and (13).
By replacing the inverse role T− in (8) and (10) by R and re-
moving the negative concept inclusion (12), we can strengthen
the undecidability result for UCQ¬s over EL KBs established
by Rosati (2007).

Corollary 6. (i) There are a union q of two Boolean CQs¬1 s

and an EL⊥ TBox T such that CertainAnswers(q,T ) is unde-
cidable.

q′I

q2 q1
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Figure 3: Matching CQ¬s q′ obtained from q1 ∨ q2 in the extended model.

(ii) There are a union q of a Boolean CQ and two CQs¬1 s, and
an EL TBoxT such that CertainAnswers(q,T ) is undecidable.
(iii) There are a union q of a Boolean CQ and a CQ¬1 s, and an
ELI TBox T such that CertainAnswers(q,T ) is undecidable.

The last result is in stark contrast to P-completeness of an-
swering single CQs¬s (Rosati, 2007) and unions of CQs over
ELI TBoxes (Ortiz et al., 2006).

3.2. From UCQs to CQs: the Case of DL-LiteHcore

We now proceed to show that under rather mild restrictions,
any union of tree-shaped Boolean CQs¬s can be transformed
into a single Boolean CQ¬s that has the same answers over
knowledge bases with TBoxes extended by a number of con-
cept and role inclusions. This will allow us to obtain undecid-
ability of answering a single CQ¬s over DL-LiteHcore (in contrast
to Corollary 5, which holds for the language without role inclu-
sions).

We illustrate the transformation by considering a Boolean
UCQ¬s q comprising the two queries from Section 3.1:

q1 = ∃x1, y1, z1, u1
(
S (x1, y1) ∧ T (x1, z1) ∧ S (z1, u1) (3)

∧ ¬T (y1, u1)
)
,

q2 = ∃x2, y2
(
T (x2, y2) ∧ ¬R(y2, x2)

)
; (13)

these queries are also given in negated form by (3¬) and (13¬),
respectively. Note first that the sets of variables in q1 and q2 are
disjoint, and therefore, we can merge them into a single CQ¬s

without introducing a connection between the primal graphs of
the constituents. Then, we take a fresh variable x and consider
a Boolean CQ¬s q′ that consists of all the atoms of q1 and q2 to-
gether with G1(x, x1) and G2(x, x2), where G1 and G2 are fresh
role names; see Fig. 3 on the right.

The resulting CQ¬s q′ is in general not equivalent to q. How-
ever, we can guarantee that, for any TBox T satisfying some
mild restrictions (to be defined below), there is a TBox T ′ such
that the union q has the same answer over (T ,A) as q′ over
(T ∪ T ′,A). The extension TBox T ′ is constructed in such a
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way that from any model I of (T ,A) we can obtain a model
I′ of (T ∪ T ′,A) that coincides with I on ∆I and satisfies the
following properties:

1. the interpretation of a special concept name D contains
every domain element in I;

2. for each CQ¬s qi in the union q and every d in the interpre-
tation of D, there is a map that sends xi to d and matches
all atoms (including the negative ones) of the merged q′
except, possibly, the atoms of qi.

For example, consider a model I of T with a single T -edge
(d, d′); see the black arrow in Fig. 3 on the left. According to
Item 1, the extended TBox should guarantee that both d and d′

belong to the interpretation of D in the model I′ of T ∪T ′. By
Item 2, it should also guarantee that d has the dark-grey frag-
ment attached to it to match all atoms of q′ but q1 and the light-
grey fragment to match all atoms of q′ but q2 (d′ should also
be in the interpretation of D and, hence, have similar fragments
in I′, but they are not depicted to reduce clutter). Moreover, it
should be clear that q′ has a positive answer in I′ if and only if
either q1 has a positive answer in I (the rest of q′ is matched by
the light-grey fragment) or q2 has a positive answer in I (the
rest of q′ is matched by the dark-grey fragment), which is the
same as their union, q, having a positive answer in I.

The fragments required to match the positive atoms of q1
and q2 can easily be generated, for example, by the DL-LiteHcore
concept inclusions

D v ∃G−2 .∃G1.Q1, Q1 v ∃T.∃S u ∃S .N1, (14)
D v ∃G−1 .∃G2.Q2, Q2 v ∃T u N2, (15)

where Q1, N1, Q2 and N2 are fresh concept names (see Fig. 3).
We also need the following negative concept inclusions to en-
sure that the negative atoms of q1 and q2 can always be matched
in the respective fragments of the model generated by the posi-
tive inclusions (14)–(15):

N1 u ∃T v ⊥ and N2 u ∃R− v ⊥. (16)

We now generalise the intuition above and show that we can
apply this transformation to a union of an arbitrary number of
tree-shaped CQs¬s.

It should be clear that any tree-shaped Boolean CQ¬s gives
rise to a DL-LiteHcore TBox similar to (14)–(16). To make sure
that the negative concept inclusions of the form (16) are not in-
consistent with the positive inclusions of the form (14)–(15),
we require an additional definition. We say that a variable z in
a CQ¬s q is T -loose (or loose, if T is clear from the context) in
case T 6|= B1 v B2, for each pair of atoms B1(z) and ¬B2(z) in q
(to simplify notation, the Bi refer here to basic concepts; simi-
larly to positive atoms, the query is assumed to contain ¬∃P(z1)
and ¬∃P−(z2) if it contains ¬P(z1, z2)). For instance, in the ex-
ample above, variable y1 is loose in q1 provided that the orig-
inal TBox does not entail ∃S − v ∃T ; in other words, if (the
interpretation of) ∃S − may contain a domain element that is
not in ∃T—otherwise the first negative inclusion in (16) would
imply emptiness of D with the extended TBox (indeed, the S -
successor of an element in Q1 would have to belong to ∃S −

and N1, which are subsets of the disjoint ∃T and N1, respec-
tively). Also, u1 is loose in q1 if the original TBox does not
entail ∃S − v ∃T−; similarly, both x2 and y2 are loose in q2
provided that the original TBox does not entail ∃T v ∃R− and
∃T− v ∃R, respectively. Note, however, that both of these con-
cept inclusions will hold in any interpretation I with I 6|= q2
because the query ‘encodes’ the role inclusion T− v R. These
examples show that the requirement for each negative atom to
have a loose variable is not particularly restrictive and, in fact,
not much stronger than simply non-entailment of the negation
of the constituent CQ¬s by the original TBox alone.

Lemma 7. Let T be a DL-LiteHcore TBox and q a Boolean
UCQ¬s such that each component qi of q is tree-shaped and
each negative atom in each qi contains a T -loose variable.
Then there exist a DL-LiteHcore TBox T ′ and a CQ¬s q′ such
that

(T ,A) |= q iff (T ∪ T ′,A) |= q′, for every ABoxA.

Proof. Let qi be of the form ∃yi ϕi(yi), for 1 ≤ i ≤ n. Since tree-
shaped queries contain no individuals, each yi is non-empty and
we can fix a variable, say, yi1, in each yi. Let y be a fresh vari-
able and, for each 1 ≤ i ≤ n, let Gi be a fresh role name. Define
ϕ′i(y, yi) = Gi(y, yi1) ∧ ϕ̂i(yi), where ϕ̂i is the result of replacing
each concept name A with a fresh Â and each role name P with
a fresh P̂ in ϕi. Consider

q′ = ∃y y1 . . . yn

∧
1≤i≤n

ϕ′i(y, yi).

Let D be a fresh concept name. Let TD consist of A v Â and
A v D, for each concept name A occurring in T or q, and
P v P̂, ∃P v D and ∃P− v D, for each role name P in T or q.
Thus, in any model of TD, the interpretation of D contains the
interpretations of all concepts of T and q, including domains
and ranges of its roles.

Since each ϕ′i(y, yi) is tree-shaped, we can assume that its
primal graph is a rooted tree with root y (so that each edge has
a natural orientation away from the root); by construction, the
root has a single successor, yi1. We write z ≺ z′ if z is a (unique)
immediate predecessor of z′ in one of these trees. For each edge
(z, z′) with z ≺ z′, we take a fresh role Ezz′ . Let TG contain the
following inclusions, for all 1 ≤ i ≤ n:

D v ∃G−i,0, (17)

∃Gi,0 v ∃G j,1, for 1 ≤ j ≤ n with j , i, (18)
Gi,k v Gi, for k = 0, 1, (19)
Gi,1 v Eyyi1 , (20)
∃E−zz′ v ∃Ez′z′′ , for z ≺ z′ ≺ z′′, (21)

∃E−zz′ v Â, for all Â(z′) in ϕ̂i, (22)

Ezz′ v R̂, for all R̂(z, z′) in ϕ̂i, (23)

∃E−zz′ u Â v ⊥, for all ¬Â(z′) in ϕ̂i, (24)

∃E−zz′ u ∃R̂ v ⊥, for all ¬R̂(z′, z′′) in ϕ̂i with loose z′, (25)

where Gi,0 and Gi,1 are fresh role names. Let T ′ = TD ∪ TG.
Note that it is crucial that z′ is loose in both (24) and (25)—for
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otherwise T ∪ T ′ would imply emptiness of any interpretation
of D. We claim that T ′ and q′ are as required.

Suppose first that (T ,A) |= q and let I be a model of
(T ∪ T ′,A). As I |= (T ,A), we have I |= q. So, for some i,
1 ≤ i ≤ n, there exists a match π for qi in I. Since the negations
in q are safe, π(yi1) belongs to AI, for some concept name A in
T , or to (∃R)I, for some role R in T ; whence, π(yi1) ∈ DI.
Let q∗ consist of all atoms of q′ that are not in ϕ̂i(yi). Since
I |= TG, there exists a match π∗ for q∗ in Iwith π∗(yi1) = π(yi1).
Indeed, by (20)–(23), the tree of the positive atoms of q∗ can
be matched in the tree rooted in the G−i,0-successor of π(yi1);
by (24) and (25), the negative atoms are also matched by π∗.
Hence, π ∪ π∗ is a match for q′ in I.

Conversely, let I be a model of (T ,A) with I 6|= q. De-
note by I0 an interpretation that coincides with I on all indi-
viduals and concept and role names of T or q, and, addition-
ally, interprets D by ∆I, and Â and P̂ by AI and PI, for each
concept name A and role name P in T or q. By construction,
I0 |= (T ∪ TD,A) and I0 6|= q. Denote by Cd the canonical in-
terpretation of (TG, {D(d)}), for d ∈ ∆I0 (we slightly abuse no-
tation here and treat domain elements as fresh individual names
assuming that dCd = d). By definition, each Cd is finite and
their domains are pairwise disjoint. Let I′ be the union of I0
with all Cd, d ∈ ∆I0 . Since each negative atom of q contains
a loose variable, I′ does not violate any negative inclusions of
TG, that is, (24) and (25). Thus, I′ |= (T ∪ T ′,A). Finally,
for the sake of contradiction, suppose I′ |= q′. Then there is a
match π for q′ in I′. By the definition of q′, π(y) must be the
element in one of the Cd introduced to witness the existential
restriction in (17). By (18), atoms corresponding to one of the
components, say qi, of q must be matched in the part of the
original model I0, contrary to I0 6|= qi, for all i, 1 ≤ i ≤ n. q

Consider now the UCQ¬s and the TBox obtained in the proof
of Corollary 5 from the query and the TBox in the proofs of
Theorem 3 and Lemma 4. It can be verified that the compo-
nents of the UCQ¬s are tree-shaped and satisfy the conditions
of Lemma 7. Thus, we obtain undecidability of CQ¬s answer-
ing over DL-LiteHcore KBs.

Theorem 8. There exist a Boolean CQ¬s q and a DL-LiteHcore
TBox T such that CertainAnswers(q,T ) is undecidable.

This solves the open problem of decidability of CQ¬s an-
swering over DL-LiteHcore (Rosati, 2007). However, since role
inclusions are required in the transformation in Lemma 7, the
decidability of the CQ¬s answering problem over DL-Litecore
remains open. On the other hand, by Corollary 5, answering
unions of CQs¬s over DL-Litecore is undecidable. The number
of queries in the union constructed in the proof of Corollary 5
depends, however, on the size of the alphabet and the number
of states of the universal Turing machine (more precisely, it is
(2 · |Q| + 1) · |Γ| + 4). We can strengthen the negative result to a
union of only three queries.

Theorem 9. There exist a union q of three Boolean CQs¬1 s

and a DL-Litecore TBox T such that CertainAnswers(q,T ) is
undecidable.

q−a−

qa

q+a+

q′a′

ta
pe

computation

Figure 4: Quadruples τ = (q−a−, qa, q+a+, q′a′).

Proof. The proof again is by reduction of the halting problem
for deterministic Turing machines. Let M = (Γ,Q, q0, q1, δ) be
a deterministic Turing machine; see the proof of Theorem 3.

Similarly to the construction in the proof of Theorem 3, we
represent computations of M in a two-dimensional grid, where
role T points to the representation of the next cell on the tape
and role S to the representation of the same cell in the succes-
sor configuration. However, we now use a role E to relate the
representation of a cell containing a ∈ Γ in a configuration with
state q ∈ Q and the head positioned over the cell to an individ-
ual eqa; if the head is not over the cell then its representation
is E-related to e∅a, where ∅ is a no-head marker; the represen-
tation of the cells in the initial configuration beyond the input
word is E-related to a special individual e∗ , where ∗ is a tape
initialisation marker. We abbreviate pairs (q, a) ∈ (Q∪{∅, ∗})×Γ

simply as qa and say that a cell contains such qa if it contains
a and either it is under the head in the state q ∈ Q or it is not
under the head and q ∈ {∅, ∗}.

Consider a set TM of quadruples of the form

(q−a−, qa, q+a+, q′a′)

that are defined by the transition function δ: if cells i − 1, i
and i + 1 contain pairs q−a−, qa and q+a+, respectively, then
the cell i contains pair q′a′ in the successive configuration; see
Fig. 4. Note that, since M is deterministic, the pair q′a′ is deter-
mined uniquely. We also include special quadruples in TM for
initialisation of the tape beyond the input word: for a, a′ ∈ Γ,

(∅a′, ∅a, ∗ , ∅a), (∅a, ∗ , ∗ , ∅ ), (∗ , ∗ , ∗ , ∅ ).

We assume that the input word contains at least three symbols,
and so none of the first three cells of the tape contain ∗ .

In addition to individual names eqa for the pairs qa, take an
individual name eτ for each quadruple τ ∈ TM . Let P−, P, P+

and P′ be role names and let ABoxAM contain assertions

P−(eq−a− , eτ), P(eqa, eτ), P+(eq+a+ , eτ), P′(eτ, eq′a′ ),

for each quadruple τ = (q−a−, qa, q+a+, q′a′) in TM . Also, the
ABox AM uses a fresh concept name N to mark all the pairs
with the accepting state q1 ∈ Q and contains

N(eq1a), for all a ∈ Γ.

10
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Figure 5: The last two components of the query in the proof of Theorem 9.

Another ABox,Aw, encodes an input w = a1, . . . , an ∈ Γ∗ on
the tape as follows:

T (c0, c0), E(c0, e∅ ), T (c0, c1), E(c1, eq0a1 ),
T (ci−1, ci), E(ci, e∅ai ), for 1 < i ≤ n,

T (cn, cn+1), E(cn+1, e∗ ), I(e∗ ),

where c1, . . . , cn are fresh individual names, corresponding to
the cells of the input, c0 and cn+1 are special individuals placed
‘before’ and ‘after’ the input word in the initial configuration of
the tape, and I is a fresh concept name for initialisation of the
tape beyond the input (note that there is a T -loop in c0).

Consider now a union q of the following three CQs¬1 s given
in negated form (see Fig. 1 for the first and Fig. 5 for the last
two):

S (x, y) ∧ T (x, z) ∧ S (z, u) → T (y, u), (26)

E(x, y) ∧ P(y, z) ∧ S (x, x′) ∧ P′(z, y′) ∧
T (x−, x) ∧ E(x−, y−) ∧ P−(y−, z) ∧ (27)
T (x, x+) ∧ E(x+, y+) ∧ P+(y+, z) → E(x′, y′),

T (x, x+) ∧ E(x, y) ∧ I(y) → E(x+, y). (28)

Let TBox T contain

∃T v ∃S , ∃T− v ∃T, ∃E− u N v ⊥.

We claim that (T ,AM ∪ Aw) 6|= q if and only if M does not
accept w.

Consider a model I of (T ,AM∪Aw) with I 6|= q. Then there
exists an infinite sequence of (not necessarily distinct) domain
elements d0, d1, d2, . . . that encode the initial configuration in
the sense that (d0, d0) ∈ TI, (di, di+1) ∈ TI for all i ≥ 0, and
each element is connected by the interpretation of E to the el-
ement of the corresponding pair, that is, EI contains (d0, eI∅ ),
(d1, eIq0a1

), all (di, eI∅ai
), for 1 < i ≤ n, and all (di, eI∗ ), for i > n.

Note that d0 = cI0 is an auxiliary element before the tape, whose
role is to match the (positive part of the) second component of
q for the representation of the first cell, and e∗ serves as a sub-
stitute for e∅ , which is necessary, along with concept I and
the third component of q, to initialise the tape beyond the in-
put. By the first TBox inclusion, there exists a sequence of

elements d′0, d
′
1, d
′
2, . . . such that (di, d′i ) ∈ S I. By the first com-

ponent of q, they form another T -connected sequence, that is,
(d′i , d

′
i+1) ∈ TI for all i. Moreover, since d0 has a TI-loop, d′0

also has a TI-loop. ByAM and the second component of q, the
sequence represents the second configuration of the computa-
tion in the same way, except that now e∗ is not used: instead,
by the tape initialisation quadruples, all the cells beyond the
working space are EI-connected to e∅ . Note that d′0 is also EI-
connected to e∅ . By the same argument, there exists a sequence
of elements for each configuration of the computation. Finally,
the negative concept inclusion in T and assertions inAM guar-
antee that the accepting state never occurs in the computation,
and so, M does not accept w.

Conversely, if M has a non-accepting computation on w then
it is routine to construct an infinite two-dimensional grid-like
interpretation I satisfying (T ,AM ∪Aw) but not q (all domain
elements in the bottom row of the grid have a TI-loop). q

We note in passing that the query q in the proof of Theorem 9
is not tree-shaped, and therefore Lemma 7 is not applicable.

3.3. Guarded Negation: Decidability

In this section we narrow down the class of CQs with safe
negation and concentrate on guarded negation. As follows
from the results by Bárány et al. (2012), answering unions
of GNCQs over ontologies in the language of the so-called
frontier-guarded tuple-generating dependencies (fg-tgds) is de-
cidable and in coNP in data complexity; moreover, it is in P in
data complexity if each GNCQ in the union contains at most
one negated atom. Observe that (i) ELI concept and role
inclusions are a particular form of frontier-guarded tgds, and
that (ii) negative concept and role inclusions can be viewed as
negated CQs. Therefore, the upper complexity bounds also ap-
ply to ELI⊥ and DL-LiteHcore KBs. We establish the matching
lower complexity bounds even for a TBox T0 containing a sin-
gle negative concept inclusion

V u F v ⊥

(by definition, T0 is in both EL⊥ and DL-Litecore).

Lemma 10. There exists a Boolean GNCQ q with one negated
atom such that the problem CertainAnswers(q,T0) is P-hard.

Proof. The proof is by reduction of the complement of Horn-
3SAT, the satisfiability problem for Horn clauses with at most
three literals, which is known to be P-complete; see, e.g., (Pa-
padimitriou, 1994). Suppose we are given a conjunction ψ of
Horn clauses of the form p, ¬p and p1 ∧ p2 → p, where
p, p1 and p2 are propositional variables. Consider a Boolean
GNCQ q with the following negated form:

N1(x1, y) ∧ V(x1) ∧ N2(x2, y) ∧ V(x2) ∧ R(y, z) → V(z);

see Fig. 6 (a). Note that q does not depend on ψ.
Next, we construct an ABox Aψ such that ψ is satisfiable iff

(T0,Aψ) 6|= q. The ABox Aψ uses an individual name cp for
each variable p in ψ and an individual name cγ for each clause
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Figure 6: GNCQs in the proofs of Lemmas 10 and 11.

γ of the form p1 ∧ p2 → p in ψ. For every clause γ, the ABox
Aψ contains the following assertions:

V(cp), if γ = p,

F(cp), if γ = ¬p,

N1(cp1 , cγ), N2(cp2 , cγ), R(cγ, cp), if γ = p1 ∧ p2 → p.

Suppose first there is a model I of (T0,Aψ) with I 6|= q. We
show that ψ is satisfiable. Observe that, for each clause γ of ψ
of the form p1 ∧ p2 → p, if both cIp1

∈ VI and cIp2
∈ VI then

cp ∈ VI. Thus, we can define a satisfying assignment a for ψ
by taking a(p) true iff cIp ∈ VI.

Conversely, if ψ is satisfiable then we can evidently construct
a model I of (T0,Aψ) with I 6|= q. q

Lemma 11. There exists a Boolean GNCQ q with two negated
atoms such that CertainAnswers(q,T0) is coNP-hard.

Proof. The proof is by reduction of the complement
of 2+2SAT, the satisfiability problem for clauses with two
negative and two positive literals, which is known to be NP-
complete (Schaerf, 1993). Suppose we are given a conjunction
ψ of clauses of the form ¬p1∨¬p2∨ p′1∨ p′2, where each pi and
p′i is either a propositional variable or one of the two proposi-
tional constants, true and false. Consider a Boolean GNCQ q
with the following negated form:

N1(x1, y) ∧ V(x1) ∧ N2(x2, y) ∧ V(x2) ∧
R1(y, z1) ∧ R2(y, z2) → V(z1) ∨ V(z2);

see Fig. 6 (b). Observe that the query is similar to the one in
the proof of Lemma 10 except that now we have two Ri-atoms
instead of one R-atom. Note again that q does not depend on ψ.

Next, we construct an ABox Aψ such that ψ is satisfiable
iff (T0,Aψ) 6|= q. The ABox Aψ uses individual names ctrue

and cfalse for the two constants, an individual name cp for each
variable p in ψ and an individual name cγ for each clause γ in
ψ. It contains V(ctrue), F(cfalse) and the following assertions, for
every clause γ of the form ¬p1 ∨ ¬p2 ∨ p′1 ∨ p′2 in ψ:

N1(cp1 , cγ), N2(cp2 , cγ), R1(cγ, cp′1 ), R2(cγ, cp′2 ).

Suppose first there is a model I of (T0,Aψ) with I 6|= q. We
show that ψ is satisfiable. Observe that, for each clause of ψ of
the form ¬p1 ∨ ¬p2 ∨ p′1 ∨ p′2, if both cIp1

∈ VI and cIp2
∈ VI

then either cIp′1 ∈ VI or cIp′2 ∈ VI. Since we have cItrue ∈ VI and
cIfalse < VI, a satisfying assignment a for ψ can be defined by
taking a(p) true iff cIp ∈ VI.

Conversely, if ψ is satisfiable then we can evidently construct
a model I of (T0,Aψ) with I 6|= q. q
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Figure 7: CQ, in the proof of Theorem 13.

Summing up, we obtain the following result.

Theorem 12. The problems of answering GNCQs and unions
of GNCQs over DL-Litecore, DL-LiteHcore, EL⊥ and ELI⊥ KBs
are coNP-complete in data complexity. The problems are P-
complete if the GNCQ and each component in the union, re-
spectively, have at most one negation.

4. Answering CQs with Inequalities

In this section we first prove that CQ, answering over DL-
LiteHcore is undecidable, even if only one inequality may be used.
Over DL-Litecore, we show undecidability for unions of three
CQs,, as well as P- and coNP-hardness for CQs,. We then
observe that one of the reasons for undecidability is applying
inequalities to the non-ABox elements in interpretations and
identify a class of CQs,, local CQs,, that require at least one
of the arguments in any inequality to be an ABox element. We
show that this restriction guarantees decidability of the query
answering problem.

4.1. CQs with Inequalities over DL-LiteHcore: Undecidability
We begin by establishing undecidability of CQ, answering

over DL-LiteHcore. In principle, the technique of Lemma 7 could
be adapted to queries with inequalities and by using, e.g., a
modification of the proof of Theorem 1 in (Gutiérrez-Basulto
et al., 2012), this would prove the claim. The resulting CQ,

would, however, contain many inequalities. Instead, we sub-
stantially rework some ideas of the undecidability proof for
CQ, answering over EL⊥ (Klenke, 2010) and show that even
one inequality suffices for DL-LiteHcore.

Theorem 13. There exist a Boolean CQ, q with one inequality
and a DL-LiteHcore TBox T such that CertainAnswers(q,T ) is
undecidable.

Proof. Similarly to the proof of Theorem 3, we reduce
the halting problem for deterministic Turing machines to
CertainAnswers(q,T ). We also use a two-dimensional grid
formed by roles T and S . This time, however, the grid is estab-
lished (along with functionality of certain roles) by means of a
Boolean CQ, q with the following negated form:

S (x, y) ∧ T (x, z) ∧ S (z, v) ∧ T (y, u) ∧
T (u,w) ∧ T (u′,w) ∧ R(t, v) ∧ R(t, v′)

→ (u′ = v′).
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Figure 8: The grid structure in the proof of Theorem 13.

Note that this sentence, in fact, implies v = v′ = u′ = u; see the
shaded area in Fig. 7.

We present the construction of the TBox T in a series of
steps. As an aid to our explanations, we assume that an inter-
pretation I with I 6|= q is given; for each of the building blocks
of T we then show that if I, in addition, is its model then I en-
joys certain structural properties. We say that the interpretation
PI of a role P is functional in d ∈ ∆I if d′ = d′′ whenever both
(d, d′) and (d, d′′) are in PI. We also denote the composition of
binary relations by ◦, for example:

S I ◦ TI =
{
(d, d′′) | (d, d′) ∈ S I, (d′, d′′) ∈ TI

}
.

Let the first part, TG, of the TBox contain the following con-
cept inclusions:

∃S − v ∃T, ∃T− v ∃T, ∃S − v ∃R−.

We claim that if I |= TG and I |= ∃T v ∃S then the fragment
of I rooted in element d11 ∈ (∃S −.∃T−)I has a grid structure
of the shaded area in Fig. 8 (each domain element in (∃S −)I

also has an RI-predecessor, which is not shown). Note that
TG ensures that domain elements in (∃S −)I only have TI- and
(R−)I-successors but not necessarily S I-successors (existence
of S I-successors will be guaranteed by concept and role inclu-
sions (31)–(33), (41), (42) and TF to be defined below).

More formally, the domain elements in the shaded area enjoy
the following property.

Claim 13.1. If I |= TG and I 6|= q then, for every d ∈ ∆I with
an S I-successor and a TI ◦ S I-successor,

(a) S I is functional in any TI-successor of d,

(b) TI is functional in any S I-successor of d,

(c) all TI ◦ S I- and S I ◦ TI-successors of d coincide,

(d) (T−)I is functional in any TI ◦ S I ◦ TI-successor of d,

(e) RI is functional in any TI ◦ S I ◦ (R−)I-successor of d.

Proof of claim. There are domain elements d10, d01, d11 such
that (d, d10) ∈ S I, (d, d01) ∈ TI and (d01, d11) ∈ S I.

d
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d11
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d′01

T
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d′′11S
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T

T

(a)

d

d01
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d′
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Figure 9: Proof of Claim 13.1.

(a) Let (d, d′01) ∈ TI and (d′01, d
′
11), (d′01, d

′′
11) ∈ S I; see

Fig. 9 (a). Since I |= TG, the element d10 has a TI-successor d′,
which in turn has a TI-successor too; each of d11, d′11 and d′′11
has an RI-predecessor (not shown in Fig. 9 (a)). As I 6|= q, each
of d11, d′11 and d′′11 coincides with d′ and thus, S I is functional
in any TI-successor of d.
(b) Let (d, d′10) ∈ S I and (d′10, d

′
11), (d′10, d

′′
11) ∈ TI; see

Fig. 9 (b). Since I |= TG, the element d10 has a TI-successor
d′, which in turn has a TI-successor too; also, d11 has an RI-
predecessor (not shown in Fig. 9 (b)); and both d′11 and d′′11 have
TI-successors. As I 6|= q, each of d′, d′11 and d′′11 coincides with
d11. So, TI is functional in any S I-successor of d.
(c) Is not difficult to see now that all TI ◦ S I-successors and
all S I ◦ TI-successors coincide. Denote this element by d′.
(d) and (e) By item (c), (T−)I is functional in any TI-successor
of d′ and RI is functional in any RI-predecessor of d′. y

So, S I and TI are functional in all domain elements in the
shaded area. However, S I does not have to be functional in
the bottom row and TI in the left column (see Fig. 8); (T−)I is
functional in all domain elements in the shaded area except its
bottom row but it does not have to be functional elsewhere; RI

does not have to be functional anywhere but in RI-predecessors
of the domain elements in the shaded area; finally, (S −)I and
(R−)I do not have to be functional anywhere. For our purposes,
however, it suffices that I has a grid structure starting from d11;
moreover, as we shall see, the non-functionality of (S −)I plays
a crucial role in the construction.

In addition to the grid-like structure of S I and TI, we also
need functionality of S I in domain elements outside the grid.
Besides this, we require role R to be functional not only in RI-
predecessors of the grid elements but also in the grid elements
themselves. To this end, we use a technique similar to the proof
of Lemma 7.

Claim 13.2. Let I |= TG and I 6|= q.

(a) If I satisfies
E v ∃T−.∃S (29)

then S I is functional in every d ∈ EI.

(b) If I satisfies
D v ∃R.∃S −.∃T−.∃S (30)
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then RI is functional in every d ∈ DI.

Proof of claim. (a) Let d ∈ EI have an S I-successor. Then d
has a TI-predecessor d1, which, in turn, has an S I-successor
and a TI ◦ S I-successor (the S I-successor of d). Thus, by
Claim 13.1 (a) applied to d1, we obtain functionality of S I in d.

(b) The argument is essentially the same as in (a) but we apply
Claim 13.1 (e) instead. y

We now describe the part of the TBox that encodes compu-
tations of a given Turing machine. Let M = (Γ,Q, q0, q1, δ) be
a deterministic Turing machine (see the proof of Theorem 3)
with a two-symbol tape alphabet Γ = {1, }.

We use concept Hq, for q ∈ Q, that contains the representa-
tions of all tape cells observed by the head of M (in state q);
concept H∅ represents the cells not observed by the head of M.
Role S has two sub-roles, S and S1, for the two symbols of the
alphabet Γ to encode cell contents: the range of Sa represents
cells containing a ∈ Γ.

The most natural way of encoding a transition δ(q, a) =

(q′, a′, σ) of M would be to use a concept inclusion of the form
Hq u ∃S −a v ∃Sa′ u ∃Sq′σ, where Sq′σ is also a sub-role of S
(recall that the latter is functional in the grid). Alas, DL-LiteHcore
does not allow conjunction on the left-hand side of concept in-
clusions. The following construction simulates the required in-
clusions by using functionality of just two roles, R and S . Let
TF contain (29), (30) and the following concept and role inclu-
sions with fresh role names Rq, La and Pqa, for each q ∈ Q∪ {∅}
and a ∈ Γ:

∃S −a v D, Hq v ∃Rq, ∃S −a v ∃La,

Rq v R, La v R,

∃R−q v E, ∃R−q v ∃Pq , ∃R−q v ∃Pq1,

Pq v R, Pq1 v S ,

L− v R, L−1 v S .

Claim 13.3. If I |= TG ∪ TF and I 6|= q then, for each a ∈ Γ

and q ∈ Q ∪ {∅}, we have

d ∈ (∃P−qa)I whenever d ∈ HIq ∩ (∃S −a )I,

for any d such that RI is functional in any RI-predecessor of d.

Proof of claim. Let d ∈ HIq ∩ (∃S −a )I. Then d has an RIq -
successor and an LIa -successor, which coincide because, by
Claim 13.2 (b), RI is functional in d ∈ DI. Let d′ be the RI-
successor of d.

If a = 1 then the inverse of L1 is a sub-role of S , and thus,
(d′, d) ∈ S I. On the other hand, d′ has a PIq1-successor d′′,
whence (d′, d′′) ∈ S I. Since d′ ∈ EI, by Claim 13.2 (a), S I is
functional in d′, whence d = d′′. Therefore, d ∈ (∃P−q1)I.

If a = then the argument is similar with R replacing S as the
super-role of both L− and Pq . As RI is functional in any RI-
predecessor of d, in particular in d′, we obtain d ∈ (∃P−q )I. y
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Figure 10: (a) ABox Aw and (b) the three-way infinite grid in the proof of
Theorem 13.

We are now in a position to define the representation of Tur-
ing machine computations. Using the roles Pqa from TF , we
can encode transitions:

∃P−qa v ∃Sa′ u ∃Sq′σ, for δ(q, a) = (q′, a′, σ), (31)

Sa v S , for a ∈ Γ, (32)
Sqσ v S , for q ∈ Q and σ ∈ {−1,+1}, (33)

where Sq,−1 and Sq,+1 are fresh role names that are used to prop-
agate the new state in the next configuration. Recall now that
the ranges of roles P∅a identify cells that are not observed by
the head of M; the symbols contained in such cells are then
preserved with the help of concept inclusions

∃P−∅a v ∃Sa, for a ∈ Γ. (34)

The location of the head in the next configuration is ensured by
the following inclusions:

∃S −qσ v ∃Tqσ, for q ∈ Q and σ ∈ {−1,+1}, (35)

∃T−qσ v Hq, for q ∈ Q and σ ∈ {−1,+1}, (36)

Tq,+1 v T and Tq,−1 v T−, for q ∈ Q, (37)

where Tq,+1 and Tq,−1 are used to propagate the head in the state
q along the tape (recall that, by Claim 13.1, both TI and (T−)I

are functional in the grid); finally, the following concept inclu-
sions are required to propagate the no-head marker H∅:

Hq v ∃T∅,+1 and Hq v ∃T∅,−1, for q ∈ Q, (38)
T∅,+1 v T and T∅,−1 v T−, (39)
∃T−∅σ v ∃T∅σ u H∅, for σ ∈ {−1,+1}. (40)
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Next, the ABox Aw that encodes an input w = a1, . . . , an ∈ Γ∗

of M is as follows:

Z(c00, c10), T (c10, c11), Hq0 (c11),
T (c0(i−1), c0i) and Sai (c0i, c1i), for 1 ≤ i ≤ n,

T∗(c0n, c0(n+1)),

where Z is a fresh role name to start off an infinite sequence of
configurations and T∗ a fresh role name to fill the rest of the tape
in the initial configuration by blanks:

∃Z− v ∃Z, Z v S , (41)
∃T−∗ v ∃S u ∃T∗, T∗ v T ; (42)

see Fig. 10 (a). Finally, the following concept inclusion ensures
that the accepting state q1 ∈ Q never occurs in a computation:

Hq1 v ⊥. (43)

Let TM contain (31)–(43) encoding transitions of M and let
T = TG ∪ TF ∪ TM . If (T ,Aw) 6|= q then there is a model
I of (T ,Aw) with I 6|= q. It should then be clear that, by
Claims 13.1 and 13.3, we can extract from I a computation of
M that does not accept w (for a similar argument, see the proofs
of Theorems 3 and 9).

Conversely, if M does not accept w then we can construct a
model I of (T ,Aw) with I 6|= q as follows. First, it is routine
to construct a model J0 of TG such that

∆J0 =
{
di j | i ≥ 0 and j ∈ Z

}
∪

{
d′i j, d′′i j | i > 0 and j ∈ Z

}
,

the di j form a three-way infinite grid structure on roles S and T
(see Fig. 10 (b)), each d′i j is an RJ0 -predecessor of di j and each
d′′i j is an SJ0 -predecessor of di j (note that if i > 0 then di j has
another SJ0 -predecessor, d(i−1) j, and it is important that SJ0 is
not functional in di j). The resultingJ0 is clearly a model of TG

and J0 6|= q.
Next, we extendJ0 to a modelJ of TM andAw by choosing

the interpretation of concepts and roles in TM on the domain of
J0 in such a way that the part of J rooted in d11 encodes the
computation of M on w (which is uniquely defined because M
is deterministic). Specifically, we set cJi j = di j for all ci j inAw.
Role Z follows the infinite chain of SJ -successors from d00 and
role T∗ the infinite chain of TJ -successors from d0n. Then, the
interpretation of Hq, Sa and Sqσ, for q ∈ Q, a ∈ Γ and σ ∈
{−1,+1}, is determined by the computation assuming that the
di j with j ≤ 0 represent the blank cells (containing ) of the
infinite extension of the tape ‘before’ the input, which is never
visited by the head. It then should be clear how to interpret H∅
and Tqσ, for q ∈ Q ∪ {∅} and σ ∈ {−1,+1}. As the final step of
the construction of J , we define PJqa and extend RJ as follows:

(d′i j, di j) ∈ PJq and (di j, d′i j) ∈ RJ if di j ∈ HJq ∩ (∃S −)J ,

(d′′i j, di j) ∈ PJq1 and (di j, d′′i j) ∈ RJ if di j ∈ HJq ∩ (∃S −1 )J .

It remains to show that J can be extended by new domain
elements to satisfy TF in such a way that the interpretation of
concepts and roles of TG ∪ TM on the domain of J remains
unchanged.

di j : D,Hq

d′i j: E

d′′i jS

L ,Rq ,R

Pq ,R

S

T

S

T

T

T

S

T

Pq1, S
R

T

S , S

T T

S

T

(a)

di j : D,Hq

S1, S

T

d′′i j: Ed′i j

R

L1 ,Rq ,R

Pq1 , S

S

T

S

T

T

Pq ,R

TS

T

(b)

Figure 11: Extending J to I.

Claim 13.4. J can be extended to a model I of TF so that

(a) di j ∈ HIq ∩ (∃S −a )I if di j ∈ (∃P−qa)I, for every di j;

(b) AI ∩ ∆J = AJ for all concept names A other than D;

(c) PI ∩ (∆J × ∆J ) = PJ for all role names P but Rq and La.

Proof of claim. The cases of Pq and Pq1 are illustrated in
Figs. 11 (a) and 11 (b), respectively; some edges are not shown
to avoid clutter: each domain element in (∃S −)I also has an
incoming RI-edge and each TI-edge starts an infinite chain of
TI-edges.

The three black (solid, dashed and dotted) patterns of edges
in Fig. 11 (a) correspond to the three sets of positive atoms of
q so that the negated inequality atom, (u′ = v′), ‘identifies’ cer-
tain domain elements of the pattern. Similarly, the two black
(dashed and dotted) patterns of edges in Fig. 11 (b) correspond
to the two sets of positive atoms of q that ‘identify’ certain do-
main elements.

Black nodes are in the domain ofJ , whereas white nodes are
in the domain of I proper. It can be seen that the domain ele-
ments di j in J are subject only to the following modifications:
each di j, for i > 0, is added to DI and, depending on the a in the
role Sa with di j ∈ (∃S −a )J , either (di j, d′i j) or (di j, d′′i j) is added
to both RIq and LIa (which do not occur anywhere but in TF). y

So, (T ,Aw) 6|= q iff M does not accept w. Take M to be
a fixed deterministic universal Turing machine, i.e., a machine
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Figure 12: CQs, in the proof of Theorem 14.

that accepts w iff the empty input is accepted by the Turing
machine encoded by w. This finishes the proof of Theorem 13.

q

4.2. Hardness of CQs with Inequalities over DL-Litecore

In the previous section we established undecidability of CQ,

answering over DL-LiteHcore. The reduction, however, essen-
tially uses role inclusions. Leaving decidability of CQ, answer-
ing over DL-Litecore as an open problem, we establish undecid-
ability of answering unions of three CQs,, as well as P- and
coNP-hardness of answering single CQs,.

Theorem 14. There exist a union of three Boolean CQs, q
with one inequality each and a DL-Litecore TBox T such that
CertainAnswers(q,T ) is undecidable.

Proof. We adapt the ideas of the proof of Theorem 9 to the case
of inequalities and provide here a sketch of the reduction of the
halting problem for deterministic Turing machines.

Let M = (Γ,Q, q0, q1, δ) be a deterministic Turing machine;
see the proof of Theorem 3. Similarly to the proof of Theo-
rem 9, we associate with a computation a two-dimensional grid
on roles S and T , where representations of the cells on the tape
are related by role E to individuals eqa, for (q, a) ∈ (Q∪{∅, ∗})×Γ

(recall that ∅ is a no-head marker and ∗ is a marker for initial-
ising the tape beyond the input). We use the same ABox as in
Theorem 9, comprisingAM to encode the instructions of M (via
quadruples TM) andAw to encode an input w = a1, . . . , an ∈ Γ∗.

Consider a union q of the following three CQs, given in
negated form (see Fig. 12 for the first and the third; the sec-
ond is similar to the one in Fig. 5 (a)):

S (x, y) ∧ T (x, z) ∧ S (z, v) ∧ T (y′, v) → (y = y′),

E(x, y) ∧ P(y, z) ∧ S (x, x′) ∧ P′(z, y′) ∧ E(x′, y′′) ∧
T (x−, x) ∧ E(x−, y−) ∧ P−(y−, z) ∧
T (x, x+) ∧ E(x+, y+) ∧ P+(y+, z) → (y′ = y′′),

T (x, x+) ∧ E(x, y) ∧ I(y) ∧ E(x+, y′) → (y = y′).

Observe that queries (26)–(28) from the proof of Theorem 9
are all similarly transformed as follows: in (26), for example,
the conclusion of the implication, T (y, v), is moved into the
premise, then one of its variables, y, is replaced with a fresh
copy, y′, and an equality between the variable and its copy,
y = y′, is placed in the conclusion. The resulting queries (if
viewed in negated form) can ‘identify’ certain points in an in-
terpretation but require an extended TBox to achieve the effect

of queries (26)–(28) with safe negation. To this end, let TBox
T contain

∃S − v ∃T−, ∃T v ∃E,

∃T v ∃S , ∃T− v ∃T, ∃E− u N v ⊥.

The first two concept inclusions allow the components of query
q to play the role of (26)–(28) in Theorem 9: they enforce any
model to contain matches for the atoms moved from the con-
clusions to the premises, and then the (negated) inequalities re-
connect the other ends in the model (these atoms are indicated
by the dashed arrows in Fig. 12). Finally, note that the last three
concept inclusions are the same as in the proof of Theorem 9.

It can be verified that (T ,AM ∪ Aw) 6|= q iff M does not
accept w. We just note that, in any model I with I 6|= q, the
relation (T−)I is functional in all points with an (S −)I◦TI◦S I-
predecessor but TI does not have to be functional anywhere (in
fact, c0 has a T -loop and another T -successor, c1, inAM). q

Theorem 15. There exist a Boolean CQ, q with one in-
equality and a DL-Litecore TBox T such that the problem
CertainAnswers(q,T ) is P-hard.

Proof. We first show how the proof of Lemma 10, which shows
P-hardness of answering GNCQs with one negated atom over
DL-Litecore, can be also adapted for the case of inequalities. Re-
call that the proof is by reduction of the complement of Horn-
3SAT, the satisfiability problem for Horn clauses with at most
three literals.

Suppose we are given a conjunction ψ of Horn clauses of
the form p, ¬p and p1 ∧ p2 → p, where p, p1 and p2 are
propositional variables. Consider the following Boolean CQ,

q1 in negated form:

N1(x1, y) ∧ E(x1, v) ∧ N2(x2, y) ∧ E(x2, v) ∧ V(v) ∧
R(y, z) ∧ E(z, v′) → (v = v′).

This query follows the pattern of the GNCQ in the proof of
Lemma 10, where unary predicate V served as a marker for
variables p that are true in all models of ψ. In this case, we use
binary predicate E to connect all such variables p to a single
fixed domain element in V , which represents truth (as, e.g., in
the proof of Theorem 14). So, we take T1 that contains

∃R− v ∃E and V u F v ⊥,

and let Aψ,1 consist of V(etrue), F(efalse) and, for each clause γ
in ψ, the following assertions:

E(cp, etrue), if γ = p,

E(cp, efalse), if γ = ¬p,

N1(cp1 , cγ), N2(cp2 , cγ), R(cγ, cp), if γ = p1 ∧ p2 → p,

where cp and cγ are individual names for every p and γ, respec-
tively, and etrue and efalse are the individual names for truth and
falsum. (Without loss of generality, we assume that ψ does not
contain both p and ¬p, for the same variable p.) It can be ver-
ified that (T1,Aψ,1) 6|= q1 iff ψ is satisfiable. Note that, if the
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Figure 13: Proof of Theorem 15.

UNA is adopted, then the negative concept inclusion in T1 is
not required.

Next, we provide an alternative proof of this theorem, which
uses a shorter query. It is also by reduction of the complement
of Horn-3SAT. Given a conjunction ψ as above, fix a TBox T
containing

V v ∃E, ∃E− v V, V u F v ⊥,

and a Boolean CQ, q with negated form

V(x) ∧ N(x, y) ∧ R(y, z) ∧ E(y, z′) → (z = z′).

Note that T and q do not depend on ψ. Next, we construct
an ABox Aψ such that ψ is satisfiable iff (T ,Aψ) 6|= q. The
ABox Aψ uses an individual name cp for each variable p in ψ,
and individual names cγ1 and cγ2 for each clause γ of the form
p1 ∧ p2 → p in ψ, and contains the following assertions, for
every clause γ in ψ:

V(cp), if γ = p,

F(cp), if γ = ¬p,

N(cp1 , cγ1), R(cγ1, cγ2), V(cγ1),
N(cp2 , cγ2), R(cγ2, cp), if γ = p1 ∧ p2 → p.

Suppose first there is a model I of (T ,Aψ) with I 6|= q. We
show that ψ is satisfiable. For each clause γ of ψ of the form
p1 ∧ p2 → p, the model I contains a configuration depicted
in Fig. 13 (the grey nodes represent ABox individuals and the
white ones—anonymous individuals generated by the TBox).
If cIp1

∈ VI then the EI- and RI-successors of cIγ1 coincide,
whence cIγ2 ∈ VI, which triggers the second ‘application’ of
the query to identify cIp with the EI-successor of cIγ2 resulting
in cIp ∈ VI but only if cIp2

∈ VI. So, as follows from the
argument above, we can define a satisfying assignment a for ψ
by taking a(p) true iff cIp ∈ VI.

Conversely, if ψ is satisfiable then we can construct a model
I of (T ,Aψ) with I 6|= q. q

Theorem 16. There exist a Boolean CQ, q with two in-
equalities and a DL-Litecore TBox T such that the problem
CertainAnswers(q,T ) is coNP-hard.

Proof. We begin with a remark that we could follow the lines of
the first proof of Theorem 15 and adapt the proof of Lemma 11,
which is by reduction of 2+2SAT, the satisfiability problem for
clauses with two negative and two positive literals. This would

ck
p

f : A1 vp: A2

ck
¬p

t : A1V

R, F
R R,TR

T

T

F

F

Figure 14: Proof of Theorem 16.

require the following query in negated form:

N1(x1, y) ∧ E(x1, v) ∧ N2(x2, y) ∧ E(x2, v) ∧ V(v) ∧
R1(y, z1) ∧ E(z1, v1) ∧ R2(y, z2) ∧ E(z2, v2)

→ (v = v1) ∨ (v = v2),

and the following TBox:

∃R−i v ∃E, for i = 1, 2, and V u F v ⊥.

Instead, we provide an alternative proof with a larger TBox but
a shorter query.

The proof is by reduction of the complement of 3SAT, which
is known to be coNP-complete; see e.g., (Papadimitriou, 1994).
Suppose we are given a conjunction ψ of clauses of the form
`1∨`2∨`3, where the `k are literals, i.e., propositional variables
or their negations (we can assume that all literals in each clause
are distinct). Fix a TBox T containing the following concept
inclusions:

V v ∃T u ∃F, ∃T− v V,

∃T− u ∃F− v ⊥, A1 u A2 v ⊥,

and a Boolean CQ, q with the following negated form:

V(x) ∧ R(x, y) ∧ T (x, y1) ∧ F(x, y2)
→ (y = y1) ∨ (y = y2).

Claim 16.1. Let I be a model of T with I 6|= q. If d ∈ VI and
(d, d1), (d, d2) ∈ RI with d1 , d2 then

– either (d, d1) ∈ FI and (d, d2) ∈ TI,

– or (d, d1) ∈ TI and (d, d2) ∈ FI.

Proof of claim. Since I 6|= q, each pair (d, dk) belongs either
to TI or FI. To prove the claim, suppose to the contrary that
(d, dk) ∈ TI for both k = 1, 2 (the other case, with both pairs
in FI, is similar). Consider a map π with π(x) = d, π(y) = d1,
π(y1) = d2 and an FI-successor of d as π(y2). Since π cannot
be a match for q in I but d1 , d2, we must have y = y2, whence
(d, d1) ∈ FI contrary to disjointness of ∃T− and ∃F−. y

Again, T and q do not depend on ψ. The ABox Aψ is con-
structed as follows. Let t and f be two individuals with A1(t)
and A1( f ) in Aψ. For each propositional variable p of ψ, take
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the following assertions, for k = 1, 2, with five individuals vp,
ck
¬p and ck

p:

A2(vp), R(ck
p, vp), R(ck

p, f ), F(ck
p, f ),

R(ck
¬p, vp), R(ck

¬p, t), T (ck
¬p, t),

where the ck
p and ck

¬p represent the literals p and ¬p, respec-
tively, see Fig. 14.

Let I be a model of (T ,Aψ) with I 6|= q. Observe that
vIp , tI. By Claim 16.1, if (ck

¬p)I ∈ VI then vIp ∈ (∃F−)I,
that is, if the literal ¬p is chosen (by means of V) then p must
be false. Conversely, if ¬p is not chosen (that is, (ck

¬p)I < VI)
then vIp does not have to be in (∃F−)I and p can be either true
or false. Similarly for (ck

p)I with vIp ∈ (∃T−)I.
Next, for each clause γ of the form `1 ∨ `2 ∨ `3 in ψ, let Aψ

contain the following assertions, where cγ1 and cγ2 are fresh
individuals:

V(cγ1), R(cγ1, c1
`1

), A1(c1
`1

), R(cγ1, cγ2), A2(cγ2),

R(cγ2, c1
`2

), A1(c1
`2

), R(cγ2, c2
`3

), A2(c2
`3

).

It can be verified that ψ is satisfiable iff (T ,Aψ) 6|= q. Indeed, if
there is a model I of (T ,Aψ) with I 6|= q then, by Claim 16.1
and the observation above, we can construct a satisfying as-
signment a for ψ by taking a(p) true iff vIp ∈ VI. The converse
direction is straightforward.

Note that the construction can be simplified if the UNA is
adopted: in this case, there is no need for A1, A2 and the two
copies of the individuals ck

` , for k = 1, 2, representing literals.
q

4.3. Local CQs, over DL-LiteHcore: Decidability
In this section we identify a restriction on CQs, and DL-

LiteHcore TBoxes with decidable query answering problem. In a
nutshell, decidability is attained by ensuring that each inequal-
ity has a term that can only be matched by ABox individuals.

Let T be a DL-LiteHcore TBox. A basic concept B is said to be
T -local if there is no existential restriction ∃R occurring on the
right-hand side of a concept inclusion in T such that

T |= ∃R− v B.

Intuitively, this condition guarantees that B contains only indi-
viduals in the canonical interpretation.

Definition 17. A CQ, q is T -local (or local when T is clear
from the context) if, for each inequality y1 , y2 between ex-
istentially quantified variables y1 and y2 in q, the query also
contains either B(y1) or B(y2) such that B is a T -local basic
concept.

Recall that we say that q contains B(y), for B = ∃R, if it contains
R(y, t), for some term t. Remarkably, local CQs, can express
quite complex patterns: see the proofs of Theorems 15 and 16;
on the other hand, the first component of the union in the proof
of Theorem 14 is not local (but the other two components are).

To establish decidability of query answering we require the
following notions. Given two interpretations J and I, we

say that J is a sub-interpretation of I and write J ⊆ I if
∆J ⊆ ∆I and ·J is the restriction of ·I onto ∆J ; in particular,
cJ = cI ∈ ∆J , for all individuals c.

Let K = (T ,A) be a DL-LiteHcore knowledge base. The set
of interpretations dc of individuals c in the canonical interpre-
tation CK of K is denoted by indK . A branch b is a (finite or
infinite) sequence dc, dcR1 , dcR1R2 , . . . of elements in ∆CK such
that it cannot be extended to a longer sequence of this form in
CK . A trim of the canonical interpretation CK is an interpre-
tation J ⊆ CK whose domain ∆J is closed in the following
sense: dw ∈ ∆J whenever dwR ∈ ∆J . Observe that, on the one
hand, the first element of every branch is in indK ; on the other
hand, by the definition of the sub-interpretation, the domain ∆J

contains indK . Hence, the first element of every branch belongs
to J . A branch b is said to be complete in J if each element of
b is in ∆J . The number of elements of b in ∆J , which may be
infinite, is denoted by |b|J ; if b is complete in J then |b|J is its
length.

The image h(J) of a trim J under a mapping h from the
domain of J is an interpretation defined by taking

∆h(J) =
{
h(d) | d ∈ ∆J

}
,

ch(J) = h(cJ ), for individual names c,

Ah(J) =
{
h(d) | d ∈ AJ

}
, for concept names A,

Ph(J) =
{
(h(d), h(d′)) | (d, d′) ∈ PJ

}
, for role names P.

Let I be the image h(J) ofJ under a mapping h. By definition,
h is a surjective homomorphism fromJ onto I, and so we often
write h : J → I to indicate that I is the image of J under h.
We say that h is an identification if each d ∈ ∆I \h(indK ) has at
most one pre-image. Note that only interpretations of individu-
als, that is, elements in h(indK ), can have multiple pre-images
in an identification h. It is readily verified that, for every iden-
tification h : J → I, we have the following partial converse of
the homomorphism condition:

(id) if (d1, d2) ∈ RI, for a role R, and d1 < h(indK ) then there
is a unique dw in J such that either

d1 = h(dw), d2 = h(dwS ) and T |= S v R,

or d1 = h(dwS ), d2 = h(dw) and T |= S v R−,

for some role S .

Let k > 0 and h : J → I be an identification for a trim
J . We define the equivalence relation ∼h

k on elements of J
by taking dw′ ∼

h
k dw′′ iff the following two conditions hold for

every w with |w| ≤ k:

(eq-t) dw′w is in J iff dw′′w is in J ;

(eq-c) if dw′w is in J then either h(dw′w) = h(dw′′w) ∈ h(indK )
or h(dw′w), h(dw′′w) < h(indK ).

A pair (dw1 , dw1w2 ) of distinct elements in J is called a k-block
under h in case dw1 ∼

h
k dw1w2 and dw′1 �

h
k dw′1w′2 , for any dis-

tinct proper prefixes w′1 and w′1w′2 of w1w2. It should be clear
that each equivalence class is determined by a tree of depth k
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and branching factor of at most |T |, each element of which in-
dicates that it does not belong to J , or it belongs to J but its
h-image is not in indK , or it belongs to J and its h-image coin-
cides with one of the indK . This gives rise to at most (2+|A|)|T |

k

equivalence classes. Therefore, under any identification, every
sufficiently long branch of the canonical interpretation has a k-
block simply because some equivalence class will have to ap-
pear twice on the branch.

Let K = (T ,A) be a consistent DL-LiteHcore KB and q a T -
local Boolean CQ,. (Recall that queries can contain individual
names, and so, without loss of generality, we may assume that
the query does not have answer variables.) An interpretation I
is called a k-certificate for q and K if

– I 6|= q,

– I satisfies all negative inclusions in T ,

– there is a trim J of CK and an identification h : J → I
such that, for each branch b in CK ,

(b1) if b is complete in J and contains a k-block
(dw1 , dw1w2 ) under h then |b|J ≤ |w1w2| + k;

(b2) if b is incomplete in J then it contains a k-block
(dw1 , dw1w2 ) under h and |b|J = |w1w2| + k.

Note that the trim J in the definition is finite because every
branch has a k-block and the trim contains at most |T |k elements
beyond each k-block. It follows that any k-certificate is finite by
definition.

Having these definitions at hand, we are ready to state and
prove two key lemmas of this section.

Lemma 18. Let K = (T ,A) be a consistent DL-LiteHcore KB, q
a T -local Boolean CQ, and k > 0. IfK 6|= q then there exists a
k-certificate for q and K .

Proof. Let K 6|= q. Then there exists a model I0 of K such
that I0 6|= q. Let h0 be a homomorphism from the canonical
interpretation CK to I0 (without loss of generality we assume
that the domain of I0 is disjoint from the domain of CK ). The
homomorphism h0 can be represented as a composition h′ ◦ h
of two mappings such that h agrees with h0 on all elements that
are merged with images of individuals but is the identity on all
other elements:

h(d) =

h0(d), if h0(d) ∈ h0(indK ),
d, otherwise;

it follows that h′ is the identity on the interpretations of individ-
uals and agrees with h0 on all other elements. Let I = h(CK ).
By definition, h and h′ are homomorphisms from CK to I and
from I to I0, respectively; moreover, h : CK → I is an iden-
tification. We have I 6|= q for otherwise I |= q would imply
I0 |= q because h′ is a homomorphism that does not iden-
tify anything with the interpretations of individuals and q is
T -local.

Consider the (finite) trimJ of CK to all the elements dw such
that |w| ≤ |w1w2| + k for all k-blocks (dw1 , dw1w2 ) under h with

w1w2 being a prefix of w (in particular, dw is included if there
is no such k-block). Let I∗ = h(J). We claim that I∗ is a k-
certificate for q and K . Indeed, since I∗ ⊆ I, we have I∗ 6|= q
and I∗ satisfies all negative inclusions in T . On the other hand,
all the k-blocks under h are also k-blocks under the restriction
of h ontoJ : indeed,J contains all the elements within the dis-
tance of k from k-blocks, therefore satisfying (eq-t) (and (eq-c)
is inherited from I). q

Lemma 19. Let K = (T ,A) be a consistent DL-LiteHcore KB
and q a T -local Boolean CQ,. Let k be the size of q. If there
exists a k-certificate for q and K then K 6|= q.

Proof. Let I0 be a k-certificate for q and K . Although I0 6|= q,
the interpretation I0 may not be a model of K . We show how
to extend I0 to a model ofK without introducing a match for q.

Since I0 is a k-certificate, there is a trim J0 of the canonical
interpretation CK and an identification h0 : J0 → I0 satisfy-
ing (b1) and (b2). In the sequel, for the sake of simplifying the
presentation, we will often refer to k-blocks under h0 simply as
k-blocks.

For ` > 0, denote by J` the trim of CK to all the elements
dww′ such that dw ∈ ∆J0 and |w′| ≤ ` (the trim J` extends all
branches of J0 by at most ` elements).

Claim 19.1. Let (dw1 , dw1w2 ) be a k-block under h0 and let ` > 0.
If dw1w2w belongs to J` then dw1w belongs to J`−1.

Proof of claim. By the definition of the canonical interpreta-
tion, since dw1w2w belongs to J` ⊆ CK , the element dw1w also
belongs to CK . If dw1w belongs to J0 then it clearly belongs
to J`−1. Otherwise, all the branches containing dw1w are in-
complete in J0. Consider any of these branches. By (b2),
there exists a k-block (dw′1 , dw′1w′2 ) on this branch. We know that
(dw1 , dw1w2 ) is the first pair with dw1 ∼

h0
k dw1w2 on any branch

containing dw1w2w and so, w1 is a proper prefix of w′1w′2, whence
|w1| < |w′1w′2|. On the other hand, dw1w2w belongs to J` and
so, |w| ≤ k + `. Thus, |w1w| < |w′1w′2| + k + `, or equivalently,
|w1w| ≤ |w′1w′2|+ (k + `−1). However, by (b1) and (b2), the trim
J0 contains all k-blocks together with all the elements within
the distance of k from the k-blocks. Therefore,J`−1 contains all
elements of CK that are within k + `− 1 steps from any k-block.
In particular, J`−1 contains dw1w. y

We construct a sequence of interpretations

I0 ⊆ I1 ⊆ · · · ⊆ I` ⊆ · · ·

with identifications h` : J` → I` and show by induction that,
for all ` ≥ 0, the interpretation I` satisfies all negative inclu-
sions in T and I` 6|= q.

The basis of induction, ` = 0, is by the definition of k-
certificate: I0 = h0(J0). Let ` > 0, and suppose that J`−1
and I`−1 = h`−1(J`−1) have been constructed. To obtain h`, we
extend h`−1 to the elements dw1w2w in J` that are not in J`−1 as
follows:

h`(dw1w2w) =

h`−1(dw1w), if h`−1(dw1w) ∈ h`−1(indK ),
a fresh element, otherwise.
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Figure 15: Definition of Θ.

By Claim 19.1, the definition is correct. It also follows from the
definition that h`(indK ) = h`−1(indK ) and therefore, we will use
h(indK ) for this set in the sequel.

Claim 19.2. Let (dw1 , dw1w2 ) be a k-block under h0. Then, for
every dw1w2w in J`, we have

h`(dw1w2w) ∈ h(indK ) iff h`(dw1w2w) = h`−1(dw1w).

Proof of claim. If |w| ≤ k then the claim is immediate
from (eq-c) and the definition of h0. If |w| > k then, by (b1)
and (b2), dw1w2w does not belong to J0. By the definition of
h`, either h`(dw1w2w) and h`(dw1w) are equal and in h(indK ) or
h`(dw1w2w) is a fresh element, which, in particular, cannot be
equal to h`−1(dw1w). y

Let I` = h`(J`). Clearly, I`−1 ⊆ I` and h` is an identifi-
cation. We show that I` 6|= q. Suppose for the sake of contra-
diction that there is a match π for q in I`. We then construct a
match π′ for q in I`−1. To this end we require a set Θ of all vari-
ables in sequences x1, . . . , xm, m ≥ 1, such that π(xi) < h(indK )
for i ≤ m, Ri(xi+1, xi) ∈ q for i < m and either

– π(x1) = h`(d), for some d in J` but not in J`−1, or

– q contains R0(x1, t0) with π(x1) = h`(dw), T |= S v R0,
π(t0) = h`(dwS ) ∈ h(indK ) and dwS in J` but not in J`−1.

Intuitively, the set Θ contains exactly those variables whose im-
ages under π are reachable from the new part in I` through
anonymous elements by a chain of (images of) atoms in the
query; see Figs. 15 (a) and (b) for the two cases.

Claim 19.3. For each x ∈ Θ, there are a unique k-block
(dw1 , dw1w2 ) under h0 and a unique non-empty w such that dw1w2w

is in J` and π(x) = h`(dw1w2w).

Proof of claim. Let x1, . . . , xm be a sequence of elements of Θ

such that π(xi) < h(indK ), Ri(xi+1, xi) ∈ q, for all i, and xm = x.
Suppose first that π(x1) = h`(d1) for some d1 in J` but not

in J`−1. Since π(x1) < h(indK ) and h` is an identification, such
a d1 is uniquely defined. By (b2), there are a unique k-block

(dw1 , dw1w2 ) and a unique w1 such that d1 = dw1w2w1 . We show
by (finite) induction that, for each xi, there is a unique wi with

π(xi) = h`(dw1w2wi ) and |wi| ≥ k + ` − (i − 1). (44)

Since i ranges from 1 to m, it does not exceed the size of q,
which in turn does not exceed k and thus, i ≤ k. For the basis of
induction, i = 1, the unique w1 is constructed above; moreover,
since d1 is in J` but not in J`−1, we have |w1| = k + `. For
the induction step suppose that (44) holds for some i < m. As
π(xi+1) < h(indK ) and (π(xi+1), π(xi)) ∈ RI`i , by (id), there is
a unique di+1 with π(xi+1) = h`(di+1). Since i < m ≤ k, wi is
non-empty. Hence, di+1 = dw1w2wi+1 with either wi+1 = wiS or
wi+1S = wi, for some S . Thus, |wi+1| ≥ |wi|−1 and (44) follows.
Finally, we use (44) with i = m to obtain |wm| > `.

Suppose now that q contains R0(x1, t0) with π(x1) = h`(dw),
π(t0) = h`(dwS ) ∈ h(indK ) and dwS in J` but not in J`−1. The
argument and the construction are identical to the case above
except that now |wi| ≥ k + ` − i, and thus |wm| ≥ ` > 0. y

The mapping π′ from the terms t of q to the domain of I`−1
is constructed as follows.

– If t ∈ Θ then t is a variable. By Claim 19.3, we have
π(t) = h`(dw1w2w), for a k-block (dw1 , dw1w2 ) and some w.
By Claim 19.1, dw1w is in J`−1; so, let π′(t) = h`−1(dw1w),
which is in ∆I`−1 .

– If t < Θ then π(t) is in ∆I`−1 (for otherwise t is in Θ); let
π′(t) = π(t).

We claim that π′ is a match for q inI`−1 and prove it by showing
that the image of every atom in q under π′ is true in I`−1.

1. Suppose (π(s), π(t)) ∈ RI` . We show (π′(s), π′(t)) ∈ RI`−1 .
There are four cases, depending on the way π′(s) and π′(t) are
constructed.

Case 1.1: s, t ∈ Θ, that is, π(s) = h`(dw1w2w), π′(s) = h`(dw1w),
π(t) = h`(dw′1w′2w′ ) and π′(t) = h`(dw′1w′ ). By Claim 19.3, both
w and w′ are non-empty and uniquely defined. Moreover, since
neither π(s) nor π(t) is in h(indK ), by (id), we obtain w1 = w′1,
w2 = w′2 and either w′ = wS with T |= S v R or w = w′S
with T |= S v R−. By Claim 19.1, both dw1w and dw1w′ belong
to J`−1, and so, in either case, (dw1w, dw1w′ ) ∈ RJ`−1 , whence
(π′(s), π′(t)) ∈ RI`−1 .

Case 1.2: s ∈ Θ and t < Θ, that is, π(s) = h`(dw1w2w) and
π′(s) = h`−1(dw1w) but π′(t) = π(t). We have π(t) ∈ h(indK ), for
otherwise we would include t in Θ by considering a sequence
ending in t. By Claim 19.3, w is non-empty and uniquely de-
fined and so, by (id), we have π(t) = h`(dw1w2w′ ) with either
w′ = wS and T |= S v R or w′S = w and T |= S v R−. By
Claim 19.1, both dw1w and dw1w′ are in J`−1 and so, in either
case, (dw1w, dw1w′ ) ∈ RJ`−1 . By Claim 19.2, π′(t) = h`−1(dw1w′ ),
whence (π′(s), π′(t)) ∈ RI`−1 .

Case 1.3: s < Θ and t ∈ Θ is the mirror image of Case 1.2.

Case 1.4: s, t < Θ, that is, π(s) = π′(s) and π(t) = π′(t). We
have (π(s), π(t)) ∈ RI` . Consider first the case when at least
one of these elements is not in h(indK ). Suppose that π(s) <
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h(indK ) (the other case is symmetric). By (id), either π(s) =

h(dw) and π(t) = h(dwS ) with T |= S v R or π(s) = h(dwS )
and π(t) = h(dw) with T |= S v R−. We claim that in either
case dwS (and so dw) belongs to J`−1. Indeed, in the former
case dwS = π(t) cannot be outside J`−1 for otherwise Θ would
contain s. For the same reason, dwS = π(s) cannot be outside
J`−1 in the latter case. So, both π(s) and π(t) are in J`−1, and
we obtain (π′(s), π′(t)) ∈ RI`−1 .

Otherwise, both π(s) and π(t) are in h(indK ). Suppose for
the sake of contradiction that (π′(s), π′(t)) < RI`−1 . Then,
since I` = h`(J`), I`−1 = h`−1(J`−1) and both J`, J`−1 are
trims of CK , there are some dw1w2w and dw1w2w′ , for a k-block
(dw1 , dw1w2 ), with one of them in J` but not in J`−1 such that
π(s) = h`(dw1w2w) and π(t) = h`(dw1w2w′ ) and either w′ = wS
with T |= S v R or w = w′S with T |= S v R−. By Claim 19.1,
dw1w and dw1w′ are inJ`−1, and so, in either case, (dw1w, dw1w′ ) ∈
RJ`−1 , whence (h`−1(dw1w), h`−1(dw1w′ )) ∈ RI`−1 . By Claim 19.2,
h`(dw1w2w) = h`−1(dw1w) and h`(dw1w2w′ ) = h`−1(dw1w′ ). So,
(π′(s), π′(t)) ∈ RI`−1 contrary to the assumption.

2. Next, suppose π(s) ∈ AI` . We show π′(s) ∈ AI`−1 . There are
two cases.

Case 2.1: s ∈ Θ, that is, π(s) = h`(dw1w2w) and π′(s) =

h`−1(dw1w). By Claim 19.3, dw1w2w is uniquely defined. By the
definition of Θ, h`(dw1w2w) < h(indK ) and so, as h` is an identifi-
cation, we obtain dw1w2w ∈ AJ` . By Claim 19.1, dw1w belongs to
J`−1, and so, by the definition of the canonical interpretation,
dw1w ∈ AJ`−1 , whence π′(s) ∈ AI`−1 .

Case 2.2: s < Θ, that is, π(s) = π′(s). If π(s) < h(indK ) then,
since h` is an identification, there is a unique d in J` such that
π(s) = h`(d). By the first item in the definition of Θ, d is in fact
in J`−1. Since I`−1 = h`−1(J`−1), we obtain h`−1(d) ∈ AI`−1 ,
whence π′(s) ∈ AI`−1 . If π(s) ∈ h(indK ) then suppose, for the
sake of contradiction, that π(s) < AI`−1 . As I` = h`(J`) and
I`−1 = h`−1(J`−1) and both J`, J`−1 are trims of CK , there is
dw1w2w, for a k-block (dw1 , dw1w2 ), inJ` but not inJ`−1 such that
π(s) = h`(dw1w2w). By Claim 19.1, dw1w belongs toJ`−1, and so,
dw1w ∈ AJ`−1 . Hence, π(s) ∈ AI`−1 contrary to the assumption.

3. Finally, suppose π(s) , π(t), for an inequality s , t in q.
We show π′(s) , π′(t). Since q is T -local, either π(s) or π(t)
must be in h(indK ), and therefore either s or t is not in Θ, which
leaves the following three cases possible.

Case 3.1: s ∈ Θ and t < Θ, that is, π(s) = h`(dw1w2w) and
π′(s) = h`−1(dw1w) but π′(t) = π(t). By the definition of Θ,
π(s) < h(indK ), whence, by Claim 19.2, π′(s) < h(indK ).
On the other hand, by the observation above, π′(t) = π(t) ∈
h(indK ). So, π′(s) , π′(t).

Case 3.2: s < Θ and t ∈ Θ is the mirror image of Case 3.1.

Case 3.3: s, t < Θ, that is, π(s) = π′(s) and π(t) = π′(t), which,
by the assumption, implies π′(s) , π′(t).

By induction hypothesis, I`−1 6|= q, and so I` 6|= q. More-
over, by repeating the same argument, one can show that I`
satisfies all negative inclusions in T (the negation of a nega-
tive inclusion can be regarded as a Boolean CQ with two atoms

and at most three variables, that is, as a T -local CQ, of special
form).

To complete the proof, let J be the union of the J` and h
be the union of the h`. It should be clear that in fact J = CK .
Consider I = h(J). By definition, I satisfies the assertions of
the ABox A and all positive inclusions in T . Since, by con-
struction, each I` satisfies all negative inclusions in T , we can
conclude that I is a model of K (note, however, that I` may
not necessarily be a model of K , for any `). Finally, by our
inductive argument, I 6|= q. q

Combining Lemmas 18 and 19 and observing that the size
of a k-certificate can be bounded by an exponential function (in
|A|), we obtain the following theorem.

Theorem 20. For any DL-LiteHcore TBox T and any T -local
CQ, q, the problem CertainAnswers(q,T ) is decidable.

The exponential bound on the size of k-certificates means
that the problem CertainAnswers(q,T ) for a DL-LiteHcore TBox
T and a T -local CQ, q is in fact in coNExpTime in data
complexity, which leaves an exponential gap with the coNP-
hardness established in Theorem 16. In case of a single in-
equality, a k-certificate of exponential size can be constructed
by a deterministic algorithm. This results in the ExpTime up-
per data complexity bound, which is again exponentially harder
than the P-hardness in Theorem 15.

Finally, we remark that the arguments in the proofs of Lem-
mas 18 and 19 can be transferred to unions of T -local CQs,, so
Theorem 20 also holds for this extended class of queries.

5. Conclusions and Future Work

Our investigation in the OBDA paradigm has made further
steps towards a clearer understanding of the impact of extend-
ing CQs with different forms of negation. We have shown that
in general these extensions lead to a surprisingly significant in-
crease even in the data complexity: e.g., from AC0 for answer-
ing CQs to undecidability when safe negations are allowed. In
order to find a way of having efficient query answering in the
presence of negation, we have also explored various syntactic
restrictions. For example, we have identified a novel class of
CQs,, local CQs,, with decidable query answering over DL-
LiteHcore.

Our investigation leaves open some important problems for
future work, e.g., decidability of answering CQs¬s and CQs,

over DL-Litecore, as well as of answering CQs¬s and local CQs,

over EL⊥. It also remains open to establish the exact complex-
ity for local CQs, over DL-LiteHcore.

Another interesting problem is to investigate whether the no-
tions of guardedness and locality can be relaxed to increase
the expressivity. We note that CQs, are not finite controllable
for ontology languages with inverses, such as DL-Litecore, DL-
LiteHcore and ELI, and that our undecidability proofs rely on the
encoding of infinite structures. Therefore, our techniques do not
apply directly to the finite case. Finally, we believe that other
problems, such as query containment, are also worth studying
for the ontology languages with decidable query answering.
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Bárány, V., ten Cate, B., Segoufin, L., 2011. Guarded negation. In: Proc. of the
38th Int. Colloquium on Automata, Languages and Programming (ICALP
2011). Vol. 6756 of LNCS. Springer, pp. 356–367.

Bienvenu, M., Calvanese, D., Ortiz, M., Šimkus, M., 2014. Nested regular path
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Gutiérrez-Basulto, V., Ibáñez-Garcı́a, Y., Kontchakov, R., 2012. An update on
query answering with restricted forms of negation. In: Proc. of the 6th Int.
Conf. on Web Reasoning and Rule Systems (RR 2012). Vol. 7497 of LNCS.
Springer, pp. 75–89.
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