
LHD 2.0: A Text Mining Approach to Typing Entities In
Knowledge Graphs

Tomáš Kliegra,b,1, Ondřej Zamazala,1

aDepartment of Information and Knowledge Engineering, Faculty of Informatics and Statistics,
University of Economics, Prague, nám. W Churchilla 4, 13067, Prague, Czech Republic

bMultimedia and Vision Research Group, Queen Mary, University of London,
327 Mile End Road, London E1 4NS, United Kingdom

Abstract

The type of the entity being described is one of the key pieces of information in linked data knowledge
graphs. In this article, we introduce a novel technique for type inference that extracts types from the free text
description of the entity combining lexico-syntactic pattern analysis with supervised classification. For lexico-
syntactic (Hearst) pattern-based extraction we use our previously published Linked Hypernyms Dataset
Framework. Its output is mapped to the DBpedia Ontology with exact string matching complemented with
a novel co-occurrence-based algorithm STI. This algorithm maps classes appearing in one knowledge graph
to a different set of classes appearing in another knowledge graph provided that the two graphs contain
common set of typed instances. The supervised results are obtained from a hierarchy of Support Vector
Machines classifiers (hSVM) trained on the bag-of-words representation of short abstracts and categories of
Wikipedia articles. The results of both approaches are probabilistically fused. For evaluation we created a
gold-standard dataset covering over 2,000 DBpedia entities using a commercial crowdsourcing service. The
hierarchical precision of our hSVM and STI approaches is comparable to SDType, the current state-of-the-
art type inference algorithm, while the set of applicable instances is largely complementary to SDType as
our algorithms do not require semantic properties in the knowledge graph to type an instance. The paper
also provides a comprehensive evaluation of type assignment in DBpedia in terms of hierarchical precision,
recall and exact match with the gold standard. Dataset generated by a version of the presented approach is
included in DBpedia 2015.

Keywords: type inference, Support Vector Machines, entity classification, DBpedia

1. Introduction

One of the most important pieces of informa-
tion in linked data knowledge graphs is the type of
the entities described. The next generation linked
open data enabled applications, such as entity clas-
sification systems, require complete, accurate and

Email addresses: tomas.kliegr@vse.cz (Tomáš
Kliegr), ondrej.zamazal@vse.cz (Ondřej Zamazal)

1Both authors contributed equally.

c©2016. This manuscript version is made available under the
CC-BY-NC-ND 4.0 license http://creativecommons.org/

licenses/by-nc-nd/4.0/

The final version of this article is available at http://dx.

doi.org/10.1016/j.websem.2016.05.001

specific type information. However, many enti-
ties in the most commonly used semantic knowl-
edge graphs miss a type. For example, DBpedia
3.9 is estimated to have at least 2.7 million miss-
ing types with the percentage of entities without
any type being estimated at 20% [1]. Type infer-
ence has thus received increased attention in the
recent years, with the approaches proposed taking
either of the two principal paths: statistical pro-
cessing of information that is already present in
the knowledge graph, or extraction of additional
types from the free text. In this article we intro-
duce a novel technique for type inference which
combines lexico-syntactic analysis of the free text
and machine learning. This combined approach can
complete types for about 70% of Wikipedia articles

Preprint submitted to Journal of Web Semantics June 13, 2016

Preprint, final version available at http://dx.doi.org/10.1016/j.websem.2016.05.001

without a type in DBpedia.
Our previously published Linked Hypernyms

Dataset (LHD) framework [2] extracts types from
the first sentence of Wikipedia articles using lexico-
syntactic patterns. In this work we extend it with
Statistical Type Inference (STI) which helps to map
LHD results to the DBpedia Ontology used by the
native DBpedia solution. STI algorithm is a generic
co-occurrence-based algorithm for mapping classes
appearing in one knowledge graph to a different set
of classes appearing in another knowledge graph
provided that the two knowledge graphs contain
common set of instances. In our setup, our tar-
get knowledge graph is DBpedia, and the source
knowledge graph is LHD.

There are many articles for which lexico-syntactic
patterns fail to extract any type. To address
this, we employ Support Vector Machines (SVMs)
trained on the bag-of-words representation of short
abstracts and categories of Wikipedia articles. This
supervised machine learning approach gives us a
second set of entity type assignments.

In order to exploit the complementary charac-
ter of the co-occurrence based STI algorithm and
the supervised SVM models, we implement an
ontology-aware fusion approach based on the multi-
plicative scoring rule proposed for hierarchical SVM
classification. The hSVM algorithm can also be
used separately as a language independent way to
assign types since it uses abstract or categories as
input feature set and it does not require language-
specific preprocessing.

We validate our work on DBpedia 2014 [3], one
of the most widely used Wikipedia-based knowledge
graphs, the algorithmic approach is applicable also
to the YAGO knowledge base [4], as well as to other
semantic resources which contain instances (enti-
ties) that are a) classified according to a taxonomy,
and b) described with a free text definition.

The evaluation of our algorithms is performed on
DBpedia using a gold standard dataset comprising
more than 2,000 entities annotated with types from
the DBpedia ontology using a crowdsourcing ser-
vice.

The dataset generated with an earlier version of
our approach is part of the DBpedia 2015-04 release
as Inferred Types LHD dataset.

Parts of the work presented in this article have
been published within the conference paper “To-
wards Linked Hypernyms Dataset 2.0: comple-
menting DBpedia with hypernym discovery and
statistical type inference (Kliegr and Zamazal,

2014)” [5]. This article extends the conference pa-
per by introducing the hierarchical SVM approach
and by performing extensive evaluation on the con-
tributed gold standard dataset allowing the com-
munity to track progress in accuracy and coverage
of entity typing and extraction tools. Also, the re-
view of related work was substantially expanded.

The article is organized as follows. Section 2 gives
an overview of related work, focusing on approaches
for inference of entity types in DBpedia. Section
3 gives an overview of our approach. Section 4
describes how our LHD framework extracts types
from the first sentence of Wikipedia articles and dis-
ambiguates them to DBpedia concepts. Section 5
presents the proposed algorithm for statistical type
inference. Section 6 introduces the hierarchical sup-
port vector machines classifier. Section 7 describes
the fusion algorithm. Section 8 presents the evalu-
ation on the crowdsourced content and comparison
with the state-of-the-art SDType algorithm and the
DBpedia infobox-based extraction framework. The
conclusions provide a summary of the results and
an outlook for future work.

2. Related work

Completing missing types based on statistical
processing of the information already present in the
knowledge graph is in current research approached
from several directions: a) RDFS reasoning, b) ob-
taining types through the analysis of the unstruc-
tured content with patterns, c) machine learning
models trained on labeled data, d) unsupervised
models that perform inference from statistical dis-
tributions of types, instances and the relations be-
tween them.

The four approaches listed above are covered in
Subsection 2.1-2.4. Subsection 2.5 covers the com-
parison of our STI/hSVM with SDType, which is
a state-of-the-art unsupervised algorithm actually
used for type inference in DBpedia 3.9 and DB-
pedia 2014. Subsection 2.6 motivates our choice
of hSVM as a suitable machine learning classifier.
Since we perceive the crowdsourced gold standard
as an important element of our contribution, Sub-
section 2.7 reviews methods and resources for eval-
uation of algorithms that assign types to DBpedia
entities. Table 1 gives an overview of selected re-
lated algorithms in terms of the methods and input
features used and provides a comparison with our
solution described in this article. A recent broader

2

overview of approaches for knowledge graph refine-
ment is present in [6].

2.1. RDFS Reasoning

The standard approach to the inference of new
types in semantic web knowledge graphs is RDFS
reasoning. There are two general requirements en-
abling RDFS reasoning. First, these graphs need
to have domain and range for properties specified
and, second, they need to contain the corresponding
RDF facts employing the defined properties. How-
ever, since according to common ontology design
best practices (e.g. in Noy et al. [11]), domain and
range should be defined in a rather general way, the
inferred types tend not to be very specific. Also,
type propagation goes upward along the taxonomy
as a result of interaction of the subsumption knowl-
edge from the ontology with the RDF facts from a
dataset. Hence, RDFS reasoning usually cannot in-
fer a specific type (i.e. type low in the hierarchy).

Furthermore, it is well known that RDFS reason-
ing approach will not correctly work for problems
where the knowledge graph contains false state-
ments (which is the case for DBpedia), since the
errors are amplified in the reasoning process. Ad-
ditional discussion on unsuitability of reasoners for
type inference in DBpedia has been presented by
Paulheim and Bizer in [8].

2.2. Pattern-based analysis of unstructured content

Major semantic knowledge graphs DBpedia and
YAGO are populated from the semistructured data
in Wikipedia – infoboxes and article categories us-
ing extraction framework that primarily relies on
hand-crafted patterns. Approaches that extract
types from the free text of Wikipedia articles can
be used to assign types to articles for which the
semistructured data are either not available, or the
extraction for some reason failed.

The analysis of the unstructured (free text)
content also often involves hand-crafted patterns.
Tipalo, presented by Gangemi et al. in [7], covers
the complete process of generating types for DBpe-
dia entities from the free text of Wikipedia articles
using a set of heuristics based on graph patterns.
The algorithm starts with identifying the first sen-
tence in the abstract which contains the definition
of the entity. In case a coreference is detected, a
concatenation of two sentences from the article ab-
stract is returned. The resulting natural language
fragment is deep parsed for entity definitions.

Our STI component uses as input types that were
extracted from the free text with lexico-syntactic
patterns with the Linked Hypernyms Dataset ex-
traction framework presented in [12]. This frame-
work proceeds similarly with Tipalo in that it ex-
tracts the hypernym directly from the POS-tagged
first sentence and then links it to a DBpedia entity.

The accuracy of LHD matches the results for
Tipalo algorithm – as reported by its authors in
[7] – for the type selection subtask (0.93 precision
and 0.90 recall). A detailed comparison between
LHD and Tipalo is presented in [2] as well as a
more extensive literature review on pattern-based
extraction.

A conceptual disadvantage of pattern-based ap-
proaches is that they require relatively complex nat-
ural language processing pipeline, which is costly
to adapt for a particular language. In contrast,
the hSVM approach that we introduce in this ar-
ticle has essentially no language-specific dependen-
cies, apart from basic tokenization, which makes
its portability to another language comparatively
straightforward.

2.3. Supervised methods

One of the first supervised approaches was, ac-
cording to Paulheim and Bizer [1], an iterative al-
gorithm proposed in a relational data context by
Neville and Jensen in [13]. The training instances
are described by attributes derived from relations
of the instance (object) to other instances (ob-
jects). Additionally, the high confidence inferred
statements are inserted into the data and used in
the subsequent inference process, which allows to
define attributes that are dependent on the result
of classification in earlier iterations.

In the experiments presented in the original pa-
per the inferred property was the type (companies
were classified by industry). The relations con-
sidered included subsidiary, owner and percentage
owned for given owner. Example attributes in-
cluded the number of subsidiaries and whether the
company is linked to more than one chemical com-
pany through its insider owners. Interestingly, for
a given instance the value of the latter attribute
can change as the algorithm progresses through the
iterations.

To the best of our knowledge, the first supervised
type inference algorithm applied directly in the se-
mantic web context to assign type was described by
Sleeman and Finin in [14]. This approach uses in-
formation gain as a feature selection algorithm and

3

Table 1: Overview of related algorithms and components of our solution (simplified)

algorithm method input features

related algorithms

Tipalo [7] linguistic parsing first two sentences of Wikipedia articles
SDtype [8] co-occurrence analysis ingoing properties in DBpedia
TRank [9] supervised machine learn-

ing (best – decision tree)
schema and instance relations in DBpedia and
YAGO

“Autocomplete” [10] co-occurrence analysis existing type assignments in DBpedia

components of our algorithmic solution

LHD [2] linguistic parsing first sentence in Wikipedia articles
STI co-occurrence analysis type assignments in DBpedia and LHD
hSVM supervised ml. (Support

Vector Machines)
Wikipedia article abstract and categories

Support Vector Machines (SVM) for classification.
The reported F-measure is between 24.9% to 92.9%.

In addition to other differences to our approach
such as a different input feature set, the two algo-
rithms presented above take the flattened approach
to classification, as they do not consider the taxo-
nomical structure of target labels: each target label
is a separate class. In contrast, our hSVM algo-
rithm takes the hierarchical approach to classifica-
tion, which has been shown by Liu et al. in [15], to
have a superior performance when large taxonomies
are involved.

Another type of supervised approach is exem-
plified by the TRank system [9], which ranks
possible entity types given an entity and con-
text. The TRank authors evaluated several type-
hierarchy and graph-based approaches that exploit
both schema and instance relations. This work is
not directly comparable to ours, because the aim of
TRank is to select type for given entity mention in
a longer context (sentence, paragraph, three para-
graphs), while we aim to assign types for already
disambiguated articles describing the entity. What
is particularly relevant to our work is the evalua-
tion methodology, as the collection of TRank al-
gorithms was similarly to our work evaluated with
crowdsourcing.

2.4. Unsupervised methods

Recently, several unsupervised machine learning
algorithms for type inference emerged. Paulheim
[10] describes the use of association rule mining to

discover missing types for a specific entity. To im-
prove scalability, a lazy association rule algorithm
is used to learn only rules that are relevant for the
types associated with the specific entity. The con-
fidence value associated by the apriori algorithm
with a rule is used as type confidence. If multiple
rules predict the same type, their confidence scores
are aggregated.

This algorithm bears some resemblance to the
STI algorithm that we proposed in [5] (also covered
in Section 5), since both algorithms exploit the oc-
currence of types. The association rule approach
is more advanced in that if the entity has multiple
types, all of them can potentially contribute to the
type prediction.

The STI algorithm generates a universally appli-
cable mapping from one type to a set of types, each
associated with a confidence score. The final output
of the algorithm is one type which is a compromise
between specificity and reliability. The advantage
of STI is thus speed, since the algorithm tries to in-
fer the mapping for the relatively small number of
types (such as dbpedia:Playwright), rather than
individually processing all entities. Since the algo-
rithm can also be applied to instances without any
type previously assigned, STI can be expected to
cover wider range of untyped entities than the as-
sociation rule learning approach.

SDType, covered in detail in the next subsection,
is a state-of-the-art algorithm for type inference
proposed by Paulheim and Bizer [8], which as its
authors assert provides superior results in terms of

4

F-measure compared to all the earlier approaches.
The results of the SDType algorithm are also in-
cluded in the official release of English DBpedia as
the Heuristics dataset.

2.5. SDType algorithm

The SDType algorithm assigns types based on
ingoing properties of the object. The properties
are readily available in DBpedia as they have been
extracted from the article infoboxes.

For each relation p (e.g. dbo:location)2 the al-
gorithm computes the conditional probability that
a specific entity x is of certain type if x appears as
a subject of the relation p. Likewise, a dual condi-
tional probability is computed for x as the object of
the same relation. Additionally, each relation p is
assigned a weight, which reflects the discriminative
power of the property.

SDType authors consider as untypeable e.g. lists
or disambiguation articles. To limit the number of
false statements that would be generated if these
entities are reassigned with types, the initial step
of SDType is to determine whether the entity is
typeable using a machine learning classifier. The
authors report that 5.5% of entities was found as
not typeable. Our LHD generation process ex-
cludes entities listed in the DBpedia disambigua-
tions dataset, which also corresponds to roughly
5.6% of entities for English DBpedia 2014.

Using the probability distributions associated
with properties attached to an entity, the SD-
Type algorithm outputs a confidence score for each
entity-type pair. A predefined cutoff threshold bal-
ances the number of inferred types and their quality.

SDType assigns multiple types per entity. A
higher confidence threshold assigns more types at
lower precision. The self-reported precision at a
confidence threshold producing on average 3.1 types
is 0.99 (0.95 confidence at 4.8 types). Inspection of
SDType results shows that while multiple types are
assigned to a given entity, these are, in our obser-
vation, typically composed of a specific type and
its supertypes. STI/hSVM assigns only the most
specific type (cf. Example 1 and 2).

2dbo refers to the DBpedia ontology namespace
http://dbpedia.org/ontology/

Example 1.
dbpedia:Triple Stamp Records

is assigned types: dbo: RecordLabel,
dbo:Company, dbo:Organisation and owl:Thing

by SDType.a The STI/hSVM algorithm assigns a
single type dbo:RecordLabel.

aDBpedia 3.9 instance types heuristic en.nt file

Example 2.
dbpedia:Terry Sejnowski

is assigned types: dbo:Person,

dbo:Agent and owl:Thing

by SDType. The STI/hSVM algorithm assigns
a single type dbo:Scientist.

It should be noted that SDType has the advan-
tage that it can generate types also for entities
which are derived from Wikipedia red links. This
is impossible with both STI and hSVM algorithms,
which require that the article contains a short ab-
stract. However, if an article is not referenced from
infobox of another article then it cannot be pro-
cessed by SDType. For STI/hSVM this is not an
obstacle.

It can thus be concluded that both SDType and
STI/hSVM approaches are largely complementary
both what concerns the algorithmic techniques used
and the set of applicable untyped entities. Sub-
section 8.5 presents a comparison of SDType and
STI/hSVM in terms of accuracy on a crowdsourced
gold standard dataset.

2.6. Text categorization with SVM

In order to enhance type assignment provided by
the STI algorithm, we introduce a supervised model
trained on the bag-of-words representation of ar-
ticle content. In this way, we effectively cast the
problem of assigning a type to an entity as a text
categorization task. The entity-type assignments
already present in DBpedia serve as the training
data.

From the range of applicable machine learning
algorithms, we opted for Support Vector Machines
(SVMs) [16]. SVMs have been found to be more
accurate than other standard machine-learning al-
gorithms such as Naive Bayes, neural networks
and the Rocchio classifier on the text categoriza-
tion task as reported in [17]. Experimental re-
sults presented within our evaluation (in Subsec-
tion 8.7) confirm the superior performance of lin-

5

ear SVMs over other common classification algo-
rithms in the flat text categorization task on our
data. The SVM classifier is particularly suitable as
it is scalable and has been previously successfully
adapted to handle tasks involving large web tax-
onomies [17]. We adapt the hierarchical SVM ap-
proach (hSVM), where a separate classifier is built
for all non-terminal leaves in the class hierarchy.

The complexity of flat SVMs is proportional to
the number of target classes as reported in [15].
With SVMs in a hierarchical setup, there are sev-
eral options. The sequential Boolean rule [17] or
Pachinko-machine search [15] has typically a sig-
nificant performance benefit for the testing phase,
since for a given test instance an SVM model for
class “c” is used only if its parent category classi-
fies the test instance to class “c”. Another approach
is the multiplicative scoring rule [17], which applies
all SVM models and then combines their resulting
models by multiplying the probabilities obtained by
classifiers on individual levels.

The computationally efficient sequential Boolean
rule was found to perform equally well as the multi-
plicative scoring rule and better than a flat SVM as
reported in [17]. The way of merging the outputs
of classification models on the individual layers is
a major design choice for hierarchical classification
algorithms. Since computational complexity is not
a major design constraint for our use case, we opted
for multiplicative scoring rule as it provides struc-
turally more convenient output for fusion with our
other approach, STI.

2.7. Evaluation of type assignment

An important part of our contribution is the eval-
uation of the accuracy of the inferred types and the
comparison with the average accuracy in the origi-
nal knowledge graph. Two fundamental approaches
to checking the accuracy of the inferred types were
given by Gangemi et al. in [7]: gold standard and
type checking.

In the gold standard approach, one needs to cre-
ate a dataset assigning each entity identifier (DB-
pedia URI) with one or more type URIs. Typically,
several annotators participate on the design of the
dataset. The advantage of this approach is that the
resulting dataset is reusable as long as the system
which is evaluated is able to assign types to the
same set of entities. The disadvantage is that this
evaluation scheme is not straightforward to apply.
Requiring exact match between the assigned type
and the gold standard implies that if the assigned

type is more general than the gold standard (e.g.
footballer vs. midfielder) then the assignment is
considered as incorrect.

In the type checking approach, human users eval-
uate the accuracy of the types. In the Tipalo evalu-
ation a three-value scale was available: yes, maybe,
no. Similar evaluation scheme was also employed
for YAGO [4] and LHD [2].

The type checking evaluation scheme is not
reusable and potentially difficult to reproduce. The
evaluation, unless performed in an environment
controlled by a third-party, may be difficult to re-
peat. It is common that the human evaluators are
students or postdocs from the same department as
are the authors of the algorithm that the evalua-
tion is intended to support. The human evaluators
may thus be under implicit pressure to judge more
types as relevant than they would do under other
circumstance. A second problem with this scheme
is that it does not express how far the type assigned
by the system is from the most specific type avail-
able in the reference ontology. For example, if the
system assigns type “Person” to Diego Maradona
it is counted as correct to the same degree as if the
assignment is “Footballer”.

In this article, we present a freely available gold
standard dataset that can be used for evaluation of
knowledge graphs that use types mappable to the
DBpedia 2014 ontology. This gold standard dataset
consists of over 2,000 entities with a type. The an-
notation process was performed using a third-party
operated crowd-sourcing tool with a built-in inter-
face for assignment of categories from a taxonomy.
There was no direct contact between the authors
and the annotators (three or four per entity-type as-
signment). The detection of under-performing an-
notators was handled automatically by the crowd-
sourcing tool. The design of the gold standard
dataset was thus completely decoupled from the
evaluation of the algorithm. To compare with, the
gold standard used in the Tipalo tool was created
for 100 entities and using annotation tool designed
by the authors, the annotators were four senior re-
searchers and six PhD students in the area of knowl-
edge engineering.

Another broader evaluation setup that aimed
at assessing the quality of data in DBpedia using
crowdsourcing is presented by Zaveri et al. in [18].
This paper describes a methodology and a software
tool for detecting errors in DBpedia. The authors
identified 17 data quality problem types. The an-
notators evaluated in total 521 resources. While

6

this research pioneers the use of crowdsourcing for
evaluating DBpedia triples, it does not specifically
report on the rdf:type relation, which is the focus
of this article.

A very recent survey that scopes evaluation of
type assignment is presented in [6].

3. Overview of our approach

Our algorithmic solution to type inference con-
sists of several components. The Linked Hyper-
nyms Dataset [2] is used to extract types with
lexico-syntactic patterns from the first sentence of
Wikipedia articles. Part of the types are mapped to
DBpedia ontology using reliable exact string match-
ing. The remaining types are mapped using our
co-occurrence based Statistical Type Inference algo-
rithm. STI is a novel approach for mapping classes
appearing in one knowledge graph to a different set
of classes appearing in another knowledge graph
provided that the two knowledge graphs contain
common set of instances.

A parallel path to obtaining types for an entity is
a supervised machine learning approach with Sup-
port Vector Machines (SVMs). Entities with al-
ready assigned types in DBpedia are used as a train-
ing set and the text of the abstract and the list of
article categories are used as input features.

In order to fuse the outputs of all three models
(STI, SVMs on abstract, SVMs on categories), we
perform early fusion by aggregating (averaging) the
individual probability distributions using the linear
opinion pool [19, Chapter 9]. After that we combine
the (already aggregated) distributions for individ-
ual classes in the class hierarchy. For this, we use
either the Multiplicative Scoring Rule (MSR) de-
signed for combining results of SVM models in a
hierarchical setting, or a variant of the algorithm
called Additive Scoring Rule (ASR).

Our approach consists of the following succession
of steps:

1. Extracting types from free text with lexico-
syntactic patterns using the LHD framework,
resulting types are DBpedia resource.

2. Mapping types to DBpedia ontology with ex-
act string matching (LHD Core).

3. Mapping remaining types with Statistical
Type Inference (STI), the result for each in-
put type (in the DBpedia resource namespace)
is a probability distribution over DBpedia On-
tology classes.

Figure 1: Partitions of the Linked Hypernyms Dataset

4. Training SVM models for a subset of classes in
the DBpedia ontology.

5. Applying SVM models to obtain prediction for
given entity, the output for a given entity is a
probability distribution over a subset of DBpe-
dia Ontology classes.

6. The probability distributions output by the
SVM models and STI are aggregated using lin-
ear opinion pool.

7. The aggregated probability distribution is pro-
cessed with respect to the DBpedia ontology in
order to make reliable choice of a specific type.

8. The results of LHD Core (step 2) and SVM and
STI models are combined to create the final
dataset.

It should be emphasized that most of the steps
above correspond to individual components, which
can also be used independently. Steps 1-2 are per-
formed by the Linked Hypernyms Dataset Frame-
work described in Section 4. Step 3, the STI algo-
rithm, is covered by Section 5. Steps 4-5 training
and applying SVM models are covered in Section 6.
Finally, steps 6-7 model fusion and final type selec-
tion are described in Section 7.

4. Linked Hypernyms Dataset

The Linked Hypernyms Dataset (LHD), intro-
duced by Kliegr in [2], associates DBpedia entities
(corresponding to Wikipedia articles) with a type
which is obtained by parsing the first sentences of
the respective Wikipedia article. The type is ini-
tially a plain text string, which is further disam-
biguated to a DBpedia entity creating a “linked
hypernym”. Figure 1 shows that the dataset is par-
titioned into several subsets.

The Extension dataset contains types in the
dbpedia.org/resource namespace. This provides
the highest precision types, but also the least se-
mantic interoperability.

7

The types of about 50% of entities (for English,
less for other languages) can be mapped to a DB-
pedia ontology type using a simple string match-
ing algorithm, constituting the Core dataset. An
overview of LHD Core in terms of size and accu-
racy is given in Table 2.

The entities with types extracted by the LHD
framework but not mapped to the DBpedia ontol-
ogy are used as input for the STI algorithm intro-
duced in this paper. The remaining entities, for
which the lexico-syntactic pattern extraction did
not succeed, can be processed only with the hSVM
approach, also introduced in this paper.

The Inference (Inferred types) dataset is pub-
lished as a merge of all our approaches.

The remainder of this section briefly describes
the individual steps of the LHD extraction frame-
work: hypernym discovery, linking and the string
matching approach leading to the Core dataset.

4.1. Hypernym Discovery

The Wikipedia manual of style [20] asserts that
the page title should be the subject of the first
sentence, and that it should tell the nonspecialist
reader what, or who, the subject is. If the first sen-
tence complies with these and other stated require-
ments, its structure can take only a limited number
of forms, allowing a small number of hand-crafted
patterns to cover most variations.3

Also, according to the Wikipedia Manual of Style
“emphasis given to material should reflect its rel-
ative importance to the subject”. Our decision to
give preference to the first hypernym is based on the
assumption that editors typically implement this
clause by ordering hypernyms (e.g. occupations of
a person) in the first sentence according to impor-
tance, starting with the most important one.

Our extraction framework exploits this regular-
ity in the first sentence of Wikipedia articles. The
framework is implemented on top of GATE.4 The
core of the system is a JAPE transducer (a GATE
component) which applies lexico-syntactic patterns
encoded as grammar in the JAPE language on the
first sentence of Wikipedia articles.

3In [21] we studied whether article popularity could have
an effect on the adherence to the Wikipedia manual of style,
and in turn to the extractability of hypernyms from the first
sentence. There was some evidence as to that may be the
case, but due to the small size of the sample the results were
inconclusive.

4http://gate.ac.uk

The extraction grammars require that the input
text is tokenized and assigned part-of-speech (POS)
tags. For English, the framework relies on the AN-
NIE POS Tagger, available in GATE, for German
and Dutch on TreeTagger.5 Extraction grammars
were hand-crafted using a development set of 600
manually annotated articles per language. The pro-
cess of designing the grammars is described in detail
in [2].

Example 3.
An example input for this phase is the first
sentence of Wikipedia article on Václav Havel:
Havel was a Czech playwright, essayist, poet, dis-
sident and politician. The output is the word
“playwright”, the first hypernym in the sentence.
The current version of the grammar outputs the
head noun as the hypernym, not the complete
noun chunk. Favouring head noun improves re-
liability as argued in [2].

The output of the hypernym discovery phase is
provided as a separate dataset providing plain text,
not disambiguated hypernyms. The accuracy for
this dataset (denoted as “plain”) is reported in Ta-
ble 2.

4.2. Linking Hypernyms to DBpedia Instances

Once the hypernym is extracted from the article,
it is disambiguated to a DBpedia identifier. The
disambiguation algorithm relies on the Wikipedia
Search API to resolve the string to a Wikipedia
article.

Example 4.
Picking up on the Václav Havel example,
the word “playwright” is used as a query,
which returns the Wikipedia article http://en.

wikipedia.org/wiki/Playwright. This is then
translated to the DBpedia URI http://dbpedia.

org/resource/Playwright.

Even if this disambiguation approach is simple,
it is effective as confirmed both by our evaluation
(Table 2) and by the recent results of the NIST
TAC 2013 English Entity Linking Evaluation task,
where it performed at median F1 measure (overall)
[22].

5http://www.cis.uni-muenchen.de/~schmid/tools/

TreeTagger/

8

Table 2: LHD Statistics. The dbo column indicates the portion of entities in LHD with type from the DBpedia ontology
namespace, the rest is in the dbpedia namespace. The size is in thousands for the 3.9 dataset release and the accuracy was
computed on the 3.8 release as reported by Kliegr in [2].

language linked (total) linked dbo Acc linked Acc plain

German 893k 199k 0.773 0.948
English 3,013k 1,136k 0.857 0.951
Dutch 834k 305k 0.884 0.933

4.3. Alignment with the DBpedia Ontology

While formally the output of the linking
phase is already a Linked Open Data (LOD)
identifier, the fact that the type is in the
http://dbpedia.org/resource/ namespace (further
referenced by prefix dbpedia) is not ideal. Concepts
from this namespace are typically entities, while
this term is used as a type within LHD (cf. Ex-
ample 5).

Example 5.
Entity Václav Havel has type http://dbpedia.

org/resource/Playwright in LHD Extension.
This entity is not present in LHD Core, be-
cause there is no Playwright class in the used
DBpedia Ontology version. STI assigns this en-
tity with additional type http://dbpedia.org/

ontology/Writer.

DBpedia already contains a predefined set
of types within the DBpedia ontology names-
pace http://dbpedia.org/ontology/ (further abbre-
viated as dbo) such as dbo:Person or dbo:Work. The
focus of the alignment phase is to map the original
type, which is in the dbpedia namespace, to the dbo

namespace.

The mappings are generated using a string
matching algorithm, which requires total match in
concept name (dbpedia:Person → dbo:Person). For
these exact match mappings, only the dbo: type is
output by the generation process.

This simple approach provides a mapping to the
DBpedia ontology for a large number of entities
across all three supported languages. However, in
relative terms, this is less than 50% for each lan-
guage as shown in Table 2, the types for almost
all the remaining entities are mapped with the STI
algorithm covered in the next section.

A more detailed description of the LHD frame-
work as well as additional size and evaluation met-
rics are presented in [2].

5. Statistical Type Inference (STI)

The STI algorithm is a generic co-occurrence-
based algorithm for mapping classes appearing in
one knowledge graph to a different set of classes ap-
pearing in another knowledge graph provided that
the two knowledge graphs contain common set of
instances.

The algorithm thus works with two knowledge
graphs, a primary knowledge graph KG associated
with an ontology OKG , and a knowledge graph
KGmap that holds entity-type assignments that we
desire to map to classes in OKG . Both knowledge
graphs hold entity-type assignments.

STI is based on a simple co-occurrence principle.
First, for a specific input type typemap ∈ KGmap
it finds the distribution of types that are assigned
in KG to the same entities as typemap is in KGmap.
The problem addressed is that the most frequently
co-occurring types are very generic and thus it is
necessary to identify out of the pool of the co-
occurring types (classes from OKG) those providing
the best compromise between specificity and cor-
rectness.

The approach comprises two successive algo-
rithms. The Candidate generation algorithm gener-
ates a set of candidate OKG types for typemap. The
Candidate pruning and selection algorithm then
performs removal of types for which a more spe-
cific one exists while maintaining reasonable trade
off with correctness. From the types surviving the
pruning, the type with the highest number of sup-
porting entities is selected. A detailed description
of the two algorithms follows.

Candidate generation (Algorithm 1) first identi-
fies the set E that contains entities which have as

9

a type in KGmap the type typemap that we desire
to map to ontology OKG . Algorithm output is the
list of distinct OKG types which the entities in E
have along with the number of occurrences of each
type stored as supp. Example 6 illustrates this al-
gorithm.

Example 6.
For the entity Václav Havel, the set E contains
1842 entities with dbpedia:Playwright as a type
in LHD Extension (KGmap) for DBpedia (KG).
Skipping entities without any type in DBpedia or
with a type not in the DBpedia Ontology names-
pace, the list of the types associated with these
1842 entities (each type is followed by entity
count): Comedian:1, MemberOfParliament:1,
Royalty:1, BritishRoyalty:1, MilitaryPerson:1,
Presenter:1, Politician:2, OfficeHolder:7, Musi-
calArtist:5, Writer:266, Artist:277, Agent:521,
Person:521.

The output of the Candidate generation algo-
rithm can already be used for probabilistic type
prediction for a given entity. This process is ex-
emplified in Algorithm 3 (contained in Section 7),
which outputs the conditional probabilities for the
specified parent class in the target ontology.

The selection process (Algorithm 2) is two stage.
In the pruning step, the algorithm iterates through
the candidates removing those which are, as indi-
cated by the numbers of supporting entities, only

Algorithm 1 Candidate Generation
Require: typemap a class which we desire to map, OKG a tar-

get ontology containing types to which the mapping should
be performed, KG knowledge graph containing instances of
classes from OKG , KGmap knowledge graph containing in-
stances of class typemap.

Ensure: C – set of candidate mappings {〈type〉}, where type
is class from OKG associated with probability

1: C := ∅
2: E := set of instances of typemap in KGmap

3: for entity∈ E do
4: types := set of classes entity has in KG
5: for type∈ types do
6: if type is not a OKG class then
7: continue
8: end if
9: if type /∈ C then

10: add type to C
11: C[type].supp := 1
12: else
13: // holds the number of entities assigned with type

in KG and simultaneously with typemap in KGmap

14: C[type].supp += 1
15: end if
16: end for
17: end for
18: return C

a supertype of a more specific type on the list of
Candidates C. Higher number of supporting enti-
ties implies reliability, however, the specific types
tend not to have the highest values.

Candidate type is removed if there is its subtype
type′ in the list of Candidates C, which has more
than TRADEOFF * type.supp supporting entities.
Finally, the type with the highest support is se-
lected from the pruned set of types. The process is
illustrated in Example 7.

The effect of the setting of the TRADEOFF con-
stant on the specificity and accuracy of the resulting
types is investigated in Subs. 8.8.

Example 7.
Candidate pruning removes Royalty, Agent,
Artist and Person and Politician from the list
of candidates. Royalty is removed in favour of
its subclass BritishRoyalty, which has the same
number of supporting entities (one). The follow-
ing three types Agent, Person and Artist are re-
moved in favour of their subclass Writer. While
Writer has less supporting entities than Artist or
Person or Agent, the drop in support is within
tolerance of the TRADEOFF constant set to 0.2.
Similarly, Politician is removed in favour of its
subclass MemberOfParliament.
The result of pruning is: Comedian, MemberOf-
Parliament, BritishRoyalty, MilitaryPerson, Pre-
senter, MusicalArtist, OfficeHolder, Writer. Fi-
nally, the algorithm selects typeopt=Writer as the
type with the highest number of supporting in-
stances in the pruned set.

The standalone output of the STI algo-
rithm for given type is one mapping, such as
dbpedia:Playwright → dbo:Writer.

Algorithm 2 Candidate Pruning and Selection
Require: C = {〈type〉} set of Candidates from Alg. 1, each

associated with support, T – TRADEOFF threshold
Ensure: typeopt – class from OKG
1: totalSupp :=

∑
type C[type].supp

2: discardMade := true
3: while discardMade do
4: discardMade := false
5: for type ∈C do
6: if ∃type′ ∈ C: type’ subclass of type,

type 6= type’, type′.supp > T * type.supp then
7: remove type from C
8: discardMade := true
9: break

10: end if
11: end for
12: end while
13: return typeopt: type with the highest supp from C

10

6. Support Vector Machines Classifiers

Since the set of target classes forms a hierarchy
and we would like to experiment with fusing out-
puts of multiple models, we needed an algorithm
that can output probability distributions, which
can be easily aggregated in a hierarchical setup.
SVMs meet this requirement, additionally this ap-
proach has a previous strong record in the hierar-
chical text categorization domain.

Our setup involves a knowledge graph KG con-
taining entities, each associated with zero or more
types. The types form an ontology (taxonomy)
OKG . The purpose of the classifier is to assign
the most specific correct type from the ontology
to those entities in the knowledge graph KG that
have a missing type. In order to train the classifier,
existing entity-type assignments in KG are used as
the training data. The entities are represented us-
ing a bag-of-words model created from the textual
properties associated with the entities in KG. If an
entity does not have the required textual property
it is exempt from the processing.

As the classification algorithm, we use SVM with
linear kernel, the choice of which is justified in
Subs. 8.7. We also let the SVM implementation
output probability distribution for all target classes,
which is required by the fusion process.

Further, we describe our setup in a greater de-
tail using DBpedia as the knowledge graph KG. In
DBpedia there are multiple textual properties as-
sociated with most entities. To build the classifier,
we selected two of them: short abstracts and article
categories.

We should ideally have an SVM classifier for each
non-leaf class in the DBpedia ontology. However,
since multiple classes in the DBpedia ontology have
only a few instances, better results are obtained if a
dedicated classification ontology Ocl is derived from
the DBpedia ontology.

For each non-leaf type in the classification on-
tology, we create two classifiers: abstract classifier,
which uses the text of the short abstract, and the
cat classifier, which uses article categories (treated
as text).

Once the classifiers have been trained, the classi-
fication models are applied to assign types to enti-
ties using the standard Multiplicative Scoring Rule
approach or our Additive Scoring Rule approach.
The latter has the advantage that it outputs more
specific types.

This section is organized as follows. The bag-of-
words feature set used by our classifier is described
in Subsection 6.1. Subsection 6.2 covers the clas-
sification ontology. The final type selection from
the prediction of the individual SVM models is per-
formed after the STI results have been merged in.
This is described in Section 7.

6.1. Feature Set

The dataset consists of instances that correspond
to entities (articles) in Wikipedia. Each entity
is represented with the bag-of-words vector space
model, which is created from the short abstract and
article categories as retrieved from DBpedia.

Short abstracts represent entity in a more concise
way than full abstracts (e.g. John Forrest entity
is described by 208 words and 1317 characters in
the case of its full abstract and by 72 words and
447 characters in the case of short abstract). In
our experience, short abstracts provide comparable
results to full abstracts with lower computational
demands.

Categories naturally reflect a type of a given en-
tity to a certain extent. Interestingly, they are not
necessarily shorter than short abstract. It should
be emphasized that we treat the article category
data as text.

During the pre-processing step, short abstracts
and categories are lowercased and tokenized into
separate words. Further, stop words along with
numbers are removed and term frequencies are com-
puted for each pre-processed token per given entity.
In the case of categories we further applied noun
stemming.

6.2. Classification Ontology Ocl
Since a supervised model is applied, it is nec-

essary to restrict the classification to types in the
knowledge graph for which sufficient amount of
training data (i.e. instances) is available.

In order to achieve this the DBpedia ontology is
reduced to DBpedia types having at least 100 in-
stances while preserving asserted hierarchical rela-
tionships. Second, DBpedia types having only one
to four direct subclasses are removed. This implies
that these removed DBpedia types are replaced by
their DBpedia subtypes. All DBpedia types are
subsumed by the most general class Thing in the
classification ontology. The thresholds of 100 and
4 respectively were chosen based on small-scale ex-
perimentation of the data, additional performance

11

Figure 2: Structure of hierarchical SVM classifier (29 classi-
fiers and 276 classes in total).

improvement can be gained when these are result
of proper parameter tuning.

It should be noted that we obtained slightly im-
proved results when the automatically built clas-
sification ontology is further manually edited. We
explored this possibility in one of our development
prototype. Our conclusion is that the small im-
provement in accuracy does not offset the costs
associated with this manual intervention into the
classification process each time the DBpedia ontol-
ogy is changed. From these experiments we include
in the following at least several figures. While the
particular numbers are slightly different from the
automatic version, these figures can be used to il-
lustrate the role of the classification ontology in our
workflow.

Since the maximum depth of the manually edited
ontology was set to three, we have three layers of
SVM classifiers (see Figure 2). There is one global
SVM classifier, 11 first level local SVM classifiers
and 17 second level local SVM classifiers:

• The Global SVM classifier covers top level
types from the DBpedia Ontology (i.e. sub-
types of the most general class Thing).

• First level local SVM classifiers enable classifi-
cation into subtypes of (some) top level types.

• Second level local SVM classifiers enable classi-
fication into subtypes of (some) types assigned
by the first level local SVM classifiers.

Table 3 contains details about the global SVM
classifier and the first level local SVM classifiers,
Table 4 covers second level SVM classifiers: types
refers to the number of types the classifier distin-
guishes, entities refers to the number of entities on
which the classifier was trained, attributes refers to
the number of attributes (in the bag-of-words set-
ting) the classifier works with and finally accuracy

states how accurate the SVM classifier was in a ten-
fold cross-validation setting.

Table 3: Global SVM classifier and first level local SVM clas-
sifiers. Each classifier has two variants (abstract and cat).
The first number corresponds to a classifier based on short
abstract (abstract) and the second one to a classifier based
on categories (cat).

Classifier Types Entities Attributes Accuracy

Global 29/28 2900/2745 20419/4562 86%/89%

Work 13/13 1300/1295 11153/2654 86%/91%
Species 5/5 500/496 3402/623 92%/90%
Place 12/12 1200/1187 9136/2253 83%/89%
Transportation 7/7 700/700 5639/1137 95%/96%
Event 6/6 600/599 5472/1078 90%/93%
Device 3/3 300/298 3627/449 98%/98%
Organisation 12/12 1200/1194 9392/1925 91%/92%
Person 30/30 3000/3000 18980/6122 81%/81%
AnatomicalSt. 8/8 800/799 3878/191 93%/96%
CelestialBody 4/4 400/400 1969/318 97%/87%
SportsSeason 4/4 400/400 2530/590 91%/98%

Table 4: Second level local SVM classifiers. The first num-
ber corresponds to a classifier based on short abstract (ab-
stract) and the second to a classifier based on categories
(cat). Arch. means ArchitecturalStructure, Educat. means
EducationalInstitution and Popul. means PopulatedPlace.

Classifier Types Instances Attributes Accuracy

WrittenWork 6/6 600/599 6287/1289 91%/95%
MusicalWork 4/4 400/400 3810/1134 82%/93%
Animal 9/9 900/896 6099/1006 87%/77%
Plant 7/7 700/692 4318/612 93%/92%
Arch. 22/22 2176/2174 13946/2991 89%/91%
SportsEvent 8/8 800/798 4253/858 96%/96%
Athlete 34/34 2550/2549 12674/4031 98%/96%
Broadcaster 3/3 300/300 2736/605 87%/83%
Company 4/4 400/400 3881/518 98%/99%
Educat. 3/3 300/300 2806/778 96%/96%
SportsLeague 5/5 500/491 2940/419 98%/98%
SportsTeam 6/6 600/595 4094/759 99%/97%
Artist 7/7 700/700 6690/1577 90%/86%
Cleric 4/4 400/400 3562/1224 95%/95%
Politician 7/7 700/700 5081/2089 76%/80%
NaturalPlace 8/8 775/773 5809/1252 90%/93%
Popul. 6/6 600/587 4972/1234 85%/86%

7. Hierarchical Combination of Classifiers

The final step in our solution for type inference
is merging the results of STI and SVM models and
selecting the type that poses a compromise between
specificity and reliability from the assigned ones.

The results of STI and the two SVM models (ab-
stract and categories) are merged using linear opin-
ion pool : the probability distributions output by

12

the individual models are simply averaged. This is
performed by Algorithm 4. The merging process
also takes into account the situation that a predic-
tion from a particular classifier may be missing for
given class.

The SVM classifiers provide the function par-
ent.prob classify(e) that for given entity e outputs
the conditional probabilities for a particular par-
ent concept (an individual SVM classifier). Algo-
rithm 3 presents how a structurally compatible out-
put can be generated from the STI output. This
short algorithm addresses two principal points:

• Making a prediction for a specific entity as STI
provides mapping for classes not entities.

• Use of different target ontology as STI Candi-
date Generation algorithm uses the full target
ontology OKG , while the SVM are trained on
its subset Ocl. This is achieved by simply skip-
ping the classes on STI Candidate generation
output, which are not included in Ocl.

Example 8 illustrates the classification with Al-
gorithm 3.

Example 8. Consider the use of STI-prob on the
classification entity e = Václav Havel with re-
spect to the Artist parent class.
Method Artist.prob classify(e) first looks up i in
KGmap obtaining typemap= dbpedia:Playwright.
Next, it executes candidate generation(typemap)
obtaining the set of candidate classes from OKG
along with support values (ref. to Example 6
featured in Section 5). Finally, these support
values are converted to the following probabilities
for subclasses of Artist in Ocl: Comedian 0.4%,
MusicalArtist 0.4%, Writer 99.2% (only classes
with non-zero probability are listed).

The result of Algorithm 4 is a set of conditional
probabilities assigned to classes in the classification

Algorithm 3 Classify instance with STI-prob par-
ent.prob classify(e)
Require: e entity to classify, parent in function name is a con-

cept ∈ Ocl with respect to which the classification should
be performed, the source knowledge base KGmap

Ensure: prob prob. distribution over children of parent ∈ Ocl

1: typemap := type of e in KGmap

2: C := candidate generation(typemap) // see Alg.1
3: for type in children of parent in Ocl do

4: prob[type] =
C[type].supp∑

s∈siblings(type,Ocl)
C[s].supp

5: end for
6: return prob

ontology. Next we apply multiplicative scoring rule
approach (Algorithm 5) proposed in [17] for hier-
archical classification of web content with SVMs.
This algorithm takes on the input computed set
of conditional probabilities from Algorithm 4 and
propagates their values downward the taxonomy,
removing classes with joint probability lower than
a preset threshold. While this approach is very sim-
ple, we feature our implementation in Algorithms 5
and 6 for reference purposes.

One modification to Algorithm 5 we experi-
mented with was averaging the probabilities rather
than computing the joint probability by multiply-
ing them. This modification aims at more reliable
selection of the final type, while maintaining rea-
sonable specificity of the selected type. With the
MSR approach, the types associated with highest
probability are the ones on the most general level of
the ontology. Assignment of these types would not
be very useful. With averaging as the aggregation
operator the maximum can be on any level. We call
this modification the additive scoring rule (ASR).
We tried adapting the pruning for ASR since the
confidence associated with subtype can be higher
than of its supertype in the ASR approach, how-
ever, we found the current version in Algorithm 6
to work better.

We introduce two strategies for selecting one type
per entity from the multiple types that can survive
the pruning step in the following subsection.

Algorithm 4 Linear opinion pool for hierarchy
Require: e – entity to be classified, Ocl Classification Ontology,

cl – grid of |M | x |N | probabilistic classifiers, where N is the
set of non-terminal types in Ocl and M the set of modalities,
classifier for some combination of m ∈ M and n ∈ N may
not exist, weight wm for each modality,

∑
m∈M wm = 1

Ensure: prob – array of conditional probabilities associating
every class c ∈ Ocl except root (Thing) with a conditional
probability of c given its parent p in Ocl

1: //there is at least one classifier for each non-terminal class
2: prob[∗] := 0
3: for non-terminal class p ∈ Ocl do
4: // we have up to 3 modalities: SVM categories, abstract

and STI. If a classifier in any modality is missing, the
weight vector needs to be adjusted by a factor of ws

5: ws := 0
6: for m ∈ M do
7: if classifier cl[m, p] exists then
8: ws = ws + wm

9: end if
10: end for
11: for m ∈ M, c ∈ target classes of cl[m, p] do
12: prob[c] := prob[c] + wm

ws ∗ cl[m, p].prob classify(e)[c]
13: end for
14: end for
15: return prob

13

7.1. Final Type Selection

By default MSR approach returns set of types.
In order to provide a classification result, the algo-
rithm selects a final type from Candidates accord-
ing to probabilities associated with each type.

We use two approaches to determine the final
type from the output of Algorithm 5 (MSR or
ASR):

• α strategy selects the type with maximum joint
probability from non-top6 leaf types. This ap-
proach is used in conjunction with the default
MSR version of the algorithm.

• β strategy selects the type with maximum joint
probability from all types. This approach is
used in conjunction with the ASR version of
the algorithm.

8. Evaluation

Due to the unavailability of a suitable evalu-
ation resource, we decided to build a gold stan-
dard dataset that associates a DBpedia entity (a
Wikipedia article) with a manually curated list of

6That is leaf types with parent Thing. We obtained better
results when these were excluded.

Algorithm 5 Multiplicative Scoring Rule – Com-
puting joint probability
Require: prob – conditional probability for c ∈ Ocl \{Thing}

given its parent p in Ocl

Ensure: jprob – joint probability for c ∈ Ocl \{Thing}
1: jprob := prob[class]
2: // proceeds breadth-first from root to leaf
3: for type ∈ non-leaf classes from Ocl \{Thing} do
4: for subtype ∈ children(Ocl, type) do
5: jprob[subtype] := jprob[subtype]× jprob[type]
6: end for
7: end for
8: return jprob

Algorithm 6 Multiplicative Scoring Rule – Prun-
ing
Require: jprob – joint probability for c ∈ Ocl \ {Thing},

threshold T
Ensure: jprob – joint probability with some types removed
1: // proceeds breadth-first from root to leaf
2: for type ∈ classes from Ocl \{Thing} do
3: if jprob[type] ≤ T then
4: for subtype ∈ descendants(Ocl, type) do
5: remove subtype from jprob and from Ocl

6: end for
7: remove type from jprob
8: end if
9: end for

10: return jprob

types from the DBpedia Ontology. Such dataset
allows not only to report on performance of our ap-
proach, but also to provide a comparison with other
algorithms in an objective way.

The annotation setup for the three gold standard
datasets GS1, GS2 and GS3 is described in Subsec-
tion 8.1. Evaluation metrics are described in Sub-
section 8.2. Subsection 8.3 describes the setup of
our algorithms and Subsection 8.4 presents their
results. Subsection 8.5 provides a comparison with
the SDType algorithm. Subsection 8.6 evaluates
the quality of types in DBpedia and assesses the
suitability of or approach for completing types for
entities without any type in DBpedia.

Subsection 8.7 justifies the choice of linear SVMs
as the base learner comparing performance with
other common classification algorithms. Subsec-
tion 8.8 evaluates the effect of varying the TRADE-
OFF parameter of the STI algorithm.

8.1. Building the Gold Standard

Since the task of assigning a final type to the
entity described in English Wikipedia article does
not necessarily need an expert we rely on collecting
judgments from paid volunteer contributors via a
crowdsourcing service.

We decided to perform crowdsourcing as opposed
to expert annotation based on experimental evi-
dence presented in a seminal article of Snow et al.
[23] that evaluates the quality of crowdsourced an-
notations on five different natural language process-
ing tasks. For all five task types the paper reports
high agreement between Amazon Mechanical Turk
non-expert annotations and expert labelers.

8.1.1. Task setup

For the crowd sourcing service we opted for
CrowdFlower7 as Amazon Mechanical Turk is not
available for Europe. The annotation instructions
asked the CrowdFlower workers to assign the most
specific category (categories) from the presented
taxonomy of categories for each Wikipedia arti-
cle describing certain entity from the given list.
The taxonomy used corresponded to the DBpedia
2014 ontology, which contains almost 700 DBpe-
dia types.8 The annotators were aided in the task

7http://www.crowdflower.com/
8Since CrowdFlower only allows one super-category for

each category in a taxonomy, we did one correction: Library
is originally subsumed by both EducationalInstitution and
Building in DBpedia Ontology, for the taxonomy we only
kept subsumption to EducationalInstitution.

14

Table 5: Overview of evaluation dataset. Column entities denotes the number of entities in the annotation task (all), number of
entities where annotators agreed on ‘not found’ category (nf), number of entities where annotators agreed on ‘disambiguation
page’ category (dp), number of entities where annotators did not agree based on majority vote (nma), number of entities with
ground truth (gt) and the number of the “hard” entities – those with groundtruth for which there is no type in DBpedia
(gth). Interannotator agreement is reported in terms of Krippendorff’s alpha. Column workers reports the number of unique
annotators. LHD Fusion 3.9 denotes the set of entities in DBpedia 3.9 for which a hypernym was extracted but not mapped
with exact string matching to DBpedia Ontology, cf. Fig. 1).

dataset entities Kr. α workers sample source
all nf dp nma gt gth

GS 1 1219 140 5 53 1021 373 0.529 64 LHD Fusion 3.9
GS 2 176 2 2 12 160 NA 0.514 16 Intersection of SDType 3.9 and LHD Fusion 3.9
GS 3 1165 22 47 63 1033 331 0.503 48 Randomly drawn articles from Wikipedia

Figure 3: Interface of the CrowdFlower taxonomy annota-
tion tool. The annotators can navigate through the taxon-
omy either by clicking on a concept, which shows its sub-
types, or by fulltext search, which shows all concepts with
substring match in the concept name along with the full
path.

of locating the right class among the 700 candi-
dates by the taxonomy annotation tool offered by
the CrowdFlower platform, which enables the an-
notators to quickly browse through the taxonomy
using fulltext queries. Figure 3 shows a screenshot
of the tool.

It should be noted that it was up to the annota-
tors to choose which part of Wikipedia articles they
will read and identify types from,however, many of
them might have opted only for reading the start
of the article. This could have slightly favoured
our SVM algorithm trained on short abstracts, and
the evaluation of the LHD Core, which is based
on the lexico-syntactic analysis of the article’s first
sentence.

The CrowdFlower platform has a wide range of
setting for controlling the quality of the work done
by its workers. Our setup was as follows:

• Only workers residing in the following coun-
tries were eligible: Australia, Canada, Den-
mark, Germany, Ireland, Netherlands, Sweden,
United Kingdom and United States. The work-
ers were Level 1 Contributors, which are de-

scribed by the CrowdFlower service as account-
ing for 60% of monthly judgments and main-
taining a high level of accuracy across a basket
of jobs.

• Amount of 0.02 USD was paid for each anno-
tated entity to a worker.

• The workers were given a quiz before starting a
task with minimum of four test questions (enti-
ties to annotate). Only workers with accuracy
of 30% or higher could continue in the task.

• To maintain high accuracy, additional test
questions were asked as the workers were com-
pleting their job.

• A speed trap was put in place that eliminated
workers who took less than 10 seconds to com-
plete a task.

Concerning the appropriateness of the remunera-
tion, [24] gives half-a-penny per question as the rule
of thumb for payment on crowd sourcing services,
which our remuneration exceeded. To further en-
sure that the pay is appropriate, we checked the sat-
isfaction scores reported in the final questionnaire
by the workers. On a 1–5 Likert scale (1 worst, 5
is best), the workers rated their remuneration on
average between 3.1 to 4.0. None of the jobs had
pay rating in the red band.9

Each entity was typically annotated by three to
four workers. The CrowdFlower platform ensured
that the annotations from workers who failed the
test questions were replaced by untainted annota-
tions.

9The crowdflower platform assigns three color codes to
the final scores (red, orange and green) to help interpreting
the questionnaire results.

15

Our setup can be somewhat compared the crowd-
sourcing evaluation performed in [9]. There the
number of workers annotating each entity was simi-
lar to ours (three). Also, similarly to our setup, the
workers were supposed to select only one best type.
One major difference is that in [9] the workers were
presented preselected types (with the option to en-
ter a new type), while in our system they had to
select the type from a larger fixed list of types. An-
other difference is that in [9] no majority type was
selected for given entity. Instead, all types were
used with a relevance score corresponding to the
number of workers selecting the respective type.

8.1.2. Interannotator agreement

For measuring interannotator agreement we have
opted for Krippendorff’s alpha [25] (as implemented
in [26]), since this measure supports multiple anno-
tators and is applicable to incomplete data. The
values of Krippendorff’s alpha as reported in Ta-
ble 5 are in the 0.4 to 0.6 range which is considered
as moderate agreement for kappa-like coefficients
([27] cited according to [28]). While some sources
would consider already value below 0.8 as unaccept-
able for any serious purpose [25, Chapter 11, page
242], it should be noted that our annotation task
with hundreds of distinct concepts to choose from
was exceptionally difficult. Also, when computing
the α we used binary distance function (i.e. the sim-
ilarity of two distinct yet semantically close anno-
tations was not considered). Annotations assigning
more than one concept were ignored for the purpose
of computing the α value.

8.1.3. Gold standard datasets

The gold standard for given entity consists of all
types that were assigned by at least two annotators
to the entity. As a consequence, not all entities in-
cluded in the annotation task are contained in the
gold standard (cf. Table 5). The process of estab-
lishing the gold standard is illustrated by Example
9.

Example 9.
Wikipedia article describing August Nybergh en-
tity was annotated in the following way by four
annotators:
• {Agent > Person > Politician > Senator}, {Agent >

Person > Politician > MemberOfParliament}

• {PersonFunction > PoliticalFunction}

• {Agent > Person > Politician > Senator}, {Agent >
Person > Politician}

• {Agent > Person > Politician}

The first and the third annotator assigned two
different most specific types. The final most spe-
cific type, having frequency at least two, is the
Senator type. The Politician type was not added
to the gold standard as it is a superclass of Sen-
ator.

Any redundant superclasses were removed as also
illustrated by the example. The annotators could
assign more than one most specific type to the en-
tity. Multiple final types were assigned for less than
1% of entities in our initial annotation task, thus we
ignored multiple types in our evaluation, selecting
one type randomly in such cases for the gold stan-
dard. Besides categories corresponding to types in
the DBpedia Ontology, annotators could select ‘not
found’ category if they could not find the article or
‘disambiguation page’ category in case the article
was a disambiguation page in their opinion. En-
tities with these categories are omitted from the
gold standard. In order to foster reusability of the
dataset as the evaluation ontology we used the most
up-to-date released version of the DBpedia Ontol-
ogy (2014) at the time.

The gold standard resulting from the annotation
process is composed of three datasets depending on
the subset of DBpedia/Wikipedia from which the
entities to be annotated were drawn. Table 5 shows
an overview of the three gold standard datasets,
totaling 2214 entities with groundtruth.

8.2. Evaluation Metrics

We use four evaluation measures: exact precision,
hierarchical precision, hierarchical recall and hier-
archical F-measure. The first measure corresponds
to precision which does not take into account the
type hierarchy:

Pexact =

∑
i |Pi ∩ Ti|∑

i |Pi|
, (1)

16

where Pi is the set of the most specific types pre-
dicted for test example i, Ti is the set of the true
most specific type of test example i.10

The other three measures consider the type hi-
erarchy. Hierarchical precision (hP), hierarchical
recall (hR) and hierarchical F-measure (hF) are de-
fined according to [29] as follows:

hP =

∑
i |P̂i ∩ T̂i|∑

i |P̂i|
, (2)

hR =

∑
i |P̂i ∩ T̂i|∑

i |T̂i|
, (3)

hF =
2 ∗ hP ∗ hR
hP + hR

, (4)

where P̂i is the set of the most specific type(s)
predicted for test example i and all its (their) ances-
tor types and T̂i is the set of the true most specific
type(s) of test example i and all its (their) ancestor
types.

8.3. Evaluated Setups

Our evaluation involves the following setups of
our algorithms:

• LHD Core: lexico-syntactic patterns, ex-
tracted types were successfully mapped to DB-
pedia Ontology with exact string matching
(LHD Core, approach published in [2]).

• STIprune: lexico-syntactic patterns, type map-
ping was performed by the standalone STI with
pruning (exact string matching failed).

• hSVM cat: hierarchy of SVM models trained on
article categories with the final types selected
with Multiplicative Scoring Rule (MSR).

• hSVM abstract: hierarchy of SVM models
trained on article abstracts with the final types
selected with MSR.

• hSVM text: hSVM cat and hSVM abstract

merged with linear opinion pool using equal
weights.

10We measure Pexact only for algorithms that assign at
most one type (Pi and Ti always contain at most one ele-
ment).

• hSVM textSTI: all three models (hSVM cat,
hSVM abstract, STI without pruning) were
merged with linear opinion pool, the final types
were selected with MSR.

• hSVM add
textSTI: all three model results were

merged with linear opinion pool, the final types
were selected with ASR.

• Core+STIprune: merge of results of LHD Core
and STI prune.

• STIprune + hSVM text: merge of results of
STI prune and hSVM text where results of STI
are prioritized (if an entity has types assigned
both in STI and hSVM text, only results from
STI are used).

• Core+ hSVM textSTI: merge of results of LHD
Core and hSVM textSTI where results of LHD
Core are prioritized.

• Core+STIprune+hSVM text: merge of results
of LHD Core, STI prune and hSVM text where
results of LHD Core and STI are prioritized.

The results of LHD Core and STI were gener-
ated by the LHD framework [12] and are available
as part of the DBpedia 2014 release. The tradeoff
threshold constant of STI was set to 0.6, which is
a value that maximizes F-measure on GS 1 (refer
to Subs. 8.8). Note that this threshold is used only
in the standalone STI runs. Based on parameter
tuning, the STI weight for linear opinion pool was
set to 0.33.

All SVM models were also generated on DBpedia
2014. Threshold for MSR or ASR algorithms for
combining SVM models was selected according to
the maximum hF-measure based on evaluation on
a different dataset. That is, for GS1 dataset we
used the best hF-measure computed on GS3 and
vice versa. The optimization step was 0.01.

For reference purposes, our evaluation also in-
volves the following:

• SDType: SDType results for DBpedia 3.9 ob-
tained from the DBpedia website.11

11The reason why we use 3.9 and not 2014 results is that
the GS2 dataset designed for comparison of SDType results
with our approach was generated on version 3.9. Since SD-
type result for version 2014 does not contain many of these
entities, the evaluation sample would be too small.

17

• DBpedia 2014. Entity type assignments in the
DBpedia ontology namespace that are part of
the English DBpedia 2014 release.

The evaluations are performed in addition to
GS1, GS2, and GS3 also on GS3 subset GS3h that
contains the “hard” entities – those with no type
assigned in DBpedia 2014.

8.4. STI, hSVM and their combinations

Table 6: Evaluation on gold standard GS1 (1021 entities)
and GS2 (160 entities).

Classifier P
e
x
a
c
t

hP hR hF

STI prune .446 .780 .589 .671

hSVM abstract NA .622 .550 .584
hSVM cat NA .587 .644 .614
hSVM text NA .713 .668 .690

hSVM abstractα .261 .622 .597 .609
hSVM catα .267 .715 .611 .659
hSVM textα .310 .719 .675 .696
hSVM textSTIα .347 .735 .730 .732
STI+hSVM textα .400 .763 .734 .748

hSVM add
textβ .365 .719 .706 .712

hSVM add
textSTIβ .294 .817 .652 .726

DBpedia (2014) .548 .890 .665 .761

GS2

SDType (3.9) .338 .809 .641 .715

We evaluated separately the STI and hSVM clas-
sifier and their combination using Multiplicative
Scoring Rule (MSR) and its ASR variant. The re-
sults are presented in Table 6.

With respect to our individual approaches, STI
outperforms all runs of the hSVM classifier includ-
ing its combination with STI in the Pexact measure,
while hSVM has better results with regard to the hi-
erarchical measures. The good STI result might be
to certain extent influenced by existing type assign-
ment in DBpedia, since the STI classifier exploits
the co-occurrence information with types already
in DBpedia. Also GS1 dataset was used to tune
the TRADEOFF threshold affecting the results of
STI prune. An unbiased evaluation on GS3h shows
that indeed the hierarchical precision of STI drops
below hierarchical SVM on this dataset.

With respect to the hSVM classifier, the improve-
ment in all metrics for hSVM text, which uses both
abstract and categories as input features, suggests
that these sets of features are not redundant. What
we have not evaluated is if a hSVM model built
upon a merge of both feature sets would not pro-
vide even better results than building two models
and merging them. Individually, the classifiers built
upon the categories feature set perform slightly bet-
ter than the ones built upon abstracts, but this dif-
ference is not statistically significant as the 95%
Wilson confidence intervals for binomial probabili-
ties for exact match overlap.12

The comparison between the baseline MSR ap-
proach hSVM textSTIα and our additive variant
hSVM add

textSTIβ shows that the additive version
provides an improvement in hierarchical precision,
but this is offset by even higher drop in the remain-
ing metrics.

Selecting one final type with either α or β strate-
gies is better in terms of all metrics than the vanilla
MSR approach hSVM text, which uses all types with
joint probability exceeding the threshold.13 Since
selecting one type per entity is preferred (DBpedia
infobox-based framework and STI also assign one
type) we therefore select hSVM text + STIα as the
final approach. This corresponds to merge of the
results of STI and hSVM algorithms rather than
their fusion with linear opinion pool.

Overall, the hSVM approach can be used to
assign type to entities unmatched by the lexico-
syntactic patterns, but it does not improve – at
least with the current version of the linear opin-
ion pool fusion approach – the existing type assign-
ments generated by the STI algorithm.

8.5. SDType

This section compares our approach to the state-
of-the-art algorithm SDType described in Sec-
tion 2.5.

We evaluated SDType on gold standard dataset
GS2, which covers untyped instances in DBpedia
3.9 that were assigned a type with SDType. The

12Paper [30] suggests that when interval overlap is used
for significance testing, 95% confidence interval will give very
conservative results.

13A noteworthy comparison is that the α and β strategies,
which select one final type, have higher recall than vanilla
MSR, which selects all types above the threshold. The reason
is that the threshold weights were trained separately for all
three approaches.

18

evaluation statistics are provided in the bottom of
Table 6. Results on GS1 show that on this sam-
ple SDType is very reliable in selecting types with
hierarchical precision very close to that of DBpe-
dia. Hierarchical recall and F-measure have little
meaning on GS1 for SDType since a criterion for
selecting GS1 entities was the presence of a type
assigned with SDType.

Our second evaluation was performed on GS3h
containing randomly drawn articles from English
Wikipedia that are untyped in DBpedia 2014. The
hierarchical F-measure and the number of covered
entities show that SDType assigned a type only to
a very small number of instances compared to all
other approaches. When SDType did assign the
type, the hierarchical precision was on par with
hSVM. Inspection of Pexact on GS2 and GS3h eval-
uation shows that the specificity of types assigned
by SDType is relatively low.

Overall, SDType completes a high number of un-
typed instances, but these are often instances with-
out any Wikipedia page that were possibly created
in DBpedia from Wikipedia “red links”. In con-
trast, our algorithms require at least the abstract
of categories to be present. Overall, this shows that
SDType and our approach are highly complemen-
tary.

8.6. DBpedia

The entities in the gold standard GS3 were ran-
domly selected from all the Wikipedia articles. The
evaluation using GS3 thus provides the most objec-
tive evaluation of all approaches for type assign-
ment.

For DBpedia type assignment to given entity we
consider only the most specific DBpedia Ontology
types, which is in-line with how our gold standard
is constructed. First, we obtained all DBpedia On-
tology types for given entity and next we selected
the most specific types.14

Overall, DBpedia has the best hierarchical pre-
cision. However, the results, presented in Ta-
ble 7, perhaps surprisingly show that the lexico-
syntactic patterns (LHD Core) provide exact types
with higher precision than DBpedia (22% relative
improvement in Pexact). We hypothesize that this
is caused by some infoboxes being mapped in the

14Out of 1021 DBpedia entities there was not any case
with more than one specific type from DBpedia ontology
namespace.

DBpedia extraction framework to higher-level types
than is the most specific available type in the DB-
pedia ontology. This interpretation is supported
by DBpedia having marginally higher hierarchical
precision than LHD Core. Another possible rea-
son contributing to LHD Core having higher exact
precision than DBpedia is that it was easiest for an-
notators to base their type assignment on the first
sentence of the article from which the LHD patterns
extract the type.

The results on GS3 show that all our approaches
combined achieve higher hierarchical F-measure
and assign types to more entities than the DBpe-
dia infobox-based DBpedia extraction framework.
The GS3 dataset contains 331 entities untyped in
DBpedia (out of which 50 do not exist in DBpedia
2014 at all).15 Out of these entities composing the
GS3h dataset, our combined approach is able to as-
sign types to 197 entities (which is 70% of untyped
instances existing in DBpedia).

There are two main reasons why our most uni-
versal hSVM approach was unable to type the re-
maining 30% of untyped instances: part of these
instances did not have any abstract and categories
in DBpedia and for some instances the type assign-
ment was computed, but was not considered reliable
enough given the precomputed threshold in Algo-
rithm 6.

8.7. Comparison with other classifiers

In order to further ground (beyond the related
work discussed in Subs. 2.6) the selection of SVMs
with linear kernel as our base model, we performed
a benchmark on all 58 datasets, which were used
to train the individual SVM classifiers. Ten per-
cent of each dataset was used for testing, the rest
for training (stratified selection). The feature set
was pruned by removing features with less than 0.1
standard deviation in each dataset.

No parameter tuning for any of the classifiers was
performed, the default values from the RapidMiner
5 implementation16 of the respective classifier was
used:

• Ripper [31]: information gain criterion
used, sample ratio=0.9, pureness=0.9, mini-
mal prune benefit=0.25.

• SVM linear kernel: C=0.0, ε = 0.001,
shrinking applied.

15Based on the titles file
16http://rapidminer.sourceforge.net

19

Table 7: Evaluation on gold standard GS3 (1033 entities) and GS3h (331 entities), 50 entities from GS3 and GS3h are not
present in DBpedia 2014.

GS3 (randomly drawn articles) GS3h (untyped instances)

Classifier en
ti

ti
es

P
e
x
a
c
t

hP hR hF en
ti

ti
es

P
e
x
a
c
t

hP hR hF

DBpedia 715 .537 .902 .611 .729
SDType 19 .105 .644 .033 .063
Core 402 .654 .864 .371 .519 26 .654 .713 .065 .119
STI prune 379 .449 .754 .274 .403 106 .255 .461 .162 .240
hSVM textα 750 .307 .747 .597 .663 131 .130 .635 .293 .400
hSVM textSTIα 765 .327 .757 .621 .682
Core + STI prune 781 .554 .814 .645 .720
Core + hSVM textSTIα 864 .439 .786 .720 .752 169 .169 .534 .289 .375
Core + STI prune + hSVM textα 896 .465 .800 .724 .760 197 .205 .565 .379 .454

• SVM RBF kernel: C=0.0, ε = 0.001, γ =
0.0, shrinking applied.

• SVM polynomial kernel: degree 3, ε =
0.001, C=0.0, γ = 0.0, shrinking applied.

• Logistic regression: dot kernel used, conver-
gence ε = 0.001, C=1.0, value scaling applied.

The results depicted in Table 8 show that SVMs
with linear kernels provide the best accuracy and
at the same time have one of the smallest run times
(aggregate for training and testing phase) on a core
i5 2.6 GHz laptop with 16 GB of available memory
running Open JDK 1.7. Our results are consistent
with linear kernel being chosen for hierarchical clas-
sification of web content in Dumais and Chen [17]
and by Liu et al. [15].

8.8. STI: Tuning the tradeoff parameter

We performed parameter tuning of the STI algo-
rithm’s tradeoff constant on GS1 dataset and DB-
pedia 3.9. We executed the algorithm with tradeoff
set to values ranging from 0.02 to 0.99 with step
0.01.

Figure 4 shows that increasing value of this pa-
rameter improves hierarchical precision, which fol-
lows from more high level types surviving pruning.
For the same reason, hierarchical recall drops as
less types survive pruning. As a result, the hierar-
chical F-measure remains stable until around 0.8,
with maximum having at tradeoff=0.6. Focusing

Figure 4: Effect of tradeoff threshold

on exact match, the best interval for the tradeoff
parameter value lies between 0.2 and 0.6.

Based on this examination, we suggest to set the
value of the tradeoff parameter to 0.6.

9. Conclusion and Future Work

This article introduced a novel technique for in-
ferring entity types in semantic knowledge graphs.
The free text describing the entities is analyzed us-
ing algorithms from the two major directions of
computational linguistics: lexico-syntactic analysis
and statistical natural language processing.

The types extracted with lexico-syntactic pat-
terns are processed with an unsupervised Statisti-

20

Table 8: Comparison of linear SVMs with other common classifiers

metric Naive B. SVM (linear) SVM (RBF) SVM (poly) Ripper Log Reg

macro avg accuracy 0.76 0.90 0.88 0.85 0.80 0.86
run time less 1 minute 5 minutes 6 minutes 12 minutes 4 hours 5 minutes

cal Type Inference (STI) algorithm, which analyzes
their co-occurrence with types already assigned in
the knowledge graph. Further, we adapted the hi-
erarchical Support Vector Machines (hSVMs) clas-
sifier, which we found particularly suitable due to
the fact that our problem consists of a high number
of taxonomically ordered classes.

During the course of the research, we were un-
able to find any resource that could be used for
the evaluation of our algorithms providing an unbi-
ased comparison with the accuracy of the DBpedia
extraction framework. In response to this, we de-
signed a new dataset using the commercial Crowd-
Flower crowdsourcing platform, which consists of
more than 2.000 Wikipedia articles (DBpedia en-
tities) that are assigned a type from the DBpedia
2014 Ontology. This dataset was made freely avail-
able along with the annotation guidelines under a
Creative Commons license.

We evaluated the STI and hSVM algorithms and
their fusion on the crowdsourced content and pro-
vide a comparison with DBpedia and its heuristics
dataset, generated by the state-of-the-art SDType
algorithm.

According to this evaluation we concluded that
(1) the quality of types assigned with lexico-
syntactic patterns from first sentence of Wikipedia
articles is comparable to the quality of types in-
ferred from information boxes by the DBpedia ex-
traction framework, (2) the text categorization ap-
proach (hierarchical SVM) applied to the type in-
ference problem has the highest recall of all but
also the lowest precision (3) our approach has pre-
cision comparable to the state-of-the-art SDType
algorithm while generating types for a largely dif-
ferent set of instances.

Notably, the hSVM approach requires as input
only a free-text representation of the Wikipedia ar-
ticles. Even the labeled data required to train the
classifier for a particular language (i.e. DBpedia
ontology types for at least some instances for each
target class) can be obtained from Wikipedia’s in-
terlanguage links. The hSVM approach thus could

serve as a starting point for populating type as-
signments in Wikipedia-based knowledge graphs for
“smaller” languages or those with less development
resources available.

As a future work, accuracy improvements could
be gained by utilizing more sophisticated feature
representation of the textual modality. A more in-
volved enhancements would be replacement of the
linear opinion pool with some meta machine learn-
ing approach such as stacking.

Resources for this article including the In-
ference dataset and the gold standard datasets
are located at http://ner.vse.cz/datasets/

linkedhypernyms/.

Acknowledgements

The authors wish to thank the three anonymous
reviewers for their very helpful comments. Tomáš
Kliegr thanks André Melo and Heiko Paulheim for
insightful comments that led to our adoption of the
standard set of hierarchical evaluation metrics and
the German DAAD grant agency for making this
interaction possible. The development of the STI
and hSVM algorithms was supported by the Euro-
pean Union’s 7th Framework Programme via the
LinkedTV project (FP7-287911). Ondřej Zamazal
has been additionally supported by the CSF grant
no. 14-14076P, “COSOL – Categorization of On-
tologies in Support of Ontology Life Cycle”. This
research is also partially supported by long term in-
stitutional support of research activities by Faculty
of Informatics and Statistics, University of Eco-
nomics, Prague.

References

[1] H. Paulheim, C. Bizer, Improving the quality of
linked data using statistical distributions, International
Journal on Semantic Web and Information Systems
(IJSWIS) 10 (2014) 63–86.

[2] T. Kliegr, Linked hypernyms: Enriching {DBpedia}
with targeted hypernym discovery, Web Semantics: Sci-
ence, Services and Agents on the World Wide Web 31
(2015) 59 – 69.

21

[3] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker,
R. Cyganiak, S. Hellmann, DBpedia-a crystallization
point for the web of data, Web Semantics: Science,
Services and Agents on the World Wide Web 7 (2009)
154–165.

[4] J. Hoffart, F. M. Suchanek, K. Berberich, G. Weikum,
YAGO2: A spatially and temporally enhanced knowl-
edge base from Wikipedia, Artificial Intelligence 194
(2013) 28–61.

[5] T. Kliegr, O. Zamazal, Towards linked hypernyms
dataset 2.0: complementing dbpedia with hypernym
discovery, in: Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC-2014), Reykjavik, Iceland, May 26-31, 2014.,
pp. 3517–3523.

[6] H. Paulheim, Knowledge graph refinement: A survey
of approaches and evaluation methods, Semantic Web
(2016) 1–20. Preprint.

[7] A. Gangemi, A. G. Nuzzolese, V. Presutti, F. Draicchio,
A. Musetti, P. Ciancarini, Automatic typing of DBpe-
dia entities, in: P. Cudre-Mauroux, J. Heflin, E. Sirin,
T. Tudorache, J. Euzenat, M. Hauswirth, J. X. Parreira,
J. Hendler, G. Schreiber, A. Bernstein, E. Blomqvist
(Eds.), The Semantic Web - ISWC 2012, Lecture Notes
in Computer Science, Springer Berlin Heidelberg, 2012,
pp. 65–81.

[8] H. Paulheim, C. Bizer, Type inference on noisy RDF
data, in: The Semantic Web–ISWC 2013, Springer,
2013, pp. 510–525.

[9] A. Tonon, M. Catasta, G. Demartini, P. Cudré-
Mauroux, K. Aberer, TRank: Ranking Entity Types
Using the Web of Data, Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 640–656.

[10] H. Paulheim, Browsing Linked Open Data with auto
complete, in: Proceedings of the Semantic Web Chal-
lenge co-located with ISWC2012, Springer, Boston, US,
2012.

[11] N. F. Noy, D. L. McGuinness, et al., Ontology develop-
ment 101: A guide to creating your first ontology, 2001.
Technical report.

[12] T. Kliegr, V. Zeman, M. Dojchinovski, Linked hyper-
nyms dataset - generation framework and use cases, in:
The 3rd Workshop on Linked Data in Linguistics: Mul-
tilingual Knowledge Resources and Natural Language
Processing, co-located with LREC 2014, LDL-2014.

[13] J. Neville, D. Jensen, Iterative classification in rela-
tional data, in: Proc. AAAI-2000 Workshop on Learn-
ing Statistical Models from Relational Data, pp. 13–20.

[14] J. Sleeman, T. Finin, Type prediction for efficient coref-
erence resolution in heterogeneous semantic graphs, in:
Semantic Computing (ICSC), 2013 IEEE Seventh In-
ternational Conference on, IEEE, pp. 78–85.

[15] T.-Y. Liu, Y. Yang, H. Wan, H.-J. Zeng, Z. Chen, W.-
Y. Ma, Support vector machines classification with a
very large-scale taxonomy, SIGKDD Explor. Newsl. 7
(2005) 36–43.

[16] C. Cortes, V. Vapnik, Support-vector networks, Ma-
chine Learning 20 (1995) 273–297.

[17] S. Dumais, H. Chen, Hierarchical classification of web
content, in: Proceedings of the 23rd Annual Interna-
tional ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, SIGIR ’00, ACM,
New York, NY, USA, 2000, pp. 256–263.

[18] A. Zaveri, D. Kontokostas, M. A. Sherif, L. Bühmann,
M. Morsey, S. Auer, J. Lehmann, User-driven qual-

ity evaluation of DBpedia, in: Proceedings of the
9th International Conference on Semantic Systems, I-
SEMANTICS ’13, ACM, New York, NY, USA, 2013,
pp. 97–104.

[19] R. A. Howard, The foundations of decision analysis, in:
W. Edwards, R. F. M. Jr., D. von Winterfeldt (Eds.),
Advances in Decision Analysis, Cambridge University
Press, 2007, pp. 32–56. Cambridge Books Online.

[20] Wikipedia, Wikipedia:manual of style/lead section,
2006. [Online; accessed 24-March-2016].

[21] T. Kliegr, K. Chandramouli, J. Nemrava, V. Svátek,
E. Izquierdo, Wikipedia as the premiere source for
targeted hypernym discovery, in: Proceedings of the
Wiki’s, Blogs and Bookmarking tools - Mining the Web
2.0 Workshop at ECML’08.

[22] M. Dojchinovski, T. Kliegr, I. Lašek, O. Zamazal,
Wikipedia search as effective entity linking algorithm,
in: Text Analysis Conference (TAC) 2013 Proceedings,
NIST, 2013.

[23] R. Snow, B. O’Connor, D. Jurafsky, A. Y. Ng, Cheap
and fast—but is it good?: Evaluating non-expert anno-
tations for natural language tasks, in: Proceedings of
the Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP ’08, Association for Compu-
tational Linguistics, Stroudsburg, PA, USA, 2008, pp.
254–263.

[24] T. Schnoebelen, V. Kuperman, Using Amazon mechan-
ical turk for linguistic research, Psihologija 43 (2010)
441–464.

[25] K. Krippendorff, Content analysis: An introduction to
its methodology, Sage, second edition, 2004.

[26] M. Gamer, J. Lemon, I. F. P. Singhf, irr: Various Co-
efficients of Interrater Reliability and Agreement, 2012.
R package version 0.84.

[27] G. G. K. J. Richard Landis, The measurement of ob-
server agreement for categorical data, Biometrics 33
(1977) 159–174.

[28] R. Artstein, M. Poesio, Inter-coder agreement for com-
putational linguistics, Comput. Linguist. 34 (2008)
555–596.

[29] C. N. Silla Jr, A. A. Freitas, A survey of hierarchical
classification across different application domains, Data
Mining and Knowledge Discovery 22 (2011) 31–72.

[30] M. E. Payton, M. H. Greenstone, N. Schenker, Over-
lapping confidence intervals or standard error intervals:
what do they mean in terms of statistical significance?,
Journal of Insect Science 3 (2003) 34.

[31] W. W. Cohen, Fast effective rule induction, in: Pro-
ceedings of the Twelfth International Conference on
Machine Learning, pp. 115–123.

22

