
Dimensional Enrichment of Statistical Linked Open Data

Jovan Vargaa, Alejandro A. Vaismanb, Oscar Romeroa,
Lorena Etcheverryc, Torben Bach Pedersend, Christian Thomsend

aUniversitat Politècnica de Catalunya, BarcelonaTech, Jordi Girona 1-3, Barcelona, Spain
bInstituto Tecnológico de Buenos Aires, 25 de Mayo 457, Buenos Aires, Argentina

cInstituto de Computación, Facultad de Ingenierı́a, UdelaR, Ave Julio Herrera y Reissig 565, Montevideo, Uruguay
dAalborg Universitet, Selma Lagerlöfs Vej 300, Aalborg, Denmark

Abstract

On-Line Analytical Processing (OLAP) is a data analysis technique typically used for local and well-prepared data.
However, initiatives like Open Data and Open Government bring new and publicly available data on the web that are
to be analyzed in the same way. The use of semantic web technologies for this context is especially encouraged by the
Linked Data initiative. There is already a considerable amount of statistical linked open data sets published using the
RDF Data Cube Vocabulary (QB) which is designed for these purposes. However, QB lacks some essential schema
constructs (e.g., dimension levels) to support OLAP. Thus, the QB4OLAP vocabulary has been proposed to extend
QB with the necessary constructs and be fully compliant with OLAP. In this paper, we focus on the enrichment of
an existing QB data set with QB4OLAP semantics. We first thoroughly compare the two vocabularies and outline
the benefits of QB4OLAP. Then, we propose a series of steps to automate the enrichment of QB data sets with
specific QB4OLAP semantics; being the most important, the definition of aggregate functions and the detection of
new concepts in the dimension hierarchy construction. The proposed steps are defined to form a semi-automatic
enrichment method, which is implemented in a tool that enables the enrichment in an interactive and iterative fashion.
The user can enrich the QB data set with QB4OLAP concepts (e.g., full-fledged dimension hierarchies) by choosing
among the candidate concepts automatically discovered with the steps proposed. Finally, we conduct experiments with
25 users and use three real-world QB data sets to evaluate our approach. The evaluation demonstrates the feasibility
of our approach and shows that, in practice, our tool facilitates, speeds up, and guarantees the correct results of the
enrichment process.

Keywords: Linked Open Data, Multidimensional Data Modeling, OLAP, Semantic Web

1. Introduction

On-Line Analytical Processing (OLAP) is a well-
established approach for data analysis to support deci-
sion making that typically relates to Data Warehouse
(DW) systems. It is based on the multidimensional
(MD) model which places data in an n-dimensional
space, usually called a data cube. In this way, a user
can analyze data along several dimensions of interest.
For instance, a user can analyze sales data according
to time and location (dimensions). The simplicity of the10

MD model specially fits the business users who navigate
and analyze the MD data by means of OLAP operations
(typically via a graphical user interface).

∗Corresponding author

A large number of MD models in the literature are
based on the data cube metaphor [1, 2, 3]. Historically,
DW and OLAP have been used as techniques for data
analysis within an organization, using mostly commer-
cial tools with proprietary formats. However, initiatives
like Open Data1 and Open Government2 are pushing
organizations to publish MD data using standards and20

non-proprietary formats. Although several open source
platforms for business intelligence (BI) have emerged
in the last decade, an open format to publish and share
cubes among organizations is still missing. The Linked
Data [4] initiative promotes sharing and reusing data
on the web using semantic web (SW) standards and do-
main ontologies expressed in the Resource Description

1http://okfn.org/opendata/
2http://opengovdata.org/Email address: jvarga@essi.upc.edu (Jovan Varga)

http://okfn.org/opendata/
http://opengovdata.org/
http://ees.elsevier.com/jws/viewRCResults.aspx?pdf=1&docID=2468&rev=1&fileID=53731&msid={B57ED166-44E2-4703-9749-A558A4B00595}

Framework (RDF) as the basic data representation layer
for the SW [5], or in languages built on top of RDF (e.g.,
RDF-Schema [6] and OWL3).30

Two main approaches can be found in the literature
concerning OLAP analysis of SW data. The first one
consists in extracting MD data from the web and load-
ing them into traditional data management systems for
OLAP analysis. The second one explores data models
and tools that allow publishing and performing OLAP
analysis directly over MD data on the SW. We discuss
both approaches in detail in Section 7 and in this paper
we follow the second one.

Statistical data sets on the SW are usually published40

using the RDF Data Cube Vocabulary4 (also denoted
QB), the current W3C standard. There is already a
considerable amount of data sets published using QB.
However, as we explain later, QB lacks (among other
shortcomings) the structural metadata needed to auto-
mate the translation of OLAP operations into the un-
derlying technology storing the MD data. For exam-
ple, DWs have been typically implemented using re-
lational technology and the definition of a well-formed
MD schema allows the automatic translation of OLAP50

operations into SQL queries. To address this challenge,
a new vocabulary, denoted QB4OLAP, has been pro-
posed [7]. QB4OLAP allows reusing data already pub-
lished in QB just by adding the needed MD schema se-
mantics (e.g., the hierarchical structure of the dimen-
sions) and the corresponding instances that populate the
dimension levels. Thus, the main task that we address
in this paper is the enrichment of an existing QB data
set with additional QB4OLAP semantics. Once a data
cube is published using QB4OLAP, users will be able60

to operate over it, not only through queries written in
SPARQL [8] (the standard query language for RDF),
but also by using a high-level OLAP query language [9].
Such a language allows OLAP users to query data cubes
directly on the SW, without any knowledge of SPARQL
or RDF, since OLAP queries and operations can be au-
tomatically translated into SPARQL, taking advantage
of the structural metadata provided by QB4OLAP5. In
addition, a language like this makes it easier to develop
graphic tools, typically used to exploit data cubes.70

Enriching an existing QB data set with QB4OLAP se-
mantics implies a labor-intensive, repetitive, and error-
prone task. Thus, it must be performed as automatically
as possible. For instance, hierarchical structures of the

3http://www.w3.org/TR/owl2-overview/
4http://www.w3.org/TR/vocab-data-cube/
5 A prototype is available at http://www.fing.edu.uy/inco/

grupos/csi/apps/qb4olap/

dimensions can be discovered from the source data and
metadata, and from external data. Once discovered, the
structure must be populated with the members of hier-
archy levels. In this paper, we present a method and a
tool to facilitate the enrichment process. The method
minimizes the user effort, by automatically detecting80

new potential semantics and performing otherwise time-
consuming tasks, leaving to the user the task of provid-
ing the MD semantics that cannot be inferred.

Contributions. Our main contributions are:

• An in-depth comparison between the QB and
QB4OLAP vocabularies, outlining the novel benefits of
the latter.
• Techniques to automate (a) the association be-

tween measures and aggregate functions, by means of
metadata; and (b) the discovery of dimension hierarchy90

schema and instances, based on an algorithm that de-
tects implicit MD semantics.
• A method defining the steps described as SPARQL

queries to semi-automatically enrich data already pub-
lished in QB with dimensional (meta)data compliant
with the QB4OLAP vocabulary.
• QB2OLAPem, a tool that in an iterative fashion

implements the method and the algorithm for the detec-
tion of implicit MD semantics. The tool enables the user
to semi-automatically produce a QB4OLAP description100

of a QB data cube with minimal manual effort.
• An evaluation of our approach based on the exper-

iments conducted with 25 user and the use of three real-
world QB data sets. The evaluation shows that our ap-
proach is feasible and that, in practice, QB2OLAPem
reduces the enrichment time and user efforts and guar-
antees that the QB4OLAP schema created is correct.

The remainder of the paper is organized as follows.
Section 2 explains the basic concepts used throughout
the paper. Section 3 discusses the limitations of the110

QB vocabulary, with respect to its capability to repre-
sent MD data. This section also presents the QB4OLAP
vocabulary, which addresses these limitations. Section
4 studies the automation challenges and provides possi-
ble solutions for the two most important ones. Section
5 describes the proposed enrichment method while Sec-
tion 6 presents the approach evaluation. Finally, Section
7 discusses related work and we conclude in Section 8.

2. Preliminaries

In this section we present the basic concepts on120

OLAP and SW data models followed by a detailed
elaboration on QB based on the running example used
throughout the paper.

2

http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/vocab-data-cube/
http://www.fing.edu.uy/inco/grupos/csi/apps/qb4olap/
http://www.fing.edu.uy/inco/grupos/csi/apps/qb4olap/

2.1. OLAP

In OLAP, data are organized as hypercubes whose
axes are called dimensions. Each point in this MD space
is mapped into one or more spaces of measures, repre-
senting facts that are analyzed along the cube’s dimen-
sions. Dimensions are structured in hierarchies that al-
low analysis at different aggregation levels. The actual130

values in a dimension level are called members. A Di-
mension Schema is composed of a non-empty finite set
of levels. We denote ‘→’ a partial order on these levels,
with a unique bottom, and a unique top, the latter being
a distinguished level denoted All, whose only member
is called all. We denote ‘→∗’ the reflexive and transitive
closure of ‘→’. Levels can have attributes describing
them. A Dimension Instance assigns a set of dimen-
sion members to each dimension level in the dimension
schema. For each pair of levels (l j, lk) in the dimension140

schema, such that l j → lk, a relation (denoted rollup) is
defined, associating members from level l j with mem-
bers of level lk. In a rollup relationship, l j is called the
child level and lk the parent level. In practice, to guaran-
tee the correct aggregation of the measure values, rollup
relations actually become functions. Cardinality con-
straints on these relations are then used to restrict the
number of level members related to each other [10]. A
Cube Schema is defined by a set of dimensions and a set
of measures, and for each measure a default aggregate150

function is specified. Each dimension is represented by
a level, defining the granularity of the cube. The cube
composed by the bottom levels of each dimension is
called a base cube. All other cubes are called cuboids.
A Cube Instance, corresponding to a cube schema, is
a partial function mapping coordinates from dimension
instances (at the cube’s granularity level) into measure
values.

A well-known set of operations can be defined over
cubes [11]. For example, given a cube C, a dimension160

D ∈ C, dimension levels ll, lu ∈ D such that ll →∗ lu,
and an aggregate function Fagg, RollUp(C,D, lu, Fagg)
returns a new cube where measure values are aggre-
gated along D, from the current level ll up to a level lu,
using Fagg. Analogously, DrillDown(C,D, ll, Fagg) dis-
aggregates previously summarized data, from the cur-
rent level lu down to a level ll and can be considered
the inverse of RollUp. Note that we do not need to use
the starting levels as parameters of these operations, be-
cause we assume that they are applied over the ‘current’170

aggregation level of the cube, thus they would be re-
dundant, since the cube ‘knows’ the current aggrega-
tion level for dimension D. Slice(C,D, Fagg) receives a
cube C, a dimension D ∈ C, and an aggregate function

Fagg, and returns a new cube, with the dimension D re-
moved from the original schema, such that measure val-
ues are aggregated along D up to level All before remov-
ing the dimension, using Fagg. Note that in all cases,
Fagg could be omitted if the default aggregate function
is used. Finally, given a cube C, and a first order formula180

σ over levels and measures in C, Dice(C, σ) returns a
new cube with the same schema, and whose instances
are the instances in C that satisfy σ. For example, given
a Sales data cube, with dimensions Time and Location,
the query “Total sales by region, in December 2015”
can be expressed with the following sequence of opera-
tions: C1 := Dice(Sales,Time.month = ”12 − 2015”);
C2 := Rollup(C1, Location, Location.region). The first
operation takes as input the Sales data cube, and pro-
duces another data cube C1, whose cells contain only190

sales data corresponding to December, 2015; C1 is then
summarized by geographical region.

2.2. RDF and the Semantic Web

The basic construct of RDF is a triple, of the (s, p, o)
form, where s stands for subject, p for predicate, and o
for object. In general, s, p, and o are resources, iden-
tified with internationalized resource identifiers (IRIs).
An object can also be a data value, denoted a literal in
RDF, or a blank node, typically used to represent anony-
mous resources. Subjects can also be represented by200

blank nodes. A set of RDF triples is called an RDF
graph. An RDF data set is a collection of RDF graphs,
comprising one default RDF graph with no name, and
zero or more named graphs (a named graph is a graph
with a name, typically an IRI or a blank node). Graph
names must be unique within an RDF data set.

In addition, the RDF Schema (RDF-S) [6] is com-
posed by a set of reserved keywords which define
classes, properties, and hierarchical relationships be-
tween them. For example, the triple (r, rdf:type, c) ex-210

plicitly states that r is an instance of c, and it also implic-
itly states that object c is an instance of rdfs:Class.
Many formats for RDF serialization exist. In this paper
we use Turtle [12].

SPARQL 1.1 [8] is the W3C standard query language
for RDF. The query evaluation mechanism of SPARQL
is based on subgraph matching: RDF triples are inter-
preted as nodes and edges of directed graphs, and the
query graph is matched to the data graph, instantiating
the variables in the query graph definition. The selec-220

tion criteria is expressed as a graph pattern in the WHERE
clause. Relevant to OLAP queries, SPARQL 1.1 sup-
ports aggregate functions and the GROUP BY clause, a
feature not present in previous versions.

3

From here on we assume that the reader is familiar
with RDF and SPARQL concepts.

2.3. QB: The RDF Data Cube Vocabulary

As mentioned before, QB is the W3C recommen-
dation to publish statistical data and metadata in RDF.
QB is based on the main components of the SDMX in-230

formation model [13], proposed by the Statistical Data
and Metadata eXchange initiative (SDMX)6 for the pub-
lication, exchange, and processing of statistical data.
The elements with white background in Figure 1 depict
the QB vocabulary. Capitalized terms represent RDF
classes and non-capitalized terms represent RDF prop-
erties. Capitalized terms in italics represent classes with
no instances. An arrow with black triangle head from
class A to class B, labeled rel means that rel is an RDF
property with domain A and range B. White triangles240

represent sub-classes or sub-properties. The range of a
property can also be denoted using “:”. For better com-
prehension, we next introduce the running example that
is used to explain the QB elements and then followed
throughout the paper.

We use data published by the World Bank7, a finan-
cial institution supporting developing countries, basi-
cally through loans for strategic projects. Free and open
access to data about these countries is provided through
the World Bank Open Data (WBOD), that includes a250

collection of indicators8 measured for different coun-
tries and regions across time. Data are available in tab-
ular, RDF, and many other formats depending on the
particular portion of the data set. World Bank Linked
Data (WBLD) is a Linked Data data set created from
WBOD data via its rdf-ization (where needed) and it
is annotated with the QB vocabulary. The WBLD is
organized in four subsets, stored in different files, in-
cluding demographic and financial indicators, projects
and operations, and climate data. Additionally, there260

is a VoiD9 file which contains metadata that describe
the data sets. Moreover, a SPARQL endpoint10 is also
available to query the WBLD. Our running example is
based on the “Market capitalization of listed compa-
nies (current US$)” indicator (CM.MKT.LCAP.CD)11,
where market capitalization refers to the share price

6http://SDMX.org
7http://www.worldbank.org
8http://data.worldbank.org/indicator
9http://semanticweb.org/wiki/VoID

10http://worldbank.270a.info/sparql
11http://data.worldbank.org/indicator/CM.MKT.LCAP.

CD

times the number of shares outstanding. Each indica-
tor is provided as a QB data set, i.e., as an instance of
the class qb:DataSet.

The schema of a QB data set is specified by means of270

the data structure definition (DSD), an instance of the
class qb:DataStructureDefinition. This specifica-
tion is composed of a set of component properties, in-
stances of subclasses of the qb:ComponentProperty

class, representing dimensions, measures, and at-
tributes. Component properties are not directly re-
lated to the DSD: the qb:ComponentSpecification

class is an intermediate class typically instantiated as
RDF blank nodes, that allows specifying additional at-
tributes for a component in a DSD (e.g., a compo-280

nent may be tagged as required (i.e., mandatory), using
the qb:componentRequired property). The different
components that belong to a component specification
are linked using specific properties that depend on the
type of the component: qb:dimension for dimensions,
qb:measure for measures, and qb:attribute for at-
tributes. Component specifications are linked to DSDs
via the qb:component property. Note that a DSD can
be shared by different QB data sets (and each QB data
set is linked to its DSD) by means of the qb:structure290

property. Example 1 below presents the triples that rep-
resent the DSD of our running example.

Example 1. The DSD of the running example is defined
in the file meta.rdf12 and looks as follows.

1 @prefix qb: <http://purl.org/linked−data/cube#> .
2 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
3 @prefix sdmx−dimension: <http://purl.org/linked−data/sdmx/2009/dimension#> .
4 @prefix sdmx−measure: <http://purl.org/linked−data/sdmx/2009/measure#>.
5300

6 <http://worldbank.270a.info/dataset/world−bank−indicators/structure>
7 a qb:DataStructureDefinition ;
8 qb:component [
9 a qb:ComponentSpecification ;

10 qb:dimension <http://worldbank.270a.info/property/indicator> ;
11 qb:order ”1”ˆˆxsd:int],
12 [
13 a qb:ComponentSpecification ;
14 qb:dimension sdmx−dimension:refArea ;
15 qb:order ”2”ˆˆxsd:int],310

16 [
17 a qb:ComponentSpecification ;
18 qb:dimension sdmx−dimension:refPeriod ;
19 qb:order ”3”ˆˆxsd:int],
20 [
21 a qb:ComponentSpecification ;
22 qb:measure sdmx−measure:obsValue ;
23 qb:order ”4”ˆˆxsd:int] .

This DSD is composed of three dimensions: <http: //320

worldbank. 270a. info/ property/ indicator> (lines 9-
11), representing an indicator, sdmx-dimension:refArea
(lines 13-15) which represents the geographical reference

12http://worldbank.270a.info/data/meta/meta.rdf

4

http://SDMX.org
http://www.worldbank.org
http://data.worldbank.org/indicator
http://semanticweb.org/wiki/VoID
http://worldbank.270a.info/sparql
http://data.worldbank.org/indicator/CM.MKT.LCAP.CD
http://data.worldbank.org/indicator/CM.MKT.LCAP.CD
<http://worldbank.270a.info/property/indicator>
<http://worldbank.270a.info/property/indicator>
<http://worldbank.270a.info/property/indicator>
http://worldbank.270a.info/data/meta/meta.rdf

qb:DataStructureDefinition

qb:DataSet

qb:Observation

qb:Slice

qb:SliceKey

qb:AttributeProperty

qb:MeasureProperty

qb:CodedProperty

skos:ConceptScheme

sdmx:Collection

skos:Concept

qb:codeList

qb:sliceKeyqb:structure

qb:dataSet qb:observation

qb:sliceStructureqb:slice

qb:componentProperty

qb:concept

qb:ComponentProperty

qb:componentProperty

qb:subSlice

qb4o:LevelMember

qb4o:AggregateFunction

qb4o:memberOf

skos:broader

qb:HierarchicalCodeList

<<union>>

qb:DimensionProperty

qb4o:inLevel

qb4o:hasHierarchy

qb4o:inDimension

qb:component

qb4o:Cardinality

qb:ComponentSpecification
qb:componentRequired:boolean
qb:componentAttachment:rdfs:Class
qb:order: xsd:int

qb4o:LevelAttribute

qb4o:pcCardinality

qb4o:HierarchyStep
qb4o:childLevel

qb4o:parentLevel

qb:dimension

qb:attribute

qb:measure

qb4o:level

qb4o:cardinality

qb4o:aggregateFunction

qb4o:hasAttribute

qb4o:isCuboidOf

qb4o:OneToOne

qb4o:OneToMany

qb4o:ManyToOne

qb4o:ManyToMany

qb4o:Avg

qb4o:Count

qb4o:Min

qb4o:Max

qb4o:Sum

Class

Instance

Object property

Subclass of

Instance of

LEGEND

qb4o:LevelProperty qb4o:Hierarchy

qb4o:inHierarchy
qb4o:hasLevel

sdmx:Concept

sdmx:ConceptRole

sdmx:FrequencyRole
sdmx:CountRole
sdmx:EntityRole
sdmx:TimeRole
sdmx:MeasureTypeRole
sdmx:NonObsTimeRole
sdmx:IdentityRole
sdmx:PrimaryMeasureRole

Figure 1: QB (cf. [14]) and QB4OLAP vocabularies

area, and sdmx-dimension:refPeriod (lines 17-19) which
represents the time period. The measure of the data set is the
generic sdmx-measure:obsValue predicate (lines 21-23).

Instances of the running example data set are de-
scribed in an RDF graph contained in the file CM.MKT.-
LCAP.CD.rdf.13 Such instances are called observa-
tions in the QB vocabulary. Observations (in OLAP ter-330

minology, facts) are instances of the qb:Observation

class and represent points in an MD data space in-
dexed by dimensions. They are associated with data
sets (instances of the qb:DataSet class), through the
qb:dataSet property. Each observation can be linked
to a value in each dimension of the DSD via instances of
the qb:DimensionProperty class; analogously, val-
ues for each observation are associated to measures via
instances of the qb:MeasureProperty class; and in-
stances of the qb:AttributeProperty class are used340

to associate attributes to observations. Example 2 below
presents the triples of an observation from our running
example.

Example 2. The triples representing an observation
corresponding to the market capitalization for Serbia
in 2012 (we do not repeat prefixes previously defined).

13http://worldbank.270a.info/data/

world-development-indicators/CM.MKT.TRAD.CD.rdf

1 @prefix property: <http://worldbank.270a.info/property/> .
2 @prefix indicator: <http://worldbank.270a.info/classification/indicator/>.
3 @prefix country: <http://worldbank.270a.info/classification/country/> .350

4 @prefix year: <http://reference.data.gov.uk/id/year/> .
5

6 <http://worldbank.270a.info/dataset/world−bank−indicators/
7 CM.MKT.LCAP.CD/RS/2012> a qb:Observation ;
8 qb:dataSet <http://worldbank.270a.info/dataset/CM.MKT.LCAP.CD> ;
9 property:indicator indicator:CM.MKT.LCAP.CD ;

10 sdmx−dimension:refArea country:RS ;
11 sdmx−dimension:refPeriod year:2012 ;
12 sdmx−measure:obsValue 7450560827.04874 .360

Note that each of the RDF properties defined as components
of the data set DSD (Example 1) is used here to link the obser-
vation with either dimension members or measure values. In
particular, the recorded value for CM.MKT.LCAP.CD indicator
is linked to the observation via the sdmx-measure:obsValue
predicate (line 12), and the semantics of this measure is
given by the indicator linked to the observation via the
property:indicator predicate (line 9).

To give further semantics to the components of a
DSD, they may be associated with concepts in an on-370

tology. For this, we can make use of the property
qb:concept, to link components in a DSD, with in-
stances of the class skos:Concept defined in the SKOS
vocabulary.14 More specifically, this property can be
used to link component properties (i.e., dimensions or

14http://www.w3.org/TR/skos-reference/

5

http://worldbank.270a.info/data/world-development-indicators/CM.MKT.TRAD.CD.rdf
http://worldbank.270a.info/data/world-development-indicators/CM.MKT.TRAD.CD.rdf
http://www.w3.org/TR/skos-reference/

measures), with standard concepts defined in the SDMX
guidelines (e.g., reference area, frequency, etc.) [15].
We illustrate this in Example 3 below, to define the di-
mension sdmx-dimension:refPeriod.

Example 3. An excerpt of the triples that define the di-380

mension sdmx-dimension:refPeriod, and associate
it with the SDMX concept sdmx-concept:refPeriod
(a SKOS concept) are shown below.

1 @prefix sdmx−concept: <http://purl.org/linked−data/sdmx/2009/concept#> .
2 @prefix sdmx−dimension: <http://purl.org/linked−data/sdmx/2009/dimension#> .
3 @prefix qb: <http://purl.org/linked−data/cube#> .
4

5 sdmx−dimension:refPeriod a qb:DimensionProperty, rdf:Property ;
6 rdfs:range rdfs:Resource;390

7 qb:concept sdmx−concept:refPeriod ;
8 rdfs:label ”Reference Period”@en ;
9 rdfs:comment ”””The period of time or point in time to which the

10 measured observation is intended to refer.”””@en .
11

12 sdmx−concept:refPeriod a sdmx:Concept, skos:Concept ;
13 rdfs:label ”Reference Period”@en ;
14 rdfs:comment ”””The period of time or point in time to which the
15 measured observation is intended to refer.”””@en;
16 skos:inScheme sdmx−concept:cog .400

Linking the dimension sdmx-dimension:refPeriod with
the concept sdmx-concept:refPeriod (line 7) allows to
give semantics to this dimension.

Finally, slices, as defined in QB, represent subsets of
observations, not as operators over an existing cube, but
as new structures and new instances (observations) in
which one or more values of dimension members are
fixed. The structure of a slice is defined using a DSD
and an instance of the qb:SliceKey class. The class410

qb:Slice allows grouping the observations that corre-
spond to a particular slice (using the qb:observation
property) and the structure of each slice is attached us-
ing the qb:sliceStructure property.

3. Representing Multidimensional Data in RDF

Although appropriate to represent and publish statis-
tical data, QB has a set of limitations when it comes to
represent an MD model for OLAP. Thus, in this section
we elaborate on these limitations of QB, introduce the
QB4OLAP vocabulary that extends QB with the nec-420

essary concepts, discuss some QB4OLAP design deci-
sions, and provide hints about the use of QB4OLAP.15

15Parts of the material in this section have previously appeared
in [7, 16]. However, the content of [7] have been updated and now
refer to newer versions of QB4OLAP. Further, the examples based
on WBLD are new. Finally, we remark that [16] is a tutorial on
QB4OLAP, produced for the 2015 edition of the Business Intelligence
Summer School.

3.1. Limitations of QB

Lack of support for an OLAP dimension structure. Al-
though QB allows representing hierarchical relation-
ships between level members in the dimension in-
stances, it does not provide a mechanism to represent
an OLAP dimension structure (i.e., the dimension levels
and the relationships between levels). That means, QB
allows stating that Serbia is a narrower concept than Eu-430

rope, but not that Serbia is a Country, Europe is a Con-
tinent, and that countries aggregate to continents. To
represent hierarchical relationships between dimension
members, the semantic relationship skos:narrower

should be used, with the following meaning: If two
concepts A and B are such that A skos:narrower B, B
represents a narrower concept than A (e.g., continent
skos:narrower country).

Additional information that can be used to build di-
mension instances is scattered across many graphs. For440

example, we can obtain information about country:RS
(Serbia) from the graph in the file countries.rdf.16

Example 4 shows the triples that can be obtained about
Serbia.

Example 4. The triples about the dimension member
Serbia, obtained from countries.rdf.

1 @prefix skos: <http://www.w3.org/2004/02/skos/core#> .
2 @prefix dbpedia: <http://dbpedia.org/resource/> .
3 @prefix geo: <http://www.w3.org/2003/01/geo/wgs84 pos#> .450

4 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
5 @prefix dcterms: <http://purl.org/dc/elements/1.1/> .
6 @prefix region: <http://worldbank.270a.info/classification/region/> .
7 @prefix income: <http://worldbank.270a.info/classification/income−level/> .
8 @prefix lending: <http://worldbank.270a.info/classification/lending−type/> .
9

10 <http://worldbank.270a.info/classification/country> skos:hasTopConcept
11 country:RS .
12

13 country:RS460

14 a skos:Concept, <http://dbpedia.org/ontology/Country> ;
15 skos:inScheme <http://worldbank.270a.info/classification/country> ;
16 skos:topConceptOf <http://worldbank.270a.info/classification/country> ;
17 skos:notation ”RS” ;
18 skos:exactMatch country:SRB ;
19 skos:prefLabel ”Serbia”@en ;
20 property:region region:ECS ;
21 property:admin−region region:ECA ;
22 property:income−level income:UMC ;
23 property:lending−type lending:IBD ;470

24 dbpedia:capital ”Belgrade”@en ;
25 geo:lat ”20.4656”ˆˆxsd:float ;
26 geo:long ”44.8024”ˆˆxsd:float ;
27 foaf:page <http://data.worldbank.org/country/RS> ;
28 ...
29 dcterms:created ”2012−02−29T00:00:00Z”ˆˆxsd:dateTime ;
30 dcterms:issued ”2013−11−04T13:37:18Z”ˆˆxsd:dateTime .
31

32 country:SRB skos:exactMatch country:RS ; skos:notation ”SRB” .480

16http://worldbank.270a.info/data/meta/countries.

rdf

6

http://worldbank.270a.info/data/meta/countries.rdf
http://worldbank.270a.info/data/meta/countries.rdf

Some of the triples provide information that can be
used to define dimension hierarchies, when producing
the QB4OLAP representation. Line 14 states that
country:RS is a country as it says that this IRI is of type
<http://dbpedia.org/ontology/Country>. Lines 20
and 21 state that Serbia belongs to two different regions17:
region:ECS (Europe & Central Asia (all income levels)) and
region:ECA (Europe & Central Asia (developing only)), re-
spectively. Lines 22 and 23 provide information about the in-
come level and the type of lending Serbia is eligible for, re-490

spectively.18

We have said that a typical OLAP user explores data,
e.g., performing aggregations along dimension hierar-
chies. For example, she would like to compute the total
capitalization by region, income level, or lending type,
given that these data are available in the data set, as Ex-
amples 1 through 4 show. However, we can also see that
these data are given at the instance level, that means,
no hierarchical structure is defined for the refArea di-
mension. This is because QB does not allow to define500

aggregation paths. Nevertheless, it is clear that from the
information available, we could infer and build a dimen-
sion hierarchy. A possible structure for a geographical
dimension (like refArea) is shown in Figure 2. We can
see that there are five levels, namely country (i.e., intial
refArea), region, lending-type, income, and, following
traditional MD design, a distinguished level All which
has only one level member, denoted all. These levels are
organized into three hierarchies: a geographical hierar-
chy country → region → All, a lending type hierarchy510

country→ lending-type→ All, and an income hierarchy
country→ income→ All.

Lack of support for aggregate functions. QB does not
provide native support to represent aggregate functions.
Many OLAP operations change the granularity level of
the data represented in a data cube (e.g., a rollup over
the Time dimension from the Month level up to the
Year level). This involves aggregating measure values
along dimensions, using the aggregate function defined
for each measure. These aggregate functions depend on520

the nature of the measure (i.e., additive, semi additive,
non additive [10]). The ability to link each measure with
an aggregate function is therefore crucial and, although
present in OLAP tools, it is not considered in QB.

17http://worldbank.270a.info/classification/region
18These concepts are defined in http://worldbank.

270a.info/classification/income-level and http:

//worldbank.270a.info/classification/lending-type.

country

region

lending-type

income

all

Figure 2: Dimension levels and hierarchies with bottom level country.

Lack of support for descriptive attributes. In the MD
model, the instances (members) of each dimension level
usually contain a set of real-world concepts with simi-
lar characteristics. Further, the schema of each level is
composed of a set of attributes that describe the char-
acteristics of their members (e.g., the level country may530

have the attributes countryName, surface, etc.) and one
or more identifiers [10]. QB does not provide a mech-
anism to associate a set of attributes with a dimension
level. This affects the expressiveness and efficiency of
some OLAP operations, in particular, Dice, which fil-
ters a cube according to a Boolean condition. For ex-
ample, to obtain a cube containing just data about Ser-
bia, without descriptive attributes we would need to fil-
ter such data using the IRI representing Serbia, instead
of the proper string. This would not only be unnat-540

ural for a user, but also highly inefficient. Note that
the qb:AttributeProperty class, used in QB to as-
sociate attributes to observations as mentioned before,
differs from descriptive level attributes as defined in
QB4OLAP, and cannot be used in the way explained
in the example above. Section 3.4 illustrate the use of
descriptive attributes in a Dice operation.

3.2. The QB4OLAP Vocabulary
QB4OLAP19 extends QB with a set of RDF terms and

the rationale behind QB4OLAP includes:550

• QB4OLAP must be able to represent the most
common features of the MD model. The features con-
sidered are based on the MultiDim model [10].
• QB4OLAP must allow to operate over already

published observations which conform to DSDs defined
in QB, without the need of rewriting the existing obser-
vations. Note that in a typical MD model, observations

19http://purl.org/qb4olap/cubes

7

http://worldbank.270a.info/classification/region
http://worldbank.270a.info/classification/income-level
http://worldbank.270a.info/classification/income-level
http://worldbank.270a.info/classification/lending-type
http://worldbank.270a.info/classification/lending-type
http://purl.org/qb4olap/cubes

are the largest part of the data while dimensions are usu-
ally orders of magnitude smaller.
• QB4OLAP must include all the metadata needed to560

automatically generate SPARQL queries implementing
OLAP operations. In this way, OLAP users do not need
to know SPARQL (which is the case of typical OLAP
users) and even wrappers for OLAP tools can be devel-
oped to query RDF data sets directly (we give an exam-
ple of this in Section 3.4).

The elements with gray background in Figure 1 de-
pict the QB4OLAP vocabulary. Moreover, original
QB terms are prefixed with “qb:”; QB4OLAP terms
are prefixed with “qb4o:”. In addition to the QB570

graphical notation, QB4OLAP introduces ellipses rep-
resenting class instances and dashed arrows represent-
ing rdf:type relationships.

As already mentioned, dimension hierarchies and
levels are first-class citizens in an MD model for OLAP.
Therefore, QB4OLAP focuses on their representation
and several classes and properties are introduced to this
end. QB4OLAP represents the structure of a data set in
terms of levels and measures, instead of dimensions and
measures (which is the case of QB), thus allowing us to580

specify the granularity level considered for each dimen-
sion. Dimension levels are represented in QB4OLAP
in the same way that QB represents dimensions: as
classes of properties. The class qb4o:LevelProperty
represents dimension levels. Declaring it as a sub-
class of qb:ComponentProperty allows specifying
the schema of the cube in terms of dimension levels, us-
ing qb:DataStructureDefinition. To represent ag-
gregate functions the class qb4o:AggregateFunction
can be used. The property qb4o:aggregateFunction590

associates measures with aggregate functions, and, to-
gether with the concept of component sets, allows a
given measure to be associated with different aggre-
gate functions in different cubes. Given the structure
described above, in QB4OLAP, fact instances (observa-
tions) map level members to measure values. It is also
worth noting that, in general, each fact is related with at
most one level member, for each level that participates
in the fact. However, there are cases where this restric-
tion does not hold, yielding so-called many-to-many di-600

mensions [10]; thus, to support these dimensions, the
property qb4o:cardinality can be used to represent
the cardinality of the relationship between a fact and a
level.

Example 5 shows how the cube in our running ex-
ample would look like in QB4OLAP (we explain how
we came up with this schema in Section 5). Figure 3
presents the definition of the prefixes (not included in

the examples so far) that we use in the sequel.

1 @prefix classification: <http://worldbank.270a.info/classification/> .
2 @prefix dataset: <http://worldbank.270a.info/dataset/> .
3 @prefix qb4o: <http://purl.org/qb4olap/cubes#> .
4 @prefix year: <http://reference.data.gov.uk/id/year/> .
5

6 #QB4OLAP schema and instances
7 @prefix schema:
8 <http://www.fing.edu.uy/inco/cubes/schemas/world−bank−indicators#> .
9 @prefix instances:

10 <http://www.fing.edu.uy/inco/cubes/instances/world−bank−indicators#> .

Figure 3: RDF prefixes to be used in the examples

Example 5. The new DSD for the running example610

data cube defined using QB4OLAP.

1 schema:QB4O CM MKT LCAP CD
2 a qb:DataStructureDefinition ;
3 qb:component [qb:measure sdmx−measure:obsValue;
4 qb4o:aggregateFunction qb4o:sum] ;
5 qb:component [indicator:CM.MKT.LCAP.CD] ;
6 qb:component [qb4o:level sdmx−dimension:refArea] ;
7 qb:component [qb4o:level sdmx−dimension:refPeriod] .
8620

9 indicator:CM.MKT.LCAP.CD a qb4o:LevelProperty.
10 sdmx−dimension:refArea a qb4o:LevelProperty.
11 sdmx−dimension:refPeriod a qb4o:LevelProperty.
12 sdmx−measure:obsValue a qb:MeasureProperty.
13

14 dataset:CM.MKT.LCAP.CD qb:structure
15 schema:QB4O CM MKT LCAP CD.

The DSD is defined in terms of dimension levels such that the
dimension properties of the original QB cube are declared as630

instances of qb4o:LevelProperty and considered the low-
est levels in the dimension hierarchy. Thus, we avoid rewrit-
ing the observations. Readers familiar with OLAP technol-
ogy may note that indicator:CM.MKT.LCAP.CD refers to the
MDX’s Measures dimension. MDX is a de facto standard lan-
guage for OLAP (see [10] for details).

To represent dimension hierarchies the
qb4o:Hierarchy class is introduced. The rela-
tionship between dimensions and hierarchies is
represented via the property qb4o:hasHierarchy640

and its inverse qb4o:inDimension. To support the
most common conceptual models, we need to allow
declaring that a level may belong to different hier-
archies, and that each level may have a different set
of parent levels. Also, the relationship between level
members may have different cardinality constraints
(e.g., one-to-many, many-to-many, etc.). The class
qb4o:HierarchyStep allows this by means of the
reification of the parent-child relationship between two
levels in a hierarchy. Each hierarchy step is linked to650

its two component levels using the qb4o:childLevel

and the qb4o:parentLevel properties, respectively,

8

and is attached to the hierarchy it belongs to, using
the qb4o:inHierarchy. The qb4o:pcCardinality

property allows representing the cardinality constraints
of the relationships between level members in this
step, using members of the qb4o:Cardinality class,
whose instances are depicted in Figure 1. Example 6
illustrates the above.

Example 6. The definition of the geographical dimen-660

sion schema:geoDim according to Figure 2.

1 schema:geoDim a qb:DimensionProperty ;
2 rdfs:label ”Geographical dimension”@en;
3 qb4o:hasHierarchy schema:geoHier, schema:lendingHier,
4 schema:incomeHier.

We now define each hierarchy, declare to which dimen-
sion it belongs, and which levels it traverses. We have
three hierarchies in our schema, namely schema:geoHier,670

schema:lendingHier, and schema:incomeHier. We just
show the first of them, the other ones are analogous.

1 schema:geoHier a qb4o:Hierarchy ;
2 rdfs:label ”Geographical Hierarchy”@en ;
3 qb4o:inDimension schema:geoDim;
4 qb4o:hasLevel sdmx−dimension:refArea, schema:region, schema:geoAll.

Next, we define the base (i.e., finest granularity) level for the
geographical dimension, that means, the one whose instances680

compose the observations, and the upper levels in each hier-
archy. Note that the former are defined to be compatible with
QB, but as levels instead of dimensions. The example shows
only the geographical dimension while construction of other
dimensions is analogous where only the All level is added to
each of them.

1 # Base levels
2 sdmx−dimension:refArea a qb4o:LevelProperty;
3 rdfs:label ”country level”@en.690

4

5 #Upper hierarchy levels
6 schema:region a qb4o:LevelProperty;
7 rdfs:label ”Geographical regions”@en.
8 schema:lendingtype a qb4o:LevelProperty;
9 rdfs:label ”Lending type level”@en.

10 schema:income a qb4o:LevelProperty;
11 rdfs:label ”Income level”@en.
12 schema:geoAll a qb4o:LevelProperty;
13 rdfs:label ”All reference areas”@en.700

Finally, the hierarchy steps (i.e., parent-child relationships)
are defined. Again, we just show the ones corresponding to
the schema:geoHier hierarchy.

1 :hs1 a qb4o:HierarchyStep;
2 qb4o:inHierarchy schema:geoHier;
3 qb4o:childLevel sdmx−dimension:refArea;
4 qb4o:parentLevel schema:region;
5 qb4o:pcCardinality qb4o:ManyToOne.710

6

7 :hs2 a qb4o:HierarchyStep;
8 qb4o:inHierarchy schema:geoHier;
9 qb4o:childLevel schema:region;

10 qb4o:parentLevel schema:geoAll;
11 qb4o:pcCardinality qb4o:ManyToOne.

To represent level attributes, QB4OLAP provides the
class of properties qb4o:LevelAttribute, linked to
qb4o:LevelProperty via the qb4o:hasAttribute720

property. Instances of this class are used to
link level instances with attribute values. Exam-
ple 7 shows the definition of an attribute for the
sdmx-dimension:refArea dimension level.

Example 7. Definition of a level attribute.

1 sdmx−dimension:refArea qb4o:hasAttribute
2 schema:capital.
3 schema:capital a qb4o:LevelAttribute;
4 rdfs:range xsd:string .730

We assume that we add the attribute schema:capital to the
sdmx-dimension:refArea dimension level.

At the instance level, dimension level mem-
bers are represented as instances of the class
qb4o:LevelMember, which is a sub-class of
skos:Concept. Members are attached to the lev-
els they belong to, using the property qb4o:memberOf,
which resembles the semantics of skos:member.
Rollup relationships between members are expressed740

using the property skos:broader, conveying the
idea that hierarchies of level members should be
navigated from finer granularity concepts up to coarser
granularity concepts. Example 8 below shows some
examples of dimension members for the dimension
schema:geoDim.

Example 8. The details for the dimension members
corresponding to Serbia.

1 country:RS a qb4o:LevelMember ;750

2 qb4o:memberOf sdmx−dimension:refArea ;
3 skos:broader lending:IBD ;
4 skos:broader income:UMC ;
5 skos:broader region:ECS ;
6 skos:prefLabel ”Serbia”@en .
7

8 lending:IBD a qb4o:LevelMember ;
9 qb4o:memberOf schema:lending ;

10 skos:broader instance:geoAll ;
11 skos:prefLabel ”IBRD”@en .760

12

13 income:UMC a qb4o:LevelMember ;
14 qb4o:memberOf schema:income ;
15 skos:broader instance:geoAll ;
16 skos:prefLabel ”Upper middle income”@en .
17

18 region:ECS a qb4o:LevelMember ;
19 qb4o:memberOf schema:region ;
20 skos:broader instance:geoAll ;
21 skos:prefLabel ”Europe & Central Asia (all income levels)”@en .770

22

23 instance:geoAll a qb4o:LevelMember ;
24 qb4o:memberOf schema:geoAll ;
25 skos:prefLabel ”Geo ALL”@en .

Note that, for attribute instances, we need to link IRIs cor-
responding to level members, with attribute values. In our
example for the geographical dimension:

9

1 country:RS schema:capital ”Belgrade”ˆˆxsd:string .780

3.3. Discussion: From QB observations to QB4OLAP

Let us now comment on some decisions underlying
the QB4OLAP design. As we have already mentioned,
observations in QB are specified as dimension prop-
erties, while in QB4OLAP they are specified as level
properties, to allow defining hierarchies, as usual in
OLAP. Therefore, in order to be able to work with ex-
isting QB observations, a new DSD is defined in terms
of QB4OLAP dimension levels. This saves the cost790

that would imply adding, for each observation, triples
for linking the observation with level members using
newly defined level properties. We thus propose to de-
fine, in the new DSD, a level property for each dimen-
sion property in the existing DSD, and consider the for-
mer as the bottom level of each corresponding dimen-
sion in the new DSD. Of course, as a consequence,
the same elements that in QB are considered dimen-
sions, in QB4OLAP play the role of dimension lev-
els, as in the case of sdmx-dimension:refPeriod and800

sdmx-dimension:refArea.
Further, instead of defining a new concept in

QB4OLAP to represent dimensions, QB4OLAP uses
the QB class qb:DimensionProperty. This does not
produce a semantic contradiction, given that the QB
specification states that this class is “The class of com-
ponent properties which represent the dimensions of the
cube”, a definition that still holds in the QB4OLAP
interpretation. In addition, since level members in
QB4OLAP are instances of the class skos:Concept,810

we can use existing QB dimension members to populate
QB4OLAP dimension levels. To accomplish this, IRIs
that represent dimensions members have to be linked
with level members via the qb4o:memberOf property.

3.4. Using QB4OLAP

We have mentioned that one of the main advantages
of using QB4OLAP instead of QB to represent MD data
on the SW, is that QB4OLAP allows us to write high-
level OLAP queries and automatically translate them
into SPARQL. This way, OLAP users may exploit MD820

data directly over the web, and query them without any
knowledge of SPARQL, or without the need of export-
ing these data to a relational repository. The obvious
consequence is an enhancement of the usability of data
published on the web. Giving complete details of how
this can be achieved is beyond the scope of this pa-
per, but we would like to at least convey the main idea
through an example query.

Let us consider the query “Total market capitalization
of listed companies, grouped by income level, in the830

period [2010,2012].” This is a typical OLAP query
involving two main operations, as described in Sec-
tion 2.1: First, a selection of the values corresponding
to the years mentioned in the query (a Dice operation).
Second, an aggregation, using the SUM aggregate
function, along the geographical dimension, using
the schema:incomeHier up to the schema:income

level. This can be expressed, in a high-level, cube-
based, conceptual algebra like the one proposed in [11]
(using the operations defined in Section 2.1), as follows:840

1 $C1 := DICE (<http://worldbank.270a.info/dataset/CM.MKT.LCAP.CD>,
2 (timeDim.refPeriod.yearNumber >= 2010) AND
3 (timeDim.refPeriod.yearNumber <= 2012));
4 $C2 := ROLLUP ($C1, geoDim, geoDim.income);

In the syntax above, we use the notation dimen-
sion.level.attribute, to represent the dimension’s
structure. Also, to be concise, we omitted the Fagg850

parameter in the expression for ROLLUP (as indicated
in Section 2.1), because we assume it is the only one
defined for this cube in the DSD. Finally, the variables
C1 and C2 store the results of the operations in the
right hand sides of the expressions. With the help
of QB4OLAP metadata (which, e.g., describes the
hierarchical structure), this query can be automatically
translated to the following SPARQL expression:

860
1 SELECT ?year ?income SUM(xsd:integer(?measureValue)) AS ?sumMeas
2 FROM <http://www.fing.edu.uy/inco/cubes/schemas/wbld>
3 FROM <http://www.fing.edu.uy/inco/cubes/instances/wbld>
4 WHERE {
5 SERVICE <http://worldbank.270a.info/sparql>
6 {?o a qb:Observation ;
7 qb:dataSet <http://worldbank.270a.info/dataset/CM.MKT.LCAP.CD>;
8 sdmx−dimension:refArea ?country;
9 sdmx−dimension:refPeriod ?year;

10 sdmx−measure:obsValue ?measureValue.870

11 }

12 ?country skos:broader ?income.
13 ?income qb4o:memberOf schema:income.
14 ?year schema:yearNumber ?yearNum
15 FILTER (?yearNum >= 2010 && ?yearNum <= 2012)
16 }

17 GROUP BY ?year ?income

4. Automating Metadata Definition

Considering that QB4OLAP brings benefits in terms880

of additional schema constructs that are necessary for
state-of-the-art OLAP analysis, we next discuss the pos-
sibilities for introducing these enhancements into exist-
ing QB data sets. Currently, a considerable number of
data sets are published in QB. Thus, in this section we
elaborate on how to define and/or discover new concepts

10

(e.g., dimension levels) that can be used for enriching
existing QB data sets. As this can be a very cumber-
some, error-prone, and labor-intensive task, we espe-
cially focus on its maximal possible automation such890

that it involves the least possible user intervention. To
achieve that, we take advantage of the semantics that is
explicitly or implicitly present in the data set or in ex-
ternal data sources. Once discovered, these concepts
are used for the enrichment method explained in the
next section. In this section, we discuss the automation
challenges and how far they can be solved in a semi-
automatic way, followed by solutions that we propose
for the two most relevant tasks, namely the definition of
aggregate functions and the discovery of the dimension900

hierarchy schema and instances.

4.1. Automation Challenges
The enrichment tasks needed to turn a QB into a

QB4OLAP data set must be done at the metadata (e.g.,
the cube schema concepts) and data (e.g., the cube in-
stances) levels. Simply stated, we need to build the hier-
archical structure of the dimensions involved (i.e., meta-
data enrichment) and populate this structure with actual
data (i.e., data enrichment). Further, the enrichment in-
cludes associating aggregate functions with measures910

which is also a metadata-related task.
Exploiting the existing QB semantics (i.e., metadata)

and the analysis of the data set instances (i.e., data) en-
able the automatic discovery of potentially new meta-
data concepts (e.g., new dimension levels). These meta-
data concepts can be suggested to the user that needs
to select the concepts of her interests and, if needed,
provide the minimum possible input about missing se-
mantics and specific situations (e.g., data conflicts).
The new metadata then support the rest of the enrich-920

ment process. For instance, in Example 4 we can
see that a country is related to a region via the
property:region property. When this property is
identified as a parent-child relationship between two
levels in a dimension, the rollup instances can be auto-
matically created for all country and region instances
(using the skos:broader property).

Performing OLAP analysis directly over SW data in
the RDF and Linked Data settings is likely to bring cer-
tain challenges. This is due to the fact that, unlike in930

the traditional DWs settings where data are prepared by
a well-defined and complex ETL process, the Linked
Data settings do not guarantee clean and formatted data.
On the contrary, working in a Linked Data environment
typically involves external data sources where it is not
rare to find incomplete and imperfect data. These prob-
lems directly influence the automation possibilities and

user involvement is typically required to fully enrich a
data set. The user needs to choose and/or to add se-
mantic information to the data set, or to manage prob-940

lems that can be present in the data sets. The less these
situations occur, the higher level of automation can be
achieved and vice-versa. Next, we describe these chal-
lenges starting with the semantic-related challenges –
partial and imperfect semantics – and then we address
data-related challenges – partial and imperfect data.

Partial semantics. This challenge arises when the data
set does not contain enough schema information for the
enrichment tasks. For instance, a data set may lack in-
formation about the aggregate functions that can be ap-950

plied over measures or the semantics for building the
dimension hierarchies.

This challenge is the most relevant for our approach
and needs to be tackled. The problem can be addressed
either by enrichment from external sources, or by man-
ual user intervention. In the next subsections we discuss
two possible approaches for defining the additional se-
mantics needed for enrichment tasks.

Imperfect semantics. This challenge comprises differ-
ent cases that occur when semantics obstructs automa-960

tion. For instance, when the same semantics is repre-
sented with different concepts, the same concepts have
different semantics, and other conflicts that may arise in
schema comparison [17]. This is called semantic het-
erogeneity [18]. For example, we may have different
currencies, different measure units, etc. As other cases
of imperfect semantics, we can mention incorrectly de-
fined semantics (e.g., when a continent is located in a
city), and outliers, i.e., unexpected semantic concepts
that cannot be aligned with the rest (e.g., cantons as970

a geographical concept that is not used in most of the
cases).

This problem should be addressed by detecting the
potential deviations in semantics (e.g., the same concept
playing different roles) and enabling the user to address
these cases. These situations are typically solved in the
data set cleaning and transformation stages [17] while
our approach focuses on semantic enrichment.

Partial data. Partial data may affect aggregation, a key
task in OLAP analysis. Missing data may raise many980

challenges. For example, aggregating data to the conti-
nent level depends on the availability of data about all
the belonging countries.

To tackle this problem, missing data can possibly be
imported from external sources. However, since it is of-
ten the case that the data set in hand contains the only

11

available data (e.g., only some countries in the EU are
covered), we focus on constructing the cube on top of
the available pieces of data. In the case that it is possi-
ble to detect the problems caused by missing data, the990

user should be notified (e.g., marking the aggregated
values as incomplete/partial in case of missing values).

Imperfect data. Many different cases can illustrate this
problem, where data instances cause difficulties to
achieve automation. One of these cases is data hetero-
geneity where not all data are well formatted or do not
satisfy explicit or implicit constraints. For example, in
RDF it is impossible to impose data instances to satisfy
MD integrity constraints (see Section 4.3). Imperfect
data may also include data errors and data instances that1000

do not satisfy constraints but still represent correct in-
formation.

This challenge generates a wide spectrum of cases
and we focus on cardinality detection based on data
analysis. Other cases, like the detection of the data in-
stances that do not match their type(s) (e.g., instead of
an expected integer we find a string), out-of-range val-
ues, and similar cases should be detected and reported
to the user. Then, the user can discard or, if possible,
fix these cases. In this context, an extensive overview1010

of methodologies for data quality assessment and im-
provement can be found in [19].

4.2. Associating measures with aggregate functions
To enable automatic navigation along dimension hi-

erarchies, each measure in the data cube needs to have
an associated aggregate function. Since QB does not al-
low to provide this information, the QB data set must be
enriched with a mapping of measures to aggregate func-
tions. We call this mapping MAggMap. Not every ag-
gregate function can be applied to a measure and give a1020

valid result. Defining the appropriate aggregate function
depending on the measure type is a well-known problem
in the literature related to the summarizability problem
in OLAP and statistical databases [20]. In that context,
measure types are flow (e.g., monthly sales value), stock
(e.g., inventory of a product), and value-per-unit (e.g.,
product item price). For instance, while it makes sense
to compute the sum of the monthly sales by year, it does
not make sense to sum a product’s unit price over time.
This summarizability condition is called type compati-1030

bility, i.e., the compatibility between the measure type
(i.e., its semantics), the measure category (i.e., tempo-
ral or non-temporal), and the aggregate function’s type.
This condition, together with disjointness and complete-
ness (see next section), are necessary to guarantee cor-
rect data summarization [20].

The large variety of measure and aggregate function
types makes the compatibility check a tedious task that
can hardly be fully automated. Even in such a case,
the user would still need to choose among different op-1040

tions. Therefore, the user must be involved in this pro-
cess. However, this involvement can be guided and
semi-automated based on the compatibility definition
presented in [20]. We address the interested reader to
[21] for further details.

In this paper, we assume that the user explicitly pro-
vides the MAggMap mapping, which is a needed input
for our enrichment tasks (see Section 5). We define
it as [measure IRI, aggregate function IRI] pairs. For
example, [sdmx-measure:obsValue, qb4o:Sum]. In1050

our current implementation (see Section 6), we suggest
a default aggregate function (e.g., sum) but it can be
changed by the user.

4.3. Discovering dimensional data

Dimensional concepts consist of dimensions, hierar-
chies, levels, and level attributes. Briefly, dimensions
contain different levels of aggregation (i.e., dimension
levels), which are organized in hierarchies (in short,
each hierarchy correspond to a path of rollup relation-
ships) and may contain attributes (see Section 2.1). En-1060

riching a QB data set with dimensional data implies
properly identifying all these constructs and annotating
them according to QB4OLAP. Current OLAP state-of-
the-art identifies dimensional concepts from functional
dependencies (FDs) [22]. Arranging the dimensional
concepts according to FDs guarantee the summarizabil-
ity disjointness and completeness and these are neces-
sary conditions to guarantee the summarizability cor-
rectness. Accordingly, FDs must be guaranteed between
facts and dimensions (e.g., between market capitaliza-1070

tion and geographical dimension) and between the lev-
els forming dimension hierarchies (e.g., between the
country and region levels). [23] discusses the role
of FDs for automatic MD modeling and how to dis-
cover them for Description Logics (DL). To discover
FDs, the most widespread technique consists of sam-
pling data to identify functional properties that fulfill
the underlying many-to-one20 cardinality of the rela-
tionship. Briefly, many-to-one (i.e., m:1) cardinalities
require that every child level instance is related to one1080

parent level instance (e.g., Serbia is related to the
Europe & Central Asia (ECS) region), while each
parent level instance can be related to one or more child

20Note that “many” stands for “one or more instances”.

12

level instances and these sets (e.g., countries and re-
gions) do not mutually overlap [24]. These guarantee
completeness and disjointness. A comprehensive and
detailed overview of the summarizability challenges in
MD modeling is presented in [24]. Dimension hierar-
chies whose properties satisfy many-to-one cardinali-
ties guarantee a correct summarizability as the aggre-1090

gate values at parent levels (e.g., region) include all re-
lated child level instances (e.g., countries) and no par-
ent level instance is without child level instance(s).21

Furthermore, there is no double-counting of child level
instances at the parent levels. Many-to-one cardinali-
ties enable the automation of the MD design [25] where
the potential new levels can be discovered by detecting
these cases in data instances.

In some expressive languages, such as the OWL 2 RL
profile22 based on DL-Lite [26], it is possible to state1100

that a property is functional. However, most available
RDF data sets omit such definitions. Therefore, in the
spirit of [25], we analyze the instances to identify FDs
from data. To avoid the inherent computational com-
plexity discussed in [27], we benefit from the QB se-
mantics by considering the QB dimensions as the initial
set of dimension levels from which start building richer
dimensional structures. Thus, the QB dimensions serve
as the starting point from where to discover possible
new dimension levels, hierarchies, and level attributes1110

based on FDs. Given the relevance of this step for MD
modeling, we provide an algorithm for the detection of
implicit FDs by discovering functional properties (i.e.,
satisfying a many-to-one cardinality) for dimension lev-
els. Moreover, one-to-one (i.e., 1:1) cardinalities are
identified to detect potential dimension level attributes.
We only consider linear hierarchies since, in practice,
complex hierarchies (see [28] for more details) with
many-to-many cardinalities are typically transformed to
linear hierarchies with many-to-one cardinalities. The1120

pseudo code is presented in Algorithm 1. The algorithm
runs over an implicit RDF graph.

The algorithm starts from the set of original QB data
set dimensions (L), which from now on we call ini-
tial levels. Moreover, it also takes the minCompl and
minCard parameters, which are later discussed in Algo-
rithm 2. The output of the algorithm are the sets of all
levels (allL), rollup properties (allP), all hierarchy steps
(allHS), and all [level, level attribute] pairs (allLLA)

21Note that we do not consider the special case of non-covering di-
mensions where there could exist parent level instances with no child
level instances.

22https://www.w3.org/TR/2008/

WD-owl2-profiles-20081008/#OWL_2_RL

Algorithm 1: Detect implicit MD semantics
Input: L, minCompl, minCard; // initial levels set (i.e.,

former QB dimensions), minimum completeness, and
minimum cardinality parameters, respectively

Output: allL, allP, allHS , allLLA; // all levels, all
properties, all hierarchy steps, and all
level-level attribute pairs, respectively

1 begin
2 allL = L;
3 allP = ∅;
4 allHS = ∅;
5 allLLA = ∅;
6 foreach level ∈ allL following a bottom-up order do
7 foreach property ∈ getProperties(level) do
8 if getCardinality(level, property,minCompl,minCard)

= m : 1 then
9 parentLevel = getOb jectElement(level, property);

10 if noCycles(level, parentLevel) then
11 allL ∪= parentLevel;
12 allP ∪= property;
13 allHS ∪= (level, property, parentLevel);

14 else if
getCardinality(level, property,minCompl,minCard) =

1 : 1 then
15 levelAttribute =

getOb jectElement(level, property);
16 allLLA ∪= (level, levelAttribute);

available in the input QB data set. The set of all lev-1130

els is initially populated with the initial levels set (line
2), while the other sets are initially empty (see lines 3
to 5). For each level (line 6), e.g., the country level,
we check all of its properties (line 7), e.g., the region
property, and infer their cardinalities. We iterate over
the levels by following a bottom–up approach; i.e., we
start from the finer (e.g., the country level) and later
visit coarser granularity levels (e.g., the region level).
Details on how to retrieve the property cardinality are
shown in Algorithm 2. If a property yields a many-to-1140

one cardinality (line 8) its object (i.e., the RDF prop-
erty range) is considered as a potential coarser granular-
ity level to rollup to. Therefore, a potential new parent
level is retrieved in line 9. Importantly, to guarantee the
MD integrity constraints, before adding this new parent
level to the set of all levels, we check that this addition
does not produce cycles (line 10), i.e., that the current
level cannot be reached from the newly identified par-
ent level (e.g., that there is no direct or indirect rollup
relationship from region to country). If there are no1150

cycles, we add the new parent level to the set of all lev-
els (line 11). Then, in lines 12 and 13, the property and
the hierarchy step triples are added to the corresponding
sets. Otherwise, if the property cardinality is one-to-one
(line 14), the new concept is considered as a level at-
tribute (e.g., label), and it is added to the set of [level,
level attribute] pairs (lines 15 and 16). The output sets

13

https://www.w3.org/TR/2008/WD-owl2-profiles-20081008/#OWL_2_RL
https://www.w3.org/TR/2008/WD-owl2-profiles-20081008/#OWL_2_RL

of Algorithm 1 are later consumed as inputs in our en-
richment tasks (see Section 5).

Algorithm 2: Get cardinality for a property
Input: l, p, minCompl, minCard; // level, property, minimum

completeness, and minimum cardinality parameters
Output: cardinality; // cardinality of the property p for

the level l
1 begin
2 to − oneFromChild = 0; // number of to-one property

instances from the child side
3 to − oneFromParent = 0; // number of to-one property

instances from the parent side
4 to − manyFromParentSet = ∅; // set of parent level

instances for to-many property instances from the
parent side

5 foreach li ∈ getInstances(l); // li - level instance
6 do
7 if countS ub jectPropertyInstances(li, p) = 1 then
8 to − oneFromChild ++;
9 parentLI = getOb jectElement(li, p);

10 if countOb jectPropertyInstances(parentLI, p) = 1 then
11 to − oneFromParent ++;

12 else if countOb jectPropertyInstances(parentLI, p) > 1
then

13 to − manyFromParentSet ∪= parentLI ;

14 if to − oneFromChild ≥ getInstanceNumber(l) * minCompl then
15 if to − oneFromChild / minCard ≥

to − manyFromParentSet.S ize() then
16 cardinality = m : 1

17 else if to − oneFromParent ≥ getInstanceNumber(l) *
minCompl then

18 cardinality = 1 : 1

19 else
20 cardinality = m : m; // other cardinality value

Algorithm 2 determines a property cardinality using1160

simple SPARQL queries to retrieve the number of prop-
erty instances related to a subject (line 7) or an object
(lines 10 and 12). This algorithm takes as input the
level (e.g., the country level) and the property (e.g.,
the region property) for which it must retrieve the cardi-
nality. Moreover, it also needs the minimum complete-
ness and disjointness minCompl and the minimum car-
dinality minCard parameters as inputs. The former de-
fines the minimal required percentage of to − one rela-
tionships for the total number of level instances, e.g., a1170

value 0.90 means that at least 90% of countries need to
have one and only one region property. This way, there
might be some level instances that have none or more
than one property instances. Although non-complete /

non-disjoint properties stand against the conditions dis-
cussed earlier in the present section, this is needed to
identify conceptual FDs that, due to imperfect and /or
partial data, do not hold for all the data. Following the
idea presented in [29], by means of these two parame-
ters we identify quasi-FDs (which is often the case in1180

Linked Data and RDF data sets). We say that a property

is a quasi-FD if most of the data satisfy the FD (e.g.,
98% of level instances are associated to exactly one
property instance). The second parameter, minCard, de-
fines the minimum average number of child level in-
stances per parent level instance (e.g., minCard = 5
meaning at least 5 countries per region). The values
for these parameters should be empirically defined de-
pending on the domain and data set quality (see Section
6).1190

The algorithm proceeds as follows. The local variable
to − oneFromChild (line 2) holds the number of to−one
properties from child to parent instances (e.g., the num-
ber of cases where there is only one region property
per country); analogously, to − oneFromParent (line
3) holds the number of to − one properties from par-
ent to child instances (e.g., the number of cases where
for a region instance there is only one region property
from a country instance to that region instance), and
to − manyFromParentSet (line 4) holds the set of par-1200

ent instances that are in to − many relationships (e.g.,
the region instances that are related to more than one
country via the region property). For all instances of
a given level (line 6), e.g., all country instances, we
count the ones that have only one instance of a given
property (line 8), e.g., the region property. In this case,
the algorithm retrieves the level instance on the other
side of the property (e.g., the region instance) and
checks its cardinality (lines 10 and 12). Note that this
check differs from the first one (line 7), since here the1210

level instance (e.g., the region instance) is used as a
property object while in the first one, the input level in-
stance is used as a subject. In case of to − one property
instances (lines 10 and 11), we count them; in case of
to − many instances, we add them to the set (lines 12
and 13) so that we can count them at the end (line 15),
since the property instances will be repeated for child
instances with the same parent instance (e.g., several
country instances are related to the same region in-
stance). Finally, we determine the cardinality in lines 141220

– 20.
We next show how Algorithm 2 can be implemented

with the following SPARQL queries. We consider that
the queries use an RDF graph that contains a QB4OLAP
level (e.g., ?levelIRI? a qb4o:LevelProperty)
and a set of QB4OLAP level members (e.g.,
levelMemberIRI1 a qb4o:LevelMember) belonging
to this level (i.e., levelMemberIRI1 qb4o:memberOf

?levelIRI?). Furthermore, we use the following pa-
rameter values minCompl = 100 and minCard = 2.1230

Hence, all properties for the level members can be re-
trieved with Query 1. The query takes the graph and
level IRIs as parameters. Note that the prefixes used in

14

queries are following:

1 prefix qb: <http://purl.org/linked−data/cube#>
2 prefix qb4o: <http://purl.org/qb4olap/cubes#>

Query 1. Get properties for level members.
1240

1 # INPUT: ?qb4oGraphIRI? − the new QB4OLAP graph IRI, and
2 # ?levelIRI? − the level IRI
3

4 SELECT DISTINCT ?p
5 FROM ?qb4oGraphIRI?
6 WHERE {
7 ?levelMember ?p ?o .
8 { SELECT DISTINCT ?levelMember
9 FROM ?qb4oGraphIRI?

10 WHERE {1250

11 ?levelMember a qb4o:LevelMember .
12 ?levelMember qb4o:memberOf ?levelIRI? . } } }

For a chosen property, we first need to check if it is
a to − one property, i.e., each level member is related
to one and only one instance of the property. Query 2
performs this check. In addition to the previous ones,
the query also takes the property IRI as parameter.

Query 2. Check if the property is to-one.
1260

1 # INPUT: ?qb4oGraphIRI? − the new QB4OLAP graph IRI,
2 # ?levelIRI? − the level IRI, and
3 # ?propertyIRI? − the property IRI
4

5 ASK { {
6 SELECT (COUNT (?levelMember) AS ?lmWithUniqueObject)
7 FROM ?qb4oGraphIRI?
8 WHERE { { #get #unique object per level member for the input property
9 SELECT ?levelMember (COUNT (DISTINCT ?obj) AS ?uniqueObjNum)

10 FROM ?qb4oGraphIRI?1270

11 WHERE {
12 ?levelMember ?propertyIRI? ?obj .
13 {SELECT ?levelMember
14 FROM ?qb4oGraphIRI?
15 WHERE {
16 ?levelMember a qb4o:LevelMember .
17 ?levelMember qb4o:memberOf ?levelIRI? .}}
18 } GROUP BY ?levelMember }
19 FILTER (?uniqueObjNum = 1) } }
20 { #get the total #level members for a level1280

21 SELECT (COUNT (DISTINCT ?lm) AS ?totalLevelMemberNumber)
22 FROM ?qb4oGraphIRI?
23 WHERE {
24 ?lm a qb4o:LevelMember .
25 ?lm qb4o:memberOf ?levelIRI? . } }
26 FILTER (?lmWithUniqueObject = ?totalLevelMemberNumber) }

If Query 2 returns true, the property is to − one and
we can check if it is 1:1 or m:1 with Queries 3 and 4,
respectively. The parameters are the same as for the1290

previous query.

Query 3. Check if the property is 1:1.

1 # INPUT: ?qb4oGraphIRI? − the new QB4OLAP graph IRI,
2 # ?levelIRI? − the level IRI, and
3 # ?propertyIRI? − the property IRI
4

5 ASK { { #get the #object per level member for the input property

6 SELECT (COUNT (DISTINCT ?levelMember) AS ?totalLevelMemberNumber)
7 (COUNT (DISTINCT ?obj) AS ?uniqueObjNum)1300

8 FROM ?qb4oGraphIRI?
9 WHERE {

10 {SELECT ?levelMember
11 FROM ?qb4oGraphIRI?
12 WHERE {
13 ?levelMember a qb4o:LevelMember .
14 ?levelMember qb4o:memberOf ?levelIRI? . } }
15 ?levelMember ?propertyIRI? ?obj . } }
16 FILTER (?uniqueObjNum = ?totalLevelMemberNumber) }1310

Query 4. Check if the property is m:1.

1 # INPUT: ?qb4oGraphIRI? − the new QB4OLAP graph IRI,
2 # ?levelIRI? − the level IRI, and
3 # ?propertyIRI? − the property IRI
4

5 ASK { { #get the #object per level member for the input property
6 SELECT (COUNT (DISTINCT ?levelMember) AS ?totalLevelMemberNumber)
7 (COUNT (DISTINCT ?obj) AS ?uniqueObjNum)
8 FROM ?qb4oGraphIRI?1320

9 WHERE {
10 {SELECT ?levelMember
11 FROM ?qb4oGraphIRI?
12 WHERE {
13 ?levelMember a qb4o:LevelMember .
14 ?levelMember qb4o:memberOf ?levelIRI? . } }
15 ?levelMember ?propertyIRI? ?obj . } }
16 FILTER (?uniqueObjNum < ?totalLevelMemberNumber/2)
17 { #check that objects are not literals
18 SELECT (COUNT (DISTINCT ?obj2) AS ?notLiteralObj)1330

19 FROM ?qb4oGraphIRI?
20 WHERE {
21 {SELECT ?lm
22 FROM ?qb4oGraphIRI?
23 WHERE {
24 ?lm a qb4o:LevelMember .
25 ?lm qb4o:memberOf ?levelIRI? . } }
26 ?lm ?propertyIRI? ?obj2 .
27 FILTER isIRI(?obj2) } }
28 FILTER (?uniqueObjNum = ?notLiteralObj) }1340

Our algorithms consider settings where the input QB
data set contains implicit MD semantics, i.e., where the
levels have properties that link them with coarser granu-
larity levels inside the data set. If this is not the case, we
can use existing IRIs or look for external IRIs (e.g., the
IRI for Serbia on DBpedia23) to search for the necessary
semantics from external data sets. If this is not possi-
ble, the user should define these IRIs manually. Further,
we assume that in the input QB data set, all observa-1350

tions are at the same level of granularity for each di-
mension which is the case most of the time. Then, on
top of these levels we build new dimension hierarchies.
Special situations, where there might exist observations
at different granularities, must be treated manually in
a data preparation step. This situation can be detected
with Algorithm 1 if it identifies a rollup property be-
tween instances of an initial level.

23http://dbpedia.org

15

http://dbpedia.org

5. Enrichment Method

Taking advantage of the QB4OLAP vocabulary and1360

the algorithms introduced in Section 4.3, we now pro-
pose a method to enrich an input QB graph24 with addi-
tional MD semantics. This method presents a set of de-
tailed enrichment steps. For the sake of comprehension,
each step is described as a SPARQL query showing the
precise enrichment and transformations. The queries
take the specified parameters, use an input QB graph
and incrementally create the new QB4OLAP graph by
generating the necessary triples. Since this method re-
quires some user actions, the overall enrichment pro-1370

cess is semi-automatized. The method consists of two
phases:

1. Redefinition phase which syntactically transforms
the input QB graph into QB4OLAP constructs and,
given the required input (see Section 4.2), specifies ag-
gregate functions for measures.

2. Enrichment phase which, given a set of required
inputs (see Section 4.3), enriches the QB4OLAP graph
generated by the redefinition phase with additional MD
semantics.1380

For the ease of understanding, this section intro-
duces the main ideas for the enrichment tasks to be
accomplished. In addition, Appendix A provides a
fully formalized, more general, and detailed enrichment
methodology, which is agnostic of the implementation
decisions made and further specifies the pre-conditions,
post-conditions, and transformations to be conducted by
each step in terms of set theory. Thus, the method pre-
sented in this section can be considered a possible solu-
tion to cover the steps defined by the methodology. In1390

this section, we first introduce some preliminaries for
understanding the method. Next, each phase is defined
in terms of queries to be performed that taking the in-
put parameters produce the output triples. Finally, we
provide some additional considerations.

5.1. Method Preliminaries
The method uses two RDF graphs, namely the QB

graph (i.e., the set of triples defining the QB cube struc-
ture and instances) and the QB4OLAP graph (analogous
to the QB graph definition). These graphs are assumed1400

to be compliant with the QB and QB4OLAP vocabular-
ies, respectively. According to the QB and QB4OLAP
definitions, we further identify two sets of RDF triples

24For simplicity of presentation, we assume that all triples related
to the input QB data set are in a single RDF graph.

in each graph: the set of triples describing the QB or
QB4OLAP cube schema and the set describing the cube
instances.

According to the QB definition (see Section 2),
the QB cube schema consists of the triples in-
volving the following classes and related proper-
ties: the QB dataset25 (i.e., qb:DataSet), struc-1410

ture (i.e., qb:DataStructureDefinition, dimen-
sions (i.e., qb:DimensionProperty), and measures
(i.e., qb:MeasureProperty). Following QB’s no-
tation, the cube structure is defined as a set of di-
mensions and measures via the cube components (i.e.,
qb:ComponentSpecification). An example of QB
cube schema extracted from our running example (see
Section 2.3) is presented in Example 9.

Example 9. QB cube schema triples.
1420

1 <http://worldbank.270a.info/dataset/world−bank−indicators/structure>
2 a qb:DataStructureDefinition ;
3 qb:component [qb:dimension sdmx−dimension:refArea] ;
4 qb:component [qb:measure sdmx−measure:obsValue] .
5 sdmx−dimension:refArea a qb:DimensionProperty .
6 sdmx−measure:obsValue a qb:MeasureProperty .
7 <http://worldbank.270a.info/dataset/CM.MKT.LCAP.CD> a qb:DataSet ;
8 qb:structure
9 <http://worldbank.270a.info/dataset/world−bank−indicators/structure> .1430

Lines 1 – 4 relate to the QB cube structure, line 5 to dimen-
sions, line 6 to measures, and line 7 to the dataset. The dataset
is related to the cube structure in lines 8 – 9.

QB cube instances contain triples related to the QB
dimension instances (extracted from the observations
with Query 9 as explained later) and observations (i.e.,
qb:Observation). As discussed before, observations
represent measure values for the fixed dimension in-
stances determined by the cube structure. An example
of QB cube instances is presented in Example 10.1440

Example 10. QB cube instance triples.

1 data:world−bank−indicators/CM.MKT.LCAP.CD/RS/2012
2 a qb:Observation ;
3 sdmx−dimension:refArea country:RS ;
4 sdmx−measure:obsValue 7450560827.04874 ;
5 qb:dataSet <http://worldbank.270a.info/dataset/CM.MKT.LCAP.CD> .

Line 1 – 2 define an observation. Line 3 specifies a dimension
instance and line 4 defines a measure value of the observa-1450

tion. The observation relates to the cube schema structure
indirectly (see lines 7 – 9 of Example 9) via qb:dataSet in
line 5.

25Note that in the present section the term “dataset” refers to
qb:DataSet.

16

Analogously, we next define the QB4OLAP cube
schema and instances. The QB4OLAP cube schema
consists of the triples involving the following classes
and related properties:

• dataset (i.e., qb:DataSet),
• structure (i.e., qb:DataStructureDefinition),
• dimensions (i.e., qb:DimensionProperty),1460

• measures (i.e., qb:MeasureProperty),
• dimension levels (i.e., qb4o:LevelProperty),
• dimension level attributes (i.e.,

qb4o:LevelAttribute),
• dimension hierarchies (i.e., qb4o:Hierarchy),
• hierarchy steps (i.e., qb4o:HierarchyStep),
• predefined set of aggregate functions (i.e.,

qb4o:AggregateFunction), and
• predefined set of possible cardinalities (i.e.,

qb4o:Cardinality).1470

The QB4OLAP cube instances contain the triples re-
lated to the QB4OLAP cube level instances, rollup re-
lationships between child and parent level instances
(represented with skos:broader), observations (i.e.,
qb:Observation), and level attribute values (being lit-
erals or IRIs).

Examples of the QB4OLAP cube schema and in-
stances are presented below in the method definition.
The examples are based on the running example (see
Section 2.3). We consider the scenario where the input1480

graph contains implicit MD semantics (e.g., a country
is linked to a region but this is not explicitly stated as
a rollup relationship since this cannot be described in
QB). Other scenarios are discussed in Section 5.4. For
the sake of simplicity, we define the steps as SPARQL
INSERT queries assuming that from the original in-
put QB graph we build a new QB4OLAP graph (which
is implicitly created with the first SPARQL INSERT
query). Note that the elements between two ’?’ in
the queries represent parameters that should be replaced1490

with the IRI values specified at each step. Moreover,
all the examples of the query results follow up on one
another. In addition to the prefixes introduced in the pre-
vious section, the queries also use the following prefix:

1 prefix skos: <http://www.w3.org/2004/02/skos/core#>

5.2. Redefinition Phase

Redefinition of a cube schema. We start by building
the new QB4OLAP cube schema. We proceed incre-1500

mentally and first we perform a syntactic transformation
from QB to QB4OLAP constructs, while the complete
QB4OLAP cube schema is formed after the Enrichment

phase (see Section 5.3). The QB cube schema triples
defining the cube dataset, structure, dimension levels,
and measures are added to the QB4OLAP cube schema
in the following way. First, dimensions are redefined as
levels in the QB4OLAP cube schema. Next, we copy
the measures from the QB graph to the QB4OLAP one.
Then, we define the new cube schema structure, as-1510

sign to it both levels and measures, and add it to the
QB4OLAP cube structure. Finally, we copy the dataset
definition to the QB4OLAP cube schema and assign the
new cube schema structure to it. This transformation
can be performed with Query 5. The inputs for this task
are the QB4OLAP graph IRI, the QB graph IRI, the QB
dataset IRI, and the new QB4OLAP structure IRI.

Query 5. Redefinition of a cube schema.

1 # INPUT: ?qb4oGraphIRI? − the new QB4OLAP graph IRI,1520

2 #?qbGraphIRI? − the input QB graph IRI,
3 #?dsIRI? − the data set IRI, and
4 #?dsdIRI? − the data structure definition IRI
5

6 INSERT INTO ?qb4oGraphIRI? {
7 ?dsIRI? a qb:DataSet .
8 ?dsIRI? qb:structure ?dsdIRI? .
9 ?dsdIRI? a qb:DataStructureDefinition .

10 ?dsdIRI? qb:component ?bl . ?bl qb4o:level ?d .
11 ?dsdIRI? qb:component ?bm . ?bm qb:measure ?m .1530

12 ?d a qb4o:LevelProperty .
13 ?m a qb:MeasureProperty . }
14 FROM ?qbGraphIRI?
15 WHERE {
16 ?dsd a qb:DataStructureDefinition .
17 ?dsIRI? qb:structure ?dsd .
18 ?dsd qb:component ?bl . ?bl qb:dimension ?d .
19 ?dsd qb:component ?bm . ?bm qb:measure ?m . }

Thus, at this point, we have obtained the initial1540

QB4OLAP cube schema. An example of a QB4OLAP
cube schema is shown in Example 11 which illustrates
the result of Query 5. Note that we use the newG names-
pace for the new QB4OLAP graph.

Example 11. Resulting triples of Query 5.

1 <http://worldbank.270a.info/dataset/CM.MKT.LCAP.CD> a qb:DataSet;
2 qb:structure newG:newDSD .
3 newG:newDSD a qb:DataStructureDefinition ;
4 qb:component [qb4o:level sdmx−dimension:refArea] ;1550

5 qb:component [qb:measure sdmx−measure:obsValue] .
6 sdmx−dimension:refArea a qb4o:LevelProperty .
7 sdmx−measure:obsValue a qb:MeasureProperty .

Lines 1 and 2 illustrate the triples related to the cube dataset.
Results in lines 3, 4, and 5 define the new cube schema struc-
ture and add a level and a measure as components to it. Line 6
redefines the dimension from Example 9 as a QB4OLAP level,
while line 7 illustrates the measure from Example 9 copied to
the new QB4OLAP graph.1560

Specification of an aggregate function. Next, we
need to specify an aggregate function per measure.

17

Note that possible aggregate functions are predefined by
QB4OLAP. The inputs for this task are the QB4OLAP
graph IRI, the QB dataset IRI, and the MAggMap map-
ping; i.e., the [measure IRI, aggregate function IRI] pair
(see Section 4.2). The aggregate function is specified
as a triple that relates the aggregate function IRI with
the component of the cube schema structure related to
the measure. This triple is added to the QB4OLAP cube1570

schema and it can be performed with Query 6. In case
of more than one measure, the query should be run for
each measure.

Query 6. Specification of an aggregate function.
1 # INPUT: ?qb4oGraphIRI? − the new QB4OLAP graph IRI,
2 # ?dsIRI? − the data set IRI, and
3 # ?measureIRI?
4 # ?aggregateFunctionIRI? − the aggregate function IRI
51580

6 INSERT INTO ?qb4oGraphIRI? {
7 ?comp qb4o:aggregateFunction ?aggregateFunctionIRI? }
8 FROM ?qb4oGraphIRI?
9 WHERE {

10 ?dsd a qb:DataStructureDefinition .
11 ?dsIRI? qb:structure ?dsd .
12 ?dsd qb:component ?comp .
13 ?comp qb:measure ?measureIRI? . }

An example of the updated QB4OLAP cube schema1590

is presented in Example 12.

Example 12. Resulting triples of Query 6.
1 <http://worldbank.270a.info/dataset/CM.MKT.LCAP.CD> a qb:DataSet;
2 <http://worldbank.270a.info/dataset/CM.MKT.LCAP.CD> qb:structure

newG:newDSD .
3 newG:newDSD a qb:DataStructureDefinition ;
4 qb:component [qb4o:level sdmx−dimension:refArea] ;
5 qb:component [qb:measure sdmx−measure:obsValue ;
6 qb4o:aggregateFunction qb4o:sum] .1600

7 sdmx−dimension:refArea a qb4o:LevelProperty .
8 sdmx−measure:obsValue a qb:MeasureProperty .

Line 6 presents the aggregate function that is assigned to a
measure by the grouping mechanism via a blank node. In this
case, the SUM (i.e., qb4o:Sum) aggregate function.

Definition of a dimension. As part of the automatic
redefinition, to build QB4OLAP-compliant dimension
hierarchies, a new dimension for each initial level needs
to be defined. As explained in Section 3, QB4OLAP1610

reuses the qb:DimensionProperty, however with dif-
ferent semantics than in QB: while in the latter a dimen-
sion represents a point at a fixed granularity, QB4OLAP
considers a dimension to contain points at different level
granularities. Therefore, in QB4OLAP, a QB dimen-
sion becomes a dimension level (see Query 5) and a di-
mension represents a set of levels that are hierarchically
organized. The inputs for this task are the QB4OLAP
graph IRI and the dimension IRI, and it can be per-
formed with Query 7 that should be run for each dimen-1620

sion.

Query 7. Definition of a dimension.

1 # INPUT: ?qb4oGraphIRI? − the new QB4OLAP graph IRI and
2 # ?dimensionIRI? − the dimension IRI
3

4 INSERT INTO ?qb4oGraphIRI? {
5 ?dimensionIRI? a qb:DimensionProperty . }

An example of the triple added to the updated1630

QB4OLAP cube schema is presented in Example 13.

Example 13. Resulting triple of Query 7.

1 newG:geoDimension a qb:DimensionProperty .

The triple presents a dimension for the
sdmx-dimension:refArea initial level.

Definition of a hierarchy. Once the dimensions
are created, we need to create a hierarchy for each di-
mension. A hierarchy represents the set of hierarchi-1640

cally ordered levels in the dimension. Once created, it
needs to be linked with the corresponding dimension
and the initial level. Thus, the inputs for this task are
the QB4OLAP graph IRI , the hierarchy IRI, the dimen-
sion IRI, and the level IRI. This can be performed with
Query 8 that should be run for each hierarchy.

Query 8. Definition of a hierarchy.

1 # INPUT: ?qb4oGraphIRI? − the new QB4OLAP graph IRI,
2 # ?hierarchyIRI? − the hierarchy IRI,1650

3 # ?dimensionIRI? − the dimension IRI, and
4 # ?levelIRI? − the level IRI
5

6 INSERT INTO ?qb4oGraphIRI? {
7 ?hierarchyIRI? a qb4o:Hierarchy .
8 ?dimensionIRI? qb4o:hasHierarchy ?hierarchyIRI? .
9 ?hierarchyIRI? qb4o:inDimension ?dimensionIRI? .

10 ?hierarchyIRI? qb4o:hasLevel ?levelIRI? . }

An example of the triples added to the updated1660

QB4OLAP cube schema is presented in Example 14.

Example 14. Resulting triples of Query 8.

1 newG:geoHierarchy a qb4o:Hierarchy .
2 newG:geoDimension qb4o:hasHierarchy newG:geoHierarchy .
3 newG:geoHierarchy qb4o:inDimension newG:geoDimension .
4 newG:geoHierarchy qb4o:hasLevel newG:region .

Line 1 illustrates a new hierarchy being created. Triples in
lines 2 and 3 link the hierarchy with a dimension, and to a1670

level in line 4.

Populating level members of an initial level. Fi-
nally, at the end of the redefinition phase, we populate
level members for the initial levels of the QB4OLAP
graph schema. The inputs for this task are the
QB4OLAP graph IRI, the QB graph IRI, the level IRI,
and the QB dataset IRI. This can be performed with
Query 9 that should be run for each initial level.

18

Query 9. Populating level members of an initial level.
1680

1 # INPUT: ?qb4oGraphIRI? − the new QB4OLAP graph IRI,
2 # ?qbGraphIRI? − the input QB graph IRI,
3 # ?levelIRI? − the level IRI, and
4 # ?dsIRI? − the data set IRI
5

6 INSERT INTO ?qb4oGraphIRI? {
7 ?levelMember a qb4o:LevelMember .
8 ?levelMember qb4o:memberOf ?levelIRI? . }
9 FROM ?qbGraphIRI?

10 WHERE { {1690

11 SELECT DISTINCT ?levelMember WHERE {
12 ?o a qb:Observation .
13 ?o qb:dataSet ?dsIRI? .
14 ?o ?levelIRI? ?levelMember . } } }

An example of level member triples added to the
QB4OLAP graph instances is presented in Example 15.

Example 15. Resulting triples of Query 9.

1 country:RS a qb4o:LevelMember .1700

2 country:RS qb4o:memberOf sdmx−dimension:refArea .

Line 1 illustrates a level member extracted from the observa-
tions and line 2 links it to the level it belongs to.

5.3. Enrichment Phase
Once the cube schema is redefined in terms of

QB4OLAP, we next focus on its enrichment with new
dimensional concepts to construct richer hierarchies. At
this point, we assume that a pre-process to discover po-
tential new levels and level attributes has been carried1710

out. For example, this could be done with the algorithms
proposed in Section 4.3. Starting from an initial di-
mension level we explain the construction of two three-
level hierarchies. This scenario is illustrated in Figure
4. Starting from the refArea level that belongs to the
hierarchy H1 we first add a new level - region. For
this we need to add the region level to the hierarchy
H1, create the hierarchy step S1, add both levels to S1
(refArea as child and region as parent), and add S1 to
H1. Then, we add one more level, income-level, on1720

top of refArea. As conceptually the new level belongs
to a new hierarchy (i.e., it does not belong to the same
rollup path as region), we need to create a new hierar-
chy H2, create a new step S2, add refArea (as child)
and income-level (as parent) to S2, and add S2 to H2.
Moreover, H2 needs to be added to the same dimension
that H1 already belongs to. This notation is fixed by
QB4OLAP. Finally, we create the mandatory All level
for the dimension and accordingly link the region and
income-level levels to it via two new hierarchy steps1730

S3 and S4 that are created and added to H1 and H2, re-
spectively. The process is as follows.

Creating, populating, and linking a new parent
level. First, we need to create a new level (e.g., region)

ALL

Region

Ref
Area

Income
level

S1 S2

S4S3

H2H1

Level

Step

Hierarchy

Figure 4: Three-level Hierarchies Construction

and add it as a parent level to the child level (e.g.,
refArea). Moreover, we need to link all the members
of the child level with the corresponding members of
the new parent level. The inputs for this task are the
QB4OLAP graph IRI, the QB graph IRI, the child level
IRI, and the new parent level (i.e., property) IRI. This1740

can be performed with Query 10. To build the hierar-
chy illustrated in Figure 4, the query should be run for
both region and income-level levels that are added
as parent levels for the refArea level.

Query 10. Creating, populating, and linking a new
parent level.

1 # INPUT: ?qb4oGraphIRI? − the new QB4OLAP graph IRI,
2 # ?qbGraphIRI? − the input QB graph IRI,
3 # ?levelIRI? − the existing level IRI, and1750

4 # ?propertyIRI? − the property IRI (i.e., new level)
5

6 INSERT INTO ?qb4oGraphIRI? {
7 ?propertyIRI? a qb4o:LevelProperty .
8 ?obj a qb4o:LevelMember .
9 ?obj qb4o:memberOf ?propertyIRI? .

10 ?levelMember2 skos:broader ?obj2 . }
11 WHERE { {
12 SELECT DISTINCT ?obj
13 FROM ?qbGraphIRI?1760

14 WHERE { {
15 SELECT ?levelMember
16 FROM ?qb4oGraphIRI?
17 WHERE {
18 ?levelMember a qb4o:LevelMember .
19 ?levelMember qb4o:memberOf ?levelIRI? . }}
20 ?levelMember ?propertyIRI? ?obj . }}
21 { SELECT ?levelMember2 ?obj2
22 FROM ?qbGraphIRI?
23 WHERE {1770

24 {SELECT ?levelMember2
25 FROM ?qb4oGraphIRI?
26 WHERE {
27 ?levelMember2 a qb4o:LevelMember .
28 ?levelMember2 qb4o:memberOf ?levelIRI? . }}
29 ?levelMember2 ?propertyIRI? ?obj2 .
30 } GROUP BY ?levelMember2 ?obj2 } }

19

An example of triples for two new levels, their level
members, and linking of the level members of the new1780

parent levels with the level members of the child level
added to the QB4OLAP graph is presented in Example
16.

Example 16. Resulting triples of Query 10.

1 newG:region a qb4o:LevelProperty .
2 region:ECS a qb4o:LevelMember .
3 region:ECS qb4o:memberOf newG:region .
4 country:RS skos:broader region:ECS .
51790

6 newG:income−level a qb4o:LevelProperty .
7 income:UMC a qb4o:LevelMember .
8 income:UMC qb4o:memberOf newG:income−level .
9 country:RS skos:broader income:UMC .

Line 1 illustrates the new level definition for the region level.
Lines 2 and 3 exemplify a new level member and its linking to
the region level, respectively. Then, line 4 links a child level
member (i.e., country:RS to the new parent level member
(i.e., region:ECS) and this way creating a rollup relationship1800

between them. Finally, lines 6-9 reflect the same definition for
income-level.

Definition of a hierarchy step in an existing hierar-
chy. Having a new parent level defined and added to the
QB4OLAP graph (both schema and instance parts), we
next need to create a hierarchy step that determines the
order of these levels in a hierarchy. In this context, we
explain two particular cases. The first, simpler, case is
to add a new parent level to a level that is either the only
level in a hierarchy or that is the last (i.e., coarsest) par-1810

ent level in the hierarchy. The inputs for this task are the
QB4OLAP graph IRI, the child level IRI, the new par-
ent level (i.e., property) IRI, the hierarchy IRI, and the
hierarchy step IRI. This can be performed with Query
11. To build the hierarchy illustrated in Figure 4, the
query should be run for the region level that is added
as parent level to the refArea level.

Query 11. Definition of a hierarchy step in an existing
hierarchy.

1820
1 # INPUT: ?qb4oGraphIRI? − the new QB4OLAP graph IRI,
2 # ?levelIRI? − the existing level IRI,
3 # ?propertyIRI? − the property IRI (i.e., new level),
4 # ?hierarchyIRI? − the hierarchy IRI, and
5 # ?hsIRI? − the hierarchy step IRI (typically blank node)
6

7 INSERT INTO ?qb4oGraphIRI? {
8 ?hsIRI? a qb4o:HierarchyStep .
9 ?hsIRI? qb:inHierarchy ?hierarchyIRI? .

10 ?hsIRI? qb4o:parentLevel ?propertyIRI? .1830

11 ?hsIRI? qb4o:childLevel ?levelIRI? .
12 ?hsIRI? qb4o:pcCardinality qb4o:ManyToOne .
13 ?hierarchyIRI? qb4o:hasLevel ?propertyIRI? .}

Example triples for creating a hierarchy step in an ex-
isting hierarchy are presented in Example 17.

Example 17. Resulting triples of Query 11.

1 :newHierarchyStep a qb4o:HierarchyStep .
2 :newHierarchyStep qb4o:inHierarchy newG:geoHierarchy .1840

3 :newHierarchyStep qb4o:parentLevel newG:region .
4 :newHierarchyStep qb4o:childLevel sdmx−dimension:refArea .
5 :newHierarchyStep qb4o:pcCardinality qb4o:ManyToOne .
6 newG:geoHierarchy qb4o:hasLevel newG:region .

Line 1 defines the new hierarchy step and lines 2 – 5 link the
hierarchy step with its hierarchy, parent level, child level, and
cardinality, respectively. Finally, line 6 adds the new parent
level to the existing hierarchy.

Definition of a hierarchy step while creating a new1850

hierarchy. The second, more complex, case is to add
a parent level to a child level that already has a par-
ent level (in one or more hierarchies). In this case, for
each hierarchy where there is a parent level, create a
new hierarchy. Then, replicate the hierarchy steps and
add the corresponding levels such that the child level is
the only or the last (i.e., coarsest) parent level in the hi-
erarchy. Finally, add the new parent level to the new
hierarchy and create a new hierarchy step with the child
level. In case that identical (i.e., duplicate) new hier-1860

archies would be created from different existing hierar-
chies, only one new hierarchy should be created. Thus,
in the context of Figure 4, adding the income-level

level as parent to the refArea level (i.e., S2 in H2) can
be performed with Query 12. The inputs for this task are
the QB4OLAP graph IRI, the QB graph IRI, the child
level IRI, the new parent level (i.e., property) IRI, the hi-
erarchy IRI, and the hierarchy step IRI. Note that if there
was a longer sequence of levels (and hierarchy steps) to
be replicated, Query 12 would need to be extended.1870

Query 12. Definition of a hierarchy step with creating
a new hierarchy.

1 # INPUT: ?qb4oGraphIRI? − the new QB4OLAP graph IRI,
2 # ?qbGraphIRI? − the input QB graph IRI,
3 # ?levelIRI? − the existing level IRI,
4 # ?propertyIRI? − the property IRI (i.e., new level),
5 # ?hierarchyIRI? − the hierarchy IRI, and
6 # ?hsIRI? − the hierarchy step IRI (typically blank node)
71880

8 INSERT INTO ?qb4oGraphIRI? {
9 ?hierarchyIRI? a qb4o:Hierarchy .

10 ?hierarchyIRI? qb4o:inDimension ?d .
11 ?d qb4o:hasHierarchy ?hierarchyIRI? .
12 ?hsIRI? a qb4o:HierarchyStep .
13 ?hsIRI? qb4o:inHierarchy ?hierarchyIRI? .
14 ?hsIRI? qb4o:parentLevel ?propertyIRI? .
15 ?hsIRI? qb4o:childLevel ?levelIRI? .
16 ?hsIRI? qb4o:pcCardinality qb4o:ManyToOne .
17 ?hierarchyIRI? qb4o:hasLevel ?propertyIRI? .1890

18 ?hierarchyIRI? qb4o:hasLevel ?levelIRI? }
19 FROM ?qbGraphIRI?
20 WHERE {
21 ?h a qb4o:Hierarchy .
22 ?h qb4o:hasLevel ?levelIRI? .
23 ?h qb4o:inDimension ?d .
24 ?d a qb:DimensionProperty .
25 }

20

Example triples for creating a hierarchy step in a new1900

hierarchy are presented in Example 18.

Example 18. Resulting triples of Query 12.

1 newG:incomeHierarchy a qb4o:Hierarchy .
2 newG:incomeHierarchy qb4o:inDimension newG:geoDimension .
3 newG:geoDimension qb4o:hasHierarchy newG:incomeHierarchy .
4 :newHierarchyStep2 a qb4o:HierarchyStep .
5 :newHierarchyStep2 qb4o:inHierarchy newG:incomeHierarchy .
6 :newHierarchyStep2 qb4o:parentLevel newG:income−level .
7 :newHierarchyStep2 qb4o:childLevel sdmx−dimension:refArea .1910

8 :newHierarchyStep2 qb4o:pcCardinality qb4o:ManyToOne .
9 newG:incomeHierarchy qb4o:hasLevel sdmx−dimension:refArea

10 newG:incomeHierarchy qb4o:hasLevel newG:income−level .

Lines 1 – 3 define the new hierarchy and link it with the exist-
ing dimension. Then, lines 4 – 8 create a new hierarchy step
and link it with its hierarchy, parent level, child level, and car-
dinality, respectively. Finally, lines 9 and 10 add both levels
to the hierarchy.

In any case, when adding a hierarchy step, cycles1920

need to be avoided in the hierarchy definition and this
can be achieved following the rationale of Algorithm 1.

Definition of the all level and its level member. Fi-
nally, the mandatory All level with its all level mem-
ber must top all the dimension hierarchies. Thus, we
first need to add the All level to each dimension. The
inputs for this task are the QB4OLAP graph IRI, the
All level IRI, and the all level member IRI. This can
be performed with Query 13.

Query 13. Definition of the all level and its level mem-1930

ber.

1 # INPUT: ?qb4oGraphIRI? − the new QB4OLAP graph IRI,
2 # ?allLevelIRI? − the all level IRI, and
3 # ?allLevelMemberIRI? − the all level member IRI
4

5 INSERT INTO ?qb4oGraphIRI? {
6 ?allLevelIRI? a qb4o:LevelProperty .
7 ?allLevelMemberIRI? a qb4o:LevelMember .
8 ?allLevelMemberIRI? qb4o:memberOf ?allLevelIRI? .}1940

Example triples for creating the All level and its all
level member are presented in Example 19.

Example 19. Resulting triples of Query 13.

1 newG:geoALL a qb4o:LevelProperty .
2 newG:geoALLmember a qb4o:LevelMember .
3 newG:geoALLmember qb4o:memberOf newG:geoALL .

Line 1 illustrates the new level definition of the all level for1950

the geo dimension. Line 2 defines its level member and line 3
links the member to the level.

Linking of the all level member with the lower
level members. After creating the All level and its all
level member for a dimension, all the coarsest levels

of each hierarchy belonging to the dimension, must be
linked to the All level. Furthermore, their level mem-
bers must be related to the all level member. The in-
puts for this task are the QB4OLAP graph IRI, the All
level IRI, and the child level IRI. This can be performed1960

with Query 14. In the context of the hierarchy illustrated
in Figure 4, the query should be run for both region

and income-level that need to be linked to the All

level.

Query 14. Linking of the all level member with the
lower level members.

1 # INPUT: ?qb4oGraphIRI? − the new QB4OLAP graph IRI,
2 # ?levelIRI? − the child level IRI, and
3 # ?allLevelMemberIRI? − the all level member IRI1970

4

5 INSERT INTO ?qb4oGraphIRI? {
6 ?levelMember skos:broader ?allLevelMemberIRI? . }
7 FROM ?qb4oGraphIRI?
8 WHERE {
9 ?levelMember a qb4o:LevelMember .

10 ?levelMember qb4o:memberOf ?levelIRI? . }

Example triples that link the child level members
with the all level member are presented in Example1980

20.

Example 20. Resulting triples of Query 14.

1 region:ECS skos:broader newG:geoALLmember .
2 income:UMC skos:broader newG:geoALLmember .

Lines 1 and 2 illustrate linking of the region and
income-level level members with the all level member in
the geo dimension, respectively.

Once the All levels (one per dimension) and their1990

all level member are created and linked, we can use
Query 11 to link both region and income-level to the
All level. This way we can create the S3 and S4 hierar-
chy steps in Figure 4. The addition of the All levels for
the remaining two dimensions is analogous.

Definition of a level attribute and its linking to a
level. Additionally to the construction of the dimension
hierarchies, the levels may have level attributes that can
also be discovered with Algorithm 1. Thus, level at-
tributes can be added to the QB4OLAP graph. The in-2000

puts for this task are the QB4OLAP graph IRI, the QB
graph IRI, level IRI, and the attribute IRI. This can be
performed with Query 15.

Query 15. Definition of a level attribute and its linking
to a level.

1 # INPUT: ?qb4oGraphIRI? − the new QB4OLAP graph IRI,
2 # ?qbGraphIRI? − the input QB graph IRI,
3 # ?levelIRI? − the child level IRI, and
4 # ?propertyIRI? − the property IRI (i.e., the attribute)2010

21

5

6 INSERT INTO ?qb4oGraphIRI? {
7 ?propertyIRI? a qb4o:LevelAttribute .
8 ?propertyIRI? qb4o:inLevel ?levelIRI? .
9 ?levelIRI? qb4o:hasAttribute ?propertyIRI? .

10 ?levelMember ?propertyIRI? ?obj . }
11 FROM ?qbGraphIRI?
12 WHERE {
13 {SELECT ?levelMember
14 FROM ?qb4oGraphIRI?2020

15 WHERE{
16 ?levelMember a qb4o:LevelMember .
17 ?levelMember qb4o:memberOf ?levelIRI? . } }
18 ?levelMember ?propertyIRI? ?obj . }

Example triples of a level attribute, its linking with a
level, and specifying the value for a level member are
presented in Example 21.

Example 21. Resulting triples of Query 15.
2030

1 skos:prefLabel a qb4o:LevelAttribute .
2 skos:prefLabel qb4o:inLevel sdmx−dimension:refArea .
3 sdmx−dimension:refArea qb4o:hasAttribute skos:prefLabel .
4 country:RS skos:prefLabel ‘‘Serbia’’\@en .

Line 1 defines a level attribute and lines 2 and 3 link the level
attribute and the corresponding level. Then, line 4 exemplifies
the value of the attribute for country:RS.

Copying of observations. The output of the previous
steps (i.e., queries) is the complete QB4OLAP schema2040

graph and partial QB4OLAP instance graph. To com-
plete the latter one, the observations need to be copied
to the QB4OLAP graph. The inputs for this task are the
QB4OLAP graph IRI, the QB graph IRI, and the QB
dataset IRI. This can be performed with Query 16.

Query 16. Copying of observations.

1 # INPUT: ?qb4oGraphIRI? − the new QB4OLAP graph IRI,
2 # ?qbGraphIRI? − the input QB graph IRI, and
3 # ?dsIRI? − the data set IRI2050

4

5 INSERT INTO ?qb4oGraphIRI? {
6 ?oIRI a qb:Observation .
7 ?oIRI ?prop ?val . }
8 FROM ?qbGraphIRI?
9 WHERE {

10 ?oIRI a qb:Observation .
11 ?oIRI qb:dataSet ?dsIRI? .
12 ?oIRI ?prop ?val . }2060

Example triples of a QB observation copied to the
QB4OLAP graph are presented in Example 22.

Example 22. Resulting triples of Query 16.

1 <http://worldbank.270a.info/dataset/world−bank−indicators/
2 CM.MKT.LCAP.CD/RS/2012>
3 a qb:Observation ;
4 qb:dataSet newG:newDS ;
5 property:indicator indicator:CM.MKT.LCAP.CD ;
6 sdmx−dimension:refArea country:RS ;2070

7 sdmx−measure:obsValue 7450560827.04874 ;

Line 1 defines an observation and the rest of the triples link
observation with the data set, levels, and measure value for
country:RS.

5.4. Additional considerations
We want to position our approach with respect to

two QB concepts that might be considered relevant
in our context, namely qb:AttributeProperty and
qb:Slice. The former refers to the attributes de-2080

scribing the observations (e.g., the type of the mea-
sure). We consider these attributes as metadata rather
than elements of the schema. Our proposal is to cap-
ture this information, by means of analytical metadata
(e.g., the SM4AM analytical metadata [30]). For in-
stance, different attributes can be defined as instances
(via rdf:type) of sm4am:DataProperty and kept as
additional metadata. Regarding the latter, qb:Slice,
we focus on the base cuboid, without considering higher
level cuboids, since they are derivable from the base2090

cuboid.
For the creation of the IRIs of the new objects, we

recommend to use the W3C best practices.26

A final consideration relates to whether or not the
QB4OLAP enrichment should entail the construction
of a new graph. For simplicity of presentation, we
assume so far that the method steps always build a
new graph. Nevertheless, the newly created QB4OLAP
data cube schema can be used for the exploration of
the existing observations. As the existing QB dimen-2100

sion properties used in the observations are now re-
defined as QB4OLAP dimension level properties, the
new schema that defines dimension structures and in-
cludes the aggregate functions for measures can be
used to interpret observations and aggregate measure
values. Moreover, the existing graph can be changed
such that its qb:DataSet points only to the newly
defined qb:DataStructureDefinition representing
the QB4OLAP data cube schema.

6. Evaluation2110

To evaluate our approach, we have built the tool
called QB2OLAP Enrichment Module (QB2OLAPem)
that redefines a QB data set in terms of the QB4OLAP
vocabulary. The resulting QB4OLAP data set can then
be enriched as discussed in the previous section by re-
lating measures with aggregate functions and by discov-
ering new potential dimensional concepts that can then

26http://www.w3.org/2011/gld/wiki/223_Best_

Practices_URI_Construction

22

http://www.w3.org/2011/gld/wiki/223_Best_Practices_URI_Construction
http://www.w3.org/2011/gld/wiki/223_Best_Practices_URI_Construction

be used to extend the MD knowledge described in the
QB4OLAP data set. To do so, QB2OLAPem follows
the steps described in the method. Our tool was used2120

in a set of experiments aimed at validating our approach
and in this section we present the results. We first briefly
introduce QB2OLAPem. Then, we explain the evalua-
tion setting and rational. Finally, we present the evalu-
ation results for the applicable quality characteristics of
the Quality in use and the Product quality models of the
ISO/IEC 25000 [31].

6.1. QB2OLAP Enrichment Module

QB2OLAPem is developed in Java using JRE
1.8.0 60, Apache Jena 2.13.0 for working with RDF2130

graphs, SWT27 for the GUI, and Windows 8.1 as OS.
It implements the algorithm to discover implicit di-
mensional concepts from Section 4 and the enrich-
ment method from Section 5. The enrichment steps
are performed in an iterative and interactive fashion.
QB2OLAPem automatically retrieves potentially new
dimension levels and level attributes, lists them to the
user who can choose the ones of her interest, and auto-
matically enriches the data set based on the user choices.
The user can also configure an aggregate function for2140

each measure. QB2OLAPem visualizes the cube struc-
ture for the user and enables her to automatically gen-
erate the QB4OLAP triples once the enrichment is fin-
ished. This way, QB2OLAPem enables user-friendly
and (semi-)automatic enrichment of QB data sets with
additional QB4OLAP semantics. Furthermore, the out-
put triples produced by QB2OLAPem can be straight-
forwardly loaded into an SW-based OLAP engine and
allow traditional OLAP analysis (i.e., by means of a
high-level interface in terms of an MD algebra that auto-2150

matically translates these high-level operators in terms
of SPARQL). Thus, it lowers the entry barrier for data
analysis on SW data for non-expert users (e.g., tradi-
tional OLAP users). For further details, [9] reports on
how to connect QB2OLAPem with an OLAP engine.
From here on we focus on QB2OLAPem, whose pro-
cess flow is presented in Figure 5.

The figure illustrates three kinds of external pro-
cesses, as well as the QB2OLAPem internal process
flow. The first kind of external process is the user – sys-2160

tem interaction, where the user is guided by the Inter-
face element to iteratively perform the semi-automatic
enrichment using the QB2OLAPem GUI. The second
kind of external process is the system – SPARQL end-
point interaction where QB2OLAPem queries external

27https://www.eclipse.org/swt/

QB2OLAP Enrichment Module

SP
A

R
Q

L
EN

D
P

O
IN

T

Triplestore
Source

USER

Enrichment

Enrichment
Parameterization

Visualization

Triple-generation

Q
U

ER
YI

N
G

Triple-generation
Parameterization

GUI

RDF
triples

SPARQL
queries

QB4OLAP
triples

2

1

3

INTERFACE

Figure 5: QB2OLAP Enrichment Module Process Flow

triplestores to identify implicit potential MD concepts
that could be used for the enrichment. The last kind
of external process is the generation of the QB4OLAP
triples that can then be used in other tools (e.g., an
OLAP engine, a SPARQL endpoint, etc.). These three2170

kinds of external processes are coordinated by the
QB2OLAPem internal process flow as follows. In the
user – system interaction, the user initiates the enrich-
ment process by specifying the SPARQL endpoint, the
data set IRI, and possibly additional fine-tuning param-
eters in the Enrichment Parameterization activity. Then,
the Querying element triggers the SPARQL queries to
retrieve the RDF triples specifying the initial QB cube
structure. This structure is then redefined in terms of
QB4OLAP (see Section 5.2). The results are then vi-2180

sualized to the user in the Visualization activity. More-
over, the Querying element also runs the queries to dis-
cover candidate enrichment concepts (see Section 4.3).
The user can then again set the fine-tuning parameters
and optionally restart the process, perform the enrich-
ment in the Enrichment activity, or decide to gener-
ate triples in the Triple-generation activity, where she
can optionally first set the fine-tuning parameters for
triple generation in the Triple-generation Parameteriza-
tion activity. After each enrichment, the Querying ele-2190

ment again runs the necessary SPARQL queries to dis-
cover new candidate enrichment concepts if any. The
enrichment process finishes when the user decides to
generate the QB4OLAP triples as the final result. The
QB2OLAPem GUI is illustrated in Figure 6 and more
details about the tool can be found in [9].

6.2. Evaluation Setting and Rational

For the evaluation of our approach, we adopt quality
characteristics from the Quality Model of the ISO/IEC
25000 – System and Software Quality Requirements2200

and Evaluation (SQuaRE) series of standards [31] that
are applicable to our usage scenario. It includes the

23

https://www.eclipse.org/swt/

Figure 6: QB2OLAP Enrichment Module Screenshot

Quality in use model and the Product quality model that
specify quality characteristics and subcharacteristics for
which we define metrics specific for our tool. Table 1
presents the details.

The main target group of users for our tool are
OLAP practitioners that are well familiar with the data
cube abstraction paradigm (see Section 2.1). Typical
OLAP users are not proficient in, for example, SQL or2210

other query languages. Instead, they analyze data us-
ing graphical user interfaces of different OLAP engines.
Such high-level automation is enabled by the definition
of a correct MD schema (see Section 2.1), which allows
OLAP users to abstract their actions from data manip-
ulation languages (such as SQL or SPARQL) and use
high-level interfaces based on an MD algebra not de-
manding IT expertise [10]. In the same spirit, our tool
supports OLAP users to enrich the QB schema with a
graphical environment. Thus, more than just analyzing2220

data as in traditional OLAP settings, QB2OLAPem en-
ables OLAP users to participate in discovering interest-
ing analysis perspectives and construct the MD schema
according to their requirements / needs. Moreover, al-
though the users with both SW and OLAP skills could
perform this manually, our tool lowers the barrier such
that the users non-familiar with SW technologies and
even non-technical users can perform the enrichment.
Therefore, we conduct the experiments with 25 users
including 4 OLAP experts, 4 SW experts, and 17 users2230

having some knowledge of both. The expert users are

PhD students28 and a master student29 doing research
in the OLAP and SW areas. The non-expert users in-
clude a PhD student familiar with both areas and stu-
dents of a UPC-BarcelonaTech master30 that includes a
Data Warehousing / OLAP course and a Semantic Web
course. All of them had a 20 minutes tutorial in QB /

QB4OLAP and some recall on DW / OLAP to facilitate
the understanding of the template SPARQL queries pro-
vided to perform the manual enrichment as well as the2240

overall objective.
For the experiments with the users we consider the

running example data set. The users should perform
the enrichment according to a predefined scenario. Cur-
rently, the alternative to using our tool is that the user
manually explores a QB data set, discovers enrichment
concepts, and constructs the QB4OLAP graph by us-
ing SPARQL while, also manually, storing and defining
RDF triples. Thus, we compare this case as an alter-
native to using the tool for the same tasks. The users2250

are asked to both use the tool and follow a guided tu-
torial that provides template SPARQL queries to man-
ually perform the enrichment. They are provided with
detailed guidelines in both cases. Moreover, the order
of the cases is alternated among users. After the en-
richment, the users deliver the results and their feed-
back. Later, for the evaluation of the tool performance,
we consider two more data sets from another Linked
Data source and of different sizes. All the data sets are

28https://it4bi-dc.ulb.ac.be/
29http://it4bi.univ-tours.fr/it4bi/
30http://www.fib.upc.edu/en/masters/miri.html

24

https://it4bi-dc.ulb.ac.be/
http://it4bi.univ-tours.fr/it4bi/
http://www.fib.upc.edu/en/masters/miri.html

Table 1: Quality Characteristics, Subcharacteristics, and Metrics

Model Characteristics Subcharacteristics Metrics

Quality in use - The
evaluation of the
interaction with a
system

Effectiveness - Accuracy and
completeness with which users can

enrich a schema
/

The percentage of users producing
(not) complete and (not) sound

schemata according to a predefined
scenario, both with and without the

tool

Efficiency - The actions that the
user needs to perform to enrich the

schema
/

The number of user actions and time
contributing to

redefinition/enrichment tasks
according to a predefined scenario,
and the total number of user actions

and total time

Satisfaction - How much is the user
satisfied with using the tool

Usefulness - How useful
does the user considers the

tool
Survey statistics

Product quality -
The software product
quality properties

Functional suitability - The
functions specified by the tool

Functional completeness -
Functions that cover the

specified tasks

The percentage of cases where the
user produces a complete schema

according to the underlying QB data
set and a predefined scenario

Functional correctness -
Correctness of the tool

results

The percentage of cases where the
user produces a sound schema

according to the MD model

Performance efficiency - The
amount of resources used for the
enrichment

Time-behavior - The
processing time

(i) Redefinition time to: a) Retrieve
the initial cube structure, b) Retrieve

the level members, and (ii)
Enrichment time: a) Properties /

Level members retrieval time

Capacity - The limits of the
tool

The number of observations
(characterizing the data set size) that

can be handled by the tool

Usability - How much can a tool be
used for the enrichment with
effectiveness, efficiency, and
satisfaction

Learnability - Degree to
which specified users can

learn to use the system with
effectiveness, efficiency, and

satisfaction

Statistics about how many different
types of user are able to use all (or

partial) tool functions (e.g.,
redefinition, adding new level, etc.)

Operability - The attributes
of the system that make it
easy to operate and control

the enrichment

The time that the user takes for
performing the actions in the tool

25

loaded into a local endpoint after a cleaning process in2260

which observations with pre-aggregated and zero mea-
sure values are removed. Moreover, we applied addi-
tional transformations, e.g., conversion from literals to
IRIs to enable further search for new levels. The local
SPARQL endpoint is provided by a Virtuoso 7 server
running on an Intel Core i5 CPU at 2.6 GHz and 8 GB
of RAM machine with Windows 8.1 OS. The details and
results of the experiments are presented in the following
subsections.

6.3. Quality in Use Evaluation2270

The quality in use metrics are evaluated over the
“Market Capitalization” QB data set from our running
example. It is an indicator data set of 1.9 MB in size
extracted from the WBLD source. All the WBLD in-
dicator data sets have the same cube structure and the
average size is of approx. 1.15 MB. Thus, “Market Cap-
italization” is considered as a representative data set for
WBLD. Table 2 includes its main features such as the
number of dimensions in the schema (#dimensions), the
number of observations which in fact characterizes the2280

size of the data set (#observations), and the total number
of dimension members for all dimensions (#members),
along with other data sets and results relevant for the
next subsection.

The scenario that the users need to perform is to rede-
fine the schema according to the QB4OLAP vocabulary,
check if certain properties can be considered as candi-
dates for the enrichment, create three-level hierarchies
(i.e., hierarchies consisting of the initial QB level, one
new level on top of the initial one, plus the all level) for2290

two different dimensions and optionally add a level at-
tribute to a level. Figure 4 summarizes the enrichment
to be done for each of these dimensions: define levels, a
hierarchy for each rollup path, hierarchy steps for each
adjacent pair of nodes in the same path, and a dimen-
sion wrapping all of them (see Section 5). The evalua-
tion guidelines provide a predefined scenario and thus,
ask the participants to enrich the data set with some spe-
cific levels. The quality in use characteristics specified
in Table 1 focus on the user efforts to perform these2300

tasks with and without the tool. Detailed guidelines for
both i) the manual and ii) tool enrichment were given31.
The guidelines include i) the set of predefined SPARQL
queries with the parameters that need to be used and ii)
the specification of tool actions with the parameters that
need to be used, respectively. The users have one hour

31The guidelines given to the evaluation participants can be found
at: http://www.essi.upc.edu/~jvarga/qb2olapem.html

Table 3: Effectiveness Results

Option /

Case Manual Tool

Sound &
Complete 16% 84%

Incomplete
and/or Not
Sound

84% 16%
Incomplete 100% Incomplete 100%

Not
sound 47.62% Not

sound 0%

and a half to perform the manual enrichment and half an
hour with the tool.

Effectiveness. The results of the metrics for the ef-
fectiveness characteristics are presented in Table 3. The2310

table presents the percentage of users producing sound
and complete schemata with and without the tool. In
this context, completeness refers to whether the user
managed to complete all the tasks required to fulfill the
requirements in the guidelines within the time available,
while soundness indicates whether the schema produced
is correct in terms of MD modeling (see Section 6.4 for
details). The results show that, even with very detailed
guidelines, only 4 (including just 2 SW experts) out of
25 users managed to manually create a sound and com-2320

plete schema. The rest of users did not manage to man-
ually complete all the tasks and almost half of them also
created errors in this process undermining the schema
soundness. These errors are typically a consequence of
copy/paste actions and include the same concept defined
as both level and level attribute, or hierarchy and hierar-
chy step, adding the same level to different dimensions
(and their hierarchies), adding the same level members
to several levels, adding duplicate hierarchies, etc. Op-
positely, 4 users did not complete the task but the par-2330

tial output produced was correct (i.e., generated sound
but incomplete schemata). The results are much better
when using the tool. 21 participants created sound and
complete schemata. Out of the 4 not completing the
task, none produced an incorrect schema. This shows
that in practice the tool guarantees the schema sound-
ness.

Efficiency. Regarding the efficiency characteristic of
the Quality in use model, the results of our experiments
with users are presented in Table 4. The table represents2340

the average number of effective actions (i.e., queries or
tool interactions) contributing to the task (i.e., redefini-
tion/enrichment) and the total number of actions (which
include unnecessary actions to complete the task, such
as errors). Moreover, the table illustrates the average ef-
fective and total time. At the bottom, the table shows
the ratio between the effective and total actions, and it
is used for the calculation of the effective time with re-

26

http://www.essi.upc.edu/~jvarga/qb2olapem.html

Table 2: The Schema Transformation

Data set #dimensions tschema #observations #members tmembers #properties tproperties
Market Capitalization 3 0.91 s 2360 146 0.04 s 2364 1.08 s

Renewable Energies 6 1.18 s 537447 155 1.05 s 786 1.05 s
Asylum seekers 7 0.94 s 499369 286 1.4 796 1.90 s

Table 4: Efficiency Results

Task /

Parameter
Redefinition Enrichment

Manual Tool Manual32 Tool
Effective Actions 11.2 5.6 14 9.28

Total Actions 17 6.32 17 9.92

Effective Time (min) 30.02 4.18 43.32 7.15
(3.75)

Total Time (min) 45.5 4.72 52.38 7.64
(3.75)

Ratio of Effective and
Total Actions 65% 89% 82% 94%

spect to the total time. Furthermore, note that the time
for the manual enrichment only refers to the 4 users2350

that finished (thus, it does not consider the 21 users that
did not finish the enrichment task). In this context, we
added in brackets the values referring to these four users
when performing the enrichment with the tool (since
they were among the most skilled ones). Thus, Table
4 illustrates that the tool reduces the necessary time for
the redefinition and enrichment by at least 7 times even
when users are provided with detailed guidelines for
manually performing these tasks.

Satisfaction. Finally, we discuss the results of a2360

survey answered by the users that provide insights
about the satisfaction characteristic of the Quality in use
model33. The average user rating of how much they like
the tool, how easy it is to use the tool, how useful the
tool is, and if they would use it in the future, are all over
4 in a scale from 1 to 5. The average user rating on the
helpfulness of the manual and tool guidelines are 3.98
and 4.1, respectively. However, only 5 users (including
2 SW experts) consider that they would be able to for-
mulate the queries without guidelines with a certainty2370

of 4 or 5. However, this is proven wrong since even
with the guidelines only 4 users were able to generate
a sound and complete schema as discussed earlier. In
an open-ended question section, more than 10 users, in-
cluding an SW expert, stated that the manual part is too
repetitive, error-prone, and hard to perform even with

32The values refer to the 4 users finishing the manual enrichment.
The other 21 users did not finish.

33The survey can be found at: http://www.essi.upc.edu/

~jvarga/qb2olapem.html

the guidelines. Thus, QB2OLAPem was appreciated
and considered needed and helpful. The main reason
for this is that generating a QB4OLAP data set from an
available QB data set does not consist of purely syn-2380

tactical transformations but requires triggering queries
to identify and validate potential new dimensional con-
cepts (i.e., levels). Such queries need to guarantee the
MD integrity constraints and also require a solid OLAP
knowledge to avoid making mistakes. Additionally, the
users also pointed out some improvements to be done in
our tool. Mainly interface enhancements, e.g., chang-
ing the way of choosing new concepts and adding the
capacity to delete / remove concepts (which is not cur-
rently present). We plan to make the changes / add these2390

features to QB2OLAPem in the future.

6.4. Product Quality Evaluation
The product quality evaluation focuses on the tool

properties. In the following paragraphs we discuss the
results for each of the characteristics with its subcharac-
teristics.

Functional suitability. The functional suitability is
measured in terms of the completeness and correctness
subcharacteristics. In our context, the functional com-
pleteness refers to the tool capacity to transform a QB2400

data set into a QB4OLAP one as well as its capacity for
extending the QB4OLAP data set with relevant dimen-
sional data from all the available potential dimensional
concepts. The functional correctness refers to the cor-
rectness of the QB4OLAP data set produced. In the MD
context, if the underlying MD schema produced satis-
fies the MD integrity constraints discussed in Section
4.3. Next, we explain how both criteria are met via
QB2OLAPem.

The correctness of an MD schema has been exhaus-2410

tively studied in the DW/OLAP community (e.g., [24]).
Based on these findings, the MD integrity constraints
were identified and, in turn, several methods to auto-
matically model diverse data (following a given data
model) in terms of the MD model have been proposed
(the reader is addressed to [32] for a detailed survey on
this topic). The automatic identification of factual data
(i.e., facts and measures) still results challenging for
many domains. However, there is a clear consensus on
discovering dimensional data based on FDs. Arbitrarily2420

27

http://www.essi.upc.edu/~jvarga/qb2olapem.html
http://www.essi.upc.edu/~jvarga/qb2olapem.html

looking for FDs in the MD context is known to be com-
putationally expensive [27]. In our case, QB2OLAPem
exploits the QB semantics and use the QB dimension
concept as valid starting point of analysis from where
to look for FDs. To do so, QB2OLAPem follows a tra-
ditional approach but adapted to the SW technologies
[33]: it looks for many-to-one relationships by apply-
ing the algorithms presented in Section 4.3. However,
like most automatic modeling approaches, instead of
detecting and constructing all possible dimension hier-2430

archies, the detection of new dimension levels and at-
tributes is performed in an iterative fashion each time
the user selects a new level to be added. In MD
terms, QB2OLAPem applies a hybrid data-driven and
requirement-driven approach [32]; i.e., effectively com-
bining the discovery of MD knowledge hidden in the
available data set (i.e., FDs are identified for all the ini-
tial QB dimensions) with the interest of the user (from
there on, the user is able to enrich the MD schema
with dimensional data that are semantically meaning-2440

ful and of her interest). This approach is widely ac-
knowledged as the most appropriate way to proceed in
automatic MD modeling. For example, in our running
example, the region level is meaningful to be added on
top of the reference area (referring to country) level
to conform a richer hierarchy within the same dimen-
sion (and thus, the user most probably would choose
this enrichment), while this is probably not the case for
the creator level even though it is identified as a FD
and proposed by our tool as a potential rollup relation-2450

ship from reference area. With the default settings
(next we discuss how to relax them), possible new lev-
els are only available for the reference area. Out of
the total 20 outbound distinct properties, 6 satisfy the
many-to-one cardinality and only two are a meaning-
ful choice for the construction of hierarchies, namely,
region and income level. Although there are some
properties that are candidates for the next coarser granu-
larity level for these two new levels, none of them would
be meaningful from the user point of view. These en-2460

richment possibilities are based on the data available in
the data set and more meaningful enrichment concepts
can be found by exploring external sources (e.g., DBpe-
dia can provide more concepts that are meaningful for
constructing coarser levels for countries).

Additionally, due to imperfect data (see Section 4.1)
it might happen that some properties are not proposed
as FDs (e.g., due to incorrect data) when conceptually
they should be. This issue, typical from the SW and
similar scenarios, has also been studied in the recent2470

past (e.g., [33]). To deal with these situations, we also
consider quasi FDs (see Section 4.3). In any case, se-

lecting a quasi FD to enrich the schema requires clean-
ing the data set to meet the FD. Otherwise, the resulting
MD schema would not guarantee a correct data sum-
marization (see [25]). In the case of our running ex-
ample, Figure 7 illustrates the effect of reducing the
percentage of instances that must satisfy the many-to-
one cardinality for the reference area. When the
percentage is reduced to 80% (i.e., the minCompl pa-2480

rameter in Algorithm 2), there is an additional candi-
date property (lending type), that is also meaningful
for the construction of a new hierarchy. This is a con-
sequence of imperfect data as not all members of the
reference area level are countries. Removing these
errors, lending type turns out to be a functional prop-
erty and thus a rollup candidate. Accordingly, these
errors must be addressed to guarantee correct data ag-
gregations if this level is chosen. The next potentially
meaningful level is found at 40% but it surely does not2490

make sense to build a hierarchy where massive cleaning
should be done. Therefore, the value of 80% represents
an empirically based threshold for the discovery of new
levels in the case of our running example. Overall, the
running example shows a good quality for the construc-
tion of dimension hierarchies as the first two properties
completely satisfy the many-to-one cardinality and the
third one does so for at least 80% of the cases.

Accordingly, we say that QB2OLAPem is functionally
correct because all dimensional data proposed is based2500

on FDs. This is guaranteed by the SPARQL queries
internally triggered by QB2OLAPem (see Section 4.3).
This is shown in Table 3 where no incorrect schema is
produced using the tool. Note this is one of the main
advantages of our tool in front of the manual enrich-
ment. The tool guarantees the overall correctness of all
the enrichment steps (queries) triggered, which cannot
be guaranteed in the manual enrichment.

The completeness of the MD schema produced is
guaranteed by several means. The first step is a syntac-2510

tical transformation from QB to QB4OLAP constructs
(i.e., the redefinition phase). There, the QB dimen-
sion concept is redefined in terms of QB4OLAP con-
structs, i.e., as a level within a hierarchy and belong-
ing to a dimension. The basic QB4OLAP structure is
then enriched by relating each measure with an aggre-
gate function (see Section 5.2) and with relevant dimen-
sional data selected by the user from that automatically
discovered by the tool. The additional dimensional data
added is conformed according to QB4OLAP and thus,2520

to the good MD modeling practices (in terms of levels,
hierarchies, dimensions and dimension attributes).

We say that QB2OLAPem is functionally complete
because all relevant MD data from the QB data set is

28

Figure 7: Reference Area Candidate Properties

included in the QB4OLAP one, all measures are related
to an aggregate function and all the available FDs are
discovered and proposed to the user as potential dimen-
sional enrichment. As discussed in Section 5.2, for each
QB data structure QB2OLAPem retrieves all the initial
QB measures and dimensions and all of them are rede-2530

fined in terms of QB4OLAP. Also, QB2OLAPem guar-
antees that each QB4OLAP measure is associated with
an aggregated function (if none is selected, SUM is used
by default). About the enrichment phase (see Section
5.3), the dimensional enrichment is based on the detec-
tion of many-to-one cardinalities based on the analysis
of instances (see Section 4.3). QB2OLAPem guaran-
tees that all the instances are covered by the newly de-
fined levels (i.e., every level instance is member of a
level) and that all potential functional properties, i.e.,2540

all potential new levels, are identified and proposed to
the user. This is done in two steps, QB2OLAPem ex-
haustively finds all FDs for the basic dimension levels
(i.e., the former QB dimensions). Later, for each addi-
tional level chosen by the user, QB2OLAPem exhaus-
tively searches for new potential FDs starting from it.

Thus, we say QB2OLAP is complete with regard to
the available data and the user requirements stated (as
hybrid automatic MD modeling tools do). Note that
the manual enrichment proposed guarantees the same2550

degree of completeness since the SPARQL template
queries provided exhaustively search for FDs and it de-
pends on the user to properly use them. The only dif-
ference in this respect is that QB2OLAPem guarantees
an aggregate function will be linked to each measure,
whereas the manual enrichment cannot guarantee so.
Also, that in a given time frame the user is able to com-
plete more tasks (this is shown in Table 3 where the de-
gree of incompleteness with regard to the requirements
given in the guidelines is lower when using the tool).2560

Performance efficiency. To evaluate the tool’s per-
formance, we conducted the experiments considering

two more data sets in addition to the one used in the
previous section. In particular, we include “Asylum
statistics”34(of 1.2 GB of size) and “Renewable ener-
gies (wind, solar, hydro, tidal, wave and ocean, geother-
mal energy, energy from biomass)”35(660 MB) from
Eurostat Linked Data. In addition to the characteris-
tics explained in the previous section, Table 2 shows the
following characteristics relevant for the performance2570

measurement: the time to retrieve the QB schema
(tschema), the time to retrieve level members (tmembers),
the total number of properties retrieved for level mem-
bers (#properties), and the time to retrieve these proper-
ties (tproperties).

The time-behavior subcharacteristic relates to the
tool performance for two main tasks, the schema redef-
inition and enrichment. Thus, for the schema redefini-
tion (see Section 5.2) we measure the QB schema re-
trieval time and the time for acquiring dimension mem-2580

bers. As shown in Table 2, the schema retrieval time
is approximately the same for all data sets and it does
not depend on the number of observations (i.e., the data
set size). This advantage originates from the fact that
the QB schema typically represents a small part of the
entire data set. The schema can be retrieved with a sim-
ple query where the central schema node (i.e., schema
structure definition) is linked to a dimension or a mea-
sure via a component node, i.e., with only two hops (see
Query 5). This maps to a path join [34] and can be effi-2590

ciently solved with indexing and index-based join oper-
ations [22]. Furthermore, acquiring the level members
depends on the number of observations from where they
are retrieved (see Query 9). Nevertheless, as shown in
Table 2, even for large data sets (e.g., half a million ob-
servations and 286 level members) the retrieval time is
still small (around 1 sec), demonstrating the scalability.
Additionally, Table 5 shows that, inside a single data
set, the time for acquiring level members is similar re-
gardless of their number. Again, this is the result of2600

indexing techniques used by triple stores.
Furthermore, regarding the schema enrichment (see

Section 5.3), Table 2 shows the total number (#proper-
ties) and the retrieval time (tproperties) for all the proper-
ties related to the level members of all the initial levels
of the previously introduced data sets. Moreover, Table
5 provides more details about the number of properties
related to the level members of a level in each data set.
All values refer to the initial schemata. From the tables

34http://eurostat.linked-statistics.org/data/migr_

asyappctzm
35http://eurostat.linked-statistics.org/data/nrg_

107a.rdf

29

http://eurostat.linked-statistics.org/data/migr_asyappctzm
http://eurostat.linked-statistics.org/data/migr_asyappctzm
http://eurostat.linked-statistics.org/data/nrg_107a.rdf
http://eurostat.linked-statistics.org/data/nrg_107a.rdf

Table 5: Level Member Statistics

Data set Level #Members tmembers #Properties tproperties
Market Capitalization indicator 1 0.01 16 0.01
Market Capitalization refArea 120 0.02 2348 0.91
Market Capitalization refPeriod 25 0.01 0 0.16

Renewable Energies indic nrg 81 0.15 486 0.54
Renewable Energies freq 1 0.22 0 0.01
Renewable Energies product 15 0.18 90 0.08
Renewable Energies geo 34 0.15 204 0.25
Renewable Energies unit 1 0.14 6 0.01
Renewable Energies refPeriod 23 0.21 0 0.16

Asylum seekers citizen 157 0.25 620 1.00
Asylum seekers freq 1 0.14 0 0.01
Asylum seekers geo 34 0.12 132 0.23
Asylum seekers asyl app 2 0.28 8 0.02
Asylum seekers age 6 0.25 24 0.04
Asylum seekers refPeriod 83 0.13 0 0.59
Asylum seekers sex 3 0.25 12 0.02

we can note that the retrieval time does not depend on
the number of observations but on the number of level
members and their properties. Our tool runs a query for
each level member to retrieve its properties. Thus, the
complexity of such queries is that of adjacency queries
[35, 36] and in our case, in the worst case, it directly
depends on the out degree of each level member (Lev-
elMemberOutDegree) of each level; i.e.:

Σlevels
1 Σmembers

1 LevelMemberOutDegree

When retrieving the properties, the tool acquires the
property range objects that automatically become new
level members (if the property is chosen by the user).
The tool then automatically iterates in the same way for
these new level members. Thus, there is no need for
additional queries to retrieve new level members. In
the worst case, if the user chooses all potential func-
tional properties identified by the tool, the total number
of properties for the 3 data sets would be 47, 23, and2610

18, respectively. Nevertheless, the user is the last re-
sponsible for choosing relevant properties for creating
new levels. Table 6 shows a real scenario for the run-
ning example data set. There, the user chooses to en-
rich the data set with three new levels (below the double
line) out of the seven proposed by the tool as functional
properties.

The capacity subcharacteristic is measured by the
number of observations (characterizing the size of the
data set) that the tool can handle. Table 2 illustrates that2620

the tool can process data sets of different sizes. Thus,
the schema transformation is feasible and efficient even
for large data sets by benefiting from indexing tech-
niques to deploy efficient access on SPARQL endpoints
[37].

Table 7: QB2OLAPem Usability Results

Tasks/User Group SW OLAP Non-experts
Redefinition 100% 100% 100%
Enrichment 100% 75% 81.25%

Redefinition 1.88 min 1.5 min 6.15 min
Enrichment 2.75 min 4.75 min 9.47 min

Usability. In this context, we focus on the learnabil-
ity and operability subcharacteristics. The results come
from the experiments with users explained in Section
6.3. The learnability is measured with the percentage of
different users that managed to use different tool func-2630

tionalities. The first two rows of Table 7 show the per-
centage of users that successfully performed the redef-
inition and enrichment tasks with the tool, respectively.
All the users successfully performed the redefinition.
One OLAP expert and three non-expert users missed to
perform the complete enrichment, although all of them
performed at least one enrichment action. Thus, all the
users were capable of using both types of tool function-
alities. Moreover, the operability subcharacteristic is
shown in the bottom two rows of the table that illustrate2640

the average time that the different user types took for
redefinition and enrichment, respectively. We can note
that with higher expertise the necessary time for per-
forming the tasks is reduced. Nevertheless, in all cases
the redefinition and enrichment is at least 7 times faster
than with the manual approach (see Section 6.3) show-
ing a high operability degree.

Overall, the evaluation showed that QB2OLAP facili-
tates the enrichment and it is appreciated and considered
needed and helpful by different users. The tool speeds2650

up the enrichment process and guarantees the schema

30

Table 6: Market Capitalization Levels Statistics

Level #Members Members t Avg Out-degree #Properties Properties t
indicator 1 0.01 16.00 16 0.01
refArea 120 0.02 19.57 2348 0.91

refPeriod 25 0.01 0.00 0 0.16

income-level 5 0.07 0.00 0 0.03
lending-type 4 0.07 0.00 0 0.02

region 7 0.07 0.00 0 0.04

soundness and completeness in practice.

7. Related Work

As mentioned in Section 1, there are two main lines
of research addressing OLAP analysis of SW data,
namely (1) extracting MD data from the SW and loading
them into traditional MD data management systems for
OLAP analysis; and (2) performing OLAP-like analysis
directly over SW data, e.g., over MD data represented in
RDF. We next discuss them in some more detail.2660

Relevant to the first line (and also in some sense re-
lated to the methodology we present in this paper) are
the works by Nebot and Llavori [38] and Kämpgen
and Harth [39]. The former proposes a semi-automatic
method for on-demand extraction of semantic data into
an MD database. In this way, data could be analyzed us-
ing traditional OLAP techniques. The authors present
a methodology for discovering facts in SW data, and
populating an MD model with such facts. They as-
sume that data are represented as an OWL ontology.2670

The proposed methodology has four main phases: (1)
Design of the MD schema, where the user selects the
subject of analysis that corresponds to a concept of the
ontology, and then selects potential dimensions. Then,
she defines the measures, which are functions over data
type properties; (2) Identification and extraction of facts
from the instance store according to the MD schema
previously designed, producing the base fact table of
a DW; (3) Construction of the dimension hierarchies
based on the instance values of the fact table and the2680

knowledge available in the domain ontologies (i.e., the
inferred taxonomic relationships) and also considering
desirable OLAP properties for the hierarchies; (4) User
specification of MD queries over the DW. Once queries
are executed, a cube is built. Then, typical OLAP oper-
ations can be applied over this cube.

Kämpgen and Harth [39] study the extraction of sta-
tistical data published using the QB vocabulary into an
MD database. The authors propose a mapping between
the concepts in QB and an MD data model, and imple-2690

ment these mappings via SPARQL queries. There are

four main phases in the proposed methodology: (1) Ex-
traction, where the user defines relevant data sets which
are retrieved from the web and stored in a local triple
store. Then, SPARQL queries are performed over this
triple store to retrieve metadata on the schema, as well
as data instances; (2) Creation of a relational representa-
tion of the MD data model, using the metadata retrieved
in the previous step, and the population of this model
with the retrieved data; (3) Creation of an MD model to2700

allow OLAP operations over the underlying relational
representation. Such model is expressed using XML
for Analysis (XMLA)36, which allows the serialization
of MD models and is implemented by several OLAP
clients and servers; (4) Specification of queries over the
DW, using OLAP client applications.

The proposals described above are based on tradi-
tional MD data management systems, thus they capi-
talize the existent knowledge in this area and can reuse
the vast amount of available tools. However, they re-2710

quire the existence of a local DW to store SW data.
This restriction clashes with the autonomous and highly
volatile nature of web data sources as changes in the
sources may lead not only to updates on data instances
but also in the structure of the DW, which would be-
come hard to update and maintain. In addition, these
approaches solve only one part of the problem, since
they do not consider the possibility of directly querying
à la OLAP MD data over the SW.

The second line of research tries to overcome the2720

drawbacks of the first one, exploring data models and
tools that allow publishing and performing OLAP-like
analysis directly over SW MD data. Terms like self-
service BI [40], Situational BI [41], on-demand BI, or
even Collaborative BI, refer to the capability of incor-
porating situational data into the decision process with
little or no intervention of programmers or designers.
The web, and in particular the SW, is considered as
a large source of data that could enrich decision pro-
cesses. Abelló et al. [40] present a framework to sup-2730

port self-service BI, based on the notion of fusion cubes,

36http://xmlforanalysis.com

31

http://xmlforanalysis.com

i.e., MD cubes that can be dynamically extended both in
their schema and their instances, and in which data and
metadata can be associated with quality and provenance
annotations.

To support the second approach mentioned above, the
RDF Data Cube vocabulary [14] aims at representing,
using RDF, statistical data according to the SDMX in-
formation model. Although similar to traditional MD
data models, the SDMX semantics imposes restrictions2740

on what can be represented using QB. Etcheverry and
Vaisman [7] proposed QB4OLAP, an extension to QB
that allows to represent analytical data according to tra-
ditional MD models, also presenting a preliminary im-
plementation of some OLAP operators (RollUp, Dice,
and Slice), using SPARQL queries over data cubes spec-
ified using QB4OLAP. These two approaches have been
thoroughly discussed in Sections 2 and 3. In [42], Ibrag-
imov et al. present a framework for Exploratory OLAP
over Linked Open Data sources, where the MD schema2750

of the data cube is expressed in QB4OLAP and VoID.
Based on this MD schema the system is able to query
data sources, extract and aggregate data, and build an
OLAP cube. The MD information retrieved from exter-
nal sources is also stored using QB4OLAP.

Kämpgen et al. [43, 44] attempt to override the lack
of structure in QB, discussed in Section 3, defining
an OLAP data model on top of QB and other related
vocabularies, e.g., some proposed ISO extensions to
SKOS.37. They propose to represent each level as an in-2760

stance of a class skosclass:ClassificationLevel
and organize levels in hierarchies via stating the depth of
each level in the hierarchy using the skosclass:depth
property. The proposed representation restricts levels
to participate in only one hierarchy and does not pro-
vide support for level attributes. They also propose
a mechanism for implementing some OLAP operators
over these extended cubes, using SPARQL queries, but
restricting to data cubes with only one hierarchy per di-
mension.2770

Related to the SKOS extensions mentioned above,
and realizing that SKOS is insufficient to represent the
needs of statistical classifications and concept manage-
ment, a new proposal to address those needs was is-
sued, and denoted XKOS.38 XKOS attenpts to cap-
ture the main semantic relationships like generalization,
specialization, part-of, among other ones, with prop-
erties like xkos:generalizes, xkos:generalizes,
xkos:isPartOf, respectively. At the time of writing

37http://www.w3.org/2011/gld/wiki/ISO_Extensions_

to_SKOS
38http://rdf-vocabulary.ddialliance.org/xkos.html

this paper, this proposal is in a preliminary status.2780

For an exhaustive study of the possibilities of using
SW technologies for OLAP, we refer the reader to the
survey by Abelló et al. [33].

8. Conclusion

The approach presented in this paper opens new pos-
sibilities for performing OLAP analysis in Linked Data
and SW contexts. After thoroughly elaborating on the
significant benefits that QB4OLAP brings in terms of
additional schema constructs that are necessary for the
state-of-the-art OLAP analysis, we have elaborated on2790

how to, as automatically as possible, introduce these
enhancements into an existing QB data set. We have
proposed the use of metadata to automate the associ-
ation between measures and aggregate functions, and
the algorithm for the detection of implicit MD seman-
tics to automate the discovery of dimension hierarchy
schema and instances, since these are the two most rel-
evant semantic enhancements of QB4OLAP. The en-
richment task is formalized in a semi-automatic method
that defines steps described as SPARQL queries to cre-2800

ate a new enriched QB4OLAP graph. Moreover, we
have presented QB2OLAPem implementing the method
and the algorithm for the detection of implicit MD se-
mantics. QB2OLAPem enables the user to enrich a QB
data set with minimal user efforts. Finally, the evalua-
tion of our approach using three real-world QB data sets
of different sizes demonstrates its feasibility in practice.
Furthermore, the experiments conducted with 25 users
show that, in practice, QB2OLAPem facilitates, speeds
up, and guarantees the correct results of the enrichment2810

process.
In the future, we plan to extend our approach to au-

tomatically identify the data heterogeneity cases and in-
spired by [45] explore the possibilities to integrate dif-
ferent QB schemata into a single QB4OLAP schema.

Acknowledgments

This research has been funded by the European Com-
mission through the Erasmus Mundus Joint Doctorate
”Information Technologies for Business Intelligence -
Doctoral College“ (IT4BI-DC) and it has been partially2820

supported by the Secretaria d’Universitats i Recerca de
la Generalitat de Catalunya. Alejandro Vaisman was
partially supported by PICT-2014 Project 0787, funded
by Argentina’s Scientific Agency.

32

http://www.w3.org/2011/gld/wiki/ISO_Extensions_to_SKOS
http://www.w3.org/2011/gld/wiki/ISO_Extensions_to_SKOS
http://rdf-vocabulary.ddialliance.org/xkos.html

References

[1] L. I. Gómez, S. A. Gómez, A. A. Vaisman, A generic data model
and query language for spatiotemporal OLAP cube analysis, in:
EDBT, 2012, pp. 300–311.

[2] C. A. Hurtado, A. O. Mendelzon, A. A. Vaisman, Maintaining
data cubes under dimension updates, in: ICDE, 1999, pp. 346–2830

355.
[3] P. Vassiliadis, Modeling multidimensional databases, cubes and

cube operations, in: SSDBM, 1998, pp. 53–62.
[4] T. Heath, C. Bizer, Linked Data: Evolving the Web into a Global

Data Space, Morgan & Claypool Publishers, 2011.
[5] R. Cyganiak, D. Wood, M.Lanthaler, Resource description

framework (RDF): Concepts and abstract syntax, http://

www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

(2014).
[6] D. Brickley, R. Guha, RDF schema 1.1, http://www.w3.org/2840

TR/rdf-schema/ (2014).
[7] L. Etcheverry, A. Vaisman, QB4OLAP: A vocabulary for OLAP

cubes on the semantic web, in: COLD, 2012.
[8] E. Prud’hommeaux, A. Seaborne, SPARQL 1.1 Query Lan-

guage for RDF (2011).
URL http://www.w3.org/TR/sparql11-query/

[9] J. Varga, L. Etcheverry, A. A. Vaisman, O. Romero, T. B. Ped-
ersen, C. Thomsen, QB2OLAP: Enabling OLAP on statistical
linked open data, in: ICDE, 2016, In Press.

[10] A. Vaisman, E. Zimányi, Data Warehouse Systems: Design and2850

Implementation, Springer, 2014.
[11] C. Ciferri, R. Ciferri, L. Gómez, M. Schneider, A. Vaisman,

E. Zimányi, Cube algebra: A generic user-centric model and
query language for OLAP cubes, IJDWM 9 (2) (2013) 39–65.

[12] D. Beckett, T. Berners-Lee, Turtle - Terse RDF Triple Language
(2011).
URL http://www.w3.org/TeamSubmission/turtle/

[13] SDMX, SDMX standards: Information model, http:

//sdmx.org/wp-content/uploads/2011/08/SDMX_

2-1-1_SECTION_2_InformationModel_201108.pdf2860

(2011).
[14] R. Cyganiak, D. Reynolds, The RDF Data Cube Vocab-

ulary (W3C Recommendation), http://www.w3.org/TR/

vocab-data-cube/ (January 2014).
[15] SDMX, Content Oriented Guidelines, http://sdmx.org/

?page_id=11 (2009).
[16] A. A. Vaisman, Publishing OLAP cubes on the semantic web,

eBISS 2015, LNBIP 253 (2016) 1–30.
[17] M. Jarke, M. Lenzerini, Y. Vassiliou, P. Vassiliadis, Fundamen-

tals of data warehouses, Springer, 2013.2870

[18] A. Y. Halevy, Why your data won’t mix, ACM Queue 3 (8)
(2005) 50–58.

[19] C. Batini, C. Cappiello, C. Francalanci, A. Maurino, Methodolo-
gies for data quality assessment and improvement, ACM Com-
put. Surv. 41 (3).

[20] H. Lenz, A. Shoshani, Summarizability in OLAP and statistical
data bases, in: SSDBM, 1997, pp. 132–143.

[21] J. Varga, O. Romero, T. B. Pedersen, C. Thomsen, Towards next
generation BI systems: The analytical metadata challenge, in:
DaWaK, 2014, pp. 89–101.2880

[22] H. Garcia-Molina, J. D. Ullman, J. Widom, Database systems -
the complete book (2. ed.), Pearson Education, 2009.

[23] O. Romero, D. Calvanese, A. Abelló, M. Rodriguez-Muro, Dis-
covering functional dependencies for multidimensional design,
in: DOLAP, 2009, pp. 1–8.

[24] J. Mazón, J. Lechtenbörger, J. Trujillo, A survey on summariz-
ability issues in multidimensional modeling, Data Knowl. Eng.
68 (12) (2009) 1452–1469.

[25] O. Romero, A. Abelló, A framework for multidimensional de-
sign of data warehouses from ontologies, Data Knowl. Eng.2890

69 (11) (2010) 1138–1157.
[26] A. Artale, D. Calvanese, R. Kontchakov, M. Zakharyaschev,

The DL-Lite family and relations, J. Artif. Intell. Res. (JAIR)
36 (2009) 1–69.

[27] M. R. Jensen, T. Holmgren, T. B. Pedersen, Discovering multi-
dimensional structure in relational data, in: DaWaK, 2004, pp.
138–148.

[28] T. B. Pedersen, C. S. Jensen, C. E. Dyreson, A foundation
for capturing and querying complex multidimensional data, Inf.
Syst. 26 (5) (2001) 383–423.2900

[29] F. M. Suchanek, S. Abiteboul, P. Senellart, PARIS: probabilis-
tic alignment of relations, instances, and schema, PVLDB 5 (3)
(2011) 157–168.

[30] J. Varga, O. Romero, T. B. Pedersen, C. Thomsen, SM4AM: A
semantic metamodel for analytical metadata, in: DOLAP, 2014,
pp. 57–66.

[31] I. ISO, Iec25010: 2011 systems and software engineering–
systems and software quality requirements and evaluation
(square)–system and software quality models, International Or-
ganization for Standardization (2011) 34.2910

[32] O. Romero, A. Abelló, A survey of multidimensional modeling
methodologies, IJDWM 5 (2) (2009) 1–23.

[33] A. Abelló, O. Romero, T. B. Pedersen, R. Berlanga, V. Nebot,
M. J. Aramburu, A. Simitsis, Using semantic web technologies
for exploratory OLAP: A survey, IEEE Trans. Knowl. Data Eng.
27 (2) (2015) 571–588.

[34] M. Saleem, A. N. Ngomo, Hibiscus: Hypergraph-based source
selection for SPARQL endpoint federation, in: The Semantic
Web: Trends and Challenges - 11th International Conference,
ESWC 2014, Anissaras, Crete, Greece, May 25-29, 2014. Pro-2920

ceedings, 2014, pp. 176–191.
[35] R. Angles, A comparison of current graph database models, in:

Workshops Proceedings of the IEEE 28th International Confer-
ence on Data Engineering, ICDE 2012, Arlington, VA, USA,
April 1-5, 2012, 2012, pp. 171–177.

[36] L. Kowalik, Adjacency queries in dynamic sparse graphs, Inf.
Process. Lett. 102 (5) (2007) 191–195.

[37] P. A. Boncz, O. Erling, M. Pham, Experiences with virtuoso
cluster RDF column store, in: Linked Data Management., 2014,
pp. 239–259.2930

[38] V. Nebot, R. B. Llavori, Building data warehouses with semantic
web data, Decision Support Systems 52 (4) (2012) 853–868.

[39] B. Kämpgen, A. Harth, Transforming statistical linked data for
use in OLAP systems, in: I-SEMANTICS, 2011, pp. 33–40.

[40] A. Abelló, J. Darmont, L. Etcheverry, M. Golfarelli, J. Mazón,
F. Naumann, T. B. Pedersen, S. Rizzi, J. Trujillo, P. Vassiliadis,
G. Vossen, Fusion cubes: Towards self-service business intelli-
gence, IJDWM 9 (2) (2013) 66–88.

[41] A. Löser, F. Hueske, V. Markl, Situational business intelligence,
in: BIRTE, 2008, pp. 1–11.2940

[42] D. Ibragimov, K. Hose, T. Pedersen, Z. E, Towards exploratory
OLAP over linked open data: A case study, in: BIRTE, 2014,
pp. 114–132.

[43] B. Kämpgen, S. O’Riain, A. Harth, Interacting with Statisti-
cal Linked Data via OLAP Operations, in: ESWC (Satellite
Events), 2012, pp. 87–101.

[44] B. Kämpgen, A. Harth, No size fits all - running the star
schema benchmark with SPARQL and RDF aggregate views,
in: ESWC, 2013, pp. 290–304.

[45] P. Jovanovic, O. Romero, A. Simitsis, A. Abelló, D. Mayorova,2950

A requirement-driven approach to the design and evolution of
data warehouses, Inf. Syst. 44 (2014) 94–119.

33

http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/TeamSubmission/turtle/
http://sdmx.org/wp-content/uploads/2011/08/SDMX_2-1-1_SECTION_2_InformationModel_201108.pdf
http://sdmx.org/wp-content/uploads/2011/08/SDMX_2-1-1_SECTION_2_InformationModel_201108.pdf
http://sdmx.org/wp-content/uploads/2011/08/SDMX_2-1-1_SECTION_2_InformationModel_201108.pdf
http://sdmx.org/wp-content/uploads/2011/08/SDMX_2-1-1_SECTION_2_InformationModel_201108.pdf
http://sdmx.org/wp-content/uploads/2011/08/SDMX_2-1-1_SECTION_2_InformationModel_201108.pdf
http://www.w3.org/TR/vocab-data-cube/
http://www.w3.org/TR/vocab-data-cube/
http://www.w3.org/TR/vocab-data-cube/
http://sdmx.org/?page_id=11
http://sdmx.org/?page_id=11
http://sdmx.org/?page_id=11

Appendix A. Enrichment Methodology

Here, we provide a fully formalized, more general,
and detailed enrichment methodology, which is agnos-
tic of the implementation decisions made. The method-
ology specifies the pre-conditions, post-conditions, and
transformations to be conducted by each step in terms
of set theory. The method presented in Section 5 is an
instantiation of it.2960

The methodology considers the inputs listed below.
These inputs can be generated from the outputs of Al-
gorithm 1 (i.e., allL, allP, allHS , and allLLA) as fol-
lows. We can construct the dimension hierarchies (i.e.,
build structures like the one in Figure 2) and gener-
ate the inputs needed by the methodology by following
the detected hierarchy steps (the allHS output of Algo-
rithm 1). Each of these structures is considered a dimen-
sion (from here on, dimension structure) that has a name
assigned to it, e.g., derived from the initial level name.2970

A bottom-up traversal of the paths in this structure de-
fines the hierarchies. On top of each dimension struc-
ture, the All level should be automatically added as the
highest granularity level for all hierarchies. Thus, we
obtain the inputs required for the enrichment methodol-
ogy as follows.

• NewLevSet, the set of the new level IRIs (e.g.,
schema:region), generated as the difference between
the set of all levels and the set of initial levels.
• DimSet, the set of dimension IRIs (e.g.,2980

schema:geoDim), generated to include an element for
each dimension structure.
• HierSet, the set of hierarchy IRIs (e.g.,

schema:geoHier), generated for each distinct
traversal path in the dimension structures.
• LAttSet, the set of new level attribute IRIs (e.g.,

schema:capital), extracted from the allLLA output of
Algorithm 1.
• HStepSet, the set of hierarchy step IDs, i.e., IRIs or

blank node identifiers (e.g., :hs1), generated for each2990

occurrence of a hierarchy step in hierarchies.
• MapLAttribute2L, a mapping of level at-

tribute IRIs to level IRIs (e.g., (schema:capital,
sdmx-dimension:refArea)), generated from the
allLLA output of Algorithm 1, as pairs of IRIs.
• MapH2D, a mapping of hierarchy IRIs to dimen-

sion IRIs (e.g., (schema:geoHier, schema:geoDim)),
extracted from the dimension structure as pairs of IRIs.
• MapH2L, a mapping of hierarchy IRIs to level IRIs

(e.g., (schema:geoHier, schema:region)), extracted3000

from the dimension structure as pairs of IRIs.
• MapHStep2ParentL, a mapping of hierar-

chy step IDs to parent level IRIs (e.g., (:hs1,

schema:region)), extracted from the dimension
structure as pairs of IRIs.
• MapHStep2ChildL, a mapping of hierar-

chy step IDs to child level IRIs (e.g., (:hs1,
sdmx-dimension:refArea)), extracted from the
dimension structure as pairs of IRIs.
• MapHStep2H, a mapping of hierarchy step IDs to3010

hierarchy IRIs (e.g., (:hs1, schema:geoHier)), ex-
tracted from the dimension structure as pairs of IRIs.
• MapHStep2C, a mapping of hierarchy step IDs to

cardinality IRIs (e.g., (:hs1, qb4o:ManyToOne)), ex-
tracted from the dimension structure as pairs of IRIs.
• MapChild2Parent, a mapping of child level

member IRIs to parent level member IRIs (e.g.,
(country:RS, region:ECS)), extracted from the data
set(s) as pairs of IRIs according to the hierarchy step
structures.3020

• MapLInstance2L, a mapping of level mem-
ber IRIs to level IRIs (e.g., (country:RS,
sdmx-dimension:refArea)), extracted from the
data set(s) as pairs of IRIs for all levels.
• MapLInstance2LAInstance, a mapping of level

member IRIs to the level attribute IRI – level attribute
value (that is IRI or literal) pairs (e.g., (country:RS,
(schema:capital, ‘‘Belgrade’’xsd:string))),
extracted from the data set(s) based on the
MapLAttribute2L mapping as, IRI – a pair of IRIs, or,3030

IRI – an IRI and literal pair, pairs.

Taking advantage of the QB4OLAP vocabulary, we
next propose a methodology to enrich a QB data set.
The methodology defines the steps that need to be per-
formed for the input QB data set in order to produce
an output data set that is enriched with QB4OLAP se-
mantics (e.g., dimension hierarchies). The methodology
steps are fully automatized considering that the inputs
discussed above are provided. Taking into account that
the inputs generation involves some user actions, the3040

overall enrichment process is semi-automatized. The
methodology steps are:

1. Redefinition of the cube schema.
2. Specification of the aggregate functions.
3. Definition of the dimension hierarchies.
4. Annotation of the cube instances.

In this section, we first introduce preliminaries for the
formal definition of each step. Then, each step is de-
fined in terms of the input, tasks to be performed, and
output that it produces.3050

Appendix A.1. Methodology Preliminaries
We first formally define a QB graph.

34

Definition 1. A QB graph Gqb is a set of RDF triples,
i.e., an RDF graph, defined as follows.

• Gqb = Sqb ∪ Iqb, where Sqb and Iqb are sets of
triples that define the QB cube schema and instances,
respectively.
• Sqb = DSqb ∪ DSDqb ∪ Dqb ∪Mqb, where DSqb,

DSDqb, Dqb, and Mqb are subsets of triples that define
the cube data set, the cube structure, the cube dimen-3060

sions, and the cube measures, respectively. Following
QB’s notation, the cube structure (i.e., DSDqb) is de-
fined as a set of dimensions and measures (in QB termi-
nology, the cube components).
• Iqb = DIqb ∪ Oqb, where DIqb is the subset of triples

that defines all dimension instances, while Oqb is the
subset of triples that defines the observations. As dis-
cussed before, observations represent measure values
for the fixed dimension instances determined by DSDqb

related to the data set DSqb.3070

The considered elements of the QB graph are the ones
needed in our approach to create a QB4OLAP graph
while the other ones are omitted. Triple examples of Sqb

that are extracted from the running example (see Section
2.3) are presented in Example 23.

Example 23. S qb triples.

1 <http://worldbank.270a.info/dataset/world−bank−indicators/structure>
2 a qb:DataStructureDefinition ;
3 qb:component [qb:dimension sdmx−dimension:refArea] ;3080

4 qb:component [qb:measure sdmx−measure:obsValue] .
5 sdmx−dimension:refArea a qb:DimensionProperty .
6 sdmx−measure:obsValue a qb:MeasureProperty .
7 <http://worldbank.270a.info/dataset/CM.MKT.LCAP.CD> a qb:DataSet ;
8 qb:structure
9 <http://worldbank.270a.info/dataset/world−bank−indicators/structure> .

Lines 1 - 4 belong to DSDqb, line 5 to Dqb, line 6 to Mqb, and
line 7 to DSqb. The data set DSqb is related to the cube struc-
ture DSDqb in lines 8 – 9 and this triple belongs to DSqb.3090

Triple examples of Iqb are presented in Example 24.

Example 24. Iqb triples.

1 data:world−bank−indicators/CM.MKT.LCAP.CD/RS/2012
2 a qb:Observation ;
3 sdmx−dimension:refArea country:RS ;
4 sdmx−measure:obsValue 7450560827.04874 ;
5 qb:dataSet <http://worldbank.270a.info/dataset/CM.MKT.LCAP.CD> .

Lines 1 – 5 define an observation Oqb. Line 3 specifies a di-3100

mension instance that belongs to DIqb and line 4 defines a
measure value of Oqb. Note that this observation relates to
the cube schema structure (i.e., DSDqb) indirectly (see lines 7
– 9 of Example 23) via qb:dataSet in line 5.

Analogously, we next define the output QB4OLAP
graph Gqb4o in terms of sets of triples.

Definition 2. A QB4OLAP graph Gqb4o is defined as
follows.

• Gqb4o = Sqb4o ∪ Iqb4o, where Sqb4o and Iqb4o are sets
of triples that define the QB4OLAP cube schema and3110

instances, respectively.
• Sqb4o = DSqb4o∪ DSDqb4o∪ Dqb4o∪ Mqb4o∪ Lqb4o∪

LAqb4o∪ Hqb4o∪ HSqb4o∪ AFqb4o∪ Cqb4o, where the sub-
sets of triples are:

– DSqb4o defining the cube data set;
– DSDqb4o defining the cube structure;
– Dqb4o defining the cube dimensions;
– Mqb4o defining the cube measures;
– Lqb4o defining the dimension levels;
– LAqb4o defining the dimension level attributes;3120

– Hqb4o defining the dimension hierarchies;
– HSqb4o defining the hierarchy steps;
– AFqb4o a predefined set of aggregate functions; and
– Cqb4o a predefined set of possible cardinalities.

• Iqb4o = LIqb4o ∪ Oqb4o ∪ LAIqb4o, where LIqb4o is
the subset of triples that defines level instances and roll-
up relationship instances between child and parent level
instances, Oqb4o is the subset of triples that defines the
observations, and LAIqb4o is the subset of triples that
defines level attribute values.3130

Patterns of triples and examples of QB4OLAP sets
are presented below in the methodology step definitions.
The examples are based on the running example (see
Section 2.3). By using this formalization we define our
methodology considering the scenario where the input
data set contains implicit MD semantics (e.g., a country
is linked to a region) that is not explicitly stated, i.e.,
without the semantics that this is a rollup relationship in
an MD hierarchy between a country level and a region
level. Other scenarios are discussed in Section 5.4.3140

Appendix A.2. Redefinition of the cube schema

We start by building the new cube schema Sqb4o. For
simplicity of presentation, when defining the steps we
assume that from the input QB graph Gqb, we build a
new QB4OLAP graph Gqb4o. We proceed incremen-
tally and in the first step we build the schema S1

qb4o (the
complete cube schema Sqb4o is the output of Step 3).
S1

qb4o contains the sets DSqb4o (defining the new cube
data set), DSDqb4o (defining the new cube schema struc-
ture), Lqb4o (defining the QB4OLAP dimension levels),3150

and Mqb4o (defining the measures). We populate these
sets from Sqb, starting from the dimensions in Dqb that
are redefined as levels in Lqb4o. Next, we copy the mea-
sures from Mqb to Mqb4o. Then, we define the new cube

35

schema structure, assign it both levels and measures,
and add it to the DSDqb4o. Finally, we copy the data
set definition to DSqb4o and assign the new cube schema
structure to it. The details of the step are presented be-
low.

Step 1. Redefinition of the cube schema:3160

INPUT: Sqb

OUTPUT: S1
qb4o

Step 1.1. Redefine input dimensions as levels:

• Lqb4o ∪= {createLevel(d), d ∈ Dqb}, where
createLevel is a function redefining a dimension d
as a level l, i.e., taking as argument a triple defining a
qb:DimensionProperty, and producing a triple defining
a qb4o:LevelProperty.

Triples pattern added to Lqb4o:
qbDimensionIRI a qb4o:LevelProperty, where3170

qbDimensionIRI is the existing IRI of the QB dimen-
sion redefined as a QB4OLAP level. For instance, a
triple related to the running example:

1 sdmx−dimension:refArea a qb4o:LevelProperty .

Step 1.2. Copy input measures:

• Mqb4o ∪= {m, m ∈ Mqb}, where m is a measure
triple in Mqb that is added to Mqb4o. These triples are
defining instances of the class qb:MeasureProperty.3180

Triples pattern added to Mqb4o:
qbMeasureIRI a qb:MeasureProperty, where
qbMeasureIRI is the existing IRI of the QB measure
copied. For instance, a triple related to the running
example:

1 sdmx−measure:obsValue a qb:MeasureProperty .

Step 1.3. Define the new cube schema structure and
add to it levels and measures as components:3190

• DSDqb4o ∪= {createDSD()}, where createDSD is a
function that creates a new cube schema structure triple,
i.e., defining a new qb:DataStructureDefinition.

Triples pattern added to DSDqb4o:
dsdIRI a qb:DataStructureDefinition, where
dsdIRI is the newly defined IRI of the new schema
structure definition. For instance, a triple related to the
running example:

1 newG:newDSD a qb:DataStructureDefinition .3200

• DSDqb4o ∪= {createComponent(lm), lm ∈ Lqb4o ∪

Mqb4o}, where createComponent is a function that cre-
ates a schema structure component (in this case, a blank)
node to which a level or measure is related. It re-
ceives a triple lm defining a qb4o:LevelProperty or a

qb:MeasureProperty and produces a triple c defining a
qb:ComponentProperty.

Triples pattern added to DSDqb4o:
dsdIRI qb:component [qb4o:level qbDimensi-3210

onIRI]; dsdIRI qb:component [qb:measure

qbMeasureIRI]. Here, dsdIRI, qbDimensionIRI,
and qbMeasureIRI are the IRIs previously introduced.
Note that we include dsdIRI for better understanding.
For instance, triples related to the running example:

1 newG:newDSD qb:component [qb4o:level sdmx−dimension:refArea] ;
2 qb:component [qb:measure sdmx−measure:obsValue] .

Step 1.4. Create the QB4OLAP cube schema:3220

• S1
qb4o = DSqb4o ∪ DSDqb4o ∪ Lqb4o ∪Mqb4o. Ini-

tially, we add to DSqb4o the data set definition triple and
the triple linking the data set to the DSD. Then, S1

qb4o
represents a union of DSqb4o and the previous sets (i.e.,
DSDqb4o, Lqb4o, and Mqb4o) with no additional triples
pattern.

Triples pattern added to DSqb4o:
dsIRI a qb:DataSet and dsIRI qb:structure

dsdIRI, where dsIRI and dsdIRI are the IRIs of
the data set and the new schema structure definition,3230

respectively. For instance, triples related to the running
example:

1 <http://worldbank.270a.info/dataset/CM.MKT.LCAP.CD> a qb:DataSet;
2 qb:structure newG:newDSD .

Thus, at this point, we have obtained S1
qb4o.

Triple examples of S1
qb4o are summed up in Example

25 to illustrate the overall result of Step 1. Note that we
use the newG namespace for the new graph Gqb4o.3240

Example 25. Resulting triples of Step 1.

1 <http://worldbank.270a.info/dataset/CM.MKT.LCAP.CD> a qb:DataSet;
2 qb:structure newG:newDSD .
3 newG:newDSD a qb:DataStructureDefinition ;
4 qb:component [qb4o:level sdmx−dimension:refArea] ;
5 qb:component [qb:measure sdmx−measure:obsValue] .
6 sdmx−dimension:refArea a qb4o:LevelProperty .
7 sdmx−measure:obsValue a qb:MeasureProperty .3250

Lines 1 and 2 illustrate the output of Step 1.4. Step 1.3. re-
sults in lines 3, 4, and 5 define the new cube schema structure
and add a level and a measure as components to it. Line 6 re-
defines the dimension from Example 23 as a QB4OLAP level
(result of Step 1.1.), while line 7 illustrates the measure from
Example 23 copied in Step 1.2.

Appendix A.3. Specification of the aggregate functions
In this step we perform the first QB4OLAP enrich-

ment by specifying an aggregate function for each mea-
sure. Note that possible aggregate functions are prede-3260

fined by QB4OLAP. The inputs of this step are S1
qb4o

36

and a mapping MAggMap from a measure m ∈ Mqb4o

to an aggregate function a ∈ AFqb4o (introduced in Sec-
tion 4.2). The aggregate function is specified as a triple
that relates a with the component of the cube schema
structure related to m. This triple is added to DSDqb4o

and this enrichment is represented as the updated cube
schema S2

qb4o that is the step output. The details of the
step are presented below.

Step 2. Specification of the aggregate functions3270

INPUT: S1
qb4o, MAggMap

OUTPUT: S2
qb4o

Step 2.1. Specify an aggregate function for each
measure component of the cube schema structure:

• DSDqb4o ∪= {addAggFunction(getComponent(m),
MAggMap(m)), m ∈ Mqb4o}, where:

– getComponent is a function that, given a measure
m, returns the schema structure component c related to
it (i.e., m is a triple defining a qb:MeasureProperty and
c is a triple defining a qb:ComponentProperty (typically3280

a blank node)).
– MAggMap is a mapping function from an input

measure m (same as above) to the aggregate function
a (i.e., a is a triple defining a qb4o:AggregateFunction
(a predefined QB4OLAP aggregate function)).

– addAggFunction is a function that links an aggre-
gate function a to the corresponding component c (a and
c are the ones defined above).

Triples pattern added to DSDqb4o:
dsdIRI qb:component [qb:measure qbMeasure-3290

IRI; qb4o:aggregateFunction afIRI], where
dsdIRI and qbMeasureIRI are the IRIs previously
introduced and afIRI is the IRI of the aggregate
function. Note that only qb4o:aggregateFunction

afIRI is new in the pattern while the rest of the pattern
refers to the earlier defined triples. For instance, triples
related to the running example:

1 newG:newDSD qb:component
2 [qb:measure sdmx−measure:obsValue ;3300

3 qb4o:aggregateFunction qb4o:sum] .

Step 2.2. Create new partial cube schema:

• S2
qb4o = DSqb4o ∪ DSDqb4o ∪ Lqb4o ∪Mqb4o. S2

qb4o
represents a union of updated DSDqb4o and the DSqb4o,
Lqb4o, and Mqb4o sets with no additional triples pattern.

Triple examples of S2
qb4o are presented in Example 26.

It is a follow-up of the previous example (i.e., Example
25).

Example 26. Resulting triples of Step 2.3310

1 <http://worldbank.270a.info/dataset/CM.MKT.LCAP.CD> a qb:DataSet;
2 <http://worldbank.270a.info/dataset/CM.MKT.LCAP.CD> qb:structure

newG:newDSD .
3 newG:newDSD a qb:DataStructureDefinition ;
4 qb:component [qb4o:level sdmx−dimension:refArea] ;
5 qb:component [qb:measure sdmx−measure:obsValue ;
6 qb4o:aggregateFunction qb4o:sum] .
7 sdmx−dimension:refArea a qb4o:LevelProperty .
8 sdmx−measure:obsValue a qb:MeasureProperty .3320

Line 6 presents the aggregate function that is assigned to a
measure by the grouping mechanism via a blank node. We
use the SUM (i.e., qb4o:sum) aggregate function as an ex-
ample, while in general it depends on the input mapping (i.e.,
MAggMap).

Appendix A.4. Definition of the dimension hierarchies

We now construct the dimension hierarchies.
As explained in Section 3, QB4OLAP reuses the
qb:DimensionProperty, however with different se-3330

mantics than in QB: while in the latter, a dimension rep-
resents a point at a fixed granularity, QB4OLAP con-
siders a dimension to contain points at different granu-
larities. Therefore, in QB4OLAP, a QB dimension be-
comes a dimension level (see Step 1) and a dimension
represents a set of levels that are hierarchically orga-
nized. Thus, the final cube schema Sqb4o is created by
updating S2

qb4o and adding of additional sets of triples
defining the new semantics. For their definition we use
certain additional inputs about the structure of dimen-3340

sions (e.g., about new dimension levels and dimension
hierarchies). In Section 4 we have shown how to com-
pute the inputs to this step.

The general process is as follows. First, we update
the set of levels Lqb4o obtained in Step 1, with the new
levels that will define the dimension hierarchies. These
new levels are specified in NewLevSet as a set of IRIs.
Each level can have one or more level attributes defined
in the LAqb4o set of triples (see Definition 2) added to
the final cube schema Sqb4o. They are specified by the3350

input set of IRIs LAttSet. Once we have all the levels
and their attributes, we use the input DimSet (a set of di-
mension IRIs) to create the new set of dimensions Dqb4o

in the complete cube schema Sqb4o. Then, the set of
hierarchies Hqb4o that represents the hierarchically or-
dered levels in the dimensions is added to Sqb4o. For
this, the input HierSet (a set of hierarchy IRIs) is used.
Finally, we add to Sqb4o the set of hierarchy steps HSqb4o

that represents parent-child relationships between two
levels. For this, we use the input HStepSet, a set of hi-3360

erarchy step IDs.
Once levels, level attributes, dimensions, hierarchies,

and hierarchy steps are defined, we must correlate them
using the QB4OLAP properties. For this, we use the

37

mappings MapLAttribute2L through MapLInstance2L
in the input list (see Section 4.3). The MapLAttribute2L
mapping associates level attributes with levels (defin-
ing both, the “direct” association, and its “inverse”,
e.g., telling that a level has an attribute, and that an
attribute belongs to a dimension level, respectively);3370

MapH2D links hierarchies with dimensions; MapH2L
links hierarchies with levels; MapHStep2ParentL as-
sociates a hierarchy step with its parent level, while
MapHStep2ChildL does the same with its child level.
Then, MapHStep2H associates a hierarchy step with the
hierarchy and MapHStep2C links a hierarchy step with
its corresponding cardinality. Finally, MapChild2Parent
associates child level members with their parent level
members while MapLInstance2L associates level mem-
bers to their levels.3380

The output of this step is the complete cube schema
Sqb4o. The details of the step are presented below.

Step 3. Definition of the dimension hierarchies
INPUT: S2

qb4o, NewLevSet, DimSet, HierSet, LAttIN,
HStepSet, MapLAttribute2L, MapH2D, MapH2L,
MapHStep2ParentL,MapHStep2ChildL,MapHStep2H,
MapHStep2C, MapChild2Parent, MapLInstance2L
OUTPUT: Sqb4o

Step 3.1. Define new levels:

• Lqb4o ∪= {createNewLevel(newL), newL ∈3390

NewLevSet}, where createNewLevel is a function
that, for each level IRI in NewLevSet, produces the
corresponding triple using the qb4o:LevelProperty.

Triples pattern added to Lqb4o:
lIRI a qb4o:LevelProperty, where lIRI is the IRI
of the new level. For instance, a triple related to the
running example:

1 newG:region a qb4o:LevelProperty .3400

Step 3.2. Define level attributes:

• LAqb4o ∪= {createLevelAttribute(attr), attr ∈

LAttSet}, where createLevelAttribute is a function
that, for each attribute IRI in LAttSet, produces the
corresponding triple using the qb4o:LevelAttribute.

Triples pattern added LAqb4o:
laIRI a qb4o:LevelAttribute, where laIRI is the
IRI of the new level attribute. For instance, a triple re-
lated to the running example:

3410
1 newG:label a qb4o:LevelAttribute .

Step 3.3. Define dimensions:

• Dqb4o ∪= {createDimension(dim), dim ∈ DimSet},
where createDimension is a function that, for each di-
mension IRI in DimSet, produces the corresponding
triple using the qb:DimensionProperty.

Triples pattern added Dqb4o:
dIRI a qb:DimensionProperty, where dIRI is the
IRI of the new dimension. For instance, a triple related3420

to the running example:
1 newG:geoDimension a qb:DimensionProperty .

Step 3.4. Define hierarchies:
• Hqb4o ∪= {createHierarchy(hier), hier ∈ HierSet},

where createHierarchy is a function that, for each hier-
archy IRI in HierSet, produces the corresponding triple
using the qb4o:Hierarchy.

Triples pattern added Hqb4o:3430

hIRI a qb4o:Hierarchy, where hIRI is the IRI of
the new hierarchy. For instance, a triple related to the
running example:

1 newG:geoHierarchy a qb4o:Hierarchy .

Step 3.5. Define hierarchy steps:
• HSqb4o ∪= {createHStep(hStep), hStep ∈

HStepSet}, where createHStep is a function that,
for each hierarchy step ID in HStepSet, produces the3440

corresponding triple using the qb4o:HierarchyStep.
Since QB uses blank nodes for representing reification,
we follow the same principle and use blank node
identifiers for hierarchy steps in the examples.

Triples pattern added HSqb4o:
hsID a qb4o:HierarchyStep, where hsID is the ID
of the new hierarchy step. For instance, a triple related
to the running example:

1 :newHierarchyStep a qb4o:HierarchyStep .3450

Step 3.6. Associate dimension levels with level at-
tributes:
• Lqb4o ∪= {linkLevelWithAttr(MapLAttribute2L(la),

la), la ∈ LAqb4o}, where linkLevelWithAttr is a func-
tion that receives a pair (l, la), where l is an in-
stance of qb4o:LevelProperty and la is an instance
of qb4o:LevelAttribute, and produces a triple lla
telling that the level l has the level attribute la.
MapLAttribute2L is a mapping that, given a level3460

attribute, returns the level to which the level attribute
belongs.

Triples pattern added Lqb4o:
lIRI qb4o:hasAttribute laIRI, where lIRI and
laIRI are the IRIs of the level and level attribute, re-
spectively. For instance, a triple related to the running
example:

38

1 newG:region qb4o:hasAttribute newG:label .3470

• LAqb4o ∪= {linkAttrWithLevel(la,
MapLAttribute2L(la)), la ∈ LAqb4o}, where
linkAttrWithLevel is a function that receives a pair
(la, l), where la and l have the same meaning as above,
and produces a triple lal telling that the level attribute
la belongs to the level l.

Triples pattern added LAqb4o:
laIRI qb4o:inLevel lIRI, where laIRI and lIRI

are the IRIs of the level attribute and level, respectively.
For instance, a triple related to the running example:3480

1 newG:label qb4o:inLevel newG:region .

Step 3.7. Associate dimensions with hierarchies:

• Dqb4o ∪= {linkDimWithHier(MapH2D(h), h), h ∈
Hqb4o}, where linkDimWithHier is a function that
receives a pair (d, h), where d is an instance
of qb:DimensionProperty and h is an instance of
qb4o:Hierarchy, and produces a triple dh telling that the
dimension d has the hierarchy h. MapH2D is a mapping3490

that, given a hierarchy, returns the dimension to which
the hierarchy belongs.

Triples pattern added Dqb4o:
dIRI qb4o:hasHierarchy hIRI, where dIRI and
hIRI are the IRIs of the dimension and hierarchy, re-
spectively. For instance, a triple related to the running
example:

1 newG:geoDimension qb4o:hasHierarchy newG:geoHierarchy .3500

• Hqb4o ∪= {linkHierWithDim(h, MapH2D(h)), h ∈
Hqb4o}, where linkHierWithDim is a function that re-
ceives a pair (h, d), where h and d have the same mean-
ing as above, and produces a triple hd telling that the
hierarchy h belongs to the dimension d.

Triples pattern added Hqb4o:
hIRI qb4o:inDimension dIRI, where hIRI and
dIRI are the IRIs of the hierarchy and dimension, re-
spectively. For instance, a triple related to the running
example:3510

1 newG:geoHierarchy qb4o:inDimension newG:geoDimension .

Step 3.8. Associate hierarchies with levels:

• Hqb4o ∪= {linkHierWithL(h,MapH2L(h)), h ∈

Hqb4o}, where linkHierWithL is a function that receives
a pair (h, l), where h is an instance of qb4o:Hierarchy
and l is an instance of qb4o:LevelProperty, and pro-
duces a triple hl telling that the hierarchy h has the level
l. MapH2L is a mapping that, given a hierarchy, returns3520

the level(s) it contains.

Triples pattern added Hqb4o:
hIRI qb4o:hasLevel lIRI, where hIRI and lIRI

are the IRIs of the hierarchy and level, respectively. For
instance, triples related to the running example:

1 newG:geoHierarchy qb4o:hasLevel newG:region .
2 newG:geoHierarchy qb4o:hasLevel sdmx−dimension:refArea .

Step 3.9. Associate hierarchy steps with the hierar-3530

chy, levels, and cardinalities:

• HSqb4o ∪= {linkHStepWithH(hs, MapHStep2H(
hs)), hs ∈ HSqb4o}, where linkHStepWithH is a func-
tion that receives a pair (hs, h), where hs is an
instance of qb4o:HierarchyStep and h is an instance
of qb4o:Hierarchy, and produces a triple hsh telling
that the hierarchy step hs belongs to the hierarchy h.
MapHStep2H is a mapping that, given a hierarchy step,
returns the related hierarchy.

Triples pattern added HSqb4o:3540

hsID qb4o:inHierarchy hIRI, where hsID and
hIRI are the hierarchy step ID and the hierarchy IRI,
respectively. For instance, a triple related to the running
example:

1 :newHierarchyStep qb4o:inHierarchy newG:geoHierarchy .

• HSqb4o ∪= {linkHStepWithParentL(hs,
MapHStep2ParentL(hs)), hs ∈ HSqb4o}, where
linkHStepWithParentL is a function that receives a pair3550

(hs, pl), where hs is an instance of qb4o:HierarchyStep
and pl is an instance of qb4o:LevelProperty, and
produces a triple hspl telling that the hierarchy step hs
has pl as parent level. MapHStep2ParentL is a mapping
that, given a hierarchy step, returns the related parent
level.

Triples pattern added HSqb4o:
hsID qb4o:parentLevel plIRI, where hsID and
plIRI are the hierarchy step ID and the parent level IRI,
respectively. For instance, a triple related to the running3560

example:

1 :newHierarchyStep qb4o:parentLevel newG:region .

• HSqb4o ∪= {linkHStepWithChildL(hs,
MapHStep2ChildL(hs)), hs ∈ HSqb4o}, where
linkHStepWithChildL is a function that receives a pair
(hs, cl), where hs is an instance of qb4o:HierarchyStep
and cl is an instance of qb4o:LevelProperty, and
produces a triple hscl telling that the hierarchy step hs3570

has cl as child level. MapHStep2ChildL is a mapping
that, given a hierarchy step, returns the related child
level.

Triples pattern added HSqb4o:
hsID qb4o:childLevel clIRI, where hsID and

39

clIRI are the hierarchy step ID and the child level IRI,
respectively. For instance, a triple related to the running
example:

1 :newHierarchyStep qb4o:childLevel sdmx−dimension:refArea .3580

• HSqb4o ∪= {linkHStepWithC(hs, MapHStep2C(
hs)), hs ∈ HSqb4o}, where linkHStepWithC is a function
that receives a pair (hs, c), where hs is an instance
of qb4o:HierarchyStep and c is an instance of
qb4o:Cardinality, and produces a triple hsc telling that
the hierarchy step hs has c as cardinality. MapHStep2C
is a mapping that, given a hierarchy step, returns the
related cardinality.

Triples pattern added HSqb4o:3590

hsID qb4o:pcCardinality cIRI, where hsID and
cIRI are the hierarchy step ID and the cardinality IRI,
respectively. For instance, a triple related to the running
example:

1 :newHierarchyStep qb4o:pcCardinality qb4o:ManyToOne .

Step 3.10. Create the complete cube schema:

• Sqb4o = DSqb4o ∪ DSDqb4o ∪ Dqb4o ∪Mqb4o ∪ Lqb4o

∪LAqb4o ∪ Hqb4o ∪ HSqb4o ∪ AFqb4o ∪ Cqb4o. Sqb4o rep-3600

resents a union of all its subsets with no additional
triples pattern. Note that AFqb4o and Cqb4o are prede-
fined by QB4OLAP.

As we have already said, the output of this step is the
complete cube schema Sqb4o. Triple examples of new
triples in Sqb4o are summed up in Example 27.

Example 27. Resulting triples of Step 3.

1 #Create a level, a level attribute, a dimension, a hierarchy,
2 #and a hierarchy step3610

3 newG:region a qb4o:LevelProperty .
4 newG:label a qb4o:LevelAttribute .
5 newG:geoDimension a qb:DimensionProperty .
6 newG:geoHierarchy a qb4o:Hierarchy .
7 :newHierarchyStep a qb4o:HierarchyStep .
8

9 #Link the level and level attribute
10 newG:region qb4o:hasAttribute newG:label .
11 newG:label qb4o:inLevel newG:region .
123620

13 #Link dimensions and hierarchies
14 newG:geoDimension qb4o:hasHierarchy newG:geoHierarchy .
15 newG:geoHierarchy qb4o:inDimension newG:geoDimension .
16

17 #Link the hierarchy and levels, and hierarchy step
18 # with all related instances
19 newG:geoHierarchy qb4o:hasLevel newG:region .
20 newG:geoHierarchy qb4o:hasLevel sdmx−dimension:refArea .
21 :newHierarchyStep qb4o:inHierarchy newG:geoHierarchy .
22 :newHierarchyStep qb4o:parentLevel newG:region .3630

23 :newHierarchyStep qb4o:childLevel sdmx−dimension:refArea .
24 :newHierarchyStep qb4o:pcCardinality qb4o:ManyToOne .

Line 3 shows a triple defining a new level, as a result of Step
3.1. Analogously, line 4 shows a triple defining a new level

attribute as a result of Step 3.2. Lines 5 and 6, define a dimen-
sion and a hierarchy, resulting from applying Step 3.3. and
Step 3.4., respectively. Then, line 7 defines a hierarchy step
as a result of Step 3.5. Lines 10 – 11 link a level and a level
attribute as the product of Step 3.6., and lines 14 – 15 link a3640

dimension and a hierarchy showing the result of Step 3.7. Fi-
nally, lines 19 – 20 associate a hierarchy with its levels as re-
sults of Step 3.8. while lines 21 – 24 link a hierarchy step and
its hierarchy, levels, and cardinality as the triples produced in
Step 3.9.

Appendix A.5. Annotation of the cube instances

Once the new cube schema is defined, we need
to link the level members with their schema defi-
nitions, i.e., populate the dimension level instances.
Moreover, we link the level members with their3650

level attribute instances and copy the observations to
the new QB4OLAP graph. The first input of the
step is MapChild2Parent that maps child level mem-
bers to their parent level members. Next input is
MapLInstance2L that maps level members to their lev-
els. The MapLInstance2LAInstance input maps level
members and level attribute instances. Then, the set of
cube instances Iqb = DIqb ∪ Oqb, where DIqb defines di-
mension instances and Oqb defines observations. The
last input is the complete new cube schema Sqb4o. The3660

output of the step is the set of new cube instances
Iqb4o = LIqb4o ∪ Oqb4o ∪ LAIqb4o. The details of the step
are presented below.

Step 4. Annotation of the cube instances
INPUT: MapChild2Parent, MapLInstance2L,
MapLInstance2LAInstance, Iqb, Sqb4o

OUTPUT: Iqb4o

Step 4.1. Copy dimension instances from Gqb as
base level instances in Gqb4o:

• LIqb4o ∪= {copyAsLevelInstance(di), di ∈ DIqb},3670

where copyAsLevelInstance is a function that receives
a triple di representing a dimension instance in QB and
returns a triple li defining the subject (i.e., an IRI) of
the triple di as a level instance in QB4OLAP, using the
qb4o:LevelMember property.

Triples pattern added LIqb4o:
liIRI a qb4o:LevelMember, where liIRI is the IRI
of the level instance obtained from di. For instance, a
triple related to the running example:

3680
1 country:RS a qb4o:LevelMember .

Step 4.2. Add coarser granularity level instances:

40

• LIqb4o ∪= {MapChild2Parent(li), li ∈ LIqb4o},
where MapChild2Parent is a mapping that, for a given
dimension level instance, returns its corresponding
parent level member. This object is then defined as a
level instance, using the qb4o:LevelMember property.

Triples pattern added LIqb4o:
liIRI a qb4o:LevelMember, where liIRI is3690

the IRI of the new level instance, returned by
MapChild2Parent. For instance, a triple related to the
running example:

1 region:ECS a qb4o:LevelMember .

Step 4.3. Copy observations:

• Oqb4o ∪= {o, o ∈ Oqb}, where o is an observation
from Oqb that is added to Oqb4o.

Triples pattern added Oqb4o:3700

oIRI a qb:Observation, oIRI qb:dataSet

dsIRI, oIRI lIRI liIRI, and oIRI mIRI mvalue,
where oIRI, dsIRI, lIRI, liIRI, and mIRI are the
IRIs of the observation, data set, level, level instance,
and measure, respectively, while mvalue is a literal
representing measure value. For instance, triples related
to the running example:

1 <http://worldbank.270a.info/dataset/world−bank−indicators/
2 CM.MKT.LCAP.CD/RS/2012>3710

3 a qb:Observation ;
4 qb:dataSet newG:newDS ;
5 property:indicator indicator:CM.MKT.LCAP.CD ;
6 sdmx−dimension:refArea country:RS ;
7 sdmx−measure:obsValue 7450560827.04874 ;

Step 4.4. Specify the level for each level instance:

• LIqb4o∪ = {linkToLevel(li,MapLInstance2L(li)), li
∈ LIqb4o}, where linkToLevel is a function that receives a
pair (li, l), where li is an instance of qb4o:LevelMember3720

and l is an instance of qb4o:LevelProperty, and pro-
duces a triple lil telling that the level member li belongs
to the level l. MapLInstance2L is a mapping that, given
a level instance, returns the level it belongs to.

Triples pattern added LIqb4o:
liIRI qb4o:memberOf lIRI, where liIRI and
lIRI are the IRIs of the level member and level,
respectively. For instance, a triple related to the running
example:

3730
1 country:RS qb4o:memberOf sdmx−dimension:refArea .

Step 4.5. Specify rollup (i.e., parent–child) relations
between level instances:

• LIqb4o∪ = {linkRollUps(MapChild2Parent(li), li),
li ∈ LIqb4o}, where linkRollUps is a function that re-
ceives a pair (pli, cli), where pli and cli are instances

of qb4o:LevelMember, and produces a triple pcli telling
that cli rolls-up to pli using the skos:broader property.

Triples pattern added LIqb4o:3740

cliIRI skos:broader pliIRI, where cliIRI and
pliIRI are the IRIs of the child and parent level in-
stances, respectively. For instance, a triple related to the
running example:

1 country:RS skos:broader region:ECS .

Step 4.6. Add level attribute instances:

• LAIqb4o ∪= {addLevelAttInstance(li,
MapLInstance2LAInstance(li)), li ∈ LIqb4o}, where3750

addLevelAttInstance is a function that receives
li and a pair (la, lai), where li is an instance
of qb4o:LevelMember, la is an instance of
qb4o:LevelAttribute, and lai is a level attribute
value (IRI or literal), and produces a triple lilalai
telling that li has an attribute la with the value lai.
MapLInstance2LAInstance is a mapping that, for a
given dimension level instance, returns its level attribute
– level attribute value pair(s).

Triples pattern added LAIqb4o:3760

liIRI laIRI laiIRI or liIRI laIRI

laiLiteral, where liIRI, laIRI, and laiIRI

are the IRIs of the level instance, level attribute, and
level attribute value, respectively, and laiLiteral is a
literal representing level attribute value. For instance, a
triple related to the running example:

1 country:RS schema:capital ‘‘Belgrade’’xsd:string .

Step 4.7. Create new cube instances:3770

• Iqb4o = LIqb4o ∪ Oqb4o ∪ LAIqb4o. Iqb4o represents
a union of LIqb4o (i.e., the level members), Oqb4o (i.e.,
observations), and LAIqb4o (i.e., the level attribute in-
stances) with no additional triples pattern.

The output of this step is Iqb4o. Triple examples of
Iqb4o are summed up in Example 28. This example fol-
lows our running example and is an extension of previ-
ous ones.

Example 28. Resulting triples of Step 4.
3780

1 country:RS a qb4o:LevelMember .
2 region:ECS a qb4o:LevelMember .
3 <http://worldbank.270a.info/dataset/world−bank−indicators/
4 CM.MKT.LCAP.CD/RS/2012>
5 a qb:Observation ;
6 qb:dataSet newG:newDS ;
7 property:indicator indicator:CM.MKT.LCAP.CD ;
8 sdmx−dimension:refArea country:RS ;
9 sdmx−measure:obsValue 7450560827.04874 ;

103790

11 country:RS qb4o:memberOf sdmx−dimension:refArea .
12 country:RS skos:broader region:ECS .
13 country:RS schema:capital ‘‘Belgrade’’xsd:string .

41

Result examples of Step 4.1. and Step 4.2. are illustrated in
lines 1 and 2, respectively. Lines 3 – 9 illustrate copying of
the part of observation from Example 2 as result example of
Step 4.3. Then, line 11 presents the result example of Step 4.4.
Finally, line 12 illustrates the result example of Step 4.5. and
line 13 the result example of Step 4.6.3800

42

