
Tree-based Models for Inductive Classification on the Web Of Data

Giuseppe Rizzo∗, Claudia d’Amato∗∗, Nicola Fanizzi∗∗, Floriana Esposito

LACAM – Dipartimento di Informatica
Università degli Studi di Bari “Aldo Moro”,

Via Orabona 4, 70125 Bari, Italy

Abstract

The Web of Data, which is one of the dimensions of the Semantic Web (SW), represents a tremendous source of information,
which motivates the increasing attention to the formalization and application of machine learning methods for solving tasks such
as concept learning, link prediction, inductive instance retrieval in this context. However, the Web of Data is also characterized
by various forms of uncertainty, owing to its inherent incompleteness (missing information, uneven data distributions) and noise,
which may affect open and distributed architectures. In this paper, we focus on the inductive instance retrieval task regarded as a
classification problem. The proposed solution is a framework for learning Terminological Decision Trees from examples described
in an ontological knowledge base, to be used for performing instance classifications. For the purpose, suitable pruning strategies and
a new prediction procedure are proposed. Furthermore, in order to tackle the class-imbalance distribution problem, the framework
is extended to ensembles of Terminological Decision Trees called Terminological Random Forests. The proposed framework has
been evaluated, in comparative experiments, with the main state of the art solutions grounded on a similar approach, showing that:
1) the employment of the formalized pruning strategies can improve the model predictiveness; 2) Terminological Random Forests
outperform the usage of a single Terminological Decision Tree, particularly when the knowledge base is endowed with a large
number of concepts and roles; 3) the framework can be exploited for solving related problems, such as predicting the values of
given properties with finite ranges.

Keywords: inductive query answering, membership prediction, Web ontologies, decision tree, random forest, concept learning,
imbalance learning

1. Introduction

In the perspective of the Semantic Web (SW) as a WEB
OF DATA, the Linked Data initiative plays a crucial role. It
federates a large number of interlinked datasets in a standard
format whose semantics is encoded through formal ontologies
for plenty of domains, which are accessible through the Web
infrastructure, thus ensuring a convenient form for publishing
or accessing open data and a superior (semantic) manageability
through suitable tools [1].

In this context, a fundamental service, similarly to database
management systems, is relational query answering, as a means
for assessing properties of interest of individual resources
through suitable endpoints. For example, in an academic sce-
nario, given linked data sources that adopt publicly available
Web ontologies for such a domain as their vocabularies, a typ-
ical query may require determining a person’s research inter-
ests, his/her co-authorship with other researchers or his/her af-
filiation to a specific research group. To this purpose, standard
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technologies such as SPARQL1 are generally exploited. These
services are essentially grounded on pattern matching capabil-
ities that are often inadequate to cope with the issues posed by
forms of uncertainty that are inherently related to the distributed
architecture of the data sources. This weakness may affect the
quality of the answers in terms of precision and completeness.
Especially when also deductive reasoning capabilities are called
into play, cases of conflicting information may originate from
the diverse quality of the ontologies involved, depending on the
axioms in the terminologies and/or by specific assertions made
available upon federated data sources. Furthermore, data are
expressed in terms of formal vocabularies defined as Web on-
tologies whose representation and semantics is established on
Description Logics (DL) [2], a family of languages character-
ized by the adoption of the Open World Assumption (OWA) in
the related reasoning services. As a result, the membership
of an individual resource w.r.t. a given class or its value for
a given property cannot always be ascertained even with the
support of a reasoner. A solution borrowed from other multi-
relational contexts, such as (deductive) databases and logic pro-
gramming, amounts to making the Closed World Assumption
(CWA), i.e. presuming that the current state of knowledge is
complete hence, for example, allowing to deem a fact as false

1http://www.w3.org/TR/rdf-sparql-query/
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when it is not entailed.
All such issues have called for alternative methods that

are based on the induction of efficient classification mod-
els [3, 4, 5, 6] built by exploiting statistical regularities in the
data, which can be used for assessing the concept membership
of individual resources and for other related tasks. Generally,
such methods tackle the mere classification problem, disregard-
ing the comprehensibility of the resulting model. Conversely, an
interesting class of different methods and models that descend
from the well-established fields of Inductive Logic Program-
ming (ILP), can be adapted to learn analogous models, based
on concept descriptions expressed in DLs and complying their
semantics [7, 8, 9, 10, 11].

In line with these two research directions, in this paper we
focus on a framework based on the notion of Terminological
Decision Tree [12, 13], as a trade-off between predictiveness
and comprehensibility of the models, to be used for performing
class-membership or property value predictions.

Terminological decision trees are an extension of the First
Order Logic Decision Trees [14] coping with DL languages. A
terminological decision tree is a logic decision tree where each
internal node contains a DL concept description that is used as
a test for routing the individuals to be classified towards the
leaves (decision nodes). Each departing edge from a node cor-
responds to one of the possible outcome of the test. As a result,
the model induces a partitioning of the instance space in regions
where the individuals share the same classification w.r.t. the tar-
get concept. Hence the model elicits and encodes some form of
semantic similarity among the individuals by combining logic
and statistical properties of the data.

Terminological decision trees may have several applica-
tions: they can be exploited as alternative logic-based classifiers
to predict the membership of a resource w.r.t. a target class, but
also to give explanations for specific membership assignments
in terms of the involved paths [15]; besides, they can be used
for eliciting new candidate concepts, defined on the grounds
of those that are already encoded in the underlying terminolo-
gies, originated from the actual population of the ontologies.
As such, these models are proposed as a support to alternative
inductive reasoning services to be employed for determining
specific concept-memberships (or a property values), being also
able to explain why a resource is relevant to the query concept
(or a value is assumed by a given property). Additionally, ex-
planations could be used to support ontology engineers in a val-
idation process of new incoming knowledge, through the com-
parison of the conclusions that can be induced from the data
with the domain knowledge encoded in the ontologies.

Besides the various advantages that may derive from resort-
ing to tree-based models, there are some drawbacks that have
justified further extensions that we describe in this paper.

Firstly, regarding the prediction task, in the early versions
of the methods for traversing the induced tree models there was
a quick and oversimplified treatment of the cases in which the
test on internal nodes (based on the entailment of either the test
concept or its complement) is not able to route an individual
down to either branch, resulting in an early stop of the pro-
cedure and failing to predict a definite membership [12, 16].

This situation is similar to the case of missing attribute values
with standard learning methods hence, stemming from the ap-
proaches proposed for decision trees [17], various solutions to
this problem can be considered: one consists in the adoption of
a majority-value rule; alternatively, a more complex prediction
procedure may be devised, in which the input individual mem-
bership is split in fractions along the distribution of the values
in the dataset and all the downward paths are followed, making
a final decision on the grounds of the leaves that are reached.

Secondly, the induced terminological decision trees may
overfit the data, resulting in overly complex models in terms
of size. Moving from past solutions for standard decision trees,
where this problem has been tackled by resorting to pruning
steps so to simplify the original model in favor of a better gen-
eralization [18], suitable pruning procedures for terminological
decision trees have been formalized and implemented.

Finally, the class-imbalance problem may affect the qual-
ity of the terminological decision trees; this occurs when the
number of instances that belong to a target class (or, equiva-
lently, having a certain property value) is smaller than the to-
tal number of training instances that are used for building the
classification model. In the context of Web ontologies, a strong
imbalance in the distributions of the instances may easily occur,
due to the abundance of uncertain-membership instances w.r.t.
specific concepts as a combined effect of open-world reasoning
and the lack of disjointness axioms. A largely adopted solution
in the related literature is grounded on the usage of sampling
methods. However, this may yield further drawbacks owing to
the loss of information when discarding (important) training in-
stances.

In order to mitigate these problems, a Terminological Ran-
dom Forests framework, based on ensemble-models built upon
terminological decision trees has been proposed [16]. In En-
semble Learning [19] a number of classifiers are trained on por-
tions of the available examples while their predictions are com-
bined by a meta-learner, which generally lessens the risk of mis-
classification [20]. However, the majority vote rule employed
in [16] by the resulting classification procedure did not con-
sider specific cases in which the votes for alternative decisions
are nearly equal (too close to call); experimentally, it has been
observed that these cases may even make the ensemble-model
more error-prone. For this reason, a different voting mechanism
is considered in this work.

Moving from these considerations, in this paper we report
on the efforts devoted to evolve terminological decision trees
and their extension to terminological random forests – hence-
forth referred to as Terminological Tree-based Classifiers – for
addressing the issues mentioned above. We show how they can
be used to inductively classify individuals w.r.t. a query concept
and how they can be employed to solve the related problem of
determining role-fillers with properties with discrete ranges.

In this perspective, the paper is an extended version of the
previous works appeared in [12, 16]. The new contributions
described throughout the paper are summarized as follows:
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• definition of a new framework2 for the induction of ter-
minological decision trees for DL knowledge bases en-
dowed with improved prediction strategies (with respect
to the one proposed in [12]) for solving the problem of in-
termediate tests with uncertain results and for predicting
the filler of a role;

• formalization of pruning procedures for terminological
decision trees in order to avoid data overfitting;

• extension of terminological random forests framework
based on a different prediction strategy (w.r.t. the one de-
scribed in [16]) that exploits a voting mechanism with a
reject threshold to avoid misclassification cases;

• new extensive empirical evaluation of the proposed im-
proved frameworks by:

1. comparing with the previous version of terminolog-
ical decision tree and random forests [12, 16] and
other extensions proposed in [21, 22];

2. comparing with DL-LEARNER that is the main state
of the art system focusing on (as for our work) pro-
ducing understandable classification models (and
slightly considered in the foregoing works);

3. using, as for DL-LEARNER, standard measure like
the F-measure (not considered in the previous ex-
periments);

4. analyzing efficiency aspects that were only
marginally considered in the previous works;

5. using ontologies regarding various domains and fo-
cusing on artificial problems as well as specific
class-membership (property value) prediction tasks
(previously not investigated) .

The paper is organized as follows: the next section re-
calls the basics of the Web ontology representation in terms of
DLs; Sect. 3 introduces the problem of learning classifiers from
examples in DLs, especially in case of imbalanced datasets;
Sect. 4 presents the new version of the learning framework
based on Terminological tree-based classifiers while the empir-
ical evaluation of the proposed framework and comparison with
existing learning methods is provided in Sect. 5. Related works
on logical decision trees and inductive learning algorithms for
DLs are illustrated in Sect. 6 and in Sect. 7, conclusions are
drawn jointly with perspectives for further developments.

2. Preliminaries on Description Logics

As the data models of interest are built upon vocabularies
described in RDF/OWL2 [23], we will briefly recall the basics
of the Description Logics [2], a family of representation lan-
guages that constitute the theoretical foundation for the men-
tioned standard Web ontology languages.

2The ultimate implementation of the algorithms is now part of the DL-
LEARNER suite (ver. 1.3), see dl-learner.org.

The most important building block is a countable set of
atomic concept names, NC, where each C ∈ NC stands for a set
of objects in the domain of interest, enriched with two further
atomic concepts that are the universal concept > and the bot-
tom concept ⊥. A set of atomic role names, NR, is also defined,
where elements R ∈ NR denote binary relationships between
the domain objects. The objects are endowed with their own
names, taken from the set NI = {a, b, . . .}, and are known as
individuals3.

A specific DL language is defined by the set of operators
that can be used to build complex concept (resp. role) descrip-
tions and axioms that involve them. The simplest DL language
is AL (Attributive Language), where concept descriptions can
be formed according to the following operators4:

Definition 1 (AL Operators). Given NC and NR, a concept
description has one of the following forms:

1. ¬A (atomic negation)
with A ∈ NC ∪ {>,⊥};

2. ∃R.> (limited existential restriction)
with R ∈ NR;

3. ∀R.D (universal restriction)
where R ∈ NR and D is a concept description;

4. D u E (concept intersection)
where D and E are concept descriptions.

More expressive DLs are endowed with further operators5.
For instance, ALC (Attributive Language with Complement) is
the DL obtained by enrichingAL by replacing atomic with full
negation, extending the applicability of complement operator
as follows:

5. given a concept descriptionD, its complement is denoted
with ¬D.

This implicitly extends also existential restrictions to the
more general full existential restrictions, defined as follows:

6. ∃R.D, where R ∈ NR and D is a concept description

The formal semantics of concept descriptions is defined in
terms of interpretations. An interpretation is a couple I =
(∆I , ·I), where ∆I is the domain of the interpretation and ·I
is an interpretation function which assigns aI ∈ ∆I to each in-
dividual a ∈ NI, a subset AI ⊆ ∆I to every atomic concept A
and a binary relation RI ⊆ ∆I × ∆I to every atomic role R.
The interpretation function is extended to concept descriptions
by the following inductive definitions:

3These names are implemented through URIs (or IRIs in OWL2). They
are not necessarily unique by default. We adopt the Unique Name Assumption
(UNA), hence different individual names refer to different objects [2] since it
is crucial for the application of statistical learning techniques to DL knowledge
bases [5].

4Following the notation proposed in [2], we denote the atomic concept in
NC with A while complex descriptions are denoted with C, D and E.

5For the full set of DL operators see [2].
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• >I = ∆I

• ⊥I = ∅

• (¬C)I = ∆I \ CI

• (D u E)I = {a ∈ ∆I | a ∈ DI ∩ EI}

• (∀R.D)I = {a ∈ ∆I | ∀b ∈ ∆I , (a, b) ∈ RI → b ∈
DI}

• (∃R.D)I = {a ∈ ∆I | ∃b ∈ ∆I , (a, b) ∈ RI∧b ∈ DI}

Among the various syntactic forms of equivalent concept
descriptions we will make use of the Disjunctive Normal Form
(DNF) [2], i.e. concept descriptions standardized as disjunc-
tions of conjuncts with the negation operator pushed in front
of concept names (also recursively in the restrictions).

Sometimes it is useful to integrate knowledge available in
terms of specific data types, such as numbers or strings, en-
dowed with their own semantics; hence, DLs have been ex-
tended with the so called concrete domains [24] so that specific
relations can be defined6 ranging on them. They are used for
describing concrete qualities of real world objects such as age,
weight, temperature, etc. Generally these domains are indicated
in the DLs notation with D.

A DL knowledge base is defined as a couple K = (T ,A),
where T is called TBox and contains inclusion axioms D v C
(C subsumes D) interpreted as DI ⊆ CI , and equivalence ax-
ioms C ≡ D as a shorthand for D v C and C v D, and
A is called ABox, and contains factual knowledge about indi-
viduals, i.e. assertions of kind C(a), interpreted as aI ∈ CI ,
and R(a, b), interpreted as (aI , bI) ∈ RI . An interpretation
I is a model for K iff it satisfies each axiom/assertion α in K,
denoted with K |= α. The set of individuals occuring in A
will be denoted by Ind(A). Among the inference services that
are available in DLs, the most important one for our purposes
is instance-checking that is the decision procedure assessing if
K |= C(a) holds. As mentioned in Sect. 1, it is important to
point out that, differently from the analogous case in different
contexts where the CWA is adopted (e.g. databases, logic pro-
gramming), with open-world reasoning adopted in DL, check-
ing K |= C(a) and K |= ¬C(a) may result in a negative
answer for both cases. This happens when both assertions are
satisfiable by different models ofK, i.e. there are I and I ′, such
that I |= C(a) and I ′ |= ¬C(a). This fact has important im-
plications on the exact notions of positive and negative example
adopted in the inductive phase, as clarified in Sect. 3.1.

3. Inductive Classification Problems in Description Logics

In this paper, tree-based models are induced from data
within Web ontologies, to be employed for predicting class and
property assertions. The related methods do not merely fit a
classification function for making predictions, as in other statis-
tical approaches where logic reasoning may be exploited in the

6The datatype properties in RDF/OWL.

preliminary data-preparation phase (materialization) [5], they
rather can learn a model, based on logic features that may even
make up an intensional definition of the target concept.

However, the quality of the induced models may be affected
in case of skewed data distributions (that is when learning in an
imbalance setting), which may easily occur when dealing with
Web ontologies (see discussion in Sect. 1). In order to cope
with this problem, random forests, as ensembles of tree-based
classifiers, are considered.

In this section we first formalize the general problem of fit-
ting an instance classification model. Hence, concept mem-
bership prediction is regarded as a classification task succes-
sively extended to the case of predicting role fillers (i.e. values
of object- or data-type properties). Finally, we discuss the case
of the class-imbalance learning and some of the most common
solutions that are adopted for coping with it. In Sect. 4, we
formally present the methods that we propose for solving the
issues introduced in this section.

3.1. Concept Membership Classification Problem

One way to fit a classification model from the available data
is to produce an intensional description for a set of training ex-
amples. This is known as a (supervised) concept learning prob-
lem and consists in finding an intensional feature (in the form
of a concept description) that is able to explain (cover) positive
examples while ruling out negative ones.

As discussed in the previous sections, it is important to note
that, owing to open-world semantics of the DL representation,
the assessment of negative examples can be controversial. In
our setting positive and negative examples are only those for
which the membership w.r.t. the target conceptC (resp. its com-
plement ¬C) is entailed. While in other learning frameworks it
is assumed that a negative example is an individual b for which
K 6|= C(b), similarly to the learning-from-only-positives set-
tings [25], we intend to enforce the original semantics of the DL
knowledge bases, therefore an individual should be considered
as a negative example if it actually belongs to the complement,
i.e. K |= ¬C(b). As a consequence, the rest of the individuals
e for which K 6|= C(e) and K 6|= ¬C(e) should be treated as
unlabeled examples, i.e. individuals with a non-definite classi-
fication, e.g. as in the semi-supervised learning framework [26].

Learning methods for DLs [7, 8, 9, 10, 11] generally solve
variants of the following basic problem:

Definition 2 (concept learning problem in DL).

Given

• the knowledge base K = 〈T ,A〉
• a target concept name C ∈ NC

which is not in the signature of K
• a set of training examples for C: Tr ⊆ Ind(A),

i.e. individuals whose intended membership w.r.t. C
is assigned (by an expert)

– positive examples
Ps = {a ∈ Tr | C(a) ∈ A+

C}
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– negative examples
Ns = {b ∈ Tr | ¬C(b) ∈ A−C}

– individuals with unknown-membership w.r.t.
C: Us = Tr \ (Ps ∪ Ns).

where A+
C ⊆ {C(a) | a ∈ Ind(A)} and A−C ⊆

{¬C(b) | b ∈ Ind(A)} such that Ps ∩ Ns = ∅

Find a new (equivalence) axiom defining C such that,
letting K′ = K ∪ {C ≡ D}:

• ∀a ∈ Ps : K′ |= D(a) (completeness)

• ∀b ∈ Ns : K′ |= ¬D(b) (consistency)

As fully correct (i.e. complete and consistent) solutions likely
overfit the data and show poor predictiveness over unseen in-
coming individuals, often more general solutions are to be pre-
ferred. Moreover, several variants of this setting can be con-
sidered adding or relaxing the constraints on K and/or D, e.g.
regarding its size, the consistency of K′ [27, 28, 29], or even
adopting the weaker notion of negative example mentioned be-
fore. The output of the concept learning problem is not nec-
essarily meant as a fully automated process: a knowledge en-
gineer would have to validate the induced candidate axioms.
Often incremental settings are also considered, where a defini-
tion for C is already available in K, yet such a definition may
turn out to be incomplete or inconsistent w.r.t. the intended
classification of new incoming examples, therefore it should be
refined.

The induced intensional definition D of the target concept
can be used to predict deductively the membership of other in-
dividuals to this concept. Moving towards a statistical setting,
we may generalize the problem aiming at building more gen-
eral predictive models in terms of classification functions. Let
L = {+1, 0,−1} be a label set denoting the cases of positive
membership (labeled with +1, that is the caseK |= C(a)), neg-
ative membership (labeled with −1, i.e. the case K |= ¬C(a))
and uncertain membership (labeled with 0, i.e. neither of the
previous two cases) w.r.t. a given target concept C. Hence C
may be characterized in terms of a function: fC : NI → L
whose values are known only for a limited set of instances, from
which the training set can be sampled. The general problem of
learning an approximation for fC can be stated as follows:

Definition 3 (inductive classification problem in DL).

Given

• the knowledge base K = 〈T ,A〉,
• a target concept name C ∈ NC

• a set of training examples with assigned labels
Tr = {a ∈ Ind(A) | ∃l ∈ L : fC(a) = l}
• a set of classification functions (hypotheses)
H = {h : NI → L}
• a loss function L(h, fC) that measures the quality

of h ∈ H

Find a classification function hC ∈ H, such that:

hC = arg min
h∈H

EP[L(h, fC)] (1)

where EP denotes the expectation in terms of the un-
known distribution of the individuals.

Hence, finding the solution for the inductive classification
problem formalized above consists in finding the classification
function (in the set of possible classification functions) mini-
mizing the the adopted loss function L. A natural choice for L
in concept learning is the empirical risk, that may be defined,
in this case, as:

Ler(hC , fC) =
1

|Tr|
∑
a∈Tr

| fC(a)− hC(a) | (2)

Intuitively, Ler averages (w.r.t. the cardinality of the train-
ing set) the misclassification errors made by the learned func-
tion hC on the training set Tr when comparing its outcomes
with the (known) labels returned by fC .

The null case corresponds to the complete and consistent
solutions for the concept learning problem in Def. 2. However,
this is known to be error-prone, as it may easily lead to overfit
the data, and as the data regarding training examples may be
unable to represent the whole underlying distribution. A good
solution should be more general (induction) to be able to predict
the correct classification over unseen individuals. To this pur-
pose generally the setting may be biased in favor of simpler so-
lutions, e.g. considering a set H in accordance to the Minimum
Description Length principle [30], or targeting suboptimal, yet
more general (predictive), h’s.

3.2. Predicting Assertions on Roles / Properties
The formalization of the learning problem given in Def. 3

follows the concept-oriented nature of the ontologies expressed
in DLs. However, in the perspective of a more general service,
besides concepts also queries involving role fillers (object- and
data-type properties), are to be considered. That is, given an
individual a and a role R, predicting v such that K |= R(a, v),
where v ranges on a set of individuals or on the values of some
concrete domain, depending on R. In this case, given R and a
specific filler b, the labels can be determined as follows:
∀a ∈ Tr

• fR,b(a) = +1, if K |= R(a, b)

• fR,b(a) = −1, if K 6|= R(a, b)

As assessing if K |= R(a, b) amounts equivalently to deciding
if K |= ∃R.{b}(a) holds [2], the prediction task that can be
solved fitting a specific classifier ∃hR.{b}.

The problem definition is analogous for the case of datatype
properties, that is for the prediction of property values for roles
ranging on a concrete domain, say D ∈ D. In this case we
assume that the domain is discrete7. For more general cases

7In general, the task of predicting values belonging to infinite and contin-
uous domains (e.g. real numbers) can be regarded as a regression problem for
which appropriate models exist, e.g. see [31]. In such cases, the discretization
of the ranges may be taken into account.
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concerning non-numeric ranges (e.g. strings), a one-vs-all ap-
proach, similar to the usual one for solving multi-class classifi-
cation problems, can be employed.

3.3. Dealing with The Class-Imbalance Problem:
Ensemble Learning

The performance of a classifier may be compromised in
presence of skewed datasets. Specifically, the class-imbalance
problem [19] concerns learners facing an imbalanced distribu-
tion of the training examples w.r.t. the classes to be predicted
by the classification model. In a binary setting, the problem
occurs when training instances belonging to the majority class
outnumber those belonging to the other (minority class). This
extends to the settings where models for multiple classes (≥ 3)
have to be produced.

In our case, the class can be either a target concept or the
relation existing with a given filler. The individuals belonging
to the target class may be easily underrepresented, particularly
with respect to the unlabeled examples, because of the unavail-
ability of specific axioms that would be required to deem ex-
plicit negative examples via deductive reasoning. As such a
learning method in an ontological setting ought to take seri-
ously the class-imbalance problem into account.

To cope with this problem, sampling techniques are usually
adopted. They are employed to re-balance imbalanced datasets
so that a classifier can be trained through standard algorithms
as if the distribution were less skewed. Various sampling strate-
gies have been proposed. A straightforward strategy is based on
a random selection of the instances, usually performed by either
over- or undersampling instances. In the former case (consid-
ering a binary setting problem), a selection of the instances of
the minority class is replicated until a (more) balanced distribu-
tion is reached, in the latter case instances of the majority class
are discarded from the training set. While oversampling may
lead to overfitting the data owing to the replicated examples, the
undersampling strategy might discard very informative train-
ing examples, thus compromising the quality of the resulting
model. In order to cope with these issues the idea is to combine
sampling strategies with ensemble learning approaches [20]. In
ensemble learning, two or more models are trained and their
predictions are subsequently combined in a certain way. These
approaches are typically employed when the learning problem
is hard to solve by using a single-classifier approach. Another
reason for combining classifiers is to reduce overfitting.

An ensemble learning model is characterized by two com-
ponents: the weak learners and the meta-learner. A weak
learner is a generic inductive model that is used in the ensemble
classification. The meta-learner is basically a rule for combin-
ing predictions from the weak learners. Focusing on the algo-
rithms for learning ensemble classifiers, we can distinguish:

• boosting algorithms (e.g. ADABOOST [20]), that resort to
an iterative procedure where a new weak learner is added
to the ensemble and training instances are weighted ac-
cording to the hardness of their classification (i.e. iter-
atively the weights are increased for misclassified in-
stances and decreased for the the others);

• bagging algorithms (e.g. those learning random forests
[32]), which consider weak learners of the same kind
(e.g. decision or regression trees) that are trained with
different bootstrap samples drawn from Tr and exploit a
majority vote to make predictions;

• stacking approaches, which resort to training different
models as weak learners, on the entire training set, and
then perform a further step for training the meta-learning
model to combine the predictions made by the weak
learners.

While boosting algorithms aim at reducing the bias of the
models, bagging algorithms tend to decreasing the variance. In
the perspective of dealing with the class-imbalance problem, a
bagging-based method is a more suitable solution than the oth-
ers due to the sole sampling approach. For instance, when an
undersampling strategy is employed, an instance may be dis-
carded when training a weak learner whereas it can be consid-
ered for the training of another classifier in the ensemble. Ad-
ditionally, the ability of the bagging approaches of reducing the
risk of models that overfit the data is also useful for tackling an
imbalance problem in case of oversampling.

4. Tree-based Terminological Classifiers

In this section we introduce models and methods for solving
the problem formalized in Def. 3. After recalling some basics
on decision tree learning, we present classification models for
the DL representation and the related methods for predicting
concept and role assertions exploiting such models.

For the sake of simplicity, this section focuses on the class-
membership prediction problem since, as argued in Sect. 3.2,
predicting role fillers for a given role and a fixed individual can
be cast as a concept-membership prediction problem.

4.1. Decision Trees

Decision Trees [33] are well established classifiers in ma-
chine learning. Given the set of labels L = {c1, c2, . . . , cm},
standing for the classes to be predicted, and the training set of
examples Tr which are tuples described in terms of a feature set
F , a decision tree is a structure where each internal node corre-
sponds to a test about the value of some f ∈ F with departing
edges corresponding to the possible test outcomes (feature val-
ues), and each leaf-node decides the classification of the routed
instances. During the training phase, the test to be installed in a
node is selected according to a greedy-strategy which assesses
the best feature according to a purity measure, such as the infor-
mation gain (KL divergence). The resulting tree model induces
a partition of the instance space according to the test outcomes
along each root-leaf path, where each subset region is assigned
with one of the classes in L.

It has been shown that the algorithms typically employed
for growing decision trees may overfit the training data thus
compromising the accuracy of the model. In order to cope
with this problem, various procedures for pruning a decision
tree have been proposed (see [18] for a survey). They can be
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roughly split into pre-pruning and post-pruning methods. The
former are typically based on a stop condition to be enforced
on the purity of the nodes while building the tree; consequently,
the growth of the tree might be stopped prematurely. The lat-
ter typically exploit a two-step approach. At first, the complete
tree is grown, afterwards subtrees are evaluated and possibly
removed for improving the accuracy on a separate partition of
the dataset. Focusing on post-pruning, two well-known meth-
ods [34] will be recalled in the following as they will be adapted
to the new models proposed in this paper.

Reduced-Error Pruning (REP). In this method the training set
is split in a growing set, used to induce a complete tree, and a
pruning set used to prune subtrees. REP starts with a complete
tree and, for each internal node, it estimates the classification
error on the elements of the pruning set both in the case of keep-
ing the subtree and in the case of replacing the subtree with a
leaf. Pruning occurs if the estimated error of the pruned tree is
lower than the error made by the original one. A subtree cannot
be pruned if it contains another subtree whose misclassification
error is lower

Pessimistic Error Pruning (PEP). The method is based on the
idea of using the training set for both growing and pruning the
tree. Due to this overlap, the empirical error rate is an optimistic
estimate of the real one. Therefore, the method adopts a con-
tinuity correction for the binomial distribution for obtaining a
more accurate estimate and to introduce a complexity factor in
the pruning step [18]. The pruning condition is based on a com-
parison between the standard error of a node and the standard
error of the subtree: if the first value is lower than the second
one then the subtree is pruned.

4.2. Random Forests
Random Forests (RFs) are ensemble models based on de-

cision trees. Learning RFs is based on a bagging strategy that
can be combined with various sampling procedures [32]. In a
generic multi-class learning problem, where m is the number
of classes and L = {c1, c2, . . . , cm} is the label set and each
cj is the label value assigned to the examples of j-th class, let
F be the set of features characterizing the examples and Tr the
training set. Growing a random forest amounts to induce a col-
lection of n decision trees. Each tree is trained by considering
a subset Tri ⊂ Tr, 1 ≤ i ≤ n that is generated through a
sampling-with-replacement procedure. Besides, for each deci-
sion tree, only a restricted random subset A ⊆ F of features is
considered at each node.

After growing the trees, using a suitable method, the clas-
sification of a new instance a amounts to apply a majority vote
rule to the classes predicted by the decision trees. Formally,
let hi be the function which maps an instance onto one of the
class-labels in L learned by inducing the i-th decision tree of
the forest and hi(a) = cj ∈ L the prediction assigned to the
instance a by the i-th tree of the forest, with i ∈ {1, . . . , n}, the
RFs assigns the class label according to the following rule:

h∗(a) = arg max
cj

n∑
i=1

I(hi(a) = cj) (3)

where h∗ is the classification function for the RFs that as-
signs a cj to a and I is an indicator function, i.e. I(x) = 1 if
x is true and I(x) = 0 otherwise.The rule basically selects the
most frequent label predicted by each tree as the final classifi-
cation for the instance.

RFs can be combined with a sampling strategy. A version
of the algorithm coping with the class-imbalance problem is
known as Balanced RF [35]. It draws a bootstrap sample from
the minority class and randomly selects with replacement the
same number of instances from the majority class.

4.3. Terminological Decision Trees
First Order Logical Decision Trees (FOLDTs) [14], were

introduced in ILP as extensions of the decision trees to clausal
representations. They are defined as binary decision trees where
the nodes contain tests in the form of conjunctions of literals
and left and right branches depend on the truth-value deter-
mined by a logic test on given instances in terms of predicates
in a clausal theory.

Similarly, Terminological Decision Trees (TDTs) can be in-
formally defined as decision trees for the DLs representation. In
this case, a different representation (DL concept descriptions) is
adopted for the logical tests in the internal nodes [12]. The re-
sulting classification model is formally defined as follows:

Definition 4 (Terminological Decision Tree). Given a knowl-
edge base K, a Terminological Decision Tree for a target con-
cept C is a binary tree such that:

• each internal node contains a (conjunctive) concept de-
scription D for class-membership tests on individuals;

• the two edges departing from an internal node contain-
ing D stand for either outcome of the tests8 w.r.t. D (left
branch) and its complement ¬D (right branch);

• each leaf-node determines a decision for the individuals
to be classified: it contains either C or its complement
¬C.

Fig. 1 proposes an example of a TDT modeling a particu-
lar kind of worker, which could be induced from a set of pos-
itive and negative examples. The target concept C is used to
denote if an example is such a kind of worker. Note that this
TDT features also the counts of training instances that have de-
termined the tree structure; they will be explained later, when
the learning phase will be presented. The nodes contain con-
cept descriptions, which can be defined upon the signature of
the knowledge base. For the sake of generality, we are not tar-
geting a specific DL. In the figure, atomic concept names and
ALC constructors are used. Defined concepts and role names
may be employed by adopting a more expressive DL. As pre-
viously mentioned, each edge corresponds to the outcome of a
test w.r.t. the concept description at the node (instance check-
ing). Considering an individual a ∈ Ind(A) to be classified
using the TDT, the edges departing from the root depend on

8Given a ∈ Ind(A), D(a), resp. ¬D(a), is satisfiable w.r.t. K.
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(p:62,n:48)
Employee

1

(p:32,n:36)
Employee u ∃worksIn.>

2

(p:32,n:32)
Employee u ∃worksIn.¬PA

4

(p:30,n:1)
C

8
(p:2,n:31)
¬C

9

(p:0,n:4)
¬C

5

(p:30,n:12)
¬Employee u Freelance

3

(p:29,n:2)
C

6
(p:1,n:10)
¬C

7

Figure 1: An example of TDT with nodes decorated with the number of pos-
itive (p) and negative (n) examples that have reached each node in the train-
ing phase. Note that Freelance is supposed to be defined as Freelance ≡
¬(∃worksIn.>)

the outcomes of the test on the membership to Employee. The
left branch is associated to the positive outcome, i.e. a can be
an instance of the test concept, that is Employee(a) is satisfi-
able w.r.t. K, whereas the right branch corresponds to the case
when a can belong to the complement for some model of K,
i.e. ¬Employee(a) is satisfiable. Note that, owing to the open-
world semantics, both cases may apply for some individuals,
leading them to be routed down both branches. These tests are
repeated descending through the branches until leaf nodes are
reached which determine the classification to be predicted (as
explained later).

Given a TDT, the associated definition of the target concept
can be obtained as a disjunction of the conjunctions of the con-
cept descriptions on the paths reaching the leaves labeled with
the target concept. Hence, the definition for the target concept
C drawn from the TDT in Fig. 1 can be written as follows:
C ≡ (Employee u ∃worksIn.¬PA) t (¬Employee u Freelance)

where PA is the acronym of Public Administration.

4.3.1. Learning TDTs
The algorithm to induce TDTs is based on a divide-and-

conquer strategy. Given the knowledge base, the target concept,
and a training set of examples for the target concept, a recursive
strategy is employed to grow the TDT (see Alg. 1).

Preliminarily, two base cases can be distinguished. In the
first case, an estimate of the prior probability distribution P̂r
(computed on the training set by the function PRIORDISTRI-
BUTION) is used to cope with the special case of a leaf that is
lacking of routed (positive and negative) examples (|Ps| = 0
and |Ns| = 0, lines 10-11). The algorithm compares the prior
for the positive and negative membership, namely P̂r(+1) and
P̂r(−1), and assigns the label corresponding to the default one.
This is made by invoking the function DEFAULTMEMBERSHIP.

In the second case, the condition concerns the homogeneity
of the instances w.r.t. the class, i.e. the examples routed to the
node should approximately exhibit the same definite member-
ship. The algorithm checks if the label for the leaf node can be
determined and set when no negative (resp. positive) example
has reached the node, while most of the examples are positive

Algorithm 1 The routines for inducing TDTs

1 const θ: threshold {min. purity rate }
2 function INDUCETDT(Tr, D,C, P̂r): TDT
3 input Tr: training set
4 D: parent concept description
5 C: target concept
6 P̂r: priors
7 begin
8 let Tr = 〈Ps,Ns,Us〉 {individuals with positive, negative, uncertain

membership w.r.t. C}
9 T ← new TDT

10 if |Ps| = 0 and |Ns| = 0 then
11 T.root← DEFAULTMEMBERSHIP(P̂r, C)
12 else if |Ns| = 0 and |Ps|/(|Ps|+ |Ns|+ |Us|) > θ then
13 T.root← C
14 else if |Ps| = 0 and |Ns|/(|Ps|+ |Ns|+ |Us|) > θ then
15 T.root← ¬C
16 else
17 S← ρ(D)
18 { select the best partitioning feature }
19 E∗ ← SELECTBESTCONCEPT(S, 〈Ps,Ns,Us〉)
20 〈〈Pl,Nl,Ul〉, 〈Pr,Nr,Ur〉〉 ← SPLIT(E∗, 〈Ps,Ns,Us〉)
21 T.root← E∗

22 T.left← INDUCETDT(〈Pl,Nl,Ul〉, E∗, C, P̂r)
23 T.right← INDUCETDT(〈Pr,Nr,Ur〉,¬E∗, C, P̂r)
24

25 return T
26 end
27

28 function INDUCETDT(Tr, C) : TDT
29 input Tr: training set
30 C: target concept
31 begin
32 P̂r← PRIORDISTRIBUTION(Tr, C)

33 return T ← INDUCETDT(Tr,>, C, P̂r)
34 end

(resp. negative), see lines 12-13 (resp. lines 14-15). This basi-
cally means that the purity of the examples goes beyond a given
(high) threshold θ.

Note that cases of leaf-nodes reached only by examples with
an uncertain-membership may happen. The occurrence of such
cases depends on the number of uncertain-membership individ-
uals in the training set that should be lower than the one of those
with definite membership. The algorithm determines the label
for these nodes according to the prior probabilities.

The third (and recursive) case concerns the availability of
both negative and positive examples. In this case, the input
concept description D is specialized by means of an operator
exploring the search space of downward refinements of D. A
set of candidate specializations S = ρ(D) is obtained. Then,
the best description E∗ ∈ S (according to [12]) is determined
and finally installed in the current (internal) node. E∗ is one
of the admissible specializations of D (chosen according to a
purity criterion described in the sequel) obtained by applying a
downward refinement operator ρ that is a function which maps
a concept onto a set of (subsumed) concept descriptions — i.e.
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ρ(D) ⊆ {E | E v D} — that is required for traversing the
(potentially large) space of descriptions, depending on the lan-
guage adopted (see [36, 37, 8] for more detailed discussions on
this specific topic). We will consider a refinement operator that,
givenD in conjunctive form, computes specializationsE in one
of the following ways:

ρ1 adding a concept atom (or its complement) as a conjunct:
E = D u (¬)A;

ρ2 adding a general existential restriction (or its complement)
as a conjunct: E = D u (¬)∃R.>;

ρ3 adding a general universal restriction (or its complement) as
a conjunct: E = D u (¬)∀R.>;

ρ4 replacing a sub-description Di in the scope of an existen-
tial restriction in D with one of its refinements: ∃R.Ei and
Ei ∈ ρ(Di);

ρ5 replacing a sub-description Di in the scope of a universal
restriction with one of its refinements: ∀R.Ei and Ei ∈
ρ(Di).

Note that the cases of ρ4 and ρ5 are recursive. The implemented
operator performs a sort of random sampling from the (very
large) space of specializations and it is biased towards small
numbers of recursive calls. The employed operator is not ideal,
i.e. finite (for all possible concept descriptions C, ρ(C) is fi-
nite), complete(for all possible concepts C and D, a concept
description E can be obtained by progressively specializing C
and E ≡ D) and proper (for all possible concepts C,D with
D ∈ ρ(C), C 6≡ D holds) since some constraints cannot be
satisfied. For instance, the completeness of the operator cannot
be guaranteed due to the fact that the specializations are merely
a sampling of all possible refinements (this implies that other
refinements might not be returned by ρ).

The best descriptionE∗ is the one that maximizes the incre-
ment of a purity measure, often computed as the difference of
the entropy (relative to instances distribution) at a given level
w.r.t. the entropy computed at previous level [12]. E∗ stands
for the refinement that can best separate positive from nega-
tive instances. SELECTBESTCONCEPT implements this idea:
for each specialized concept E ∈ S, it estimates the infor-
mation gain deriving from partitioning the individuals routed
to the node w.r.t. E. In order to consider the individuals with
uncertain-membership, the information gain is computed as:

Gain(E, 〈Ps,Ns,Us〉) = H(Ps ∪ Ns ∪ Us)
−nl

nt
H(Pl ∪ Nl ∪ Ul)

−nr

nt
H(Pr ∪ Nr ∪ Ur)

(4)

where H(D) = −
∑

i∈{Ps,Ns,Us}
ni

nt
log2(ni

nt
) is the entropy

function (where nPs, nNs,nUs are respectively, the number of
positive, negative and uncertain instances in D), Pl (resp. Pr),
Nl (resp. Nr) and Ul (resp. Ur) stand for the subsets of individu-
als that routed to the left (resp. right) branch, nt = |Ps∪Ns∪Us|
and nl/r = |Pl/r ∪ Nl/r ∪ Ul/r|.

Then the concept description E∗ that maximizes this mea-
sure is selected.

Example 1 (TDT induction). Considering the induction of
the TDT in Fig. 1, one can observe that the root con-
cept Employee was progressively specialized by means
of ρ in the descriptions in the descendant nodes of
the leftmost path. Its immediate left-child contains
Employee u ∃worksIn.> (refined using ρ2), further special-
ized via ρ4 to Employee u ∃worksIn.¬PA, which describes em-
ployees that do not work in the public administration, hav-
ing refined > in the existential restriction with ¬PA ≡ (> u
¬PA) ∈ ρ1(>).

Then the individuals are sorted to the left or right branch
by the procedure SPLIT according to the result of the instance-
check with respect toE∗, maintaining the same group (i.e. Pl or
Pr, Nl or Nr, and Ul or Ur). A training example a is replicated
in the left and right partition in case both E∗(a) and ¬E∗(a)
are satisfiable w.r.t. K.

The divide-and-conquer strategy is applied recursively until
the instances routed to a node satisfy one of the stopping con-
ditions discussed above.

Once a TDT is learned, it can be employed for deriving an
intensional definition for the target concept (as briefly discussed
earlier). This will not be further discussed since we are focusing
on the learning problem in Def. 3.

4.3.2. Concept Membership Prediction with TDTs
The use of a TDT as a classification model is the prediction

of the membership of unseen individuals (i.e. further individu-
als that were not considered in the learning phase) with respect
to the target concept.

Given the new individual to be classified, the procedure (see
Alg. 2) traverses recursively the TDT starting from the root, per-
forming instance checks with respect to the test concepts con-
tained in each node that is reached: let a ∈ Ind(A) and D the
concept installed in the current node, if D(a) (resp. ¬D(a))
is satisfiable w.r.t. K then the left (resp. right) branch is fol-
lowed. Note that, differently from the case of FOLDTs adopt-
ing the closed-world setting of clausal theories, both branches
may have to be followed in parallel. The final classification is
decided by applying a majority criterion to the leaf node labels
collected by COLLECTLABELS(), that updates a list L while
traversing recursively the TDT. Cases of ties can be settled ei-
ther returning a 0 label (no definite membership assigned) as
well as the default one (majority class w.r.t. P̂r) or by consid-
ering also the distributions of positive and negatives examples
in the leaves (weighted vote). In the experiments, the algorithm
assigns the label 0 in such cases.

The service routines ROOT, LEAF and INODE are employed,
respectively, to get the root node of a given TDT, to test if a node
is a leaf for a tree, and to select the node content.

Example 2 (membership prediction with a TDT).
Considering again the TDT in Fig. 1, suppose a test individual
is given such that only the instance-checks in the leftmost path
succeed. The algorithm would collect one label (at node 8),
hence L = [C] and the individual would be assigned a positive
membership to the target concept.
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Algorithm 2 Concept membership prediction with TDTs

1 function CLASSIFY(a, T, C) : L
2 input a: test individual
3 T : TDT
4 C: target concept
5 begin
6 L← COLLECTLABELS(a, T )
7 count[−1,+1]← {0, 0}
8

9 for each l ∈ L
10 if l = C then
11 count[+1]← count[+1] + 1
12 else if l = ¬C then
13 count[−1]← count[−1] + 1
14

15 return argmaxl∈L count[l] { decision: +1 | −1 }
16 end
17

18 function COLLECTLABELS(a, T ) : L
19 input a: individual
20 T : TDT
21 begin
22 N ← ROOT(T )
23 if LEAF(N,T ) then
24 〈D,null,null〉 ← INODE(N);
25 L← L ∪ {D} { update L }
26 else
27 〈D,T.left, T.right〉 ← INODE(N);
28 if D(a) is satisfiable w.r.t . K then
29 L← COLLECTLABELS(a, T.left)
30 if ¬D(a) is satisfiable w.r.t. K then
31 L← COLLECTLABELS(a, T.right)
32

33 return L
34 end

Conversely, if another individual leads the algorithm to fol-
low multiple paths ending, e.g., in the two leaves 5 and 9, then
L = [¬C,¬C] yielding a negative membership prediction.

Another case may regard examples for which the test on the
root concept leads to follow both branches and eventually with
one path ending in node 8, while the others reach nodes 6 and
7, hence L = [C,C,¬C]. In this case, the function predicts
that the test individual belongs to the target concept.

4.3.3. Predicting Role Assertions with TDTs
As discussed in Sect. 3.2, assessing if a role assertion

holds, e.g. K |= R(a, c), can be accomplished by deciding if
K |= ∃R.{c}(a) holds, which finally amounts to solving a con-
cept membership prediction problem. Specifically, the existen-
tial restriction can be used to define the target concept for the
learning procedure described above and the corresponding TDT
can be used for performing classification. However, differently
from the case of concept descriptions, in the case of roles, neg-
ative examples can be hardly found in real ontologies, for lack
of explicit negative information (disjointness axioms for roles).

Therefore, when the problem of predicting role assertions
is considered, a form of closed-world reasoning, requiring a

binary setting (negative-as-non positive), is adopted thus im-
plying that the training sets will be made up of positive and
negative instances only, differently from Alg. 1.

The other main difference when learning a TDT in this case,
concerns the splitting test of the instances w.r.t. the node tests.
Specifically, while growing the TDT, given the current best con-
cept description E∗, the individuals b for which K 6|= E∗(b)
holds, will be routed down the negative (right) branch only.

After the TDT is grown, the strategy for making predictions
requires to follow the paths according to the instance check with
respect to the test descriptions installed in the nodes. In this
simplified case, the algorithm will simply test whether a given
individual a is instance of D (K |= D(a)) or not (K 6|= D(a)).

4.3.4. Pruning Procedures for TDTs
As discussed in Sect. 4.1 and already addressed in [16], al-

gorithms for learning tree based models may suffer from over-
fitting. For this reason, we integrate suitable pruning methods
in the proposed approach with the goal of improving the predic-
tiveness of the TDTs through their simplification. To the best
of our knowledge, no specific pruning methods for the general
FOLDTs have been proposed. Therefore, it is important to un-
derstand to which extent pruning methods for propositional rep-
resentation can be upgraded to the more expressive DL setting.
We focus on post-pruning procedures since, differently from
the pre-pruning procedures (see Sect. 4.1), they do not suffer
from the drawback of premature stops when growing subtrees.
Specifically, we adapt both REP and PEP algorithms (briefly
presented in Sect. 4.1) to restructure TDTs. A key point is rep-
resented by the choice of the strategy for replacing a subtree
during the pruning process, reproducing the idea of the major-
ity class exploited with the (propositional) decision trees. In
the case of the TDTs, the target concept C or its complement is
used to replace the definition installed into a subtree.

The sketch of the REP pruning procedure for TDTs is re-
ported in Alg. 3 (the adaptation of the PEP method, not reported
here, is quite similar). It starts by estimating the error w.r.t. a
pruning set of examples, invoking the function ESTIMATEER-
RORS. This function classifies the individuals in the pruning
set by estimating the misclassification rate for each node and,
consequently, sub-tree. As an output, the algorithm returns an
array Errors that is then employed as an argument for the pro-
cedure PRUNE. This procedure explores the tree in a bottom-up
direction, comparing the error of the node with the estimated
error of each subtree T . The subtree is cut if its error is greater
than the error of the node. In such a case, the concept descrip-
tionD installed in T is replaced with eitherC or ¬C, according
to the distribution of positive or negative instances of the prun-
ing set routed to the node during the error estimation phase. The
numbers of positive and negative instances are computed by the
auxiliary functions #POSITIVES and #NEGATIVES.

4.4. Terminological Random Forests
Performing classification of individuals in DLs representa-

tion requires to cope with the class-imbalance problem (see the
discussion in Sect. 3.3). To face this problem, a specific kind of
random forests is introduced.
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Algorithm 3 The REP routines for TDTs

1 function PRUNETDTS(T,PrSet): TDT
2 input T : TDT
3 PrSet: pruning set of examples
4 begin
5 Errors ← new array
6 Errors ← ESTIMATEERROR(T,C,PrSet)
7 PRUNE(T,Errors)
8 end
9

10 procedure PRUNE(T,Errors)
11 input T : TDT
12 Errors: array of integer
13 begin
14 N ← ROOT(T )
15 if ¬LEAF(N,T ) then
16 〈D,T.left, T.right〉 ← INODE(N);
17 PRUNE(T.left,Errors);
18 PRUNE(T.right,Errors);
19 if (Errors[T ] < Errors[T.left] + Errors[T.right]) then
20 if #POSITIVES(T ) > #NEGATIVES(T) then
21 T.root← C
22 else
23 T.root← ¬C
24 T.left← null
25 T.right← null
26 else
27 Errors[T ]← Errors[T.left] + Errors[T.right]
28 end

A Terminological Random Forest (TRF) is an ensemble of
TDTs where the predictions of each weak learner (the single
TDT) are combined using a majority voting rule. Specifically,
TRFs provide a tool for tackling the class-imbalance problem
through the integration of a sampling strategy for mitigating
the loss of information provoked by the use of the sole sam-
pling (see discussion in Sect. 3.3). In the following, the pro-
cedures for learning TRFs (detailed in Alg. 4) and performing
classification with TRFs (formalized in Alg. 5) are described.

4.4.1. Learning TRFs
The procedure for learning a TRF is sketched in Alg. 4.

Similarly to a TDT, for learning a TRF, the target concept C
and a training set Tr ⊆ Ind(A) have to be specified. Addi-
tionally, the desired number n of trees for building the forest
is needed. As for the induction of TDTs, Tr may contain unla-
beled instances, besides of positive and negative examples, with
respect to the target concept C. This does not occur when a
negative-as-non-positive approach is employed, as for the case
of prediction of roles (as discussed in Sect. 4.3.3).

The training individuals are sampled with replacement for
obtaining subsets Tri ⊆ Tr, with i = 1, . . . , n, needed for
learning each TDT, acting as a weak learner. More specifically,
the two-step procedure BALANCEDBOOTSTRAPSAMPLE rou-
tine, is adopted for building each Tri. First a stratified sam-
pling, w.r.t. the class distribution, is performed with the goal of
ensuring the presence of the instances belonging to the minor-
ity class. Successively, oversampling or undersampling [19] is

Algorithm 4 The routine for inducing a TRF

1 function INDUCETRF(Tr, C, n): TRF
2 input Tr: training set
3 C: concept
4 n: N
5 begin
6 P̂r← PRIORDISTRIBUTION(Tr, C): {C membership est. priors}
7 F← ∅
8 for i← 1 to n
9 {perform undersampling}

10 Tri ← BALANCEDBOOTSTRAPSAMPLE(Tr)

11 Ti ← INDUCETDT(Tri,>, C, P̂r); {see Alg. 1}
12 F← F ∪ {Ti}
13 return F
14 end

performed9 for obtaining (quasi-)balanced Tri sets. This phase
considers the initial data distribution. This means that when
the undersampling approach is employed the exceeding part of
the counterexamples (resp. positive examples) is randomly dis-
carded. In addition, the sampling procedure removes all the
possible unlabeled/uncertain instances.

Once the sets {Tr1, . . . ,Trn} are obtained, for each Tri, a
TDT T can be built via Alg. 1 or the modified procedure de-
scribed in Sect. 4.3.3. However, as reported in Sect. 4.2 for
the case of RFs, when building a tree, only a restricted random
subset of the whole set of features should be considered for de-
termining the actual best feature to be added for the test node.
As a consequence, in the case of TRFs, Alg. 1 is modified to
introduce a similar random choice. Specifically, following the
approach proposed in [38], after the refinements S of the cur-
rent node descriptionD are generated, only a certain number of
them is considered for assessing the best description E∗ ∈ S.
Precisely, the number of candidates is reduced through a func-
tion g applied to the number of specializations returned by the
refinement operator. For the experiments presented in Sect. 5,
we use

√
|ρ(D)| as g(·).

4.4.2. Prediction with TRFs
After a TRF is produced, predictions can be made by rely-

ing on the resulting ensemble classification model. The related
procedure, sketched in Alg. 5, works as follows. Given an in-
dividual a to be classified and a forest F, the function CLASSI-
FYBYTRF initializes counters for positive and negative labels,
respectively. Hence, the algorithm iterates on the forest trees
and for each TDT Ti of the forest, the returned class label is
collected by invoking the procedure CLASSIFY and increment-
ing the related counter. Specifically, the procedure CLASSIFY
traverses recursively the TDT according to Alg. 2 (or the mod-
ified prediction procedure for the negative-as-non-positive ap-
proach). After polling all TDTs and incrementing the class la-
bel counters, the majority voting is employed to finally assign

9For the experiments reported in Sect. 5 undersampling has been used in
order to decrease the number of instances to be considered thus reducing the
computational effort particularly required by instance checks to be performed
for each individual.

11



Algorithm 5 Prediction through TRFs

1 const ε: real {eq. threshold }
2

3 function CLASSIFYBYTRF(a,F, C) : L
4 input a: individual
5 F: TRF { set of TDTs }
6 C: target concept
7 begin
8 count [ ]← new array {counters of the votes collected from the

trees}
9 for each T ∈ F

10 l← CLASSIFY(a, T, C)
11 count [l]← count [l] + 1;
12 if (|count [+1]− count [−1]|/|F| ≤ ε) {approximately equal}
13 return 0
14 else
15 return argmaxl∈L count [l]
16 end

the class label to the test individual a. When the counters value
are approximately the same, the method will assign 0 for the in-
dividual a. This can be made by comparing the rate of the votes
in favor of the positive and negative membership values against
a rejection threshold, namely ε, according to prior knowledge
about the training set. If the difference is lower than ε, the al-
gorithm will return 0.

A larger value for ε can be set when it is known that the
training set is noisy.

4.5. Further extension of Terminological Tree-based models

After introducing TDTs and TRFs and the algorithms
for learning and exploiting such models, we shortly describe
two further extensions integrating the Dempster-Shafer Theory
sharing some common aspects with the aforementioned mod-
els [21, 22] that have been considered in the experiments. For
brevity, we assume familiarity with the basic notions about the
Dempster-Shafer Theory. The motivation for this alternative
models is the need to integrate and represent uncertainty as-
pects for assessing the membership of an individual.

The TDT model has been extended so that each inner node
contains two information: the conjunctive concept description
D and a basic belief assignement (BBA) quantifying the evi-
dence in favor of a definite membership (+1 or −1 whilst the
evidence in favor of the label 0 is regarded as the ones in favor
of the set {+1| − 1}). The induction of the model, called Evi-
dential Terminological Decision Tree (ETDT), adopts a divide-
and conquer algorithm like the one illustrated for TDTs. For
each node that is installed, the algorithm determines both the
concept description (for the intermediate nodes) / the label (for
the leaf nodes) and the BBA according to the relative frequen-
cies of the positive, negative and uncertain instances routed to
the node. The membership of an individual can be determined
by using a modified version of the classification procedure de-
scribed in the previous section: the algorithm traverses the tree
for collecting the BBAs assigned to the leaves; they are subse-
quently combined according to a combination rule. The mem-

bership value assigned to an unseen individual is the one maxi-
mizing the belief function obtained from the combined BBAs.

Evidence Terminological Random Forests [22], an ensem-
ble of ETDTs, extends TRFs by allowing each ETDT to return a
BBA that is combined to the other ones by using a meta-learner
implementing a further combination rule.

5. Empirical Evaluation

In this section, we report the design and outcomes of an
empirical comparative evaluation of the proposed approaches.
In the first part, we present a comparative test involving TDTs,
TRFs, and some related learning methods on a number of arti-
ficial classification problems; in the second part, we propose an
evaluation on further datasets with specific learning problems
that require the adoption of an extended version of the original
refinement operator.

5.1. Datasets

In the experiments, we considered datasets drawn from var-
ious ontologies regarding heterogeneous domains (see Tab. 1).
Some of them are available on the TONES repository10: two
medical ontologies BCO and HUMAN DISEASE (HD); an on-
tology included in the EcoCyc database describing the gly-
colysis pathway, translated into BioPax format (henceforth
BIOPAX); and FINANCIAL, an ontology that models the bank-
ing and financial domain.

We considered also further and larger ontologies: CAR-
CINOGENESIS, AIFB PORTAL, DBPEDIA 3.9 and VICODI.
CARCINOGENESIS is an ontology representing an OWL port
of a well-known ILP dataset [39] which is employed to train
relational classifiers for predicting the carcinogenicity of chem-
ical compounds. This ontology is available with the DL-
LEARNER [40] release11.

The AIFB PORTAL dataset contains metadata available
from the Semantic Portal of the AIFB institute12 in terms of the
SWRC ontology [41]: it models key concepts related to the do-
main of academic and research communities, such as persons,
articles, technical reports, projects and courses.

DBPEDIA 3.9 makes structured information extracted from
WIKIPEDIA available as the central data source of the LOD
cloud, providing unique identifiers for the described entities
that can be dereferenced over the Web: DBPEDIA 3.9, re-
leased in September 2013, describes more than 4 million enti-
ties. To generate the dataset for our experiments, the DBPEDIA
3.9 RDF graph was traversed starting from resources represent-
ing US presidents and vicepresidents: all immediate neighbors
were retrieved, together with their related schema information
(direct classes and their superclasses, and their hierarchy).

10TONES repository available at: http://owl.cs.manchester.ac.uk/
repository/

11In this work we employed the dataset contained in the release 1.0,
available at: http://sourceforge.net/projects/dl-learner/files/
DL-Learner/

12The knowledge base is available at: http://www.aifb.kit.edu/web/
Wissensmanagement/Portal
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The VICODI dataset was drawn from an ontology that for-
malizes knowledge concerning historical events. It is part of
VICODI13, a collaborative RTD project of the 5FP IST EU Pro-
gramme aiming at developing a novel visual contextualization
environment for digital content on the Internet.

5.2. Experiments on Artificial Learning Problems

The learning task was to induce tree-based classifiers for
random target concepts from training sets, using the Web on-
tologies as background knowledge. The effectiveness of the
classifiers has been evaluated on class-membership prediction
problems for test individuals with respect to the target concepts.

5.2.1. Dataset Preparation for the Learning Problems
For each ontology, 15 target concepts have been randomly

generated by combining 2 through 8 (primitive or defined) con-
cepts of the ontology using the conjunction and disjunction op-
erators or universal and existential restriction (involving roles).

In addition, the generation process avoids returning concept
definitions for which the dataset was totally composed by pos-
itive (resp. negative) instances and no constraint is explicitly
introduced about the number of uncertain individuals: the num-
ber, reported in Tab. 2 directly depends on the number of dis-
jointness axioms declared in the knowledge base (see Tab. 1).

Another characteristic of the concept generator is its abil-
ity to return concepts where the positive instances largely out-
number the negative ones. Specifically, the generator exploits a
recursive procedure to return a concept. The base cases of the
procedure are reported below:

1. a concept name is randomly chosen from the signature of
the knowledge base;

2. the number of random concepts combined through the
conjunction and disjunction operators is larger than the
maximum number of concept that can used as operands.
As reported before, the number is randomly determined
and it span from 2 to 8.

The recursive cases of this procedure are:

1. the application of an existential restriction to a randomly
generated concept by introducing a role name;

2. the application of an universal restriction to a randomly
generated concept;

3. the application of a complement operator to a randomly
generated concept

Note that the role name is also randomly selected from the
knowledge base. The generator returns the concept as an out-
put only when there are both positive and negative instances in
the knowledge base. Conversely, the procedure discards this
concept and it will generate the next one.

13The knowledge base is available at: http://www.vicodi.org

As regards the distribution of the individuals with respect to
the target concepts in the different ontologies, we observed that
negative instances outnumbered the positive ones in the prob-
lems/datasets drawn from BCO and HD. In the case of BCO
this occurred for all concepts but one, with an averaged ratio
between positive and negative instances of 1 : 20. For most
problems, the number of uncertain-membership instances rep-
resented only the 10% of the individuals of the knowledge base.
In the case of HD, this kind of imbalance occurred for all the
target concepts. However, in the case of HD, the number of
instances with an uncertain membership was very large (about
90%). In the case of FINANCIAL, larger numbers of positive
instances were generally available: for most target concepts
the averaged ratio between positive and negative instances was
1 : 8 and few instances with uncertain membership were found
(about over 0.3%). A weaker imbalance could be noted with
BIOPAX. For most target concepts the ratio between positive
and negative instances was 1 : 5 on average, while the class
distribution was balanced for three concepts only. Again, we
observed a limited number of the instances with an uncertain
membership: for two concepts we observed only 5 individuals
without a definite membership; for the other concepts all the
individuals adopted as datasets (training/test set) have a definite
membership.

For larger datasets (i.e. those with more than 1000 individu-
als), we observed a stronger imbalance on the distributions, e.g.
the datasets from DBPEDIA, the averaged ratios between posi-
tive and negative instances w.r.t. the target concepts were about
1.2 : 100 while the number of uncertain-membership instances
was very large: they represented the 82% of the total number of
individuals of the knowledge base.

In the datasets extracted from with CARCINOGENESIS,
the ratio between the examples with a definite membership is
100 : 0.02 (on average) while the examples with uncertain-
membership represent almost the 60% of the individual of the
knowledge base.

In the datasets extracted from VICODI, the ratio between
positive and negative instances w.r.t. the target concepts was
again in favor of the positive instances and we found a large
number of individuals with an uncertain-membership represent-
ing the 95% of the individuals of the knowledge base). Like-
wise, similar ratio in favor of positive instances and percentages
of individuals with uncertain membership were observed also in
the datasets from AIFB.

5.2.2. Algorithm Setup and Experiment Design
We ran the TDT induction algorithm14, both without prun-

ing and with the employment of the REP and PEP procedures.
As regards TRFs, they were built by setting the required num-
ber of trees parameter to 10, 20, and 30, respectively. The ex-
periments were run by producing TRFs with and without the
stratified sampling. When the stratified sampling was used, the

14The source code as well as the full experimental setting (datasets, target
concepts and composition of the folds) and empirical results are available at:
https://github.com/Giuseppe-Rizzo/SWMLAlgorithms.
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Table 1: The ontologies involved in the experiments
Ontology DL Language Classes Properties Ind. Disj. Axioms
BCO ALCHOF(D) 196 22 112 279
BIOPAX ALCIF(D) 74 70 323 85
HUMAN DISEASE (HD) ALCIF(D) 1498 10 639 0
FINANCIAL ALCIF(D) 60 16 1000 113
DBPEDIA 3.9 ALCH 251 132 16606 11
VICODI ALHI 196 10 16942 0
CARCINOGENESIS ALCH(D) 142 19 22753 6
AIFB PORTAL ALEO 49 285 44328 0

Table 2: Average rate of uncertain individuals w.r.t. the target concepts
Ontology % uncertain individuals
BCO 10
BIOPAX 1.41
HUMAN DISEASE (HD) 90
FINANCIAL 0.3
DBPEDIA 3.9 82
VICODI 95
CARCINOGENESIS 60
AIFB PORTAL 60

adopted rates were set to 50%, 70%, and 80%. Then, under-
sampling was performed to re-balance the dataset.

We compared TDT-based and TRF-based classifiers with
similar models. Specifically, we compared the extensions
against the previous releases of TDT and TRF classifiers per-
forming ternary classification without any strategy for dealing
with missing values, proposed in [12] and [16]. We considered
also the extensions of such classifiers endowed with evidential
reasoning operators, proposed in [42, 22]. In the experiment,
we adopted the same sampling rates and the same forest sizes
as adopted in those papers. A further parameter that should
be set for all tree-based classifiers (and their evidential ver-
sion) is represented by the threshold θ for tolerating a certain
rate of positive/negative instances coverage when a leaf is set
in the training phase. In the experiment, we adopted the value
θ = .95. The parameter ε for controlling the decision in favor
of a class-membership values was set15 to ε = 0.1.

The comparison involved also two algorithms implemented
in DL-LEARNER: Class Expression Learning for Ontology
Engineering (CELOE) and Parallel Class Expression Learning
(PARCEL). CELOE is an extension of OCEL proposed in [9],
a learning algorithm that performs an accuracy-driven heuris-
tic search. The main difference between CELOE and OCEL is
that the former is more biased towards short concept descrip-
tions. The algorithm can tolerate a certain rate of false nega-
tives, which can be set as a parameter. We tested CELOE at the
values 10%, 15%, and 20%. PARCEL [10] is another extension
of OCEL that combines top-down and bottom-up refinements in
the search space. Top-down search is required in order to solve
sub-problems in specific regions of the instance space, while
partial solutions are then combined in a bottom-up fashion.

We compared the predictions made using the inductive clas-
sification models against the ground truth assessed by a rea-
soner16. The 10-fold cross validation technique was employed
for estimating the performance of the various algorithms. As an

15Lower values θ and ε were also tested but they lead to poorly predictive
classifiers

16The PELLET reasoner was used: http://clarkparsia.com/pellet/.

evaluation metric, macro-averaged F-measure (i.e. the measure
is averaged per membership value) was employed in order to
compare our methods to those taken from DL-LEARNER.

5.2.3. Outcomes and Discussion
The results of the first experiment are reported in Tab. 3 and

Tab. 4 (average values and standard deviations). They show
that the new methods outperform the previous releases of the
tree-based classifiers (TDTs and TRFs) and their performance
is similar to the one observed for ETDTs and ETRFs (although
the trees induced through such approaches are more complex,
as we will describe in the sequel). This was likely due to the
new discipline in the presence of missing values implemented
in the new releases. Conversely, with the BIOPAX problems, as
the KB contained disjointness axioms so that individuals tended
to have a definite membership w.r.t. the target concepts, the per-
formance of the various classifiers was quite comparable. These
results show also that our new methods can outperform PARCEL
and CELOE with problems built on all datasets but HD. TDTs
seem to work also in case of small datasets (in terms of indi-
vidual population) while the extended models, i.e. the pruned
versions of TDTs, seem to work better when more instances
are available, likely owing to their need for a validation set. A
similar consideration also holds for TRFs. It can be also noted
that, when REP and PEP were employed, the F-measure im-
proved or, at least, did not change. In addition, for most small
ontologies employed in the experiments, even when the perfor-
mance of the various methods seems to be comparable, a lower
standard deviation than the ones of PARCEL and CELOE can
be observed (e.g. see the BCO column): the proposed solutions
could learn better approximations for some target concepts than
those obtained through DL-LEARNER methods.

Concerning the learning problems on HD, the tree-based
methods preformed sensibly worse than PARCEL and CELOE.
These results were likely due to the fact that, owing to the nature
of the underlying ontology, the classification procedure with
trees was inclined to assign a definite membership that could
not be determined by the DL reasoner to test individuals, and
this counted as a mistake. These cases could be judged more
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Table 3: Results of the first experiment on artificial problems (for the group of smaller datasets): TDTs vs. other methods

Algorithm F-measure

BCO BIOPAX HD FINANCIAL
TDT (old) 50.35± 13.45 97.62± 04.55 66.49± 06.43 76.14± 05.71
TRF 50% (old) 20 trees 51.45± 13.45 98.84± 02.16 70.43± 03.77 90.34± 06.57
TDT (no pruning) 75.34± 07.35 97.63± 04.54 75.88± 07.85 87.14± 08.29

REP 87.46± 03.48 96.11± 03.56 35.76± 14.71 79.15± 07.84
PEP 87.47± 03.36 97.23± 04.54 35.76± 14.71 75.88± 07.85

TRF 50% 20 trees 92.35± 03.46 98.84± 02.16 77.52± 04.85 96.61± 06.57
ETDT 75.39± 07.46 97.63± 04.54 75.85± 07.53 87.14± 08.29
ETRF 50% 20 trees 90.27± 05.37 98.84± 02.16 77.52± 04.36 96.61± 06.57

CELOE
noise 10% 88.85± 12.61 92.72± 11.19 90.59± 26.00 71.52± 34.53
noise 15% 88.86± 12.61 92.72± 11.19 90.58± 26.00 74.56± 27.32
noise 20% 88.86± 12.60 92.72± 11.19 90.58± 26.00 75.68± 27.56

PARCEL 90.86± 13.45 93.33± 11.44 90.60± 26.01 80.43± 12.05

Table 4: Results of the experiments on artificial problems for the group of larger datasets
Algorithm F-measure

CARCINOGENESIS AIFB DBPEDIA 3.9 VICODI
TDT (old) 60.33± 03.46 97.63± 04.54 65.88± 07.85 85.14± 08.29
TRF 50% (old) 20 trees 64.32± 09.45 98.84± 02.16 70.43± 04.43 95.51± 04.65

TDT
no pruning 61.45± 02.25 87.24± 01.45 73.21± 02.03 88.14± 01.45

REP 62.05± 02.03 87.22± 01.75 76.23± 03.43 90.14± 03.45
PEP 62.03± 02.03 87.24± 01.46 77.21± 03.43 90.14± 03.45

TRF 50% 20 trees 70.35± 03.15 87.23± 01.45 87.23± 01.24 98.21± 02.95
ETDT 62.05± 02.03 97.63± 04.54 75.88± 07.85 87.14± 08.29
ETRF 50% 20 trees 70.34± 03.15 98.84± 02.16 87.23± 01.45 98.20± 02.96

CELOE 10% noise 70.67± 05.15 80.34± 03.27 84.45± 05.09 96.15± 07.45
PARCEL 70.67± 05.26 80.25± 02.17 86.45± 04.28 98.27± 03.25

appropriately by a domain expert. Moreover, a small disjunct
problem may have affected the TDTs resulting in the induction
of error-prone models [43]. The issue concerns the fact that
TDTs induced during the training phase had several branches
covering few individuals. This was due to limitations in the
choice of the candidate test concept descriptions that led to a
nearly null information gain, hence the installed test concepts
tended to route most of the individuals down to one of the
branches departing from the nodes. These structures resulted
in a large number of misclassification cases.

It is worthwhile to note that no sensible difference was ob-
served when using TRFs induced with the various re-sampling
rates. Indeed, the application of TRFs was not as successful as
awaited (we expected a further improvement of the F-measure).
Likely, this could be due to a strong overlap existing among
TDTs of the forests. As a result of this limited diversification in
the ensemble, wrong predictions returned using a single TDT
(related to the small disjuncts problem) were further confirmed
by others. Besides the method performance did not change sen-
sibly with varying sampling rates and numbers of trees due to
the presence of uninformative examples, i.e. examples that did
not alter the choice of the best test concept description. These
results suggest that one could choose the simplest combination
of parameters in order to reduce the time required for building
the models (or enlarge the beam of candidates).

The experiments with larger datasets seem to confirm the
feasibility of the proposed extensions, although the perfor-
mance is not as good as the one of the small datasets. For
instance, in the case of CARCINOGENESIS, the poorer perfor-
mance was likely due to a strong class-overlap resulting into
very frequent misclassification cases. Similar consideration
holds also for AIFB PORTAL, DBPEDIA and VICODI.

Model Quality and Training Efficiency. Regarding the com-
plexity of the induced models, the details are reported in Tab. 5–
6, namely: the number of nodes, the number of paths leading
to positive/negative leaves , the time required for the training
phase (including the time required for pruning the trees, when
such a strategy was applied) and the time required for classi-
fying test individuals. The values are averages both w.r.t. the
number of concepts and the number of folds.

A first consideration concerns the comparison of the size
of the TDTs w.r.t. ETDTs. We noticed that TDTs were shorter
than ETDTs. This was likely due to the heuristic employed
for growing the models: growing ETDTs requires to select
the best concept description corresponding to the one with the
most definite membership among the candidate concepts. This
means that the heuristic does not focus on the positive/nega-
tive instances, resulting into a purity condition on the training
instances routed to the node that could be satisfied after more
splits. For TDTs and TRFs, the total number of nodes and the
paths which lead to leaves labeled with the positive/negative
class depend on various factors, like the imbalance ratio, and es-
pecially the ability of the refinement operator to lead to a good
test concept which can split the training instances into almost
pure subsets. Trees with longer paths were due to the aforemen-
tioned small disjunct problem that affected various datasets like
HD. In this perspective, resorting to pruning methods reduced
the number of paths, in particular the ones leading to the leaves
assigning a negative membership (e.g. in the case of BIOPAX
or CARCINOGENESIS).

As regards the efficiency of classification adopting the in-
duced models, we noticed that, despite the fact the methods
proposed in this paper were generally slower than the train-
ing and test performed through CELOE and PARCEL (see Tab
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Table 5: Details regarding the TDTs induced for the learning problems considered in the first experiment, with and without the application of pruning algorithms,
for the group of smaller datasets

Dataset TDT TDT+REP TDT+PEP ETDT TDT (old)

BCO

nodes 07.47 04.59 07.09 19.00 07.47
paths for C 02.00 01.00 02.00 04.50 02.00

paths for ¬C 02.00 02.00 02.00 05.50 02.00
training time 20s 30s 30s 60s 20s
classification 20s 15s 15s 20s 3s

BIOPAX nodes 07.77 03.88 07.37 14.30 07.77
paths for C 02.50 01.00 02.51 03.50 02.50

paths for ¬C 07.47 02.59 01.40 05.50 07.47
training time 60.3s 65s 65.5s 78.5s 60.3s
testing time 15s 3s 15s 35.6s 15s

HD nodes 07.60 04.50 07.60 14.30 07.60
paths for C 02.50 01.25 02.51 03.50 02.50

paths for ¬C 02.43 03.24 02.50 05.50 02.43
training time 180s 200s 200s 430s 180s
testing time 10.60s 5.30s 5.30 20s 07.54s

FINANCIAL nodes 25.40 03.84 20.40 40.20 25.40
for C 08.50 01.00 05.10 14.50 08.50

paths for ¬C 06.43 02.00 11.23 24.50 06.43
training time 35s 75s 75s 70s 35s
testing time 15s 25s 25s 25s 13s

Table 6: Details regarding the TDTs induced for the learning problems considered in the first experiment, with and without the application of pruning algorithms,
for the group of larger datasets

Dataset TDT TDT+REP TDT+PEP ETDT TDT (old)
CARCINOGENESIS nodes 40.50 23.40 23.40 40.50 40.50

paths for C 05.60 05.60 05.60 10.70 05.60
paths for ¬C 10.50 05.70 05.70 10.50 10.50
training time 713s 786s 786s 712s 715s
testing time 15.7s 8s 15s 16.6s 7.5s

AIFB nodes 25.60 13.40 13.40 25.60 25.60
paths for C 07.00 02.89 03.56 07.00 07.00

paths for ¬C 08.50 04.60 03.67 08.50 08.50
training time 1877s 2042s 2042s 1889s 1873s
testing time 56s 24.5s 24.5s 76.6s 43.6s

DBPEDIA 3.9 number of nodes 25.75 13.25 13.25 25.75 25.75
number of paths for C 07.47 02.45 02.45 07.47 07.47

number of paths for ¬C 08.53 04.75 04.75 08.53 08.53
training time 67s 92.5s 92.5s 67s 43s
testing time 15s 7.5s 07.5s 25s 8.5s

VICODI number of nodes 25.67 13.94 13.94 25.73 25.67
number of paths for C 06.35 02.45 02.45 07.32 06.35

number of paths for ¬C 09.49 04.75 04.75 07.43 09.50
training time 73s 85s 85s 72s 73s
testing time 17s 10s 10s 25s 9s

5 - 7), the training/test times required by the new releases of
TDT and TRF classifiers are quite limited (although the cur-
rent implementation can be further optimized) and, as expected,
they are better than the cases of the ETDTs (and ETRFs, re-
spectively). Specifically, the times required for learning TDTs
(without pruning) span from less than 10s (as in the case of
BCO) to 1877s (AIFB). In addition, the time for classifying in-
dividuals through TDTs spans from 2.5s (BCO) to 56s (AIFB).
Training and testing times are considerably larger in the case of
TRFs. The induction of a TRF required from 352s (in the ex-
periments with BCO) to 8462s (in the experiments with AIFB).

While the training time for such models is strictly related
to their complexity, the testing time is affected by the strategy
exploited for pooling the labels: the rules exploited by ETDTs
and ETRFs (based on evidential operators) required more time
than simpler majority voting rules. In particular, the training
time required by ETDTs induction algorithm spans from 60s
(in the case of BCO) to 1889s (in the case of AIFB) while the
testing time spans from 3s to 43.6 s. In the case of ETRFs,
the training time spans from 425s to 9453s and the testing time
spans from 65.6 (FINANCIAL) to 389s (CARCINOGENESIS).

Comparing TDTs’ classification under OWA and CWA. In or-
der to determine the extent to which the incompleteness of a
knowledge base affects the quality of both the models and the
predictions made through them, we shortly illustrate the results
of a further comparison where, given the settings for learning
problems and the algorithms adopted so far, a binary settings
is used, according to the Closed World Assumption. The re-
sults suggested that the performance was drastically lower than
the one obtained by solving a ternary classification problem.
We omitted to report the results into a table because, for most
datasets, the F-measure was about 0.3. Only for two ontologies,
i.e. BIOPAX, FINANCIAL, the F-measure was quite similar to
the cases where the problem is solved under OWA. For BIOPAX
the F-measure was 97.61 for TDTs without employing pruning,
96.10 in the experiments with TDT and the employment REP
pruning and 97.24 in the case of TDT with PEP. In the exper-
iments with FINANCIAL, the F-measure was 87.20 for TDTs
without pruning, 79.16 and 75.92 by applying REP and PEP
pruning. This was likely due to the presence of disjointness
axioms involved in the refinement process.

For most datasets, the decrease was likely due to very sim-
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Table 7: Execution times for the others models involved in the first experiment
Dataset TRF ETRF TRF (old) Celoe Parcel

BCO training 352s 425s 352s 12.6s 12.7s
test 134s 167s 117s 20s 3s

BIOPAX training 256s 325s 325s 78.5s 60.3s
test 95.5s 125s 95.6s 35.6s 25.6s

HD training 363s 435s 363s 83.2s 93s
test 123.4s 173.5s 78.5s 78.5s 78.7s

FINANCIAL training 123.4s 154.3s 123.4s 35.7s 60.6s
test 65.6s 65.6s 45.3s 25s 13s

CARC. training 713s 786s 786s 712s 715s
test 358.3s 389.6s 355.3s 433.8s 425.7s

AIFB training 8422s 9453s 8422s 457s 459s
test 56s 76.7s 24.5s 257s 258s

DBPEDIA 3.9 training 430.7s 432.4s 430.7s 235.7s 365.6s
test 127.4s 143.6s 116.76 76.35s 86.76s

VICODI training 125.65s 125.67s 125.67s 85.67s 96.67
test 65.7s 86.76s 54.1s 43.8s 43.8s

Table 8: TDTs induced in the first experiment under CWA (small datasets)
Dataset TDT TDT+REP TDT+PEP

BCO

nodes 03.00 03.00 03.00
paths for C 01.00 01.00 01.00

paths for ¬C 01.00 01.00 01.00
training time 5s 8s 8s
classification 2.5s 2.5s 2.5s

BIOPAX nodes 07.77 03.88 07.37
paths for C 02.50 01.00 02.51

paths for ¬C 07.47 02.59 01.40
training time 60.3s 65s 65.5s
testing time 15s 3s 15s

HD nodes 03.00 03.00 03.00
paths for C 01.00 01.00 01.00

paths for ¬C 01.00 01.00 01.00
training time 10s 15s 15s
testing time 2s 2s 2

FINANCIAL nodes 25.40 03.84 20.40
for C 08.50 01.00 05.10

paths for ¬C 06.43 02.00 11.23
training time 35s 75s 75s
testing time 15s 25s 25s

ple and poor predictive models produced through the binary set-
ting (see Tab. 8–9) while, solving a ternary classification prob-
lem, the instances with uncertain-membership w.r.t. the inter-
mediate tests (replicated in the recursive calls) helped to induce
models describing better the available instances. In most cases
the trees were made up of a test node while the other ones con-
tained predictions. As a result, the application of the pruning
was almost useless. Moreover, for such problems, the binary
settings affected also the performance of TDTs when they were
used to make predictions through a TRF. In fact, the overlap
between the trees seemed to be increased, in comparison with
the trees induced adopting the ternary settings.

5.3. Second Experiment

In the second experiment, we investigated the effectiveness
of the proposed approach when applied to some specific learn-
ing problems related with the datasets rather than artificial ones.

5.3.1. Learning Problems
Considering the OWL ontologies used in the previous ex-

periment (see Tab. 1), we briefly describe the specific tar-
get concepts on which tree-based classifiers were trained and
tested. The learning problems have been chosen by considering

Table 9: TDTs induced in the first experiment under CWA (large datasets)
Dataset TDT TDT+REP TDT+PEP

CARCINOGENESIS nodes 03.00 03.00 03.00
paths for C 01.00 01.00 01.00

paths for ¬C 01.00 01.00 01.00
training time 35s 76s 76s
testing time 15.7s 8s 15s

AIFB nodes 03.00 03.00 03.00
paths for C 01.00 01.00 01.00

paths for ¬C 01.00 01.00 01.00
training time 5s 10s 10s
testing time 2s 2s 2s

DBPEDIA 3.9 number of nodes 03.00 03.00 03.00
paths for C 01.00 01.00 01.00

paths for ¬C 01.00 01.00 01.00
training time 2s 10s 10s
testing time 2.5s 2.5s 2.5s

VICODI number of nodes 03.00 03.00 03.00
paths for C 01.00 01.00 01.00

paths for ¬C 01.00 01.00 01.00
training time 2.5s 11.5s 11.5s
testing time 2s 2s 2s

the availability of a sufficient number of assertions for the tar-
get role with a moderate sparsity of the fillers. When possible,
properties involving at least 100 different individuals in their
assertions have been selected (please note this means that, for
each property, the number of assertions may be more than 100).

In the case of BCO, the task was to predict the filler for the
target property refersdesease ranging in the set of 12 individuals
that are instance of the concept DiseaseType or SyntomsType.
The learning problem has been tackled through a one-vs-all ap-
proach. Due to the limited number of instances available , we
used all the individuals of the knowledge base. In this case, the
ratio between the positive and negative instances was around
1 : 4 (on average w.r.t. the various role fillers).

The learning problem to be solved with BIOPAX ontology
was to predict the value of the target property controlType, a
datatype property whose range is an enumerative type. In this
work, we focused on the problem to decide if an individual as-
sumes one of the values {activation, inibition}. The ratio be-
tween the positive and negative examples was around 1 : 3.

In the experiments with HD, we tried to use TDTs and TRFs
for predicting the values of a boolean datatype property isCIE
(CIE stands for Center for International Education). In this
case we considered a subset of 436 individuals that were evenly
distributed with respect to the property values.
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In the case of FINANCIAL, the goal was to predict the value
of an object property hasSexValue, whose range is the set of
individuals SVSEXMALE and SVSEXFEMALE. The learning
problem considered 420 individuals, with a ratio between the
instances with the value SVSEXMALE and those with the value
SVSEXFEMALE of around 1 : 3.

In the case of CARCINOGENESIS, the task was to predict
whether a compound was mutagenic. Note that, the prediction
problem concerned a boolean datatype property (see Sec. 3) is-
Mutagenic, which encodes the targeted information. The do-
main of this property is the class Compound. Hence the learn-
ing problem can be considered as a subclass-membership pre-
diction problem: the training set was composed exclusively of
instances of such a class for which the property value (true or
false) is known. The distribution of the examples was balanced.

In the experiments with the AIFB PORTAL the goal was to
predict the affiliation of a person to a research group (property
Forchunsgruppe). A one-vs-all approach was employed in the
assessment of the affiliation to a specific group. This means
that, given a research group representing the filler for the con-
sidered role, the individuals belonging to other research groups
were considered as counterexamples. For this dataset, the im-
balance ratio was around 1.4 : 10 (on average w.r.t. the various
research groups). This means that for each group 12% of the
instances represented positive examples while the rest was con-
sidered as negative examples.

For the DBPEDIA 3.9 ontology, the task was to predict if a
generic politician is also a congressman. The training set was
composed by both positive and negative examples (i.e. politi-
cians that are not congressmen) and, unlike the other cases,
also instances with an uncertain-membership (i.e. politicians
for which it is not possible to determine if they are congress-
men given the knowledge base). The imbalance ratio between
positive and non-positive instances was around 1:4.

Finally, in the case of VICODI, the aim was to predict if an
historical event concerned politics or not. In the ontology, this
is modeled via an object property hasCategory whose domain
is the class Time-Dependent and the range is the class of Cat-
egory (with only 4 individuals), including POLITICS. In this
learning problem, we considered a dataset composed of posi-
tive (individuals having POLITICS as role filler) and negative
instances with an imbalance ratio of 1.6 : 4.

5.3.2. Setup of The Algorithms
In this second experiment, again we assessed the perfor-

mance of the TDTs and TRFs and included also PARCEL and
CELOE. Initially, we had adopted exactly the same settings
described in the previous experiment for all of the algorithms.
However, differently from the previous experiment, the prelim-
inary attempt to tackle learning problems with the new datasets
fell short in most cases and the reason was the adoption of the
same refinement operator. Indeed it turned out that these on-
tologies required operators which are able to involve roles rang-
ing on concrete domains (i.e. datatype properties, see Sect. 2)
and the related restrictions. In the next section we illustrate the
extensions operated per dataset.

It is also worthwhile to note that in the experiments with
AIFB we could not obtain results because of API exceptions
occurred for the reasoner employed for determining the in-
stance check-test results 17. We could not circumvent the prob-
lem even by trying to replace the instance-checking service pro-
vided by the DL reasoner with the fast instance checker avail-
able with DL-LEARNER [40]. As the fast instance checker pre-
computes and stores in memory the instances of named classes
and the property relationship occurring in the AIFB ontology, it
tended to rapidly exhaust the available memory.

5.3.3. Outcomes
The average results of the second experiment for the related

learning problems are reported in Tab. 10 and Tab. 11. More
detailed comments per dataset follow.

BCO, BIOPAX, HD, FINANCIAL. For these datasets, the per-
formance was quite good in terms of F-measure (see Tab. 10).

In the learning problems considered in the experiments, the
(macro-averaged) F-measure obtained through the adoption of
binary tests was higher than the one obtained through the pre-
vious release of TDT-based and TRF-based classifiers, where
ternary tests both on an intermediate concept and its comple-
ment were performed. In the case of ternary tests, the refine-
ment operator could not add candidates that allow to discern
well the examples, ending up with a decrease of the model
predictiveness that was likely due to employment of concepts
for which disjointness axioms were not available. In the case
of binary tests, the resulting models turned out to be simpler
than those obtained in the ternary setting due to the fact that
no replication of the training individuals was performed. Simi-
larly to the previous experiment, we also observed that the mod-
els were affected by the small-disjunct problem, but pruning
could mitigate this phenomenon by cutting some branches thus
leading to an improvement of the F-measure. In the case of
BIOPAX, no sensible difference was observed between the new
and the old release of the tree-based classifiers. In all experi-
ments with these datasets the performance was comparable to
the one obtained through ETDTs and ETRFs. However, ETDTs
and ETRFs were more time-consuming owing to the more com-
plex rule for pooling the decisions on the labels to be assigned.
Note that in this case no adaptation of the original refinement
operator was necessary.

CARCINOGENESIS. The results on this dataset show that this
turned out a difficult problem for TDTs (also using pruning pro-
cedures) compared to TRFs, PARCEL and CELOE (see Tab. 11).

In particular, the performance of TDTs was far from be-
ing comparable to the one of PARCEL and CELOE. But the
results slightly improved with an extension of the operator (ex-
plained below), with a very limited improvement when pruning
algorithms were employed (due to the scarce complexity of the
unpruned models). Conversely, TRFs exhibited a comparable

17The exception occurred during the experiments was due to an unsupported
operation of the reasoner employed. It was related to a bug that could not be
fixed without affecting the behavior of the reasoning system.
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Table 10: Results of the second experiment. TDT(old), TRFs (old), ETDT and ETRFs classification procedures are the ones presented in [12, 16, 42]

Algorithm F-measure
BCO BIOPAX HD FINANCIAL

TDT old 73.45± 13.45 98.33± 02.55 63.15± 07.35 76.14± 05.71
TRF 50% old | 20 trees 85.34± 04.35 98.84± 02.16 63.15± 07.35 90.34± 06.57

TDT
(no pruning) 91.00± 11.46 98.34± 02.54 80.43± 03.42 87.14± 08.29
REP 90.27± 07.48 98.11± 03.56 83.45± 14.71 90.45± 09.65
PEP 90.28± 11.46 98.23± 04.54 83.14± 13.69 89.62± 07.48

TRF 50% 20 trees 95.80± 02.35 98.84± 02.16 90.43± 03.47 96.61± 06.57
ETDT 91.00± 11.47 97.63± 04.54 75.85± 07.53 87.14± 08.29

ETRF 50% 20 trees 95.76± 02.76 98.84± 02.16 90.35± 03.36 96.60± 06.60
CELOE noise 10% 92.35± 12.61 100.0± 00.00 90.59± 26.00 71.52± 34.53

PARCEL 90.86± 13.45 100.0± 00.00 90.60± 26.01 80.43± 12.05

Table 11: Results of the second empirical evaluation on larger datasets

Algorithm F-measure
CARCINOGENESIS AIFB DBPEDIA 3.9 VICODI

TDT old 54.45± 03.25 50.34± 03.45 50.56± 02.47 71.43± 03.26
TRF 50% old | 20 trees 54.45± 03.25 50.35± 01.45 50.73± 02.36 71.43± 03.26

TDT
no pruning 54.45± 03.25 87.24± 01.45 87.21± 04.08 71.43± 03.26
REP 55.67± 02.30 87.22± 01.75 87.22± 04.09 76.45± 02.35
PEP 54.43± 03.25 87.24± 01.46 87.21± 04.08 76.57± 02.47

TRF 50% 20 trees 73.06± 04.25 87.23± 01.45 87.23± 04.08 98.21± 02.95
ETDT 54.45± 03.25 87.24± 01.45 87.21± 04.08 71.43± 03.26
ETRF 20 trees 54.45± 03.25 87.24± 01.45 87.21± 04.08 71.43± 03.26

CELOE noise 10% 73.66± 11.15 not available 87.22± 04.09 97.15± 07.45
PARCEL 73.67± 11.14 not available 87.22± 04.08 98.25± 03.15

performance due to a good diversification among the various in-
duced trees, which allowed to take into account various features
that were not considered by single trees. Similarly to PARCEL
and CELOE, ensemble models yielded a .73 F-measure.

Interestingly, TRFs (but also TDTs) turned out to be more
stable than the competitors (note the lower standard devia-
tion) likely because different models are averaged beforehand
to make the single prediction.

In the evaluation, we examined the (features in the) learned
concept descriptions. Generally, in the case of the experiments
with CARCINOGENESIS, the quality of the induced concepts
was quite good. Specifically, using CELOE, concept descrip-
tions such as Compound and hasAtom only not (Sulfur-77)
were learned. It is worthwhile to note that the refinement op-
erator employed by PARCEL and CELOE can exploit datatype
properties, unlike the refinement operator reported in Sect. 4.3
that involves only object properties. However, it was sufficient
to extend the refinement operator by adding a further case al-
lowing restrictions on boolean data properties (i.e. those se-
lecting individuals for which the filler is true). Rerunning the
experiments with this extension of the ref. operator we noticed
an improvement of the performance.

AIFB Portal Ontology. Regarding the experiments with AIFB,
we can notice the large number of individuals available, the
preponderance of roles and the expressiveness of the ontology.
Specifically, its terminology is really shallow and some con-
straints are not adequately represented. For instance, for most
roles the domain and range information is missing. Hence, we
tried to extend the refinement operator by allowing the intro-
duction of existential/universal restrictions over a randomly se-
lected set of nominals.

Adopting this extension of the refinement operator we ob-
served a significant improvement of the performance. This may

suggest that, for a shallow ontology like AIFB, a refinement op-
erator exploiting relationships w.r.t. individuals may find good
features for the classification models compared to others which
merely use the available TBox. However, the resulting models
may be very specific w.r.t. the training individuals. In terms of
number of nodes, the trees sizes were comparable to the sizes of
those built with the original refinement operator. With the em-
ployment of the pruning methods, we did not observe further
improvements of the F-measure (similarly to the experiments
with the original refinement operator). As regards the employ-
ment of TRFs, we observed that performance did not change by
increasing the forest size. Again, this was likely due to a weak
diversification among the various trees.

DBpedia 3.9. In the case of DBPEDIA 3.9, owing to the
amount of classes available in the ontology, the refinement op-
erator for our methods has been extended by introducing a seed
class as a starting point for the specialization process. In this
case the seed was set to Person.

Similarly to the previous cases, the performance for all the
methods employed in the experiments is good enough with an
F-measure around 87%. However, the resulting concept de-
scriptions induced with CELOE and PARCEL were generally
slightly shorter yet semantically equivalent to ones encoded by
TDTs, denoting a certain redundancy in the latter. The perfor-
mance of all methods was also quite stable due to the limited
variations in the output models.

In general in the experiments with TDTs, simple models
were output that could not be further reduced via pruning meth-
ods (differently from other experiments, such as those with
CARCINOGENESIS).

From a qualitative viewpoint, in the various replications, the
concept learned by the DL-LEARNER methods was not (Gov-
ernor) and not(Senator), which seems to be consistent with
the notion of congressman. The corresponding TDTs can be
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translated to a very similar yet slightly more redundant concept
description: Person and not (Governor) and not(Senator).

Vicodi. Finally, for the VICODI dataset we adopted the same
extension of the refinement operator as in the experiments with
DBPEDIA 3.9. We set the concept name Flavor as a seed.

In this case, a lower F-measure of the plain TDTs was ob-
served than the ones obtained via PARCEL and CELOE. How-
ever the performance could be improved via both REP and PEP
pruning, yielding similar F-measure values.

In the experiments with TRFs, we noticed a further im-
provement which led to a similar performance w.r.t. PARCEL
and CELOE. In this case, the training instances came from var-
ious regions of the space of the instances which were covered
by the refinement operator thanks to the frequent introduction
of new concept names. Therefore, the random feature selec-
tion produced a good diversification among trees which had a
positive effect on the ensemble models.

Quality and Efficiency of Tree Models. As regards the com-
plexity of the classification models, expressed in terms of num-
ber of nodes, the induced trees turned out to be quite complex
(in particular for group of smaller datasets).

In general, the models were simpler than those induced by
the previous versions of the algorithms for both TDTs and ET-
DTs. Similarly to the previous experiments, the new versions
of TDTs were simpler than ETDTs also due to the heuristic
exploited for growing the trees (which does not consider the
positive and negative examples).

Regarding the comparison w.r.t. the previous release of
TDT learning algorithms, we noticed that adopting a binary set-
ting allowed to avoid the training instances replication, which
affected the size (and therefore also the efficiency) of the mod-
els in the previous experiments. This basically implied that the
purity condition was frequently satisfied earlier than with the
previous version of TDTs [12, 13].

For BCO and FINANCIAL we observed that the REP prun-
ing was quite effective in terms of trees size. In particular for
BCO, the algorithms tended to overprune the trees resulting in
a (quite limited) decrease of the F-measure.

In the other cases, the application of pruning strategy was
less effective to simplify the trees. Despite this, an improve-
ment in terms of F-measure was observed. Indeed, as reported
in Tab. 14, the average number of nodes was much lower for
CARCINOGENESIS and DBPEDIA 3.9 whereas the complexity
of the trees was much higher for the other datasets/problems.
This may explain why the models obtained via pruning meth-
ods did not improve considerably the performance. On the other
hand the employment of the pruning methods did not affect the
performance for AIFB. This was due to the installed intermedi-
ate concept descriptions that did not produce more error-prone
models than the corresponding pruned versions.

For the VICODI dataset we observed that the pruning meth-
ods had some impact on the size of the models, although this
was rather limited. Both the PEP and REP procedures allowed
for reducing the complexity of the models, but there is no sig-
nificant difference between the proposed methods.

These results, together with those of the previous experi-
ment, suggest that other factors should be considered to choose
a pruning algorithm over another, such as the number and dis-
tribution of the training instances and the computational costs.

Concerning the efficiency of the methods, TDT-based and
TRF-based classifiers are more time-consuming than PARCEL
and CELOE. Even though the current prototypical implementa-
tion demands an optimization, efficiency seems to be acceptable
for all datasets but AIFB. This was due to the constraints that
are not adequately represented in this dataset, so that a lot of
time is required to the underlying reasoning services, e.g. for
deciding if the membership of an individual is negative.

5.4. Comparing the effectiveness of the extended refinement op-
erators

The experiments with large ontologies required the exten-
sion of the refinement operator in order to exploit different in-
formation in the knowledge base. These extensions have been
tested also in the experiments with the small ontologies for
completeness. Tab. 15-17 illustrate the outcomes of this evalu-
ation.

As regards the extension adopted for exploiting data prop-
erties (see Tab. 15), we noted for BCO and BIOPAX that the
outcomes were exactly the same obtained employing the origi-
nal refinement operator, due to the lack of boolean properties to
be considered for generating specializations. In the experiments
with HD and FINANCIAL, a further improvement in terms ofF -
measure was observed for all the tree-based models. This was
due to the introduction of useful tests that allowed for induc-
ing less error-prone models than those produced adopting the
former version of the refinement operator. However, the perfor-
mance did not considerably change likely because of the lim-
ited number of informative boolean properties. The F -measure
increased by about 2%.

In the experiments that aimed at assessing the effective-
ness the refinement operator extended for supporting the us-
age of nominals (see Tab. 16), we noticed that the performance
of the resulting models was worse than the one exhibited by
the models induced via all the learning algorithms considered
in the evaluation (Tab.10). In general, these results were due
to concept-oriented nature of the small ontologies. While the
AIFB ontology is characterized by plenty of role assertions and
a shallow schema, assertional knowledge about roles contained
in ontologies like BCO,HD, FINANCIAL is usually sparse: for
various roles they contain only few assertions with different
fillers. The extended refinement operator could not cope with
this sparseness. As a result, the algorithms tended to introduce
non-discriminant tests in the models causing them to be affected
by the small disjunct problem more easily than the cases in
which the original version of the operator was employed. In
this perspective, the pruning procedures improved the overall
performance simplifying the trees through the removal of the
tests involving nominals.

Finally, Tab. 17 illustrates the outcomes of the experiments
with the new refinement operator extended by introducing seed-
concepts. The outcomes show a further improvement of the F -
measure compared to the results obtained adopting the original
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Table 12: Execution times for TDTs / ETDTs w.r.t. the learning problems considered in the second experiment
Dataset TDT TDT+REP TDT+PEP ETDT TDT (old)

BCO training 8.5s 17.6s 17.6s 75s 15s
classification 6.5s 6.5s 6.5s 20.4s 3.4s

BIOPAX training 34.6s 60.6s 60.6s 85.6s 36.7s
classification 7.5s 3.6s 3.6s 35.6s 8.4s

HD training 73s 104s 104s 186.9s 87.2s
classification 10.60s 5.30s 5.30 20.5s 8.54s

FINANCIAL training 35s 75s 75s 70s 35s
classification 15s 25s 25s 25s 13s

CARCINOGENESIS training 357s 467.45s 467.8s 645s 489.40s
classification 8.7s 8.7s 8.7s 16.6s 7.5s

AIFB training 183.63s 215.70s 216.69s 457.70s 563.86s
classification 34.7s 34.7s 34.8s 76.6s 43.6s

DBPEDIA 3.9 training 34.7s 47.3s 47.4s 75.7s 75.7s
classification 4.3s 4.3s 4.2s 7.5s 6.43s

VICODI training 43.76s 50.70s 50.70s 89.45s 50.76s
classification 12.7s 12.8s 12.8s 23.67s 9.7s

Table 13: Execution times for the others models involved in the second experiment
Dataset TRF ETRF TRF (old) Celoe Parcel

BCO training time 47s 65s 75s 14.6s 16.8s
classification 35.4s 47.3s 43.7s 5.6s 5.6s

BIOPAX training time 34.7s 95s 95s 78.5s 60.3s
testing time 95.5s 125s 95.6s 35.6s 25.6s

HD training time 75.8s 86.8s 87.8s 34.7s 93.4s
testing time 12.15s 25.43s 25.43s 78.50s 78.70s

FINANCIAL training time 67.45s 154.3s 123.4s 35.7s 43.7s
testing time 65.6s 65.6s 45.3s 25s 13s

CARCINOGENESIS training time 438.75s 657.87s 539.43s 397.87s 398.43s
testing time 67.43s 75.85s 56.17s 18.36s 18.43s

AIFB training time 8422s 567.32s 568.43s not available not available
testing time 56s 76.7s 24.5s not available not available

DBPEDIA 3.9 training time 107.43s 107.43s 145s 35.35s 35.43s
testing time 15.7s 43.8s 43.9 4.3s 4.3s

VICODI training time 117.28s 165.85s 125.67s 25.67s 26.73
testing time 35.82s 45.7s 40.81s 7.6s 7.8s

refinement operator. This was due to the fact that, thanks to
the introduction of a concept as a seed, the tree-induction algo-
rithms could discard a priori useless tests to be installed into
inner nodes as they could lead to branches supported by no in-
dividual.

6. Related Works

Various machine learning methods have been proposed in
the literature for knowledge discovery tasks on Semantic Web
knowledge bases – see [5] for a survey – and, more specifically,
for concept learning, clustering and assertion prediction [44].

We focused on methods inspired by Inductive Logic Pro-
gramming. In particular, we targeted extensions of the stan-
dard decision trees towards multi-relational representations; the
First-Order Logic Trees [14], proposed for clausal spaces have
been extended to DL languages, i.e. Terminological Decision
Trees [12, 13]. Therefore, in this section, we consider as strictly
close the classification models based on logic features. A num-
ber of related methods deriving from ILP have been proposed.
YINYANG [7] and its successor DL-FOIL [8] are prototypical
algorithms that adopt a separate-and-conquer learning strategy,
unlike the divide-and-conquer methods for inducing TDTs.

Further related methods are CELOE performs an accuracy-
driven search through the concept space [9] by means of a com-
plex refinement operator which exploits class, role and datatype
property hierarchies, and PARCEL, a learning algorithm that

combines top-down and bottom-up refinements in the search
space [10]. Top-down search is required in order to solve sub-
problems related to the specific regions of the instance space,
while partial solutions are then combined in a bottom-up fash-
ion. These methods are biased towards shorter concept descrip-
tions. These characteristics are related to the pruning proce-
dures employed with tree-based models.

Both algorithms are currently implemented in DL-
LEARNER [40], a framework for concept learning in DLs that
takes into account scalability issues and adopts a specific bias,
such as the Partial Closed World Assumption, for an efficient
computation of the underlying heuristics based on approxi-
mate inferences: in a two-step approach, basic inferences are
computed by a reasoner and stored so that, later, the instance
checker can exploit the stored inferences for determining the
concept coverage over the instances.

Learning TDTs is also strictly related to the bisimulation
approach [45, 46]. It exploits the notion of standard model
which is a finite interpretation of a knowledge base. Besides
of the Unique Names Assumption, differently from the pre-
sented TDT learning method, also the CWA is made. Another
difference regards the employment of a set of pre-computed
selectors, i.e. tests to partition the set of individuals. The bi-
simulation method has been used also in the perspective of the
roughification of the target concepts [47] to address the prob-
lem of defining imprecise concepts (uncertainty as vagueness).
Throughout these works, a modified version of DL-FOIL has
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Table 14: Average size (number of nodes) of TDTs induced for the learning problems considered in the experiments, with and without the application of pruning
Learning Problem TDT TDT+REP TDT+PEP ETDT TDT (old)
BCO 16.50 07.47 07.37 25.70 25.70
BIOPAX 07.00 07.00 07.00 07.00 16.50
HD 07.60 04.50 07.60 14.30 14.30
FINANCIAL 25.40 03.84 20.40 40.20 40.20
CARCINOGENESIS 07.00 04.30 07.00 07.00 07.00
AIFB 51.60 51.60 51.60 51.60 51.60
DBPEDIA 3.9 07.00 07.00 07.00 07.00 07.00
VICODI 54.62 49.78 49.76 54.62 54.62

Table 15: Results of the second experiment. TDT(old), TRFs (old), ETDT and ETRFs classification procedures with the extended refinement operator–use of
datatype properties

Algorithm F-measure
BCO BIOPAX HD FINANCIAL

TDT old 73.45± 13.45 not applicable 67.25± 05.46 77.34± 05.64
TRF 50% old | 20 trees 85.34± 04.35 98.84± 02.16 67.15± 05.37 93.43± 06.43

TDT
(no pruning) 91.00± 11.46 98.34± 02.54 82.45± 08.43 88.45± 08.27
REP 90.27± 07.48 98.11± 03.56 84.36± 09.84 91.23± 09.63
PEP 90.28± 11.46 98.23± 04.54 84.35± 09.86 90.43± 07.34

TRF 50% 20 trees 95.80± 02.35 98.84± 02.16 92.53± 02.56 98.43± 05.43
ETDT 91.00± 11.47 97.63± 04.54 76.97± 07.42 88.45± 08.32

ETRF 50% 20 trees 95.76± 02.76 98.84± 02.16 92.43± 03.42 98.42± 06.47

been exploited and the fuzzification of the properties ranging in
the numerical domain [27, 28, 29].

Also TDT models have been extended for tackling aspects
of uncertainty related to the incompleteness of the knowledge in
the SW. The extended TDT models that integrate aspects of the
Dempster-Shafer Theory (DST) have been compared against
other learning methods in DL-LEARNER [21, 42]. Unlike the
TDT model proposed in this paper, the new model employs a
different heuristic and is characterized by a different representa-
tion. In addition, the model can provide measures of uncertainty
that can exploited by other algorithms, as shown in [22].

Like various other types of classification models, also those
based on decision trees are known to suffer from the problem
of overfitting the training examples. The related literature de-
scribes various solutions for the problem. The underlying idea
of such approaches is to restructure a tree in order to improve
the ability of predicting the correct class for unseen instances:
most of them are based on a simplification of the tree by using
pruning methods. As described in Section 4, these algorithms
may be generally ascribed to either the pre-pruning or the post-
pruning class of methods. Most of the research has focused on
the latter with various algorithms proposed [48, 17].

Empirically it was shown how the most common methods
allow to improve the accuracy although the performance is of-
ten comparable. These methods mainly differ in terms of num-
ber of nodes. Indeed, REP pruning tends to overprune decision
trees. An early detecting outliers that may determine overfitting
models has also been tackled in the case of DL representation
through suitable distance-based clustering methods [49].

The class-imbalance problem is quite well-known in ma-
chine learning [19]but it has been often disregarded in the con-
text of learning for the Semantic Web [50] and recently ad-
dressed in [16]. Various techniques have been devised in ma-
chine learning to deal with the skewness in the data. The most
common ones are based on sampling methods, as described
in Sect. 3. These techniques span from the random under-
sampling and oversampling approach to more sophisticated ap-

proaches as SMOTE [51, 19].
Further methods basically represent modified versions of

well-known algorithms for making the resulting models less
sensitive w.r.t. the problem. Finally, other approaches combine
ensemble learning and sampling strategies. Among them, one
may mention the Balanced Random Forests [35] that extend the
original ones [32] by combining sampling strategy and ensem-
ble learning. Specifically, this ensemble model is based on a
randomized version of the decision trees.

An upgrade of this model to integrate multi-relational logic
representations was proposed in [38]. Our TRFs have been
firstly introduced in the context of SW knowledge bases in
order to improve approaches to approximate query answer-
ing [16]. Recently, a further extension of the TRFs has been
proposed [22] that integrates evidence combination operators,
borrowed from the mentioned DST approach, in the majority
vote classification procedure of the TRFs.

However, only the class-membership prediction task has
been considered so far. In this perspective, this work repre-
sents an extension of both [16] and [12], tackling a more gen-
eral problem of assertion prediction. In order to do this, we
followed an approach that is similar to [6], where an instance-
based learning method was exploited instead.

As regards the task of datatype property prediction, in this
paper we focused on properties with a discrete range. Con-
versely, the related problem of predicting numerical values of a
function was tackled in [31] where a method based on regres-
sion tree models was proposed, namely Terminological Regres-
sion Trees, whose leaves contain regression functions (based
on the routed training instances) and the intermediate nodes
are conjunctive DL concept descriptions generated through the
same refinement operators employed for TDTs and TRFs.

In the discussion of the experiments, we mentioned how
important the diversification of weak learners is to improve the
predictiveness of ensemble models. A recent work [52] focuses
exactly on this point: classifiers are combined for maximizing
accuracy and diversity through the kernelization of the output
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Table 16: Results of the second experiment. TDT(old), TRFs (old), ETDT and ETRFs classification procedures with the extended refinement operator (using
nominals)

Algorithm F-measure
BCO BIOPAX HD FINANCIAL

TDT old 70.35± 12.30 95.46± 02.45 60.08± 07.47 74.15± 05.54
TRF 50% old | 20 trees 84.15± 04.65 95.48± 02.45 69.15± 07.35 89.76± 06.43

TDT
(no pruning) 89.15± 10.23 94.15± 02.15 78.87± 03.40 85.32± 04.26
REP 84.26± 07.76 96.10± 04.78 81.65± 13.04 88.23± 09.74
PEP 87.95± 08.43 96.15± 04.23 81.98± 11.14 87.43± 08.23

TRF 50% 20 trees 91.54± 03.34 94.54± 02.87 89.45± 03.98 95.54± 03.43
ETDT 89.15± 10.23 94.15± 02.15 78.87± 03.40 85.32± 04.26

ETRF 50% 20 trees 84.15± 04.65 95.48± 02.45 69.15± 07.35 89.76± 06.43

Table 17: Results of the second experiment. TDT(old), TRFs (old), ETDT and ETRFs classification with the extended refinement operator (using seeds)

Algorithm F-measure
BCO BIOPAX HD FINANCIAL

TDT old 76.34± 12.15 99.46± 02.55 68.25± 06.16 78.24± 06.13
TRF 50% old | 20 trees 87.24± 03.47 99.57± 03.21 67.25± 07.35 92.36± 04.24

TDT
(no pruning) 92.42± 10.23 99.46± 02.78 83.21± 02.89 85.14± 08.29
REP 93.75± 07.98 98.87± 03.56 86.45± 14.71 94.45± 08.23
PEP 93.46± 09.47 98.89± 03.54 88.37± 11.70 92.62± 03.46

TRF 50% 20 trees 96.02± 01.23 99.15± 03.24 92.23± 02.14 97.10± 05.43
ETDT 92.43± 10.21 99.47± 02.79 83.20± 02.90 85.17± 08.32

ETRF 50% 20 trees 96.03± 01.22 99.14± 03.25 92.22± 02.15 97.11± 05.42

of the involved classifiers. Another related aspect (not consid-
ered in this work) concerns the optimization of an ensemble
classifier through a pruning criterion that aims at maximizing
the diversity of weak learners [53].

7. Conclusion and Extensions

We have provided comprehensive overview of our learning
framework tackling the inductive classification problem of in-
dividual resources in the context of DL knowledge bases. We
targeted predictive models which are ultimately based on logic
features, as a trade-off between accuracy of the predicted mem-
bership and comprehensibility of the resulting classifier. The
solution is based on the notion of terminological decision tree
which combines the divide-and-conquer learning strategy with
the adoption of logic features for the node tests.

We summarized various novel technical extensions related
to such a classification model, both regarding its induction and
its usage for classification, that were proposed to address possi-
ble issues with the datasets. In particular, the refinement oper-
ator has been extended as to perform a random traversal of the
space of refinements. Also, the original classification procedure
has been extended to follow multiple paths down the TDTs and
the decision is taken on account of all reached leaves. With this
procedure the classifier is more likely to assign a definite mem-
bership. Besides, we have shown that these models could be
also exploited to determine the filler of given roles.

We have addressed also the possible issues with the training
data distribution (class-imbalance), which affects the induction
of predictive classification models, resorting to a combination
of sampling methods with ensemble learning techniques. As a
result, the terminological random forest model has been intro-
duced. We also devised a strategy for simplifying terminologi-
cal decision trees and, hence, for improving the predictiveness
of the model. Our solution relies on a modification of pruning
algorithms adapted to deal with the underlying representations.

An extensive empirical evaluation of the latest release of the
implementation of the presented algorithms has been performed
on datasets extracted from publicly available ontologies. We
considered datasets for both artificial and well-defined learn-
ing problems with ontologies of varying complexity in terms of
terminology and number of examples. The experiments were
useful to elicit strong and weak points of the various tree-based
models. A comparison with related concept learning algorithms
from the DL-Learner suite allows also for a qualitative evalua-
tion of the logic features (concept descriptions) discovered by
the algorithms, which suggests the direction for further exten-
sions of the models and the related algorithms.

The experiments have also shown that exploiting an ensem-
ble learning model like the terminological random forest allows
for better results compared to a single model approach when a
sufficient diversification of training sets is allowed by a large
number of instances (and an expressive terminology).

In specific cases the employment of pruning algorithms has
proven its effectiveness to reduce the overfitting, especially for
ontologies with a large number of primitive concepts. Experi-
ments have shown that a REP and PEP pruning can be used for
simplifying terminological decision tree models. A drawback
of REP concerns the fact that it requires a separate pruning set
for estimating the error rate. However, in the context of SW, this
should not be a problem as the Linked Data Cloud18 may rep-
resent an accessible source of training instances to be sampled
for learning purposes. Another lesson learned is that using a re-
finement operator regardless of the specific ontology may fail to
capture important features for discerning the membership of the
individual resources. Conversely, the operator should be tuned
to better address the particular learning problem to be solved,
improving the performance of the resulting model.

In the future, we plan to extend the methods along various
directions. One direction regards the choice of refinement op-

18http://lod-cloud.net
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erators that may be applied in order to generate more discrimi-
native intermediate test.

Further ensemble techniques and novel rules for combin-
ing the answers of the weak learners could be also employed.
We plan also to investigate the effectiveness of strategies aim-
ing at optimizing the ensemble to improve the diversification of
the classifiers, which is an important characteristic of ensemble
learning methods [53, 52]. This also suggests additional inves-
tigations for the experimental evaluation of the TRFs. Specif-
ically, further comparisons could consider: the employment of
boosting methods, the employment of oversampling strategy
for generating the bootstrap samples and different heuristics for
choosing the candidate refinements. The method could be par-
allelized in order to be deployed as a non-standard reasoning
service through an engine for large-scale data processing, e.g.
Apache Spark19.

Finally, the idea of using TDTs for determining role fillers,
which may be also related to link discovery and regression
tasks, deserves further investigations.
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