
Automating Ontology Engineering Support Activities with OnToology

Ahmad Alobaida, Daniel Garijob, Maŕıa Poveda-Villalóna, Idafen Santana-Péreza, Alba
Fernández-Izquierdoa, Oscar Corchoa

aOntology Engineering Group, Universidad Politécnica de Madrid,
Campus de Montengancedo s/n, 28660 Boadilla del Monte, Spain
bInformation Sciences Institute, University of Southern California,

Marina del Rey, Los Angeles, 90292 California, USA

Abstract

Due to the increasing uptake of semantic technologies, ontologies are now part of a good number of informa-
tion systems. As a result, software development teams that have to combine ontology engineering activities
with software development practices are facing several challenges, since these two areas have evolved, in gen-
eral, separately. In this paper we present OnToology, an approach to manage ontology engineering support
activities (i.e., documentation, evaluation, releasing and versioning). OnToology is a web-based application
that builds on top of Git-based environments and integrates existing semantic web technologies. We have
validated OnToology against a set of representative requirements for ontology development support activities
in distributed environments, and report on a survey of the system to assess its usefulness and usability.

Keywords: ontology engineering, ontology evaluation, ontology documentation, ontology publication

1. Introduction

Since the late 1990s, several ontology engineering
methodologies have been proposed to transform the
art of developing ontologies into an engineering ac-
tivity. Methodologies such as METHONTOLOGY
[1], On-To-Knowledge [2] and the NeOn Methodol-
ogy [3] define clear guidelines, processes, activities
and life cycles to guide ontology development.

Now that ontologies are being increasingly
adopted in information systems, it is clear that on-
tology development tasks may also benefit from the
application of common software engineering prac-
tices. Most of the ontology development support
activities, such as documentation, visualization and
evaluation, are usually performed individually, exe-
cuting heterogeneous tools that make these activi-
ties cumbersome and time consuming. In addition,
maintaining and keeping track of the generated re-

Email addresses: aalobaid@fi.upm.es (Ahmad
Alobaid), dgarijo@isi.edu (Daniel Garijo),
mpoveda@fi.upm.es (Maŕıa Poveda-Villalón),
isantana@fi.upm.es (Idafen Santana-Pérez),
albafernandez@fi.upm.es (Alba Fernández-Izquierdo),
ocorcho@fi.upm.es (Oscar Corcho)

sources for each version of an ontology has become
a challenge for ontology developers.

The ontology engineering community has already
shown progress towards adapting ontology develop-
ment to agile software development methodologies
[4, 5, 6]; as well as supporting collaborative ontol-
ogy development throughout the use of common-
practice software engineering tools [7, 8]. In fact,
it is now common among ontology developers to
use Git-based environments [9] such as GitHub1

(usual in software development) for keeping track
of ontology revisions. However, existing approaches
present either partial solutions; require specialized
skills that complicate their adoption (e.g., complex
installation setup); or produce their outcome using
idiosyncratic formats that are difficult to integrate
into existing ontology development workflows.

In this paper we present OnToology, our ap-
proach towards addressing these issues. The main
contributions of OnToology are: (1) automation
of coarse-grained support activities involved in on-
tology development, including documentation, ver-
sioning, evaluation and publication of ontologies

1http://github.com/

Preprint submitted to Journal of Web Semantics October 3, 2018

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3260516

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

jenard
Rectangle



that are maintained and versioned in a Git-based
environment; (2) a workflow for continuous integra-
tion of support activities when new changes in an
ontology are registered; and (3) integration of the
workflow with a collaborative environment. On-
Toology can support individuals and teams of de-
velopers working on an ontology. While distributed
collaboration to change an ontology is naturally
supported by Git, the required support activities
have to be integrated into Git’s lifecycle.

OnToology is a web-based system that integrates
a set of existing tools for documentation, evaluation
and publishing. By the time of writing this paper,
OnToology has been used to produce the documen-
tation, visualizations and evaluation of more than
100 projects and for the online publication of over
50 ontologies.

The paper is structured as follows. In section 2,
we describe a typical scenario we encounter dur-
ing ontology development and the collection of re-
quirements induced from it. Section 3 describes
the structure of OnToology, user interaction, and
the details of the generated resources. Section 4
presents the evaluation of our approach. A review
of the related work is provided in section 5. Section
6 concludes and presents future lines of work.

2. Motivation Scenario

In this section we illustrate a typical scenario that
motivated the development of OnToology, based on
the authors’ years of experience developing ontolo-
gies and common use cases reported in state of the
art ontology development methodologies [3].

Consider a team of ontology developers that are
generating an ontology network in a particular do-
main. In order to build each ontology, the develop-
ers need to interact with domain experts that are
not necessarily familiar with semantic technologies
or ontologies. Therefore, such domain experts need
visualizations and a human readable documentation
to understand the taxonomy and relations included
in a vocabulary, and assess whether it addresses
their requirements. Once they conclude their as-
sessment, they provide feedback to the ontology de-
velopment team, which incorporates it in a new ver-
sion/release of the ontology and starts a new docu-
mentation process.

Ontology developers also need to evaluate the
quality of the generated ontologies during their de-
velopment process, so as to identify potential errors
before making them public as a new release. Due

to the parallel development of the ontology network
by different ontology developers, the team needs to
make any quality report public to all its members,
so they are aware of any potential issue with any
published ontology.

When a version of the ontology network is ready
to be released, the ontology development team
needs to publish the ontologies online following best
practices (i.e., content negotiation of the ontol-
ogy in different standard formats and permanent
URIs [10]). After the ontology network is pub-
lished, other researchers may extend any of its on-
tologies. Thus, new releases of ontologies in the
network would need to explain new changes in their
documentation so any third party can assess their
impact.

Once the target ontologies are built and pub-
lished, data producers may ellaborate a JSON-LD
context2 in order to publish data following their
specification. These contexts need to be updated
on every iteration [11] to properly reflect the latest
changes of the ontology network.

2.1. System Requirements

Based on the above scenario, we have collected
the following set of general requirements to address
it, which are later tackled by the features provided
by OnToology in Section 4:

R1. Ontology Documentation: Ontology
adopters often require human-readable documen-
tation of developed ontologies with a definition of
their classes, properties, and individuals; including
figures illustrating its main structure.

R2. Automatic change-based resource genera-
tion: Automatically produced files (e.g., HTML
documentation, figures of ontology visualizations,
quality reports) need to be updated every time a
new change in the ontology is registered.

R3. Coexistence with non-ontological resources:
Automatically generated resources may reside
within a given code repository without affecting the
rest of the files in the project (e.g. source code).

R4. Compatibility with a collaborative workflow :
Users often work with each other to develop on-
tologies, discussing issues and recording the reached
consensus. Any tool or instrument designed to help
them should be integrated within their workflow in
a non-intrusive manner. For an adequate collabo-
ration between multiple users, it is also required to

2https://www.w3.org/TR/json-ld/

2

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3260516

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



control who is able to view and/or contribute to the
project.

R5. Versioning : It is crucial to record changes
between ontology versions and track the evolution
of the ontology with the option to revert to an older
version is required.

R6. Publication: When released, an ontology
version must follow best practices for ontology pub-
lication3 with appropriate content negotiation (i.e.,
HTML for humans, RDF for software agents) and
updating its respective JSON-LD context if re-
quired. Publication of the ontology under a perma-
nent URI is also required in some cases to ensure
its long-term accessibility.

R7. Evaluation: Before publishing an ontology,
it is crucial to detect potential modeling errors [3]
and be able to share them with the rest of the team.

3. System Description

In order to address the set of requirements in-
troduced in Section 2, we have designed OnTool-
ogy,4 an open source web application that moni-
tors changes in ontologies stored in a Git reposi-
tory and triggers a series of actions for supporting
the ontology development process. These actions
include: (1) generation of customized documenta-
tion, diagrams and evaluations for each of the on-
tologies contained in a repository, according to a
configuration set for each ontology; (2) generation
of a landing page containing basic descriptions of
the ontologies included in the repository as well as
a dedicated web page per ontology with extended
descriptions and metadata; and (3) publication of
ontologies under a w3id permanent URI.5

OnToology is based on existing technologies and
best practices from both the software and onto-
logical communities. We have integrated it with
GitHub, one of the most popular hosting platforms
for version control and collaborative development.
GitHub serves as the main online infrastructure to
maintain ontology versions as they are being devel-
oped and publish their associated resources. In ad-
dition, GitHub provides the ability to open issues
and maintain discussions over a certain modeling
decision or use case.

3https://www.w3.org/TR/swbp-vocab-pub/
4http://ontoology.linkeddata.es/
5http://w3id.org/

Integrated tools

Repos + users info
Persistence 
Layer

Logic Layer

GitHub

OOPS!
OnToology Server

Change monitor

Integrator

Web User Interface

Presentation
Layer

Widoco

AR2DTool
Orchestration service

Repository

Documentation
Diagrams
Evaluation reports
Publication bundle
Landing page (preview)
JSON-LD context

w3id.orgvocabLite

Figure 1: OnToology Architecture

In this section we introduce the main features of
OnToology, the user interaction with the system,
and the main results that are produced.

3.1. System Architecture

As depicted in Figure 1, OnToology is composed
of three main layers: the presentation layer, the
logic layer, and the persistence layer.

The Presentation Layer exposes a web-based
GUI, which allows for registering GitHub reposi-
tories. Given a repository, each ontology may be
individually configured (enabling/disabling the au-
tomatic generation of resources).

The Logic Layer serves as the glue for integrat-
ing the different tools and services that compose
OnToology. We can distinguish three main mod-
ules in this layer: the Change Monitor, Orchestra-
tion service, and the Integrator.

The Change monitor acts as a monitoring service
for keeping track of changes in a GitHub repository.
The Orchestration service controls the main actions
of the system, and decides when to invoke the dif-
ferent tools integrated in the OnToology suite. Fi-
nally, the Integrator module is responsible for the
execution of processes, implemented within On-
Toology or third party applications. In this sense,
the Integrator module handles the following func-
tionalities:

• Documentation, including several resources
generated by different tools. First, it gen-
erates an ontology HTML documentation,

3

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3260516

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



supported by the integration of WIDOCO
[12], a standalone application for generating
HTML documentation for an individual ontol-
ogy. WIDOCO extracts metadata properties
from ontologies, generates several serializations
for content negotiation and creates a prove-
nance summary that records the changes from
earlier versions. Second, ontology diagrams are
created by AR2DTool [13], a library for gener-
ating diagrams based on RDF-encoded infor-
mation. AR2DTool is meant for drawing dia-
grams of ontologies, generating not only com-
piled figures (i.e. PNG files) but also their
source code (i.e. GraphML6 files) for users to
further edit them. Third, OnToology generates
a repository pre-visualization page, which is
supported by the integration of VocabLite [14],
an application designed to create of overview
pages for a set of ontologies (and their meta-
data) in a repository.

• Evaluation, by means of OOPS! [15],7 a web
application for ontology diagnosis that auto-
matically detects 33 types of pitfalls in OWL
ontologies, including semantic and structural
checks as well as best practices verification.
For each identified pitfall in the ontology,
OOPS! provides its title, description, list of
ontology elements affected and its importance
level (critical, important or minor). It is worth
noting that OOPS! does not perform reason-
ing on the ontology, as it is a time-consuming
task and costly in terms of resources. However,
OOPS! detects pitfalls that may lead to reason-
ing issues. In case of need, users may execute
reasoners over their ontologies within their on-
tology edition environment such as Protégé be-
fore registering them in OnToology.

• Publication, providing different features fol-
lowing ontology publication best practices.
OnToology allows users to reserve a name
for their ontology with a permanent URI fol-
lowing the scheme https://w3id.org/def/

<user-chosen-name>. OnToology uses the
w3id services to point to the location of the
published ontology and its resources with con-
tent negotiation. Alternatively, OnToology al-
lows downloading a publication-ready bundle

6http://graphml.graphdrawing.org/
7http://oops.linkeddata.es/

containing all the resources needed to publish
an ontology on a custom server.

• JSON-LD context, generated using
OWL2JSONLD [16], a tool that maps
the classes and relation from the ontology to
JSON keys.

The Persistence Layer maintains an internal
database for storing information about users and
repositories, as well as the current status of the
repositories (i.e., the progress while processing on-
tologies in a given repository). This allows users to
be aware of the pending actions to be performed by
OnToology (e.g., generating the documentation or
diagrams, validating the ontology, etc.).

3.2. User interaction with OnToology

OnToology is accessible through a web interface,
which requires no installation and allows configur-
ing which actions are triggered for each ontology.

Figure 2 depicts an overview of the user interac-
tion workflow with OnToology. The process starts
after a user has created a GitHub repository, in
which at least one ontology file is stored. Once the
user adds the repository to OnToology, the system
will ask for permission to add the “OnToologyUser”
as a collaborator to the repository, and link a web-
hook for enabling notifications to OnToology when
any changes are made to the repository. This set
up phase is represented by the second step in the
workflow in Figure 2.

After this, users can edit their ontology and once
the changes are pushed to the GitHub repository,
OnToology is notified through the corresponding
webhook. A fork of the tracked repository will
be created by OnToology and used as the working
repository. The system then generates the appro-
priate files for all monitored ontologies, and pushes
the changes to the forked repository. Finally, On-
Toology creates a pull request from the forked
repository to the user’s one in GitHub, including
the new version of all the generated files. The user
can then review the pull request and decide whether
to accept it and merge it to the GitHub repository.

In most cases users need to customize some parts
of the HTML documentation generated by OnTool-
ogy, such as the ontology release date or additional
information about the changes made. Once the re-
sources have been produced and customized, users
may want to publish the ontology online. Two dif-
ferent scenarios may occur:

4

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3260516

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



(OnToology generates the 
selected resources and 
makes a pull request)

Legend

Create GitHub repository 
with an ontology

Register GitHub 
repository in OnToology

Edit local 
ontology

Commit changes to 
local repository

Push changes to 
GitHub repository

Accept pull 
request

Edit HTML

Push changes to 
GitHub repository

Publish ontology 
under permanent 

URL through 
OnToology

Download 
publication bundle

Is the ontology 
published?

Is the ontology 
published using 

OnToology?

yes

no yes

no

Do you want to 
publish it under a 

permanent 
URL?

yes no

Do 
you need to 

customize the 
HTML?

yes

no

Do you want to 
merge Ontoology 

output? yesno

Close pull request 
(optional)

User action
Decision

flow line

Generate 
resources with 
OnToology?

no

yes

User action interacting 
with OnToology

flow line with OnToology interaction

repository owner

any collaborator

Does 
some-thing 
need to be 
updated?

the documentation 
(but not the ontology)

the ontology
nothing

Deploy bundle in 
user’s server

Republish ontology 
under permanent 

URL through 
OnToology

Figure 2: User workflow in OnToology

• It is the first time the ontology is being pub-
lished. The user can choose between: (i) pub-
lishing the ontology under a permanent URI
using OnToology to handle the publication,
or (ii) downloading a bundle containing the

HTML documentation; ontology serializations;
and an .htaccess file to handle the content ne-
gotiation in a server controlled by the user.

• If the ontology is already published, the user
can choose between: (i) re-publishing the on-
tology under the same permanent URI, or (ii)
downloading a new bundle from OnToology
web user interface for publication.

3.3. Generated resources

All resources generated by OnToology will be lo-
cated in the tracked GitHub repository under a
new folder called “OnToology”, which includes a
folder per ontology in the repository. Each ontology
folder contains: (1) a documentation folder with the
HTML documents divided by sections to facilitate
their editing, (2) an evaluation folder with HTML-
based report describing different pitfalls found in
the ontology, (3) a diagrams folder containing de-
pictions of the ontology with their source files for
further customization. A detailed example of the
resources generated by OnToology for a given vo-
cabulary can be found in Annex A.

OnToology is available as a web service, and its
code has been released online [17].

4. Evaluation

In this section we describe the validation of the
system based on the coverage of the requirements
presented in Section 2. Next, we introduce and
discuss the results of a user survey we conducted,
studying the usefulness, ease of use, ease of learn-
ing and satisfaction with the system. Finally,
we present the community uptake and the adop-
tion of OnToology in various ontology development
projects.

4.1. Requirement Validation

The requirements for supporting ontology eval-
uation are covered by the integration of OOPS!,
which produces a report including basic structural,
semantic and best practices checks for an ontol-
ogy (R7). The documentation of the ontology is
produced by the combination of WIDOCO, Voca-
bLite and AR2DTool (R1). The generation of these
resources (i.e. documentation and evaluation) is
triggered automatically after each ontology change
(R2). With OnToology, users can contribute col-
laboratively to a registered repository (if they have

5

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3260516

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



the appropriate permission) and resources will be
generated automatically as users push new changes
to the repository (R4). The resources generated
by OnToology will not interfere with other exist-
ing resources (e.g. source codes, readme files, etc.)
as they are stored in a separate folder called “On-
Toology” in the top level of the repository (R3).
OnToology supports the publication process by ex-
porting a single bundle that a user can retrieve as
a snapshot for publishing ontologies, and if desired,
OnToology enables the content negotiation of an
ontology release, and publishes the files online with
persistent URIs (R6).

OnToology benefits from a Git-based existing in-
frastructure that is widely used among the soft-
ware development community (GitHub). This in-
frastructure supports several of the requirements
presented in Section 2, such as having distinct roles
for collaboration, and providing access to discussion
channels by using discussion boards where users can
reply and share their thoughts about a given design
decision (R4). GitHub also allows for tracking the
releases of an ontology and records how users con-
tribute to a project with release tags (R5).

4.2. User-based evaluation

We have conducted an evaluation process, col-
lecting user feedback by means of an open call to
the community of OnToology users. It should be
mentioned that none of the participants received
training or guidance on how to use OnToology be-
forehand in order to avoid bias towards the tool.

Users were asked to evaluate their interaction
with OnToology, in terms of usefulness of the tool,
its usability and overall satisfaction. In order to
collect their feedback we have developed an online
questionnaire, adapted from the USE Questionnaire
(usefulness, satisfaction, and ease of use) [18], in
which we have reduced the number of questions
in order to make it more friendly for users. The
feedback form consists of 16 quantitative questions
divided into the aforementioned categories (useful-
ness, satisfaction and usability). These questions
are rated in a Likert scale from 1 (strongly dis-
agree) to 5 (strongly agree). Besides the quanti-
tative questions, we included questions for profiling
user expertise as well as for collecting comments on
the tool.

The questionnaire and all the collected results,
both raw and aggregated values, are available on-

Table 1: User survey results for usability satisfaction

Usefulness
Ease
of use

Ease of
learning Satisfaction

Median 4 3.5 4 4

Mean 4.2 3.5 3.7 3.9

line.8 We received 15 responses to the question-
naire, 66% from experts in ontology engineering,
26% from users who were familiar but not experts
and 6% from users who were not familiar at all with
ontology engineering. The quantitative results ob-
tained through the user based evaluation are de-
picted in Table 1, showing the median and mean
scores aggregated for the above-mentioned cate-
gories. For all the analyzed categories, the scores
for the median and mean are above or equal to 3
(out of 5), being 2.5 the threshold for consider-
ing it a positive rating. In particular, those cat-
egories more relevant to OnToology features (i.e.
usefulness and satisfaction), obtained high scores,
whereas those related to the ease of use of the sys-
tem (i.e. usability) are around 3. This fact shows
that users actually perceived an improvement in
their productivity during the ontology development
process thanks to OnToology’s features. However,
it also indicates that there is still room for improve-
ment regarding the user experience, as the ease of
use and learning is not that well rated.

As part of the evaluation form we also in-
cluded three open questions, asking the users about
whether they have used other similar tools before
and about the most negative and positive aspects
of OnToology. Most of the users reported that they
had not used any tool in this context. Regarding
the negative aspects, most respondents stress the
need for better documentation and a more infor-
mative interface (e.g., The ”publish ontology” fea-
ture is quite hidden), which aligns with the ease of
learning and usability scores obtained in our sur-
vey. Among the most positive aspects, users gen-
erally state that OnToology implements interest-
ing features, saving them time when dealing with
supporting activities, being fast and “automatizing
boring tasks”, without having to install or setup
any environment.

Overall, we can consider that, based on the ob-
tained results, OnToology addresses successfully
user needs, listed in Section 2, being useful when

8http://ontoology.github.io/OnToology/

journalofwebsemantics/#questionnaire

6

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3260516

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



carrying out the support activities related with on-
tology development.

4.3. Community uptake

Since OnToology was announced9 and at the time
of writing this paper, a total of 113 repositories con-
taining more than 530 ontologies have been added
to OnToology,10 including projects from different
knowledge domains such as energy, e-Science, smart
cities, etc. Examples of these projects are OpenCi-
tyData,11 BOT12 or Eiffel.13

Statistics of user activity in OnToology14 indi-
cate that the bundle download option has been
used 29 times, while the ontology publication fea-
ture has been activated in 57 occasions. Thanks to
this feature, the HTML documentation of ontolo-
gies hosted by OnToology has been accessed 843
times, while the different serializations of their RDF
code have been requested 382 times.

As these statistics show, OnToology has been and
still is used and helpful for users on the tasks re-
lated to publication of their ontologies, as most
of them tend to publish their ontology using On-
Toology rather than downloading the correspond-
ing bundle. More examples on the adoption of On-
Toology in different projects can be found in On-
Toology website.15

5. Related work

In recent years, different systems have been de-
veloped to support collaborative ontology devel-
opment. One of the most well-known tools is
WebProtégé [19]. Besides ontology editing func-
tionalities, WebProtégé provides a discussion board
and functionality for annotating ontology terms.
Once an ontology is generated, developers may re-
sort to their local installation of Protégé to pro-
duce documentation and diagrams using plug-ins.
WebProtégé does not integrate features for the on-
line publication of the ontology. Another collab-
orative approach is Moki [8], a tool for modeling

9https://lists.w3.org/Archives/Public/

public-vocabs/2015Jul/0003.html
10http://ontoology.github.io/OnToology/

journalofwebsemantics/#ontologies
11https://github.com/opencitydata
12https://github.com/GeorgFerdinandSchneider/bot
13https://github.com/hartig/

eiffel-rdf-vocabularies
14http://ontoology.github.io/OnToology/

journalofwebsemantics/#stats
15http://ontoology.linkeddata.es/faqs

ontologies based on MediaWiki. Moki provides ei-
ther a light-weight view or a full source-code view
of the ontology. It also integrates evaluation func-
tionalities like a model checklist, quality indicators
and ontology publication, but it does not provide
any documentation functionalities.

Neologism [7] was also designed to provide sup-
port for the online development process of ontolo-
gies, as a vocabulary editor and publishing system.
Neologism provided an offline file-based model and
an automatic diagram creation. However, Neolo-
gism did not address the evaluation and versioning
of its ontologies. It should also be mentioned that
this system is no longer maintained. A more recent
effort is VoCol [9], designed as a tool to help collab-
orative vocabulary development and use Git repos-
itories to maintain vocabulary-related files. VoCol
provides support for project management, quality
assurance, documentation and visualization compo-
nents. Both Neologism and VoCol provide support
for publishing ontologies and their documentation.

VocBench [20] is an open source web application
for editing thesauri. VocBench allows for collabora-
tive management of the overall editorial workflow,
by introducing different roles with specific compe-
tencies, and provides features for content valida-
tion and publication of vocabularies. Furthermore,
it provides changes history and a SPARQL query
service. However, VocBench does not provide any
documentation or evaluation functionalities, and fo-
cuses only on SKOS models.

Table 2 illustrates how these tools can be posi-
tioned according to the requirements defined in Sec-
tion 2. For each requirement it is indicated whether
a tool supports it by means of the symbol “X” or
whether is partially covered “≈”. As shown in the
table, none of these tools (except for OnToology)
address all the identified support activities for on-
tology development. The most complete one in this
regard is VoCol, as it allows easy documentation
and publication of ontologies in an integrated solu-
tion. However, VoCol does not allow users to decide
on a naming scheme when publishing their ontolo-
gies, it cannot assign permanent identifiers to an
ontology and it is cumbersome to edit each of its
produced outcomes (e.g., adding a new figure or
paragraph in the documentation).

6. Conclusions and future work

In this paper we have described OnToology, an
approach for automating ontology engineering sup-

7

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3260516

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Table 2: Comparison of tools for supporting collaborative ontology development.

Support category Moki Neologism VocBench VoCol
Web

Protégé
OnToology

R1. Documentation X X Xavw

R2. Complementary resources ≈ ≈ ≈ Xajow

R3. Coexistence with non-ontological resources X

R4. Compatible with a collaborative workflow X X ≈ Xg X Xgh

R5. Versioning X ≈ Xg ≈ Xgh

R6. Publication and content negotiation X X ≈ X Xw

R7. Evaluation X X Xo

X supported ≈ partially supported a supported by AR2DTool g supported by Git h supported by GitHub
j supported by OWL2JSONLD o supported by OOPS! v supported by VocabLite w supported by WIDOCO

port activities including documentation, evaluation
and publication. OnToology considers ontologies as
a first class citizen in software development projects
and provides means for their continuous integra-
tion. OnToology is built on top of GitHub, inte-
grating a suite of existing tools and services to sup-
port different ontology development scenarios.

We have evaluated OnToology in terms of useful-
ness, usability and ease of use with a user survey,
which has provided positive feedback regarding use-
fulness of and satisfaction with the tool. Whereas
the study suggests that the interface could be im-
proved in terms of usability, results show that the
system is useful and that its features are relevant in
the context of ontology development. Users value
especially the features related to documentation
and publication, as well as the ability to release
their ontologies using OnToology features, without
having to set up their own infrastructure.

Regarding future work, we are now integrating
OnToology with other Git-based platforms more
commonly used for private projects, such as Bit-
bucket16 or GitLab.17 We plan on adding reasoning
capabilities to notify the user on potential incon-
sistencies in a configurable way. We also plan on
integrating OnToology to publish ontologies with
Linked Open Vocabularies [21].

Finally, in order to improve the usability and
learning curve of OnToology, we are currently im-
proving tutorials and the GUI of the system. For
this task, we pay special attention to user sugges-
tions collected in our GitHub project.18 Follow-
ing this idea, and while keeping OnToology editor-
agnostic, we plan to integrate the system with pop-

16https://bitbucket.org/
17https://about.gitlab.com/
18https://github.com/OnToology/OnToology/issues

ular editors such as Protégé, allowing users to man-
age the version-release cycle directly while editing
an ontology.

Acknowledgements

This work has been partially supported by the
project Datos 4.0: retos y soluciones (TIN2016-
78011-C4-4-R), funded by the Spanish Ministerio
de Economı́a, Industria y Competitividad. The au-
thors would like to thank the community of users
who have contributed, requested features or pro-
vided feedback on OnToology and Yolanda Gil for
her comments and feedback.

References

[1] M. Fernández-López, A. Gómez-Pérez, N. Juristo,
METHONTOLOGY: from ontological art towards on-
tological engineering, in: Proceedings of the Ontological
Engineering AAAI97 Spring Symposium Series, Amer-
ican Asociation for Artificial Intelligence, 1997.

[2] S. Staab, R. Studer, H.-P. Schnurr, Y. Sure, Knowl-
edge processes and ontologies, IEEE Intelligent systems
16 (1) (2001) 26–34.

[3] M. C. Suárez-Figueroa, A. Gómez-Pérez, M. Fernández-
López, The NeOn Methodology framework: A scenario-
based methodology for ontology development, Applied
Ontology 10 (2) (2015) 107–145.

[4] S. Auer, The RapidOWL Methodology–Towards Agile
Knowledge Engineering, in: 15th IEEE International
Workshops on Enabling Technologies: Infrastructures
for Collaborative Enterprises (WETICE 2006), IEEE
Computer Society, 2006, pp. 352–357.

[5] V. Presutti, E. Blomqvist, E. Daga, A. Gangemi,
Pattern-Based Ontology Design, in: M. d. C. Suárez-
Figueroa, A. Gómez-Pérez, E. Motta, A. Gangemi
(Eds.), Ontology Engineering in a Networked World.,
Springer, 2012, pp. 35–64.

[6] S. Peroni, A Simplified Agile Methodology for Ontol-
ogy Development, in: Proceedings of the 13th OWL:
Experiences and Directions Workshop and 5th OWL

8

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3260516

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



reasoner evaluation workshop (OWLED-ORE 2016),
Springer, 2016, pp. 55–69.

[7] R. Cyganiak, C. Basca, S. Corlosquet, T. Schandl,
S. Fernández, Neologism: Easy Vocabulary Publishing.

[8] A. Bosca, M. Casu, M. Dragoni, A. Rexha, Modeling,
managing, exposing, and linking ontologies with a wiki-
based tool, in: Proceedings of LREC, 2014, p. 1668.

[9] L. Halilaj, N. Petersen, I. Grangel-González, C. Lange,
S. Auer, G. Coskun, S. Lohmann, VoCol: an integrated
environment to support version-controlled vocabulary
development, in: Proceedings of the 20th International
Conference on Knowledge Engineering and Knowledge
Management (EKAW 2016), Springer, 2016, pp. 303–
319.

[10] D. Berrueta, J. Phipps, Best Practice Recipes for Pub-
lishing RDF Vocabularies, W3C, https://www.w3.org/
TR/swbp-vocab-pub/ (2008).

[11] O. Corcho, I. Santana-Pérez, H. Laguente, D. Portolés,
C. Cano, A. Peris, J. M. Subero, Publishing linked sta-
tistical data: Aragón, a case study, in: Joint Proceed-
ings of the International Workshops on Hybrid Statisti-
cal Semantic Understanding and Emerging Semantics,
and Semantic Statistics (HybridSemStats), 2017.

[12] D. Garijo, WIDOCO: A wizard for documenting on-
tologies, in: International Semantic Web Conference,
Springer, 2017, pp. 94–102.

[13] I. Santana-Pérez, D. Garijo, F. Siles, AR2DTool (Jul.
2018). doi:10.5281/zenodo.1317796.

[14] D. Garijo, M. Poveda-Villalón, dgarijo/vocablite: Vo-
cablite 1.0.2 (Jul. 2018). doi:10.5281/zenodo.1318782.

[15] M. Poveda-Villalón, A. Gómez-Pérez, M. C. Suárez-
Figueroa, OOPS! (OntOlogy Pitfall Scanner!): An
On-line Tool for Ontology Evaluation, International
Journal on Semantic Web and Information Systems
(IJSWIS) 10 (2) (2014) 7–34.

[16] S. Soiland-Reyes, owl2jsonld 0.2.1, Convert OWL
ontology to JSON-LD context (Jun. 2014).
doi:10.5281/zenodo.10565.

[17] A. Alobaid, D. Garijo, M. Poveda-Villalón, I. Santana-
Perez, A. Fernández-Izquierdo, OnToology (Jul. 2018).
doi:10.5281/zenodo.1317786.

[18] A. M. Lund, Measuring usability with the use question-
naire, Usability Interface 8:2 (2001) 3–6.

[19] T. Tudorache, J. Vendetti, N. F. Noy, Web-Protégé:
A lightweight owl ontology editor for the web., in:
OWLED, Vol. 432, 2008.

[20] A. Stellato, S. Rajbhandari, A. Turbati, M. Fiorelli,
C. Caracciolo, T. Lorenzetti, J. Keizer, M. T. Pazienza,
VocBench: A web application for collaborative develop-
ment of multilingual thesauri, in: European Semantic
Web Conference, Springer, 2015, pp. 38–53.

[21] P.-Y. Vandenbussche, G. A. Atemezing, M. Poveda-
Villalón, B. Vatant, Linked Open Vocabularies (LOV):
a gateway to reusable semantic vocabularies on the web,
Semantic Web 8 (3) (2017) 437–452.

Annex A. OnToology: A Running Example

In this section we present a running example of
an actual ontology developed by a subset of the au-
thors of this paper. We show the steps that we
followed using OnToology, accompanied with snap-
shots capturing the state of the tool.

1. Register the repository: We add the repos-
itory albaizq/smartlamppost to OnToology via
the web interface (Figure 3). The repository
already includes the ontology file smartlamp-
post.owl.

Figure 3: Register a repository

2. Authorize OnToology to access the
repository: Due to the fact that this is our
first repository using OnToology, GitHub asks
us to authorize OnToology to access the repos-
itory. By clicking on “Authorize Application”,
as shown in Figure 4, we authorize OnTool-
ogy to track our repository. As a result, “On-
ToologyUser” will be added as a collaborator
and a webhook will be created to track fu-
ture changes on the repository. OnToology
forks the repository of the user to be the work-
ing repository. Next, OnToology will gener-
ate all the resources automatically (i.e., HTML
documentation, diagrams, quality report, and
JSON-LD Context) in the working repository
OnToologyUser/smartlamppost.

Figure 4: OnToology authorization

3. Generation of the pull request: OnTool-
ogy creates a pull request with all the gen-
erated resources from the working repository

9

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3260516

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



(OnToologyUser/smartlamppost) to the origi-
nal one (albaizq/smartlamppost). We can see
in GitHub the generated resources under the
folder “OnToology” in the top level of the
repository. Figure 5 shows the pull request
generated by OnToology.

Figure 5: Pull request

4. Merge resources: After accepting this pull
request, all the resources are merged into the
repository. The structure of the generated re-
sources is shown in Figure 6. Screenshots of
the generated resources are show in Figures 7,
8, 9, 10a and 10b.

Figure 6: Merged resources

5. Fix pitfalls: We address the issues raised by
OOPS! and push the changes to the ontology
in the target repository. OnToology will au-
tomatically generate the resources again with
the updated ontology. The documentation has
been updated to match the new changes, the
class and taxonomy diagrams have been up-
dated accordingly, and the new quality report

Figure 7: Documentation resource

Figure 8: Evaluation resource

shows the pitfalls of the updated ontology. On-
Toology will create a new pull request with
the updated resources. We merge the new re-
sources by accepting the pull request.

6. Publish the ontology: At this point, the
new generated resources according to the up-
dated ontology are in the repository. We finally

10

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3260516

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Figure 9: Context resource

have reached a stable release, and we would
like to publish it. The OnToology web inter-
face provides a button to publish the ontol-
ogy with w3id service. We choose the name
smartlammpost and, therefore, our ontology
will be published in https://w3id.org/def/

smartlampost. Figure 11 shows the interface
to reserve a name for the ontology, while Fig-
ure 12 shows the OnToology interface with the
URI where the ontology is published.

7. Discuss new requirements: After some
time, a new requirement appears and the on-
tology needs to be extended. But one of the
developers has a doubt about a specific issue
and asks the question in the discussion board.
The team leader answers it and they start a dis-
cussion with other developers and agree about
how to address the new requirement.

8. Update the ontology: Developers start up-
dating the ontology to meet the new require-
ments and push the changes using Git. The
resources will be regenerated for the new ontol-
ogy and a pull request will be created. Changes
are checked and the generated resources match
the expectation.

9. Re-publish the ontology: The developers
finish the implementation of the new require-
ments to the ontology and the team leader re-
publishes it using the republish button in the

web interface of OnToology. Figure 13 shows
the interface for re-publishing the ontology.
The republish button will only be visible if the
ontology has been published before, otherwise,
it will not be shown.

11

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3260516

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



(a) Class diagram

(b) Taxonomy diagram

Figure 10: Ontology visualization

Figure 11: Reserve a name

Figure 12: Publication of the ontology

Figure 13: Re-publication of the ontology

12

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3260516

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed


