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Abstract

It is common practice in the statistical analysis of phonetic data to draw conclu-
sions on the basis of statistical significance. While p-values reflect the probability
of incorrectly concluding a null effect is real, they do not provide information about
other types of error that are also important for interpreting statistical results. In this
paper, we focus on three measures related to these errors. The first, power, reflects
the likelihood of detecting an effect that in fact exists. The second and third, Type
M and Type S errors, measure the extent to which estimates of the magnitude and
direction of an effect are inaccurate. We then provide an example of design anal-
ysis (Gelman & Carlin, 2014), using data from an experimental study on German
incomplete neutralization, to illustrate how power, magnitude, and sign errors vary
with sample and effect size. This case study shows how the informativity of re-
search findings can vary substantially in ways that are not always, or even usually,
apparent on the basis of a p-value alone. We conclude by repeating three rec-
ommendations for good statistical practice in phonetics from best practices widely
recommended for the social and behavioral sciences: report all results; design stud-
ies which will produce high-precision estimates; and conduct direct replications of
previous findings.

1 Introduction

Statistical analysis is often used to reason about scientific questions based on a data
sample, with the goal of determining “which parameter values are supported by the
data and which are not” (Hoenig & Heisey, 2001, p. 4). Researchers in phonetics
frequently reach such conclusions based on significance: the probability, or p-value, of
obtaining an effect of the observed size (or greater), if the true effect were zero.



For example, consider a study of the effect of speech rate on Voice Onset Time
(VOT) on short-lag stops in a particular language (e.g. Kessinger & Blumstein, 1997).
The researcher fits a statistical model (say, a simple linear regression) in which the
dependent variable is VOT, and the regression coefficient of interest /3 is the slope
of the regression line, representing an estimate of how a unit change in speech rate
impacts VOT. A t-test is then conducted to assess whether this slope is different from
zero. Judging from the literature, many researchers would conclude that there is an
effect of rate if this difference is significant (i.e. if p < 0.05), and that if the difference
is not significant (p > 0.05), VOT is unaffected by rate.

This focus on the p-value stems from a desire to avoid incorrectly rejecting the null
hypothesis, when it is in fact true. This is obviously to be avoided, because we do not
want to claim that an effect exists when it does not. However, p-values provide only
limited information when interpreting studies, particularly if we are trying to interpret
a study in relation to other work. To continue with the speech rate example, imagine
two studies of the effect of speech rate on VOT, one of which finds a significant effect
(p < 0.05) and one of which does not (p > 0.05). Given only the p-values, we are
not in a position to assess which result is more plausible, since the p-value itself does
not measure the probability that speech rate has a non-null effect on VOT. Moreover,
the difference between the p-values may not itself be statistically significant (Gelman
& Stern, 2006; Nieuwenhuis et al., 2011), so we cannot even conclude that there is a
meaningful difference between the two studies.

In addition to interpreting significant effects, researchers are often interested in in-
terpreting the lack of a significant effect, a so-called “null result”. The temptation is
often to conclude that if a coefficient is not significantly different from zero, that it does
not have an effect on the dependent variable. Concluding from non-significance that
there is no effect of an experimental manipulation is a well-known statistical fallacy;
the p-value is not the probability that the null hypothesis is true, but rather the prob-
ability of observing an effect of a given magnitude, or larger, assuming that the null
hypothesis is true. In order to avoid this pitfall, it is sometimes taught, or propagated
in practice, that null results cannot be interpreted at all. However, this is not strictly
speaking the case: null results can sometimes give information about likely parame-
ter values or effect size—arguably the central goal of data analysis—but determining
whether or not this is the case requires considering information other than the p-value
of a test statistic.

In this paper, we discuss additional quantities that can give useful and complemen-
tary information to p-values: the probability of rejecting the null hypothesis assuming
that it is false (statistical power) as well as errors of magnitude and sign in estimat-
ing effect size (Type M and Type S errors: Gelman & Tuerlinckx, 2000; Gelman &
Carlin, 2014). Using simulation studies based on real experimental data, we illustrate
three reasons researchers in phonetics should take into account power and effect size
in addition to significance:

(1) Depending on statistical power, a non-significant result can still be informative.

(2) Errors in estimates of effect size can be substantial even when p-values are low.



(3) Estimates of effect size improve with power, and can be robust even when p-
values are higher than a conventional threshold, e.g. a = 0.05.

Using a case study of so-called incomplete neutralization (hereafter IN), we illus-
trate how (1)—(3) can affect conclusions drawn with respect to two questions, which are
arguably always our goal in interpreting research studies: what can we conclude about
likely values of a parameter from a single study (Q1), as well as from a body of studies
(02)?

This exercise provides an example of design analysis (or design calculations; Gel-
man & Carlin, 2014): the use of statistical tools to reason about likely outcomes (=
parameter values) of replications of a study—which is generally of greater interest than
the statistical analysis of a single experiment.! Our focus here will be on design analy-
sis for mixed-effects regression models, because these methods have become increas-
ingly common for phonetic data analysis, and also because they can be somewhat more
technically and conceptually challenging to implement. However, we note that the ba-
sic points (1)—(3) apply to most statistical methods commonly used to analyze phonetic
data, including ¢-tests, classical ANOVA, classical regressions (without random-effect
terms), and GAMMs.

None of the points we raise about power and effect size are novel (see e.g. Meehl,
1967; Cohen, 1988; Gigerenzer et al., 2004; Nieuwenhuis et al., 2011; Button et al.,
2013; Colquhoun, 2014; Gelman & Carlin, 2014; Westfall et al., 2014; Vasishth &
Nicenboim, 2016; Judd et al., 2017; Vasishth & Gelman, 2017; Brysbaert & Stevens,
2018, among others), but they are not typically addressed in interpretation of phonetic
data. We believe that greater attention to these dimensions would improve the quality
of phonetic research, both in terms of research design as well as interpretation. We
hope the technical illustration provided in this paper will be of particular use to those
researchers who are interested in performing power calculations and design analysis in
the mixed-model context, but are unsure how to go about doing so.

The remainder of this paper is organized as follows. Section 2 provides some back-
ground on of power, effect size, and sign and magnitude errors, including the practical
issue of how to compute them. Section 3 gives a case study of incomplete neutralization
in word-final German stops, focusing on points (1)—(3), in the context of interpreting
individual studies (Q1) and a body of studies (Q2), using power and effect size consid-
erations in addition to significance. Finally, in Section 4 we conclude with some more
general observations and recommendations.

To facilitate the use of power and effect size error calculations in phonetic research,
code and data files for carrying out all analyses in this paper, as well as further worked
examples, are archived as an Open Science Foundation project (Kirby & Sonderegger,
2018a).

For example, in a study of whether there is a speech rate effect on VOT for lenis stops in English, we
are less interested in whether the coefficient for this effect is significantly negative (p < 0.05) than in what
can be concluded about the true value of the speech rate effect. By points (2) and (3), these are not the same
thing.



2 Background

In this section, we define power and effect size before turning to considerations of
power calculation, magnitude and sign errors, and design analysis. While there exist
large literatures on each of these topics—in particular for the behavioral and social
sciences—they are not usually discussed as part of mainstream statistical analysis of
phonetic data. (For psycholinguistic data on the other hand, Vasishth & Nicenboim,
2016 cover similar topics, and our presentation is indebted to theirs.) We aim here to
briefly summarize relevant concepts for our case study, and give relevant references
where interested readers can follow up to learn more. Our case study (Section 3) pro-
vides a worked example showing one way these concepts can be applied to the analysis
of phonetic data.

2.1 Power

In considering whether there is in reality an effect of a covariate or experimental ma-
nipulation, there are two essential types of errors a researcher can make: falsely con-
cluding there is an effect when none exists (a Type I error, or “false positive”), or
falsely concluding there is no effect when one in fact exists (a Type II error, or “false
negative”). Type I errors are arguably more familiar, and everyday statistical practice
places considerable emphasis on avoiding them. If a term is found to be statistically
significant, many researchers would conclude from this that a Type I error is unlikely.
The Type I error rate of a study is normally abbreviated as «, while the Type II error
rate is 3.2

Power, or one minus Type II error, is the probability of the statistical test correctly
rejecting the null hypothesis when it is false. Like significance, power depends on
several factors: the sample size, the true effect size, the acceptance threshold («), and
the amount of variability in the data. All else being equal, a significant result is less
likely to be found for an experiment with a smaller sample, where the effect is small,
where a more stringent cutoff is used (lower «), and/or where the variance is high. For
a given statistical test, power is a function of these four quantities, and power calcula-
tions consist of determining power given values of the four quantities, or determining
the necessary value of one quantity to achieve a given power level. Typically power
calculations for research planning focus on sample size, because other determinants of
power are less accessible (e.g. true effect size is determined by the phenomenon itself).

Note that while power and Type I error are related, one does not determine the other,

2In what follows, we refer to both “significance levels” (p-values) and Type I and Type II errors. Strictly
speaking, this is incoherent: there are no p-values in the Neyman-Pearson hypothesis-testing paradigm,
and notions such as power and alternative hypotheses are absent from Fisher’s (1956) significance-testing
framework. However, in practice these traditions are often conflated into a procedure sometimes called null
hypothesis significance testing (NHST), where researchers discuss “significance levels” (a Fisherian concept)
but treat p like an « threshold in the Neyman-Pearson framework, rejecting Ho when p is less than some pre-
specified value. In the tradition of late-period Fisher (1956), we recommend reporting exact p-values, effect
sizes, and confidence intervals, rather than accepting or rejecting hypotheses on the basis of an « threshold;
but at the same time, we believe that the Neyman-Pearson idea of power, as a way of formalizing precision,
can also be informative. For an overview of these issues with some historical context, see Gigerenzer et al.
(2004).



because of the roles of effect size, sample size, and variability. A common critical value
for power, analogous to o = 0.05 for rejecting the null, is = 0.2, giving power of
80%.

Cohen (1988, 1992) and Hallahan & Rosenthal (1996) provide thorough but ac-
cessible introductions to power and related issues. Snijders (2005), Gelman & Hill
(2007, Ch. 20), and Judd et al. (2017), as well as references therein, discuss power for
mixed-effects models. Vasishth & Nicenboim (2016) provide a discussion of power in
the context of linguistic data.

2.2 Effect size

The term effect size refers to any measure of the size of an effect. Unstandardized
estimators, such as regression coefficients, are the simplest quantifications of effect
size. Variables in a multiple regression model can be easily scaled to make different
regression coefficients comparable (e.g. Gelman & Hill, 2007, Sec. 4.2).

Effect size can also refer to one of many standardized measures which quantify the
magnitude of a treatment effect in a way that allows comparison across studies, or be-
tween effects in the same study. There are two broad families of effect size measures
for data where the dependent variable is continuous: measures of association/variance
explained (such as R?, or the n? measure commonly used for ANOVAs), and stan-
dardized differences in means (see Kline, 2013, Ch. 5). We focus on the most common
measure in the latter family: Cohen’s d, defined as the difference between group means
divided by a standard deviation appropriate for the data given the experimental design
(Cohen, 1988) (which intuitively reflects the “amount of variability” in the data).

For mixed-effects models, different options exist for calculating standardized effect
sizes, because these models contain several parameters (variance components) captur-
ing different kinds of variability. Westfall et al. (2014) and Judd et al. (2017) show how
to calculate Cohen’s d as a function of experimental design for certain mixed-effects
designs, and Gelman & Hill (2007, Ch. 20-21) demonstrate more general simulation-
based effect size measures for mixed-effect models.

Like power, (observed) effect size is partially independent from significance. One
point we wish to emphasize here is that accuracy of effect size estimates does not
automatically follow from (non)significance of model terms. This means that some null
results can give meaningful information about effect size, and reported effect sizes can
be unreliable even for significant results, depending on power. We will illustrate these
points further below.

For more on measures of effect size, see Cohen (1988, 1992), Kline (2013), and the
references above.

2.2.1 Type M and Type S errors

Let /3., denote the true size of an effect of interest, and B$ the estimated effect size when
an experiment is done to estimate it. Because /3, is a random variable, which will be
different each time the experiment is run, the estimated effect size can be incorrect
relative to the true effect size, in either magnitude or sign. Gelman & Carlin (2014)



define two corresponding measures of error of the estimated effect size, across different
replications of the same experiment:

e The expected Type M error (or exaggeration ratio) is the expected value of
|8/ Bz |: the extent by which the magnitude of the effect is exaggerated.

e The Type S error is the probability that the estimated effect has the wrong sign
(sign(Bz) 7 sign(5z)).

Gelman & Carlin (2014) define Type M and Type S error as conditional on sig-
nificance: how often we will be wrong about the direction or magnitude of an effect
if only non/significant results are taken into account. It is also possible to consider
unconditional Type M and Type S error—what these values would be if all results are
considered, without regard to significance. Conditional Type M/S error are relevant for
what can be concluded from any single study (our Q1), since the result of the study
will reach significance or not. Unconditional Type M/S error are relevant for what
can be concluded from an ensemble of studies (our Q2), assuming that both signifi-
cant and non-significant results have been reported. We consider both conditional and
unconditional Type M/S errors in our case study (Section 3).

For unbiased and normally distributed estimates, the relationship between Type M
and Type S error and power can be reasonably approximated. Generally speaking,
both types of estimates scale roughly with power; but Type M error increases faster
than Type S error as power decreases. As demonstrated by Gelman & Carlin (2014),
when power is low, Type M and S error can be surprisingly high, even for statistically
significant results (see also Button et al., 2013; Ioannidis, 2008). Conversely, when
power is high, Type M and S error will remain low. The existence of Type M and Type
S errors means that it is not always the case that significant findings are “correct”, in
the sense of providing accurate estimates of the sign and/or magnitude of the effect of
interest.?

For more on both Type M and Type S error, see Gelman & Tuerlinckx (2000);
Gelman & Carlin (2014); Vasishth & Nicenboim (2016).

2.3 Power calculations and design analysis

Conducting a power analysis involves calculating power as a function of the experimen-
tal design and the data distribution. Power calculations are often carried out a priori,
as part of experimental design, for example to assess the sample size necessary to de-
tect an effect of a particular size. Observed or post-hoc power analysis—determining
the power of an experiment that has already been conducted using the observed effect
size—has (rightly) often been dismissed as pointless (Cox, 1958; Hoenig & Heisey,
2001; Senn, 2002; O’Keefe, 2007). This is because observed power can be computed
directly from the p-value (given the study design, observed effect size, and variance);

3Cf. Kirby & Sonderegger (2018b), where it is somewhat misleadingly suggested that so long as an effect
is significant, it can be trusted.



thus, power gives no additional information once the p-value is known (Hoenig &
Heisey, 2001; Lenth, 2007; O’Keefe, 2007).4

However, there are situations in which power calculations made after the experi-
ment has been conducted can still be informative. In particular, retrospective design
analysis (Gelman & Carlin, 2014), where a range of plausible effect sizes are con-
sidered, can be helpful in addressing both our Q1 (what can be learned from a single
study) as well as Q2 (what can be learned from a body of studies of a given topic).

There are two key differences between retrospective design analysis and an ob-
served power analysis. First, in design analysis one considers a range of plausible
effect sizes, which may or may not include the observed value. Second, the focus of a
design analysis is not only to assess the power of the study, but also to determine the
Type M and S errors. Design analysis can therefore tell us what we can learn from a
study with a given design and sample size about likely values of a parameter of interest,
regardless of whether or not the value of the parameter was statistically significant in
our particular study.

Arguably, the most difficult part of design analysis (or a priori power analysis for
that matter) is determining what range of effect sizes to consider. While the true effect
size is generally unknown (that’s why the researcher is conducting the experiment in
the first place!), delimiting a range of plausible effect sizes is usually possible. For
example, suppose you are studying incomplete neutralization of aspirated, ejective,
and plain stops in Klamath, which are said to be neutralized in final position (Blevins,
1993). The effect of interest is the degree to which word-final consonant laryngeal class
affects preceding vowel duration. While there is a literature on incomplete neutraliza-
tion effects, there may be no previous phonetic work on Klamath, or on neutralization
of an ejective/plain/aspirated contrast. A lower bound on plausible non-zero effect sizes
could be obtained by a survey of the incomplete neutralization literature, to give a sense
of how small vowel length contrasts are before they are considered perceptually neu-
tralized (probably 4—15 ms), or using the just-noticeable-difference for vowel duration
(about 5 ms: Nooteboom & Doodeman, 1980). An upper bound could be obtained by
surveying studies of how laryngeal class affects previous vowel duration word-finally
in languages without final neutralization (Chen, 1970), and taking the lowest values
from reliable studies (~30 ms). Thus, a range of about 4-30 ms would be reasonable.
Even for areas where less is known from previous related work, it should usually be
possible to establish plausible effect sizes within an order of magnitude; Gelman &
Carlin (2014, pp. 7-8) provide some useful guidelines.

2.4 Techniques
2.4.1 Calculating power

Tools for calculating power are now widely available for a number of experimental
settings, including those typically used in phonetic research. Broadly, these fall into
two types:

“Intuitively: if a significant effect was/was not found, you will compute that power must have been
high/low to give an effect of the observed size.



Option 1: Closed-form solutions For many simple tests such as differences between
sample means, power can be found by specifying sample size, effect size, and Type
I error threshold «, as shown in textbook treatments of power analysis (e.g. Chow
et al., 2008). Although most statistical analyses phoneticians are now doing are more
complicated than such simple cases, they can still provide a rough estimate of power
for a given term by approximating the relevant effect sizes and degrees of freedom.
For example, consider some hypothetical German incomplete neutralization data,
of the type to be considered in our case study, in which vowel duration is measured
before phonologically voiced and voiceless consonants. We can conduct a two-tailed
test between two independent samples, with the goal of determining whether the group
means are significantly different at the 0.05 level. Assume that we have n = 32 par-
ticipants, 16 in each group, with normally distributed group means of 111 = 50 ms and
e = 45 ms. For ease of exposition, we further assume that the population standard
deviation ¢ is known and shared across groups; in this case, 07 = o3 = 100. This
means we can use a z-test, instead of the more common ¢-test. The test statistic is then:

— M2
202
n

Assuming normally distributed means, the formula for power is
1= B=®(z— 21_aj) + D=2 — 21_aya),

where @ is the standard normal cumulative distribution function with a mean of 0 and a
standard deviation of 1, and z;_, /5 is the critical value of the test statistic correspond-
ing to a two-tailed test with significance level « (here, z1_,/2 = 1.96). For a fixed
ny = ng = 16, this corresponds to power of just 0.29:

o0 — 45 = 1.41214
2 x 100 200
16 16

1—p=®(1.41214 — 1.96) + ¢(—1.41214 — 1.96)
= 0.2926065 + 0.000370134
= 0.2929766

Doubling the sample size increases power to 0.52. To achieve power of 0.8, 63 partici-
pants per group would be required.

Carrying out such calculations by hand, as we have here, is usually not necessary.
Most statistical software packages provide functions to perform power analyses for all
basic types of hypothesis tests, such as comparison of proportions, chi-squared tests,
t-tests, and the z-test example illustrated above. Some examples using the pwr li-
brary (Champely, 2017) for R (R Core Team, 2016) are provided in the OSF Project
accompanying this article (Kirby & Sonderegger, 2018a).



It is possible to extend these simple calculations to more complex designs, includ-
ing the mixed-effects regression models now common in phonetic data analysis. A re-
cent example is that of Westfall et al. (2014), who propose analytic methods of power
analysis for designs with a single fixed-effect term and crossed random factors, help-
fully implemented in a user-friendly online calculator (http://jakewestfall.
org/power/). Such tools are invaluable for prospective power analysis and exper-
imental design, and we encourage researchers to make routine use of them to insure
that experimental work is of high power (see Brysbaert & Stevens, 2018 for worked
examples). However, such approaches usually make simplifying assumptions, such
as balanced data and no covariates, which do not hold for many actual phonetic stud-
ies. This means that for the purposes of design analysis, a different or complementary
approach is useful.

Option 2: Simulation For many studies which include complex designs, unbalanced
observations, and multiple covariates, developing closed-form solutions for power can
be difficult or impossible. In these cases, power can be approximated to a more or less
arbitrary degree of accuracy through Monte Carlo simulation. The chief advantages
of this approach are (a) flexibility and (b) the ability to more accurately reflect the
underlying structure of the statistical model. Simulation also helps us to understand
our ability to detect effects of arbitrary size, as it is simple to generate underlying data
sets in which a given effect does or does not exist. The caveat is that simulation-
based approaches to power are closely tied to the specific model and data used (see
Section 3.5.2 below). For some other examples of simulation-based approaches to
understanding statistical properties of experimental design see e.g. Gelman & Hill
(2007); Baayen et al. (2008); Barr et al. (2013); Winter (2015); Judd et al. (2017);
Jager et al. (2017, Appendix B); Vasishth & Nicenboim (2016); Vasishth & Gelman
(2017).
Simulation-based design analysis requires three components:

1. M, a statistical model either fitted to previous data or specified using known
values;

2. D, a dataset of interest;

3. B, an effect size for predictor of interest x>

The basic procedure is then as follows:
(a) Use M to simulate dependent variable values for D given f3,;
(b) Re-fit M to D;

(c) Repeat steps (a) and (b) many (hundreds or thousands of) times.

SSomewhat confusingly, /3 is typically used as shorthand for both the Type II error rate as well as for
regression coefficients. Here we designate regression coefficients as (3, for clarity.



The percentage of time that the fitted model finds a significant effect of x approx-
imates power as the number of simulations increases. We illustrate this procedure in
Section 3.2 below.

A number of software packages are now available for simulating power in mixed
models, including the simr (Green & MacLeod, 2016), clusterpower (Reich &
Obeng, 2013), and 1ongpower (Donohue et al., 2016) packages for R. There are also
non-open-source packages such as MLPowSim (Browne et al., 2009), which features
an option to output R code. These packages differ in the types of data and models they
allow, with simr allowing for the most generality at the time of writing. While we
use simr functions in the study reported here, we try to emphasize general principles
rather than particular software packages.

It is important to note that the general methodology described above requires vari-
ous choices to be made at the point of implementation. For example, step (a) requires
specifying how to incorporate random effects (e.g. conditioning on fitted values, versus
simulating new values), and one might want to use an existing dataset D or have a pro-
cedure for simulating a dataset of interest. Software and package developers will have
necessarily made such decisions, but they may not be appropriate for all use cases.
The researcher can either just use the decisions made in a particular implementation
(as we do here with simr), or make their own decisions by coding simulation-based
power analysis from scratch (as in an earlier version of this work: Kirby & Sondereg-
ger, 2018b). Arnold et al. (2011) provide discussion of the general methodology of
simulation-based power calculations for mixed models; see also Gelman & Hill (2007,
Ch. 20) and Hox (2010, Ch. 12).

2.4.2 Calculating Type M & Type S errors

Type M and Type S errors are less familiar concepts, so there are not many pre-existing
tools to calculate them. Gelman & Carlin (2014) provide a calculator for the simple
case of a ¢-test, which can be applied as an approximation to effects in more complex
models (like Option 1 for power, above). Otherwise, one must proceed by simulation.
Type M and Type S error can be calculated in the same simulation as power simply by
keeping track of the percentage of cases where the predicted and true effect size have
the same sign, and the mean magnitude of the ratio of predicted to true effect size. This
is relatively straightforward using pre-existing simulation power calculation functions;
we provide an example in code in the OSF project accompanying this article (Kirby &
Sonderegger, 2018a), used in the case study in Section 3.2 below.

3 Case study: Incomplete neutralization

By way of illustration, we take as a case study the issue of the incomplete neutralization
of word-final voicing in languages like German, Catalan, or Dutch. An example from
German is given in (1). In final position, the voicing contrast in stops is traditionally
described as neutralized, leading to apparent homophony between Rat ‘council’ and
Rad ‘wheel’.

) a. Rar [sait/ > [Bait] ‘council’, Rdite [se:te] ‘councils’
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b. Rad [said/ > [Bait] ‘wheel’, Réider [seide] ‘wheels’

Word-final neutralization of this type has long been used as a textbook example of an
exceptionless phonological rule. Beginning in the early 1980s, however, this picture
was blurred by phonetic studies claiming to show a small but significant difference in
the phonetic realizations of underlyingly voiced and voiceless obstruents, usually in
terms of their effect on the durations of the burst, closure, and/or preceding vowel.

Here, we will not take a position on whether or not incomplete neutralization is
“real”, or the theoretical implications of its (non-)existence. Rather, we are inter-
ested in IN because this literature contains both studies which find statistically sig-
nificant evidence for acoustically incomplete neutralization (Mitleb, 1981a,b; Port &
O’Dell, 1985; Port & Crawford, 1989; Roettger et al., 2014) alongside those that do
not (Fourakis & Iverson, 1984; Jassem & Richter, 1989). Moreover, effects which are
found are always with a positive sign, but with differing magnitudes.

What are we to make of this body of findings? We will show that studies showing
non-significant effects are primarily low- or medium-powered, while the most highly
powered study (Roettger et al., 2014) finds a significant effect. Taken together, how-
ever, this body of studies provides good estimates of both the magnitude and the direc-
tion of IN effects.

3.1 Data and method

We explored the ramifications of different power regimes by conducting simulations
using data from an experiment examining incomplete neutralization of word-final la-
ryngeal contrasts in German (Roettger et al., 2014). The effect of interest is how vowel
duration depends on the phonological voicing specification of the following (word-
final) consonant. We examine how power and Type M/S errors for the effect of interest
depend on aspects of the study (number of subjects, items, and repetitions) by varying
these aspects in our simulations.

The case study considered here is Experiment 1 of Roettger et al. (2014).° These
authors recorded 16 native speakers of German producing singular forms of nonword
nominals (e.g. [go:p]) in response to auditory primes containing either a voiced or a
voiceless variant (e.g. [go:ba] or [go:pa]). Phonologically, the singular form of each
item in a prime pair is expected to be identical. Each speaker produced one repetition
of each target item in response to 24 such critical pairs. A linear mixed-effects model
was used to estimate the duration of the vowel preceding the stop as a function of the
stop’s underlying voicing specification, alongside a number of control predictors. The
model included by-subject and by-item random intercepts along with random slopes
for voicing. The results indicated that speakers produced longer vowels before under-
lyingly voiced stops, as assessed by a statistically significant difference in the voicing
coefficient in a likelihood-ratio test. The magnitude of the voicing effect was estimated
to be 8.6 ms (SE = 2.03 ms).

In order to undertake our design analysis, we cannot simply use these numbers,
but instead need a range of plausible effect sizes. For German IN, published estimates

SWe thank Timo Roettger and Bodo Winter for sharing their dataset with us, as well as for permission to
make this dataset publicly available.
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have ranged from around 4 ms (Port & Crawford, 1989) to over 20 ms (Mitleb, 1981b),
though most studies find 4-14 ms. We might also consider estimates from other lan-
guages, such as Dutch (3.5 ms: Warner et al., 2004) or Russian (6 ms: Dmitrieva et al.,
2010). Together, these estimates provide us with a reasonable range in which to explore
the ramifications of effect size on power in a mixed-model setting.

3.2 Simulation procedure

We simulated a range of datasets by varying sample and effect size to explore their
effects on power (Table 1).” Sample size was varied by altering the number of subjects
(ns), number of items (n;), and number of repetitions (n,.) over a range of values those
found in the IN literature. Effect size (/3,) was varied from 2 to 10 ms. Although pre-
vious work suggests that values in the 10-20 ms range are also possible, here we focus
on the lower end of the range, in order to more easily illustrate the differences between
different power regimes, and because published effect sizes are likely to be inflated
(Ioannidis, 2008; Button et al., 2013; Szucs & loannidis, 2017). In addition, while
varying residual variance and amount of variability among subjects and items also af-
fect power, here we elected to hold these factors constant in the interest of expositional
clarity.

Table 1: Parameters swept in simulation study.

parameter range  step
number of subjects (ng) 6-26 4
number of items (n;) 10-30 5
number of repetitions (n,.) 1-6 1
true effect size (3;) 2-10 1

For a given set of parameter values (8., ns, n;, n,.), a single simulation run was
performed by the general procedure described in Section 2.4.1. M was taken to be
the linear mixed-effects model fitted to the original Roettger et al. data, with effect
size of following consonant voicing replaced by (5,. In each simulation run, D was
constructed as follows:

1. Choose a set of subjects:

e Ifng < 16 (the number of subjects in the original dataset), sample (without
replacement) a random subset of subjects.

e If n, > 16, concatenate subjects from the original dataset to make a list of
size ng.

2. Choose a set of items in a similar fashion to the set of subjects (using n; instead
of ny), relative to the 24 items in the original dataset.

TFor details of how these factors affect Type I error, see Barr et al. (2013); Matuschek et al. (2017); Winter
(2015).
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3. Combine the chosen subjects and items into subject/item pairs, and concatenate
the subsets of the dataset corresponding to each subject/item pair, making a tem-
porary dataset.

4. Concatenate this temporary dataset n,. times, to make D. This corresponds to a
design where all subjects produce all items, possibly multiple times.

Next, M was used to simulate dependent variables for D given ,, and M is re-
fit to D, using functions from the simr package (Green & MacLeod, 2016); see the
OSF project associated with this article for code and details (Kirby & Sonderegger,
2018a).2 We then assess the significance of the consonant voicing term in the resulting
model (Peons) using a likelihood ratio test.” We store peons, as well as the estimated
effect size Bw and the true effect size (3,). By performing ng;,s runs for each set of
parameter values (3., ns, n;, n,.) we obtain estimates of power (the fraction of runs
where peons < 0.05), Type M error (mean value of \Bm /Bz|), and Type S error (the
fraction of runs where sign(Bx) 2 sign(f3,)) for these parameter values. We can also
estimate 95% confidence intervals for each quantity, showing the uncertainty resulting
from only using ng;,s < coO runs.

We performed simulations with n4;,,s = 1500, which appears sufficient to esti-
mate power and Type M error reasonably accurately, but Type S error would be better
estimated with higher sample sizes (see Figures 4—7 below, especially the bottom row
of Figure 5).

3.3 Results

Before proceeding, we must emphasize that our discussion is in an important sense
narrowly applicable to the Roettger et al. (2014) data, because power and Type M/S
error estimates are highly dependent on particular properties of the dataset (see Sec-
tion 3.5.2). As such, Figure 1 does not present accurate power estimates for a given
number of subjects/items/repetitions for an arbitrary study. Our discussion also mostly
considers the effect of overall sample size on power and Type M/S error, without dis-
tinguishing between the different effects of subjects, items and repetitions, but as a
general rule in phonetic experiments it is more important to have additional items than
additional repetitions (Winter, 2015).

8The technically-minded reader may wonder why our simulation procedure includes the step of construct-
ing a new dataset by choosing random subsets of subjects and items. This is slightly more complex than the
simple cases presented in most simulation-based power tutorials (e.g. the simr vignette), where new sub-
jects and items are generated using the random-effect parameters of M rather than explicitly constructing a
new dataset. The reason is that the Roettger et al. dataset contains covariates—independent variables other
than the term of interest (voicing)—so re-fitting M requires choosing covariate values for each row of the
new dataset D. One can either simulate covariate values (as in MLPowSim: Browne et al., 2009), or simply
duplicate the covariate values for each subject-item pair. While both approaches have advantages, our code
uses the latter. An important consequence is that in steps (1)—(2) above, we only use subsets of subjects and
items such that the same model used to fit the original dataset can be fitted. For example, if the first random
subset of items only contains items with bilabial place of articulation, we sample a new subset, since the
original model fits a place of articulation control variable with three values (bilabial, alveolar, velar).

9For more on how model comparison strategies impact power, see Kirby & Sonderegger (2018b).
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Figure 1: Power curves based on simulation (ns;,,s = 1500) from the Roettger et al.
(2014) data, for a subset of parameter values used in the full set of simulations. Rows
show simulated number of subjects; columns show number of repetitions of each item
per subject; line color shows the number of repetitions of each item per subject. The
dashed line indicates power of 0.8.

Figure 1 shows the results of these simulations, for an illustrative subset of param-
eter values: how power (on the y-axis) varies as a function of the true effect size 3, (on
the x-axis) for different sample sizes. (Figure 8 in the Supplementary Materials shows
the full set of results.) Each curve in the figure represents a different study design, with
different choices for the number of subjects, items, and repetitions. This type of plot
can be used to determine the power of the experiment as a function of the true effect
size (which, in general, is not known to the analyst). The general pattern is as expected:
as the sample size and the true size of the effect increase, so too does power.
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Figure 2: Type M error curves based on simulation (ng;,,s = 1500) from the Roettger
et al. (2014) data, for a subset of parameter values used in the full set of simulations.
Rows show number of subjects and columns show number of items, while line type
shows the number of repetitions of each item per subject. Different line colors show the
expectation of the absolute value of the estimated effect size divided by the true effect
size for runs statistically significantly different from zero, not significantly different
from zero, and across all runs. The dotted horizontal line at 1 shows optimal Type M
error.

3.3.2 Type M error

Figure 2 shows how Type M error varies as a function of the true effect size g, for the
same data set, again for a subset of parameter values. (Figure 9 in the Supplementary
Materials shows Type M error for the full set of simulations.)

Type M error is shown conditioned on significance (i.e. calculated only for runs
with significant or non-significant effects), and unconditioned. We focus here on the
conditioned results, as any single study to be interpreted by a researcher falls into one of
these cases. For any set of parameters, Type M error is lower for non-significant results
than for significant results, and thus Type M error unconditioned on significance lies
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between the two.

For studies with high power, Type M error is relatively low for significant effects
(i.e. the exaggeration ratio = 1), and below 1 for non-significant effects. Intuitively,
this is because when power is high a significant result is likely to be “correct”, while
for a non-significant result to obtain, the effect size must have been underestimated by
chance. As power decreases (smaller ng, n;, n,., or 5;), effect size magnitude tends to
be overestimated for significant effects, especially if they are small. Intuitively, this is
because when power is low, significant results often come from obtaining an inflated
effect size that is large enough to cross the « threshold. Interestingly, when Type
M error is calculated over all runs, it is usually near 1. This means that on average,
estimated effect size is not overly inflated if both non-significant and significant results
are considered (except when power is very low).

3.3.3 Type S error

Figure 3 shows the mean Type S error rate as a function of the true effect size (3, for
the same data set, again with only a subset of parameter values shown (Figure 10 in
Supplementary Materials shows Type S error for the full set of simulations). A run was
flagged for a Type S error if the parameter estimate was of the incorrect sign, regardless
of the magnitude of the error. As for Type M errors, Type S error rates are shown cal-
culated conditioned on significance, and unconditioned. Once again, for high-powered
designs Type S error is minimized (close to zero), but as power decreases, the chance
of an estimate having the wrong sign increases substantially. Unlike for Type M er-
ror, however, this is less of a problem for significant than for non-significant estimates,
because Type S error is always lower for significant estimates for any choice of pa-
rameters (and thus unconditioned Type S error is between the two). Intuitively, Type
S error is lowest for significant results because it is very unlikely to estimate an effect
size that is both significant and has the wrong sign, relative to the true effect size.

3.4 Discussion: interpreting individual studies

Recall that we are interested in two main questions: (Q1) What are we licensed to con-
clude on the basis of an individual study? and (Q2) What are we licensed to conclude
from a body of studies? To gain some intuition for the patterns in Figures 1-3 with
respect to these two questions, we will first consider three regimes in detail, corre-
sponding to low, medium, and high sample sizes. These regimes roughly correspond to
three studies from the existing IN literature. We refer to these regimes as “low power”,
“mid power”, and “high power” for exposition, since relative power is the important
difference between them. (Instead of sample size, we could have varied the amount of
variability in the data, to make the same general points.) However, it should be remem-
bered that the actual power in each regime depends on the true effect size, and thus
power in the “high power” regime can be arbitrarily small for small enough true effect
size, and so on.
For each regime, we pose the following question. Suppose we replicated the Roettger

et al. study with a different sample size; what should we conclude in case of different
outcomes (Q1)? Our discussion of these regimes illustrates points 1 and 2 posed in the
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Figure 3: Type S error curves based on simulation (n4;,,s = 1500) from the Roettger
et al. (2014) data, for a subset of parameter values used in the full set of simulations.
Rows show number of subjects and columns show number of items, while line type
shows the number of repetitions of each item per subject. Different line colors show
the proportion of cases where the signs of the estimated and true effect size differ, for
runs statistically significantly different from zero, not significantly different from zero,
and across all runs. The dotted horizontal line at O shows minimal Type S error.

Introduction: depending on statistical power, a non-significant result can still be infor-
mative; and errors in effect size can be substantial even when p-values are low. We then
show how non-significant results of an individual study can under some circumstances
offer useful information about effect size (point 3 in Introduction), before turning to

Q2.
3.4.1 Low-power regime

To illustrate a low-power regime, we select the power curve from simulations with 6
subjects, 10 items, and 1 repetition per item (Figure 4, red line). In this regime, power
is always below 50%, far below the 80% cutoff, regardless of effect size (assuming that
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Figure 4: Simulated power calculations based on the Roettger et al. (2014) data for
three power regimes: low (6 subjects, 10 items, 1 repetition), medium (10 subjects, 15
items, 1 repetition) and high (18 subjects, 25 items, 5 repetitions). Shading shows 95%
confidence intervals. The dashed line shows power of 0.8.

the effect is <10 ms). However, the logic of interpretation differs depending on the
statistical significance of the result:

o If we find a significant result (p < 0.05), we may conclude that observing an
effect of this magnitude, or larger, is unlikely to have occurred if the true contri-
bution of 3, is in fact zero.

e If we do not find a significant result, we should not be surprised, but we cannot
interpret this lack of effect as evidence in favor of anything: a non-significant
result (p > 0.05) is likely to occur whether there is in reality a true effect of <10
ms (low power) or not (high p-value).

In a low-powered study, then, a non-significant result is not informative, in the
sense that it cannot be interpreted as refuting the hypothesis that there is an influence
of the covariate of interest on the dependent variable.

In terms of the IN literature, a possible analog is the “elicitation condition” study
of Fourakis & Iverson (1984), with 4 subjects and 6 repetitions; t-tests are reported
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Figure 5: Simulated calculations of Type M error (top row) and Type S error (bottom
row) based on the Roettger et al. (2014) data, using only non-significant (left column)
or significant (center column) outcomes, or all outcomes (right column), for the same
three power regimes as in Figure 4. For Type S error, calculations based on fewer than
25 significant or non-significant outcomes are omitted, as these do not give informative
estimates. Note that the optimal values of Type M error is 1 (dashed line), while the
optimal value of Type S error is O (dashed line) and the maximum is 1. Shading shows
95% pointwise confidence intervals.

for subsets corresponding in our terms to 1-2 items, and none of these tests are sig-
nificant.'” Approximate power calculations for these t-tests can be carried out using
the information in their Table 2; even assuming a 10 ms true effect size (much larger
than that reported), power is below 0.35 for all tests. Given what we might reasonably
assume about the true size of the effect, the null result of Fourakis & Iverson does not

10 Although the words in this study were not organized into pairs, the corresponding power calculation is
very similar. Note that we are considering only ¢-tests conducted across all speakers—which Fourakis &
Iverson (1984) focus on—and not those conducted within individual speakers.
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provide evidence to “falsify the claim that final obstruent devoicing is not neutralizing
in German”, neither can it be claimed that “the traditional position that German de-
voicing constitutes phonologically irrecoverable merger is fully supported” (Fourakis
& Iverson, 1984, p. 149). When power is this low, a null result does not by itself
contribute to our understanding of the phenomenon under study.

However, even if we do find a significant effect in a low-power regime, we should
not assume that it can automatically be trusted. This is because the likelihood of com-
mitting a Type M or Type S error is much higher when power is low, as can be seen
in Figure 5 (red lines): statistically significant results from low-powered studies are
virtually guaranteed to have an effect size inflated in magnitude, and possibly with the
wrong sign, a phenomenon sometimes known as the “winner’s curse” (Ioannidis, 2008;
Button et al., 2013).

In the IN literature, a possible example of the winner’s curse is the study of Mitleb
(1981a, pp. 87-89), who found very large differences in preceding vowel duration be-
tween German word-final phonemically voiced and voiceless stops compared to other
studies: 34 ms for bisyllabic words, and 23 ms for monosyllabic words, with small p-
values in both instances (p < 0.001). For each word type, Mitleb’s design corresponds
in our terms to ns = 10, n; = 4, and n,, = 4. Although our simulations do not cover
this small a number of items, we can see by extrapolating from the second rows of
Figs. 2 and 3 that if the true effect size were < 10 ms, Type M error for a significant
result with this design would be substantially above 1, while Type S error would remain
near 0. Thus, Mitleb’s finding is consistent with a much smaller true effect size, and
the observed effect size is probably exaggerated due to low power.

3.4.2 Mid-power regime

The mid-power regime is illustrated with simulations of 10 subjects and 2 repetitions
each of 15 items (Figure 4, green line). In this regime, power is above the 80% mark
only for the largest effect sizes considered.

e A significant result can be interpreted as unlikely to have occurred by chance.
However, as seen in Figure 5, Type M and Type S errors can still be fairly high,
depending on true effect size. For significant findings in particular, the effect
sizes from mid-powered studies are almost certain to be inflated on average (al-
though they will usually have the correct sign: see Figure 5 bottom row).

e The interpretation of a null result is still not straightforward under this regime, as
it depends heavily on the effect size. If we have reason to believe the true [, is,
say, 10 ms or higher, we may reasonably expect to have detected it. Therefore,
not finding a significant effect can be interpreted as evidence that if an incom-
plete neutralization effect exists, it is probably smaller than 10 ms. Note that this
is not the same as saying we have evidence that there is no effect; rather, this is
a statement about our ability to detect an effect of a given size.

A possible example from the IN literature is the study of Piroth & Janker (2004),
who analyzed data from 3 repetitions of 9 pairs uttered by 6 German speakers from dif-
ferent dialect areas. They found that the 2 Southern German speakers in their sample
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preserved acoustic differences in coda duration between underlyingly voiced/voiceless
pairs, but that speakers from the other dialect regions did not. Given the power of
the study, however, we should not necessarily be surprised that they failed to detect a
(small) effect, if it is indeed present. If the IN effect for the Southern German speakers
is in reality larger than for speakers from other dialect areas, it will be easier to detect,
all else being equal. So while we are licensed to conclude something about the South-
ern German speakers in this study, we have not really learned anything about other
speakers, or about the ensemble of speakers as a whole.

As seen in Figure 4, in mid-powered regimes power is particularly sensitive to the
true effect size. One practical consequence of this is that replications of the same
experiment (or subsets of data from the same experiment) could well return a mix of
significant and non-significant effects, even if there is a true effect. Similarly, different
results may obtain depending on the particulars of the data analysis method.

While a mid-powered study has important drawbacks relative to a high-powered
study from the perspective of power (and Type M/S error, discussed below), the mid-
power case is important to consider because many published studies in experimental
phonetics (like other behavioral sciences) are probably mid-powered: researchers use
the smallest sample size that seems reasonably likely to detect an effect, to minimize
cost and time.

3.4.3 High-power regime

Finally, we consider a design with 18 speakers, 25 items, and 6 repetitions (i.e. close
to the design of Roettger et al., 2014, but with n;=25 instead of 24, and 6 repetitions
instead of 1). As seen by the blue line in Figure 4, power is above the 80% mark for
the majority of the range of plausible effect sizes.

e A significant result can again be interpreted as evidence of an incomplete neutral-
ization effect—if the true effect size were zero, such a result would be unlikely
to occur (modulo of course the possibility of Type I error).

e Unlike the low and medium-power regimes, however, here we are also licensed
to interpret a non-significant result: if there were a true effect in this range of
effect sizes, we would be surprised to not detect it, while if the true effect size
were zero, we would not be surprised if we failed to find it. Therefore, in a high-
powered design, we are licensed to interpret a null result as evidence “in favor
of” complete neutralization—at least in the sense of, if there is an effect, we may
be confident that it is small.

Also of note is the Type M error rate of high-powered studies. For both significant
and non-significant results, Type M error remains relatively near its optimum (=1) when
power is high. If both significant and non-significant results are grouped together,
the mean degree to which the true effect size is inflated is extremely low, even for
very small true effect sizes. This illustrates that high power not only increases our
confidence that we haven’t accidentally failed to reject the null, but also our confidence
in the reasonableness of our effect size estimates. This fact has important ramifications
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for our Q2: what we are licensed to conclude from a body of studies (see Section 3.5.1
below).

3.4.4 Robustness of effect size estimates
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Figure 6: Type S error (top) and Type M error (bottom), as a function of power in
simulations using the Roettger et al. (2014) data, using only non-significant (red) or
significant (green) outcomes, or all outcomes (blue); for a large effect (3, = —10
panel) and a small effect (3, = —4 panel). Each point corresponds to one set of values
of simulation parameters (Table 1), and lines/shading are LOESS smooths and 95%
confidence intervals.

We now turn to point 3 raised in the Introduction: the fact that non-significant
results can still give useful information about effect size, depending to a large extent
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on power.

Figure 6 shows the relationship between power and Type M and Type S error, both
conditional on significance and not (as in Figure 5). These plots show smooths across
all simulation runs (where one point corresponds to one set of parameters in Table 1) for
two effect sizes: a relatively large effect (3, = —10 ms) and a smaller effect (3, = —4
ms). Thus, different values of power in each panel effectively means different sample
sizes. We can use these plots to think about what can be inferred from different studies
of the same phenomenon, differing in sample size—and in particular what, if anything,
can be inferred from non-significant results.

e For the larger effect, Type S error is effectively zero when power is at least 0.4,
regardless of whether the result is statistically significant. When both significant
and non-significant results are considered, Type M error is very low (= 1); for
non-significant results, the magnitude may be underestimated, but probably only
by half or less its true size.

e For the smaller effect, Type S error stays low (below about 5%) provided power
is at least medium (0.5). Type M error is again very low down to very low power
(0.25), if all results are reported. Focusing just on non-significant results, effect
magnitude can again be underestimated, but again by only 50% or less.

e Also of note is that as power decreases, Type S error is affected more slowly than
Type M error.

These results illustrate that, practically speaking, one can still use non-significant
results to say something about (likely) effect size, as long as power is high enough.
Non-significant results may still give useful information about effect direction, and to
some extent effect magnitude—especially when the true effect size is reasonably large.
This holds for even medium-powered studies, which will by definition frequently give
non-significant results.

This generalization comes with an important caveat. When a result is not sig-
nificant, the observed effect is (by the definition of significance) also likely to have
been observed if the true effect size were zero. So, what can be minimally said about
medium- to high-powered, non-significant results is that they are consistent with both
null and non-null effects. What else one might conclude about the true effect size
depends on the researcher’s a priori belief about the true effect size, informed by ex-
pectations based on domain knowledge or prior work. (On this latter point, see Section
3.5.3 as well as the paper by Nicenboim, Roettger & Vasishth in this issue.)

This caveat suggests looking more closely at what can be concluded for different
non-significant effects: what can be concluded when p fails to cross the pre-specified
« threshold, but is low enough for the researcher to attempt interpretation of the result
(frequently resulting in turns of phrase such as “marginally significant”)? Figure 7
shows the relationship between power and Type M and Type S error, now across all
simulations (effect size € (—2, —10)), with non-significant results broken down into
“marginal” (0.05 < p < 0.2) and p > 0.2 results.!! We see that for “marginal” results,

1 Although we use p < 0.2 as a cutoff here, in reality the relationship is gradient.
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Figure 7: Type S error (top) and Type M error (bottom), as a function of power in
our simulations using the Roettger et al. (2014) data, for non-significant effects with
0.05 < p < 0.2 and with p > 0.2. Each point corresponds to one set of values
of simulation parameters (Table 1), and lines/shading are LOESS smooths and 95%
confidence intervals. (Note that CIs are mostly not visible.)

as long as power is not too low, the effect is almost certain to have the right sign, while
the magnitude, though likely underestimated, is not wildly wrong (within <50% of
correct value). For p > 0.2 results, Type S and Type M error are much worse, and the
observed effect is also likely if the true effect size is zero. In this regime, then, nothing
can be concluded about true effect size.
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3.5 Discussion
3.5.1 Interpreting a body of studies

We now turn to our Q2: what can we conclude from a collection of studies of (more
or less) the same phenomenon? Strictly speaking this is the domain of “meta-analysis”
(Lipsey & Wilson, 2001; Cumming, 2013), a methodology for pooling the results
of previous studies to determine likely parameter values. The paper by Nicenboim,
Roettger & Vasishth (this issue) conducts a meta-analysis of 14 previous studies of
German incomplete neutralization, and concludes that there is a small but real effect.

However, even in the absence of formal meta-analysis, the considerations of power
and effect size discussed above in the context of individual studies can be used to
interpret the German incomplete neutralization literature, which is representative of
many literatures in phonetics showing “mixed” results (in terms of the significance of
a parameter of interest). When we have a mixture of significant and non-significant
results, what can we say about likely values of 3,? Do we have evidence for 5, # 0
(IN effect), 5, = 0 (no IN effect), or truly conflicting evidence?

As the above discussion suggests, the answer depends largely on the power of the
studies involved. Consider just the case of whether or not 3, is equal to 0. If all of the
studies concerned have high power, then those which find significant results provide
us with evidence consistent with 3, # 0, while those that find null results can be
interpreted as consistent with 3, = 0. In this scenario, the results are truly conflicting,
because we have evidence that supports different, presumably incompatible theoretical
positions. If, on the other hand, the high-powered studies find significant results, but
the low-powered studies find null results, we only have evidence that supports 5, > 0;
the null results are not evidence for or against anything.

Concerning the actual value of /3., lower-powered studies are more likely to incor-
rectly estimate its magnitude, and (less often) its sign, while higher-powered studies
estimate (3, more accurately. This also plays into how to interpret an ensemble of es-
timated effect sizes from different studies. For example, finding a mixture of positive
and negative 3, in different high-powered studies would give truly conflicting evidence
on effect direction, while observing 5, > 0 in all studies except a couple low-powered
ones would be consistent with the true effect in fact being positive.

In the case of the (German) incomplete neutralization literature, previous low- to
medium-powered studies have found effects with a consistently positive sign, but dif-
fering in magnitude. Those studies showing non-significant effects are low-powered,
while the one high-powered study (Roettger et al., 2014) of which we are aware finds
a significant effect of 8.6 ms. This is consistent with most studies having sufficient
power to correctly detect the sign of the (non-null) effect, but not to accurately esti-
mate its magnitude. Thus, a reasonable interpretation based on the existing literature
is not that there is “mixed evidence” for incomplete neutralization, but rather that there
is a small, consistently positive effect, probably within the range considered in our
simulations (2—10 ms).
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3.5.2 Simulated power is conditional on your model and data

It is important to remember that the power estimates derived in the preceding sections
are highly dependent on particular properties of the dataset used for the simulations. In
the Roettger et al. data, there happens to be very little variation between subjects and
items for the particular effect of interest (vowel duration). In the language of mixed
models, this means that the random slope variances are quite small. Furthermore, the
fact that this a fully crossed design (all subjects produced all experimental items in both
conditions) means that subject and item variability in the intercept is not confounded
with the effect of interest. As a result, power increases fairly rapidly, and as seen
in Figure 1, medium-sized effects can be detected with a relatively small number of
subjects and items.

Whether or not this is a typical situation for experimental phonetics is an open ques-
tion. But the takeaway is that the plots in Section 3.3 should not be read as providing
estimates for power, Type M and Type S errors for a design of so-and-so many subjects
and items; they are only valid for this particular dataset. While the analytic approach
of Westfall et al. (2014) can provide some more generality on how power is a function
of sample size and experimental design, as previously discussed, it does not take co-
variates into account, which may result in underestimated power. On the other hand,
our simulations only studied the power of main effects; even for identical designs, the
power to detect interactions may be far lower (Gelman, 2018).

Similarly, in using these results to reason about the body of reported IN studies, we
are assuming that the effect sizes and variance components are sufficiently similar to
those we have calculated based on the Roettger et al. data that our power calculations
are applicable. This may not always be true, for example if the different subject pop-
ulations of different studies have different degrees of variability (e.g. a mono-dialectal
versus multi-dialectal sample). Our general point here is simply to stress that, while the
simulation-based approach can be highly accurate for particular designs and datasets,
the results do not automatically generalize to other designs and datasets.

3.5.3 Type II error, precision, and uncertainty

The language and logic of Type I and Type Il errors are indelibly linked to the Neyman-
Pearson decision-theoretic paradigm of hypothesis testing, where hypotheses are ac-
cepted or rejected when a test statistic falls below some threshold. As argued by Fisher
(1956, Ch. 4) as well as many others, while such a procedure is undoubtably useful
in certain settings, it is not clear that it is the appropriate paradigm for experimental
scientific inquiry.'? In this regard, one might wonder why we have devoted an entire
paper to the discussion of a concept embedded in such a framework. It is our expe-
rience that the Neyman-Pearson hypothesis-testing paradigm, or something like it, is
what is familiar to the majority of researchers in phonetics. However, what we are
ultimately advocating for is increased attention on the precision and uncertainty of es-
timates. Power, and Type M and Type S errors, are one way to understand and measure

12Even Neyman and Pearson themselves seem to have had their doubts as to whether their framework
was well-suited for scientific research: see e.g. the discussion in Hurlbert & Lombardi (2009, p. 319) and
references therein.
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precision and uncertainty.

In Bayesian approaches to statistical inference, precision and uncertainty take on a
more central role. While the core concepts are fairly simple, both the theory and prac-
tice of Bayesian statistics can be challenging, and we recognize that not all researchers
will have the time or inclination to explore them fully. As we have tried to illustrate
here, it is still possible to emphasize the precision and uncertainty of parameter esti-
mates within a (frequentist) hypothesis testing framework, but we encourage interested
researchers to explore Bayesian methods as well. McElreath (2015) provides an ex-
cellent and accessible introduction to Bayesian statistics, with many examples in R.
Tutorials on the application of Bayesian techniques from a linguistic perspective in-
clude Nicenboim & Vasishth (2016); Sorensen et al. (2016); and Vasishth, Nicenboim,
Beckman, Li & Kong (this issue).

4 Conclusions

In this paper, we have emphasized the importance of statistical power in the interpre-
tation of phonetic data. Power calculations, along with the consideration of sign and
magnitude errors, can help inform our understanding of both a single study, as well as
a body of studies. We have seen that, depending on power, even results which are not
statistically significant may nonetheless still be informative, in that they can still pro-
vide reasonable estimates of effect sizes, including providing evidence “for the null” in
some sense.

At the same time, we have shown how low- and even medium-powered studies can
also make substantial errors in estimating the sign and magnitude of effects, even when
accompanied by a small p-value. By taking power and effect size errors as well as
significance into account, phoneticians are better positioned to reason more carefully
about findings of all types, not just those where p happens to be less than 0.05.

In addition, we have provided a concrete example from the literature, including
a practical demonstration of how power and design calculations can be performed in
the mixed-model setting in which many practicing phoneticians now find themselves
working. Together with our accompanying R code (Kirby & Sonderegger, 2018a), we
hope this helps researchers to perform their own power and design analyses.

However, while simulation is a useful tool, an appreciation of power and effect size
errors can inform our reasoning even without it. Consider two studies with the same
effect size, but different sample sizes. If the large-sample study finds a significant effect
but the small-sample study does not, this is perfectly consistent with there being a true
effect. Simply by giving factors such as sample size—one indicator of power—as much
weight as we do the p-value in interpreting our model coefficients, we are in a better
position to reason about the robustness of our results.

We conclude with three practical recommendations we believe to be beneficial for
the phonetic sciences as a whole. Again, these recommendations are in no way novel—
see for instance Wilkinson and the ASA Task Force on Statistical Inference (1999)—
but we hope that this illustration in a phonetics context will encourage them to be
employed more consistently in our field.
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1. Report all results We strongly recommend reporting effect size and direction in
phonetic studies, regardless of statistical significance. Doing so consistently as a field
will result in more accurate estimates of the true sizes of effects across studies—as
demonstrated by the fact that Type M error unconditional on significance remains near
1 (optimal) across most parameter values in our simulations. Researchers are already
doing this when they report the full output of their regression analyses (including coef-
ficient estimates and standard errors), but it is still not infrequent to find papers which
only report p-values, or which only indicate whether p was at or below some threshold.
In isolation, p-values do not communicate scientifically useful information.

Reporting both significant and non-significant results is particularly critical for
small effects such as incomplete neutralization, where power of any given study is
unlikely to be high. As a result, the effect size of significant results is likely to be in-
flated (high Type M error). This means that if only statistically significant effects are
published and discussed, the problem gets worse, because the effect size across a body
of studies will tend to be inflated as a whole (the “file drawer effect”: Rosenthal, 1979;
Button et al., 2013; Simonsohn et al., 2014). Of course, non-significant findings al-
ways have a plausible alternative explanation—this is the definition of significance—so
bringing them into interpretation is trickier. Nevertheless, in general our understand-
ing of phenomena such as incomplete neutralization is enriched by having a body of
studies to interpret.

However, we emphasize that we are not recommending that reviewers and editors
simply accept any and all results, or judge them all equally. This leads us to our second
recommendation:

2. Conduct high-powered studies Our simulations also underscore the importance
of conducting high-powered studies whenever possible, and taking power into account
when interpreting statistical analyses. Since in phonetics, we are generally interested in
effect sizes and directions, and since data collection and analysis can often by laborious
and time-consuming, it is especially important that we be confident of our ability to
detect effects of a particular size before we begin data collection. Another way to think
of this is to aim to conduct studies with high precision, i.e. where the uncertainty
surrounding the size and magnitude of the estimates is minimized (see Section 3.5.3).
For experimental studies, it is often possible to increase power/precision by in-
creasing sample size, both in terms of subjects as well as in terms of items. While we
have not conducted a formal survey, our impression is that, when compared to fields
such as medicine and ecology, phonetic studies often have very small sample sizes.
An opportunistic review of seven papers from the November 2017 issue of this journal
containing statistical analyses of acoustic speech production data found the number of
participants to range from 11 to 39; within experimental groups, however, sample sizes
ranged from 24 to just 6 speakers. The first author has published studies with groups
of 6, 10, and 20 participants. Our general impression is that such sample sizes are
reasonably representative. As shown in Sections 2.4.1 and 3.4.3, however, even a nom-
inally high-powered study can still produce worryingly uncertain estimates if the true
effect is small, and a small effect is highly unlikely to be accurately estimated with just
6 participants per group—at least for effects the size of those considered in our case
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study. Similarly, increasing the number of repetitions is generally no replacement for
including more unique items (Winter, 2015). It is therefore important to think carefully
about the interaction of sample size and known or expected effect size when planning
and interpreting studies. For reasonably large effects, 24 participants may be perfectly
adequate, but when smaller effects t are of interest, many more participants may be
required.

Corpus studies, which are becoming ever more prevalent, present an interesting
case. We suspect that power for detecting any given effect is often not high in corpus
studies, for several reasons: the large number of predictors being modeled as affecting
a dependent variable, high variability in the data (which lowers power), and inherently
limited sample size. In this setting, applying commonly recommended analysis tech-
niques (such as fitting the maximal random effect structure) will minimize Type I error,
but can dramatically lower power (Matuschek et al., 2017). Null results in this setting
will therefore frequently be uninterpretable, but can under some circumstances still
give information about effect size.

3. Conduct direct replications Our final recommendation is to encourage direct
replications of important studies, and for journals to publish them. This might take the
form of a pre-registered study, such as that promoted by the Center for Open Science’s
Registered Reports concept, but a replication could also form a part of a larger study
that also includes novel experimental results. As the discussion in Section 3.4 hopefully
made clear, there can be substantial sign and magnitude errors in estimating effect size
even when p-values are very low. Similarly, the effect size found from a single high-
powered study should not be assumed to be accurate or infallible; direct replications
should always be regarded as the gold standard.
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