

Vrije Universiteit Brussel

Introducing Parselmouth: A Python Interface to Praat
Jadoul, Yannick; Thompson, Bill; De Boer, Bart

Published in:
Journal of Phonetics

DOI:
10.1016/j.wocn.2018.07.001

Publication date:
2018

License:
CC BY-NC-ND

Document Version:
Accepted author manuscript

Link to publication

Citation for published version (APA):
Jadoul, Y., Thompson, B., & De Boer, B. (2018). Introducing Parselmouth: A Python Interface to Praat. Journal
of Phonetics, 71, 1-15. https://doi.org/10.1016/j.wocn.2018.07.001

Copyright
No part of this publication may be reproduced or transmitted in any form, without the prior written permission of the author(s) or other rights
holders to whom publication rights have been transferred, unless permitted by a license attached to the publication (a Creative Commons
license or other), or unless exceptions to copyright law apply.

Take down policy
If you believe that this document infringes your copyright or other rights, please contact openaccess@vub.be, with details of the nature of the
infringement. We will investigate the claim and if justified, we will take the appropriate steps.

Download date: 03. May. 2024

https://doi.org/10.1016/j.wocn.2018.07.001
https://cris.vub.be/en/publications/introducing-parselmouth-a-python-interface-to-praat(ea090eca-dcdc-40f3-b201-b5f98f7cb60d).html
https://doi.org/10.1016/j.wocn.2018.07.001

Accepted manuscript
© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

Introducing Parselmouth: A Python Interface to Praat

Yannick Jadoula,b,∗, Bill Thompsonc,a, Bart de Boera,c

aArtificial Intelligence Lab Brussels, Vrije Universiteit Brussel
Pleinlaan 2, 1050 Elsene, Belgium

bADReM Research Group, University of Antwerp
Middelheimlaan 1, 2020 Antwerpen, Belgium

cLanguage and Cognition Department, Max Planck Institute for Psycholinguistics, Wundtlaan 1,
Nijmegen 6525 XD, The Netherlands

Abstract

This paper introduces Parselmouth, an open-source Python library that facilitates access
to core functionality of Praat in Python, in an efficient and programmer-friendly way.
We introduce and motivate the package, and present simple usage examples. Specifically,
we focus on applications in data visualisation, file manipulation, audio manipulation,
statistical analysis, and integration of Parselmouth into a Python-based experimental
design for automated, in-the-loop manipulation of acoustic data. Parselmouth is available
at https://github.com/YannickJadoul/Parselmouth.

Keywords: Praat, Python, Data Analysis, Acoustics, Phonetics, Software

1. Introduction

Data analysis in the phonetic sciences routinely relies upon the functionality of Praat
(Boersma, 2001; Boersma & Weenink, 2018), an extensive software package which has
subserved the day-to-day activities of phoneticians for more than two decades. This
paper introduces Parselmouth, an open-source Python library that exposes major func-
tionality of Praat into Python. Two principal advantages result from this integration:
1) users of Praat may now benefit from the expressive power of a large-scale language
like Python, and its expansive ecosystem of scientific and computational libraries; and
2) users of Python may access the many tools and utilities for sophisticated acoustic
analysis that Praat provides. Parselmouth is currently available as version 0.3.0, for use
with Windows, macOS, and Linux-based operating systems, for Python versions 2 and

∗Corresponding author
Email address: Yannick.Jadoul@ai.vub.ac.be (Yannick Jadoul)

Preprint submitted to Journal of Phonetics July 5, 2018

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/YannickJadoul/Parselmouth

3. The package is under active development by the first author of this article, and can
be downloaded from https://github.com/YannickJadoul/Parselmouth. Basic speech
analysis methods from Praat are already available, while all other algorithmic function-
ality of Praat can be called indirectly. We are hopeful that others in the community of
speech scientists and engineers will wish to contribute to the development.

The remainder of this paper is organised as follows: Sections 1.1, 1.2, and 1.3 re-
spectively give detailed background and motivation, compare Parselmouth to other soft-
ware packages, and provide technical information about Parselmouth. Sections 1.4, 1.5,
and 1.6 then present more practical information on the functionality of Parselmouth,
how to install the Python library, and where to find its online documentation and fur-
ther resources. Section 2 presents five usage examples, focusing on what we imagine to
be some of the most recurrent technical challenges speech scientists are likely to face:
idiosyncratic visualisation of acoustic data (Section 2.1); reading, writing, and manip-
ulating batches of acoustic files and data frames (Section 2.2); manipulation of audio
files along complex acoustic dimensions (Section 2.3); statistical analysis of the output
of acoustic analyses (Section 2.4); and integration of automated acoustic analysis into
experimental design (Section 2.5). These examples are intended to be illustrative of the
principles behind the package, rather than exhaustive demonstrations of Parselmouth’s
potential use cases, which we expect to grow indefinitely with the advance of Python and
the scientific creativity it facilitates. We summarise the motivation and examples and
present concluding remarks in Section 3, after which Section 3.1 closes the paper with a
brief discussion of the future of Parselmouth.

At this point we wish to stress that Parselmouth is built on the vast Praat collection
of source code: as such, we encourage twin citation of both Praat and Parselmouth
whenever Parselmouth is used for scientific research.

1.1. Motivation

The Python programming language is rapidly becoming the lingua franca of scien-
tific computing. Python is used and supported by an enormous community of scientists,
researchers, and engineers whose workflows are continuously improving thanks to inte-
gration of diverse computational utilities in a single programming language. For many,
including us, Python is the go-to toolbox for data manipulation and analysis. However,
for contemporary speech scientists, researchers, and engineers, major portions of our day-
to-day activities – specifically, analysis of acoustic data using Praat functionality – remain
difficult or time-consuming in Python; the necessary functionality is often unavailable
or dispersed over multiple unrelated and sometimes incompatible libraries. We began
developing Parselmouth as a solution to this problem. Parselmouth is not a replacement
for Praat: it is an additional interface to Praat, making Praat’s functionality available in
Python. We have three principal goals in mind: to allow experienced users of Praat to
more efficiently integrate acoustic analysis with scientific tools available in Python but
not in Praat; to provide access to Praat’s functionality for users who are comfortable
with Python but unfamiliar with Praat; and to simplify or optimise the workflow of any
users who would simply rather work in a single language.

Python is often used as glue language for scientific workflows, drawing together the
“scientific stack” in a collection of widely used, robust scientific libraries (e.g., NumPy,
SciPy, pandas, scikit-learn, matplotlib, etc.; see https://scipy.org/about.html). As

2

https://github.com/YannickJadoul/Parselmouth
https://scipy.org/about.html

Python is designed as an extensible programming language and framework, its use ex-
tends across many domains, and even across other programming languages. Scientists
using Python have access to, for example: advanced statistical modeling libraries and
probabilistic programing frameworks such as Statsmodels1, PyMC3 2, Pyro3, and Ed-
ward4; deep learning libraries like TensorFlow5 or PyTorch6; Jupyter notebooks7 (for-
merly IPython); experimentation packages such as PsychoPy8 or Dallinger9; the rpy2 10

module that provides easy access to R functionality; and the official ‘MATLAB Engine
API for Python’ 11, which integrates MATLAB into Python programs. More generally,
just like Praat, Python has functionality for writing universal data exchange formats –
built-in, such as comma-separated values (csv) or JavaScript Object Notation (JSON),
or through external libraries, such as HDF512 or SQL databases13,14 – which makes it
possible and convenient to use Parselmouth to combine the functionality of Praat and
these Python libraries with almost any other computational framework.

While choosing any particular language is to some extent an arbitrary choice, Python
is a popular and high-level, yet fully-fledged programming language. Python not only
accommodates quick scripting but also provides support for more complex programming
paradigms and performant implementations of algorithms. While the Praat scripting
language is suitable for automating repeated workflows and calculations within the con-
text of Praat, we believe the use of Python and Parselmouth can be advantageous in
a broader range of applications. Python implements general programming principles,
including a full and generic type system with built-in types (i.e., lists, tuples, sets, dic-
tionaries, . . .) and custom classes. As a result, Python is well-suited to be used in a
more programming-intensive context. In these cases, integrated development environ-
ments with e.g. syntax highlighting, autocompletion functionality, and debugging tools,
can assist in the development process.

Python is also an accessible language, useful for writing simple scripts. Python is
often taught to students at their first encounter with programming, sometimes even be-
fore a specialisation in phonetics brings them into contact with Praat. We believe that
Parselmouth can be attractive to this group of users that are already familiar with pro-
gramming or Python, but not with the Praat scripting language. Python is supported by
a large community of users who have written up many solutions to specific programming
problems and frequent Python errors – see, for example, StackOverflow15. Fewer people
have the necessary experience with Praat to answer questions and solve problems con-

1http://www.statsmodels.org/
2http://docs.pymc.io/
3http://pyro.ai/
4http://edwardlib.org/
5https://www.tensorflow.org/
6http://pytorch.org/
7http://jupyter.org/
8http://www.psychopy.org/
9http://docs.dallinger.io/en/v3.4.1/

10https://rpy2.readthedocs.io/
11https://mathworks.com/help/matlab/matlab-engine-for-python.html
12http://docs.h5py.org/
13http://www.sqlalchemy.org/
14https://pandas.pydata.org/pandas-docs/stable/io.html#io-sql
15https://stackoverflow.com/questions/tagged/python

3

http://www.statsmodels.org/
http://docs.pymc.io/
http://pyro.ai/
http://edwardlib.org/
https://www.tensorflow.org/
http://pytorch.org/
http://jupyter.org/
http://www.psychopy.org/
http://docs.dallinger.io/en/v3.4.1/
https://rpy2.readthedocs.io/
https://mathworks.com/help/matlab/matlab-engine-for-python.html
http://docs.h5py.org/
http://www.sqlalchemy.org/
https://pandas.pydata.org/pandas-docs/stable/io.html#io-sql
https://stackoverflow.com/questions/tagged/python

cerning Praat scripts, and fewer resources and tutorials exist to learn the Praat scripting
language than to learn Python.

Finally, the Python project and the available libraries are modular. They are spe-
cialised in one area of functionality (i.e., being a programming language, plotting graphs,
handling data tables, performing statistical analyses, etc.), yet are designed to be used
and combined in larger and more complex projects. With Parselmouth, we aim to add the
option of using the highly advanced, specialised functionality from Praat in combination
with the already existing libraries in Python in this same manner.

1.2. Relation to previous software

Parselmouth is not the first attempt to port Praat functionality into Python. Other
packages exist, together offering a range of Praat functionality. However, the previous
projects we are aware of are generally restricted in important ways that Parselmouth is
not, technically speaking. We see the diversity of preceding projects as testament to a
clear but unfulfilled demand for sophisticated acoustic data analysis tools in Python. We
are aware of praat-py16, praat-python-scripts17, praatIO18, and textgrid19.

Generally speaking, we found two approaches in these projects. On the one hand,
some projects reimplemented a selection of Praat’s functionality in Python code. A sig-
nificant drawback of this approach is that it does not guarantee the same results as Praat,
due to the potential for subtly distinct implementations, and the possibility of introduc-
ing errors in newly-written code. This approach requires a great deal of effort for every
extra bit functionality, and requires familiarity with and insight into the phonetic algo-
rithms that Praat has already implemented, tested, and refined. Other existing projects
instead provide a Python interface to Praat scripts and its scripting language. This often
has the disadvantage of compromised performance because of increased communication
between Python and a separate Praat program (cfr. Section 1.3). Moreover, a Python
user still needs to learn the Praat scripting language, rather than being able to use a
“pythonic”20 Python library.

While all these projects fulfill the needs of the contexts in which they were created,
and might certainly be used and combined by other users, none of these satisfactorily
provides efficient access to a broad range of Praat functionality in a pure Python en-
vironment. Parselmouth combines the strengths of these approaches to offer a fully
pythonic Python library – i.e. classes, functions, operators, etc. that look and function
just like other familiar libraries in Python. This is made possible by a more compre-
hensive technical solution to the challenge of linking Python and Praat’s code. Rather
than re-implementing the complex algorithms underpinning Praat, Parselmouth utilises
Praat’s own official C/C++ (open) source code behind the scenes. This ensures that any
analyses conducted using Parselmouth are completely consistent with Praat, without the

16https://github.com/JoshData/praat-py
17https://github.com/mmcauliffe/python-praat-scripts
18https://github.com/timmahrt/praatIO
19https://github.com/kylebgorman/textgrid
20“To say that code is pythonic is to say that it uses Python idioms well, that it is natural or

shows fluency in the language, that it conforms with Python’s minimalist philosophy and emphasis
on readability.” – https://en.wikipedia.org/wiki/Python_(programming_language) (accessed 14th of
September, 2017)

4

https://github.com/JoshData/praat-py
https://github.com/mmcauliffe/python-praat-scripts
https://github.com/timmahrt/praatIO
https://github.com/kylebgorman/textgrid
https://en.wikipedia.org/wiki/Python_(programming_language)

user needing to know Praat’s scripting language. Moreover, by reaching directly into the
source code of Praat, Parselmouth’s access to Praat’s data structures and routines is fast
and efficient. Section 1.3 gives a very brief description of how this works and why we
believe our solution achieves a desirable trade-off between the available approaches.

In addition, numerous scientific audio tools and libraries are available to users of
Python (see, e.g., https://github.com/faroit/awesome-python-scientific-audio):
we hope that Parselmouth can complement these tools, whilst also providing a unified
suite of tried-and-tested routines for analysis of speech data, specifically in Praat.

We are also aware of libraries that allow access to Praat functionality for the R
language and MATLAB environment: PraatR (Albin, 2014)21, and rPraat and mPraat
(Bořil & Skarnitzl, 2016)22. We see these packages as complementary to Parselmouth:
their availability caters to the needs of users of these other languages, but does not
provide a convenient solution for the many Python users in the scientific community.
Our impression is that these packages are generally subject to the same restrictions as
the Python packages we reviewed above: either they provide access to Praat functionality,
but only by calling Praat commands externally (PraatR), or they re-implement a subset
of Praat (mPraat & rPraat).

More generally, we are currently witnessing an exciting expansion of digital tools for
open and collaborative manipulation, management, and analysis of speech data. One
project in this vein is the EMU Speech Database Management System23, which aims
to harness digital tools to expand the range of speech-data annotation and indexing
capabilities currently available to speech scientists. We hope that Parselmouth can be
understood as a small contribution to this general movement to increase the accessibility
of speech-analysis methods.

1.3. Technical details

The official Python C API24 makes it possible to use the compiled C/C++ routines
from Praat directly in Python. In particular, Parselmouth relies on the pybind11 library
(Jakob et al., 2017) for low level, efficient communication with and access to Praat’s
internal objects, memory, and code. This makes Parselmouth fast and efficient by re-
moving the need to send large lists and grids as strings of numbers (which would first
have to be serialized, then parsed, etc.) between programs. Because Praat is part of the
Parselmouth library instead of using an external version of the Praat program, we can
provide immediate access to the raw data calculated by Praat. Moreover, NumPy (Walt
et al., 2011) allows us to directly use data rather than making an entire copy. Consider
calculating a spectrogram for one second of audio, for instance, using Praat’s default
time step of 0.002 s and maximum frequency of 5000 Hz. This would result in roughly
500 time slices that all consist of 160 frequency bins, or about 80000 floating point values
in total. When Praat calculates these values, they already exist in a 2D array, stored
in memory. Parselmouth together with NumPy lets you use the existing values without
copying, rather than copying all of them into Python lists or making 80000 calls into

21http://www.aaronalbin.com/praatr/
22http://fu.ff.cuni.cz/praat/
23http://ips-lmu.github.io/EMU.html
24https://docs.python.org/3/c-api/index.html

5

https://github.com/faroit/awesome-python-scientific-audio
http://www.aaronalbin.com/praatr/
http://fu.ff.cuni.cz/praat/
http://ips-lmu.github.io/EMU.html
https://docs.python.org/3/c-api/index.html

a running Praat instance to request the values. And in the case that all of these nu-
meric values would have to be converted back and forth to string representations during
inter-process communication with the sendpraat tool or subprocess calls to the Praat
executable, the efficiency would even decrease more dramatically.

As such, Parselmouth’s performance is notably fast. On the one hand, when it comes
to the execution of Praat’s functionality, we are using the exact same code, and Python
scripts that access computationally expensive Praat algorithms are expected to take the
same amount of time. On the other hand, when it comes to the comparsion of Praat and
Parselmouth scripts that have a high rate of interaction between the Python code and
the Praat functionality, our tests and benchmarks seem to indicate that the combination
of Python and Parselmouth runs as fast or even faster than the equivalent script runs
in the Praat interpreter. Consequently, the necessary conversions and communication
between Python and Praat do not seem to make Parselmouth less efficient than using
Praat scripts. A few pairs of equivalent Python and Praat scripts can be found in the
documentation and supplementary material for a comparison in performance.

As is often the case in software development, the technical solution is a trade-off be-
tween multiple, often conflicting goals and considerations. One of the disadvantages of
Parselmouth’s solution is the fact that the C/C++ code results in platform-dependent
versions of the library (unlike a pure Python library). However, given the existence of
Python standards related to the compatibility of binary libraries25,26,27, and the impor-
tant advantage of reusing Praat’s existing code, we consider this a suitable compromise.
Moreover, many other scientific Python libraries – such as Numpy, SciPy, and pandas –
have made a similar decision because of code reuse and performance reasons.

Another trade-off in Parselmouth is the manual creation of a completely new “py-
thonic” interface, rather than automatically converting the Praat commands. While
this means that the actual development and maintenance of the project is more labour-
intensive, this allows us to create a Python-intuitive library that integrates well with
common Python idioms and other libraries such as NumPy. Moverover, the complemen-
tary praat.call and praat.run functions (cfr. Sections 2.3 and 2.4) do provide im-
mediate access to the full scope of Praat functionality, independently from the pythonic
Parselmouth interface. This choice is related to our decision of including a specific ver-
sion of Praat as part of the Parselmouth Python package. This sacrifices the flexibility
of picking a specific version of Praat in favour of the possibility to access Praat’s internal
values and structures. The latter makes Parselmouth more efficient in use, easier to in-
stall, and allows us to fine-tune the Python interface. Moreover, since multiple versions
of Praat are designed to be compatible, we consider this to be the desired trade-off for
Parselmouth.

1.4. What Praat functionality is already ported in Parselmouth?

Parselmouth currently supports 8 classes: Sound, Spectrum, Spectrogram,
Intensity, Pitch, Formants, Harmonicity, and MFCC (and conversion between these
objects). We are in the process of porting the TextGrid functionality. In addition to this

25https://www.python.org/dev/peps/pep-0491/
26https://www.python.org/dev/peps/pep-0513/
27https://www.python.org/dev/peps/pep-0571/

6

https://www.python.org/dev/peps/pep-0491/
https://www.python.org/dev/peps/pep-0513/
https://www.python.org/dev/peps/pep-0571/

primary functionality, which has been designed to look and feel like a native and efficient
Python library, Parselmouth also implements access to the Praat commands and scripts.
This way, a user can access familiar Praat functionality that has not (yet) been explicitly
added to Parselmouth, as we demonstrate in Sections 2.3 and 2.4. We are also keen to
learn from the research community the aspects of Praat that would be in high demand
in a further development of Parselmouth. We discuss future functionality in Section 3.1.

1.5. Installation

Parselmouth is available in the Python Package Index (PyPI)28 under the name
praat-parselmouth29 and can be installed via the default package manager pip using
the following command:

pip install praat-parselmouth

Parselmouth’s source is hosted on GitHub at https://github.com/YannickJadoul/

Parselmouth. Updates, examples, and troubleshooting advice can also be found in this
repository. The accompanying documentation (cfr. Section 1.6) provides up-to-date
details on the installation and includes instructions on how to install Parselmouth in the
PsychoPy Builder interface.

We also intend to keep Parselmouth up to date with the newest Praat updates: at
the time of writing the current version, 0.3.0, is based on Praat 6.0.37 (the version of
Praat released on the 3rd of February, 2018).

1.6. Documentation

Automatically generated documentation, advanced installation instructions, and
more usage examples are available at https://parselmouth.readthedocs.io. We are
constantly improving the documentation and usage examples, and we are hopeful that
others in the community will wish to contribute to this effort. To help out fellow sci-
entists and Parselmouth users, we highly appreciate feedback on the current state of
Parselmouth and the documentation, the identification of potential problems, the com-
pletion of an example, or the addition of a usage tutorial.

2. Usage Examples

We provide five simple usage examples that focus on integration of Parselmouth into
common Python-based workflows. This focus reflects our assumption that the used Praat
functionality, which Parselmouth simply uses directly, is already familiar to the user.
Users who are not familiar with Praat’s functionality can find excellent tutorial examples
in Praat’s documentation. The usage examples we provide are intended to demonstrate
the basic principles and efficiencies of using Praat functionality in a Python workflow,
rather than to be examples of tasks that Praat could not accomplish per se. We wish to
explicitly acknowledge the flexibility of Praat in this respect here. Parselmouth simply

28https://pypi.python.org/pypi
29Do please note that while the Python module itself is called parselmouth, the PyPI package to

install with pip is praat-parselmouth, and not the unrelated parselmouth package.

7

https://github.com/YannickJadoul/Parselmouth
https://github.com/YannickJadoul/Parselmouth
https://parselmouth.readthedocs.io
https://pypi.python.org/pypi

provides an alternative means of interaction with Praat’s algorithms, which we hope can
be beneficial to some users. The code in these examples is made available as part of the
Parselmouth repository at https://github.com/YannickJadoul/Parselmouth and the
documentation at https://parselmouth.readthedocs.io, and in the supplementary
materials for this article. The supplementary material also contains an annotated version
of all examples that describes in detail what the Python code is doing.

Rather than presenting a single case study in which we demonstrate the use of Parsel-
mouth, we choose to present short and independent examples – with a limited amount
of code and minimal complexity – to demonstrate the variety of applications, practically
motivate the project, and hopefully inspire the use of Parselmouth in concrete research.
After all, Praat itself is used to study a wide range of research questions and can be
used as a tool in different phases of that research, and it seems inopportune to narrow
down the use of Praat and Parselmouth to a single example. Moreover, Python is a
programming language, a tool to write scripts and programs that create new and modify
custom-tailored workflows. Abstract and short examples can give an idea of the range of
situations in which Parselmouth could be useful, leaving the broader context up to the
user to define. We are however hopeful that over time, more complex and more concrete
examples can be added to the documentation, and that new research can demonstrate
the applicability of Parselmouth (e.g., Ravignani, 2018).

These examples are chosen to represent different parts of a hypothetical phonetic
experiment. First, acoustic stimuli need to be created and played to participants (Sec-
tions 2.3 and 2.5). Afterwards, some post-processing of the collected data is required
(Section 2.2), and finally the results can be plotted and subjected to statistical analyses
(Sections 2.1 and 2.4, respectively). While these different abstract examples need to be
seen in the context of a larger scientific workflow, to be adapted to match one’s specific
needs in a concrete project, we present these examples out of order for educational pur-
poses: each of the examples is practically independent of the previous ones but will build
further upon the concepts introduced before.

2.1. Data Visualisation

Effective visualisation of acoustic data is an art form. Seamless generation of profes-
sional-looking and highly accurate spectrograms has always been one of Praat’s major
attractions. Parselmouth is not intending to replace or supersede Praat’s visualisation
routines, which are finely tailored for human speech data: for quick and easy spectro-
grams for instance, Praat remains the better option (in our view). However, Parselmouth
allows the computation of a phonetic analysis to be more easily separated from the choice
of a framework for visualisation and presentation. While most, if not all, common visu-
alisation needs can be fulfilled with Praat’s Picture window30, Parselmouth’s modularity
allows a user to access more exotic plot types and features of different Python graphing
packages, to combine the plots with custom statistical insights and plots that might not
be available in Praat, to have the plots shown in a Jupyter notebook, or maybe just to
use existing experience in Python visualisation that the user does not possess in Praat.

30http://www.fon.hum.uva.nl/praat/manual/Picture_window.html

8

https://github.com/YannickJadoul/Parselmouth
https://parselmouth.readthedocs.io
http://www.fon.hum.uva.nl/praat/manual/Picture_window.html

The example in Listing 1 shows two simple Python functions that integrate Parsel-
mouth and the Python visualisation libraries matplotlib31 (Hunter, 2007) and seaborn32

in order to plot a colourful spectrogram and an overlaid pitch contour. Notice how
the calls to Praat functionality and information through Parselmouth (e.g. sound.to

spectrogram(), spectrogram.values, or pitch.ceiling) are integrated within the
Python logic, rather than isolated calls into Praat. Though obtaining and plotting the
values of a spectrogram in Python is in itself not a difficult challenge with the help of
existing libraries (matplotlib, for example, includes a function specgram, and SciPy ’s
signal module contains spectrogram), we are using Praat’s tried and tested algorithm
to calculate the spectrogram’s values. This means that the same set of familiar param-
eters from Praat can be used, and more importantly that this will result in the exact
same analysis you would get in Praat.33. Figure 1 shows the resulting plot.

Figure 1: Custom spectrogram and pitch contour resulting from the Python code in Listing 1.

Apart from the actual visualisation example and the combination of Praat function-
ality with the matplotlib library, the main thing to take away from Listing 1 is the
mapping between Praat and Parselmouth objects and functionality. After defining the
two auxiliary functions draw spectrogram and draw pitch, we open an audio file as
Sound object, just as one would do in Praat. The main difference is that we store the

31https://matplotlib.org/
32http://seaborn.pydata.org/
33Beware however that assuming manual control over the plotting does mean that you need to watch

out to not make mistakes that Praat’s standard plotting algorithms avoid and abstract away from the
user. For example, the exact timing of the spectrogram samples with respect to the time range of the
sound signal are automatically handled by Praat but require in our example to respectively use xs() (or
x1, nx, and dx) vs. xmin and xmax.

9

https://matplotlib.org/
http://seaborn.pydata.org/

import parselmouth

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

sns.set() # Use seaborn's default style to make attractive graphs

def draw_spectrogram(spect, dynamic_range=70):

X, Y = spect.x_grid(), spect.y_grid()

sg_db = 10 * np.log10(spect.values)

min_db = sg_db.max() - dynamic_range

plt.pcolormesh(X, Y, sg_db, vmin=min_db, cmap='afmhot')

plt.ylim([spect.ymin, spect.ymax])

plt.xlabel("time [s]")

plt.ylabel("frequency [Hz]")

def draw_pitch(pitch):

Extract selected pitch contour, and

replace unvoiced samples by NaN to not plot

pitch_values = pitch.selected_array['frequency']

pitch_values[pitch_values==0] = np.nan

plt.plot(pitch.xs(), pitch_values, 'o', markersize=5, color='w')

plt.plot(pitch.xs(), pitch_values, 'o', markersize=2)

plt.grid(False)

plt.ylim(0, pitch.ceiling)

plt.ylabel("fundamental frequency [Hz]")

snd = parselmouth.Sound("audio/4_b.wav")

pitch = snd.to_pitch()

Optionally pre-emphasize the sound before calculating the spectrogram

snd.pre_emphasize()

spectrogram = snd.to_spectrogram(maximum_frequency=8000.0)

plt.figure()

draw_spectrogram(spectrogram)

plt.twinx()

draw_pitch(pitch)

plt.xlim([snd.xmin, snd.xmax])

plt.show()

Listing 1: Using Parselmouth to plot the custom spectrogram visalisation in Figure 1. Usage of
Parselmouth functionality is highlighted in red; a version with detailed comments can be found
in the supplementary material.

object in a variable snd rather than adding it to the global list of objects in Praat. Af-
terwards, our invocation of snd.to pitch() corresponds to first selecting the Sound in
Praat’s objects list and then clicking To Pitch in the Praat user interface (or writing
the equivalent script). As we have designed Parselmouth with this mapping in mind,
this is also how other objects and Praat commands are accessible through Praat: Praat
objects become standard Python objects in variables, and Praat commands become meth-
ods of these objects. Notice this principle being applied, for example, in spectrogram =

snd.to spectrogram(maximum frequency=8000.0): snd is a Praat/Parselmouth Sound

object, To Spectrogram is called for this selected object, one parameter of this call is
changed to a non-standard value (maximum frequency=8000.0), and the Spectrogram

10

object Praat creates and would add to the global list of objects is returned and stored in
the variable spectrogram. A user interested in e.g. the harmonics-to-noise ratio rather
than the fundamental frequency can now correctly infer that the Parselmouth equivalent
of To Harmonicity is the Sound.to harmonicity method34.

Listing 2 shows how this kind of plotting function can be combined with the Python
data manipulation library pandas and the FacetGrid functionality of seaborn to com-
pose a structured array of spectrograms with overlaid pitch contours. This example
visualises a small dataset consisting of the numbers 1 to 5 being spoken in English by the
first two authors. The example assumes we have stored these audio files in a directory
named audio, and that each audio file has been named in accordance with the convention
{digit} {speaker-id}.wav. It also assumes a csv data frame whose rows contain vari-
ables that uniquely identify a speaker-id / digit combination that we wish to plot in the
grid. The next example (see Section 2.2) goes into more detail on file system integration
for structured data frames. The resulting array of spectrograms, with the number being
spoken along the columns, and a row for each speaker, is shown in Figure 2.

import pandas as pd

def facet_util(data, **kwargs):

digit, speaker_id = data[['digit', 'speaker_id']].iloc[0]

sound = parselmouth.Sound("audio/{0}_{1}.wav".format(digit, speaker_id))

pitch = sound.to_pitch()

sound.pre_emphasize()

draw_spectrogram(sound.to_spectrogram())

plt.twinx()

draw_pitch(pitch)

If not the rightmost column, then clear the right side axis

if speaker_id != 'y':

plt.ylabel("")

plt.yticks([])

results = pd.read_csv("audio/digit_list.csv")

grid = sns.FacetGrid(results, row='digit', col='speaker_id')

grid.map_dataframe(facet_util)

grid.set_titles(col_template="{col_name}", row_template="{row_name}")

grid.set_axis_labels("time [s]", "frequency [Hz]")

grid.set(xlim=(0, None))

Optionally: grid.set(facecolor='white')

plt.show()

Listing 2: Plotting a data set as custom spectrograms (see Figure 2). Usage of Parselmouth
functionality is highlighted in red; a version with detailed comments can be found in the sup-
plementary material.

In the example code in Listing 2, there is one more aspect related to the usage
of Parselmouth that deserves focus. The function facet util is repeatedly called by
seaborn’s FacetGrid visualisation of the audio files in a grid layout, but in the imple-
mentation of facet util this does not matter: Parselmouth is used to access specific

34For an overview of the available objects and methods, consult Python’s built-in help function (e.g.,
help(parselmouth.Sound)) or the API reference section of the documentation.

11

Figure 2: Structured arrangement of custom spectrograms (cfr. Listing 2).

12

condition · · · pp id
0 · · · 1877
1 · · · 801
1 · · · 2456
0 · · · 3126

Table 1: Example structure of a csv file with results to be analysed by the code in Listing 3.

Praat functionality when logically needed by the program. This means that there is no
need to do the analysis before the plotting, for example, as one might do when using
Praat and a Python script separately. Again, this programming pattern can be applied in
different contexts from our simple example; the actual Praat functionality accessed might
be different from the pitch estimation and spectrogram calculation done here. Next to the
demonstration of matplotlib or seaborn plotting, the idea to take away from this example
is that Parselmouth enables a user to use Praat functionality at the location it is logically
needed within a Python script or program. Moreover, notice how, just like in Praat, we
can reuse existing code by calling previously defined function (here, draw spectrogram

and draw pitch from Listing 1). As a general principle, the Parselmouth objects (here,
sound, pitch, and the return value of sound.to spectrogram()) are ordinary Python
objects and can be stored in variables and passed to existing functions.

2.2. File Manipulation

Python and its libraries provide rich structures and utilities for storage and manipula-
tion of structured datasets. When combined with Parselmouth, these tools can facilitate
painless acoustic analysis of arbitrarily complex datasets. Consider the following work-
flow: the phonetician performs an experiment which results in multiple participants in
multiple experimental conditions, producing audio files from which the mean harmonics-
to-noise ratio needs to be extracted. A typical scenario might result in audio files being
stored on the phonetician’s computer in subdirectories of a directory named results.
These subdirectories reflect the different experimental manipulations, and each audio file
is named with a unique participant identifier number. The experiment also resulted in a
large csv file whose rows provide information on each participant, including variables that
indicate the experimental manipulation (condition) and the unique participant identifier
(pp id). Table 1 shows a simplified example of this structure.

In this example, we show how, in tandem with the data manipulation library pandas35

(McKinney, 2010), Parselmouth makes light work of the data analysis task: looping over
a large dataset, identifying an appropriate audio file in the user’s file system, extracting
the harmonics-to-noise-ratio of the audio at a certain time as a single Python decimal
number, and writing this value back into the appropriate row of the results data frame.
The extract below in Listing 3 shows how this operation can achieved in just a few
lines of Python code using Parselmouth. Once again, this example serves as a general
illustration of the kind of batch processing one could do on a set of audio files in order
to, for example, extract a certain set of acoustic features (e.g., Ravignani, 2018).

35https://pandas.pydata.org/

13

https://pandas.pydata.org/

import parselmouth

import pandas as pd

def analyse_sound(row):

condition, pp_id = row['condition'], row['pp_id']

filepath = 'audio/{}_{}.wav'.format(condition, pp_id)

harmonicity = parselmouth.Sound(filepath).to_harmonicity()

return harmonicity.get_value(row['time'])

Read in the experimental results file

dataframe = pd.read_csv('results.csv')

Apply parselmouth wrapper function row-wise

dataframe['harmonics_to_noise'] = dataframe.apply(analyse_sound, axis='columns')

Write out the updated dataframe

dataframe.to_csv('processed_results.csv', index=False)

Listing 3: Example analysis on structured data (such as Table 1), using the combination of
pandas and Parselmouth to manipulate the csv data frame and perform a custom acoustic
analysis. Usage of Parselmouth functionality is highlighted in red; a version with detailed
comments can be found in the supplementary material.

The way Parselmouth is used here is very similar to its usage in Listings 1 and 2
in Section 2.1: an audio file gets loaded as Sound object and subjected to an acoustic
analysis. However, rather than using all values calculated by Praat (to visualise them),
we here have Praat interpolate the value at specific points in time. In this example, we
chose to include the times’ offsets at which the harmonics-to-noise ratio is extracted in
the comma-separated values file. Alternatively, a common scenario would be where
each audio file is accompanied by a Praat TextGrid with annotations. Querying a
TextGrid file or object through Parselmouth is illustrated and explained in the example
in Section 2.4.

A related and common use case is manipulating or analysing all files in a certain di-
rectory or whose name matches a certain pattern. Analogous to Praat’s Create Strings

as file list...36, Python’s built-in glob.glob function37 allows one to find and loop
over these files in a single line (i.e., for file name in glob.glob("subdir/*.wav"):).
While this is possible to do in Praat, we imagine the ease of combining this construct with
other examples and workflows to be attractive and useful to Python and Parselmouth
users.

2.3. Audio Manipulation

In addition to the pythonic interface at the core of this project, Parselmouth also
provides access to Praat’s functionality by means of calling the commands visible in
the user interface, as one would do in a Praat script. This offers two advantages: 1)
functionality not yet ported to the core interface can still be accessed in this way; and 2)
users who already have a strong working knowledge of Praat menu commands and buttons

36http://www.fon.hum.uva.nl/praat/manual/Create_Strings_as_file_list___.html
37https://docs.python.org/3/library/glob.html

14

http://www.fon.hum.uva.nl/praat/manual/Create_Strings_as_file_list___.html
https://docs.python.org/3/library/glob.html

can call those methods by name if they choose. Listing 4 lays out an example relating
to the manipulation of the pitch track of an existing audio recording. Manipulating
the fundamental frequency of an audio file is a complicated procedure, and unlikely to
be readily available in Python-based tools, yet the requirement for close control over
the pitch of acoustic experimental stimuli can be used for testing questions related to
the effect of sound manipulation on language acquisition and perception (see e.g., Filippi
et al., 2014). In the example set out in Listing 4, we access functionality related to Praat’s
Manipulation class and call a number of Praat actions to increase the fundamental
frequency of an audio sample by one octave.

import parselmouth

from parselmouth.praat import call

sound = parselmouth.Sound("audio/4_b.wav")

manipulation = call(sound, "To Manipulation", 0.001, 75, 600)

pitch_tier = call(manipulation, "Extract pitch tier")

call(pitch_tier, "Multiply frequencies", sound.xmin, sound.xmax, 2)

call([pitch_tier, manipulation], "Replace pitch tier")

sound_octave_up = call(manipulation, "Get resynthesis (overlap-add)")

sound_octave_up.save("4_b_octave_up.wav", "WAV")

Listing 4: Code extract reading in an audio file and directly using Praat commands to increase
the fundamental frequency of the audio fragment by one octave. Note how the code uses the
parselmouth.praat.call function, since the Manipulation and PitchTier classes are currently
not yet available as ordinary Python objects in Parselmouth. Usage of Parselmouth functionality
is highlighted in red; a version with detailed comments can be found in the supplementary
material.

The example in Listing 4 demonstrates two things: functionally, it shows how to
access the Manipulation functionality in Praat, but more importantly, it demonstrates
how to use Parselmouth’s call function. As argued above, changing the pitch of an
audio fragment is a non-trivial task that is easily achievable in Praat, and integrating
this into a larger Python context might be a reason to use Parselmouth. However, with
this concrete example, we also want to demonstrate how to use praat.call by showing
the one-to-one mapping to the Praat user interface and scripting language. The first
(optional) argument is a Parselmouth object or a list of objects; these are the objects
that would be selected in Praat when executing the command. Next, the name of the
Praat button or action is passed as an argument to call, and after that the arguments
for the action are listed (i.e., the values one would type in the Praat form or write in a
Praat script). Parselmouth takes care of converting the arguments to Praat types and
returning the result of the Praat action as a Python type or Parselmouth object.

Also note how writing intensity = call(sound, "To Intensity", 100.0, 0.0,

False) and intensity = sound.to intensity(subtract mean=False) are equivalent.
The former passes through the Praat command interface, while the latter is uses the
pythonic Python interface Parselmouth provides. The advantage of the latter approach
is that it only requires arguments that are different from Praat’s default values to be

15

specified, fits better with standard Python coding styles and convention, and is internally
slightly more efficient. However, both approaches access the same underlying Praat code,
and as such praat.call can be used when preferred or when the main Python interface
is not present in the current version of Parselmouth.

Lastly, while the example in Listing 4 is kept simple and abstract and is thus probably
not directly applicable in a specific use case, we want to suggest combining it with the
principles outlined in the other examples. For instance, the combination with the file
manipulation example from Section 2.2 would allow one to automate the pitch manipu-
lation for multiple files. Another possibility is integrating this code into the interactive
experiment, as we will demonstrate in Section 2.5.

2.4. Integration with Statistical Libraries & Existing Praat Scripts

Another advantage of the Parselmouth workflow is integration of acoustic and sta-
tistical analysis in one language and software environment. Although statistical analysis
is possible in Praat too, the range of statistical analysis libraries available to users of
Python is vast, robust, and adapts reliably to incorporate new methods, because of the
modular structure of the Python environment: i.e., a user can install new libraries for the
necessary statistical analyses. This example demonstrates a simple workflow integrating
these two forms of analysis. We also use this example to illustrate Parselmouth’s ability
to execute Praat functionality by calling Praat scripts. While the primary purpose of
Parselmouth is to provide a pythonic Python API for Praat, we recognize that access to
Praat functionality through this interface is currently limited to a subset of all available
Praat functionality. Parselmouth includes the ability to invoke Praat functionality by
calling Praat commands directly (akin to the way previous libraries handled integration)
as a solution for this limitation, while the Parselmouth codebase grows (cfr. Section 2.3).
This flexibility also caters for another potentially common use case: execution of already
existing, legacy Praat scripts.

The usefulness of running Praat scripts from Python becomes clear in a scenario where
one wants to reuse previously written Praat scripts that perform some sophisticated
acoustic analysis, to for example apply such a script to a new dataset. When the user
would also wish to run some heavy-duty or uncommon statistics on the results using
a specialized statistical library, and has learned how to do so in Python, Parselmouth
can be used to integrate the entire process into one workflow. Rather than tediously
re-writing the existing Praat script in Python, Parselmouth allows the user to run the
Praat script from Python and to interface the input and output of the script with the
rest of the Python code. We envisage this kind of scenario to be relatively common as a
substantial amount of research has already been done using Praat and Praat scripts.

In this example, presented in Listings 5 and 6, we show how Parselmouth can be
used to execute a Praat script by De Jong & Wempe (2009) for automatic extraction of
syllable centers, and to subsequently perform statistical analysis. In Listing 5, we apply
this existing Praat script to a corpus of audio recordings of Aesop’s fable The North Wind
and the Sun in different English dialects or accents, openly available from the LibriVox
project38. The example then shows, in Listing 6, how to feed the results of the acoustic
analysis directly into a statistical analysis of the syllable centre time series data. In this

38https://librivox.org/celebration-of-dialects-and-accents-vol-1/

16

https://librivox.org/celebration-of-dialects-and-accents-vol-1/

case, we use a mixed-effects linear model from two different Python statistics libraries,
StatsModels39 and BAMBI40 (BAyesian Model-Building Interface, based on PyMC341).

In this short example, we test the null hypothesis that readers with a native accent
read aloud the story equally fast as the non-native readers. While the corpus used in
the example is arguably rather small, and the mixed-effects linear model being fitted
might not be the optimal statistical method, we merely use this statistical question
and approach as a simple demonstration of how one would combine a Praat analysis
and Python statistical analysis in a single workflow. Our motivation to present such an
example stems from a past project where we have examined a similar corpus of recordings
of The North Wind and the Sun (International Phonetic Association, 1999) with regard
to syllable timing predictability (Jadoul et al., 2016), using an autoregressive integrated
moving average (or ARIMA) model for time series analysis.

In Listing 5 the first part of this process is demonstrated. The extract syllable

intervals function calls the existing Praat script through praat.run file. Just like
the call function, run and run file take an optional Praat object or list of objects
as first argument to be selected when at the start of the script’s run; in this case, we
omit the argument since it is not necessary for our example. After the file name of the
script, we pass the further arguments to the script; again, this is analogous to running
the script in Praat, where one would get a window with the parameters to the script
declared in a form-construct in the script42. Parselmouth takes care of converting the
Python arguments to Praat and returns the objects selected at the end of the script
(similar to call, cfr. Section 2.3).

After running the Praat script, we get a TextGrid object and query it with praat.

call – as we currently do not yet have a Python interface to TextGrid in Parselmouth
– to get the estimated syllable centre timings. Note that we only use Parselmouth for
running the script and getting its results; the rest of the example code uses standard
Python code and libraries to loop over all files of the corpus and store the results in one
shared pandas DataFrame. We refer to the supplementary material for a version of the
script with comments and more details on this part of the code.

After getting the intervals between syllables for all audio files in the corpus, we can
run the desired statistical analysis on the data, as illustrated in Listing 6. We fit two
different implementations of mixed-effects linear models, one being a maximum likelihood
estimation and the other following a Bayesian approach. Since we have extracted the
syllable nuclei and intervals in Listing 5 already, Praat and Parselmouth are actually
not involved in this second part of the example. Consequently, it would be possible to
write and run the first part of the code as Praat script, write the data to file, and load
that file when running the statistical analysis. Rather than claiming our approach using
Parselmouth to be better or easier, we merely want to demonstrate the possibility of a
complete Python workflow, as motivated before (cfr. Section 1.1).

Once again, our complete example mainly aims to put forward how a Parselmouth
user could integrate already existing Praat scripts into a new Python script or project
(i.e., through the call, run, and run file functions in the praat submodule). Moreover,

39http://www.statsmodels.org/
40https://github.com/bambinos/bambi
41http://docs.pymc.io/
42http://www.fon.hum.uva.nl/praat/manual/Scripting_6_1__Arguments_to_the_script.html

17

http://www.statsmodels.org/
https://github.com/bambinos/bambi
http://docs.pymc.io/
http://www.fon.hum.uva.nl/praat/manual/Scripting_6_1__Arguments_to_the_script.html

import parselmouth

from parselmouth.praat import call, run_file

import numpy as np

import pandas as pd

def extract_syllable_intervals(file_name):

print("Extracting syllable intervals from '{}'...".format(file_name))

Use Praat script to extract syllables

objects = run_file('syllable_nuclei.praat', -25, 2, 0.3, file_name)

textgrid = objects[1]

n = call(textgrid, "Get number of points", 1)

syllable_nuclei = [call(textgrid, "Get time of point", 1, i + 1)

for i in range(n)]

Use NumPy to calculate intervals between the syllable nuclei

syllable_intervals = np.diff(syllable_nuclei)

return syllable_intervals

def syllable_intervals_data(row):

Get file name of corpus audio file

file_name_format = "corpus/dialectaccent_vol_01_{:02}{}_64kb.mp3"

file_name = file_name_format.format(row['audio_id'], row['speaker'])

Extract syllables and intervals with previously defined function

intervals = extract_syllable_intervals(file_name)

Return a new data frame with a row for each extracted interval

return pd.DataFrame({'speaker': row['speaker'],

'native': row['native'],

'interval': intervals})

corpus = pd.read_csv("corpus/corpus.csv")

Concatenate all data from the corpus into one big pandas DataFrame

data = pd.concat([syllable_intervals_data(row) for _, row in corpus.iterrows()])

Listing 5: Already existing Praat scripts can be run through the parselmouth.praat.run and
parselmouth.praat.run file functions to interface with the use of Parselmouth objects and
standard Python variables. Usage of Parselmouth functionality is highlighted in red; a version
with detailed comments can be found in the supplementary material.

we think the versatile range of less-common statistical methods available outside Praat
are a good illustration of why the intgration of Praat and Python can be useful. We
could of course combine this example with visualization capabilities similar to the ones
laid out in the previous examples (cfr. Section 2.1) to achieve a large portion of the
speech data analyst’s workflow in one language.

More generally, while few, if any, of the practices we have laid out in these examples so
far are technically impossible to achieve using Praat alone (with the appropriate level of
expertise), Parselmouth improves efficiency, by facilitating integration of the four major
strands of speech data analysis: reading and writing audio; acoustic analysis; statistical
analysis; and visualization. Furthermore, and maybe even more crucially in our view,

18

Maximum likelihood (ML/REML) estimation of mixed-effects linear model

import statsmodels.formula.api as smf

model = smf.mixedlm('interval ~ native', data, groups=data['speaker'])

results = model.fit()

print(results.summary())

Bayesian estimation of mixed-effects linear model

import bambi

model = bambi.Model(data)

results = model.fit('interval ~ native', random=['1|speaker'])

print(results.summary())

Listing 6: Once the necessary data is extracted from the corpus (cfr. Listing 5), it can directly
be analysed using specialised statistical libraries in Python. A version with detailed comments
can be found in the supplementary material.

this kind of access to existing scripts with Parselmouth can help to eventually expand
the range of users who are able to make use of Praat’s functionality.

2.5. Integration into Experimental Design

Contemporary experimental procedures increasingly require sophisticated computa-
tional workflows. In the speech-related sciences, it has traditionally been difficult to
build automated acoustic data analysis into experimental procedures because trial struc-
ture design and implementation is typically not programmed in Praat (though we note
that experimental design is actually possible in Praat43), but in specialised experimental
software packages that do not include acoustic data manipulation and analysis tools.
Parselmouth can help solve this problem through integration with widely-used Python-
based experimental software such as PsychoPy (Peirce, 2007, 2009). As a simple example
of this capability, this section shows how Parselmouth can be built into the trial loop
of a standard adaptive staircase design experiment that is part of PsychoPy. Such an
experimental design could for example be used determine just-noticeable differences, or
as pre-experimental routine to test a participant’s hearing or adjust to the level of back-
ground noise. Although we focus on this particular experimental procedure, we emphasise
that this example is part of a broader class of adaptive, algorithmic experimental designs
that are expected to become increasingly important in experimental research (Suchow &
Griffiths, 2016): Parselmouth, providing the possibility of bringing both acoustic analysis
and synthesis into the experimental loop, helps put these kinds of experiments within
easier reach of speech scientists using Python.

Although programming an interactive experiment is also possible with the Praat
scripting language, as interaction with the participant is supported through the Praat
demo window44 and anything else can be programmed from scratch, we see a few ad-
vantages to using an experimental package like PsychoPy: firstly, PsychoPy is an es-
tablished, widely-used software package, developed around the central idea of running

43E.g., http://www.fon.hum.uva.nl/praat/manual/ExperimentMFC.html
44http://www.fon.hum.uva.nl/praat/manual/Demo_window.html

19

http://www.fon.hum.uva.nl/praat/manual/ExperimentMFC.html
http://www.fon.hum.uva.nl/praat/manual/Demo_window.html

“neuroscience, psychology and psychophysics experiments”45. Secondly, PsychoPy al-
ready contains many built-in experimental features and has a graphical user interface
that allows for quickly setting up an experiment without writing any code. And fi-
nally, a researcher with more advanced needs can escape this purely graphical interface
and add custom components and code to the experiment, while still taking advantage
of the functionality that is already available in PsychoPy and focusing on this custom
functionality.

An introduction to staircase experimental design (e.g., Kaernbach, 2001) and to the
details of PsychoPy’s implementation of this class of experimental designs, can be found
in a PsychoPy tutorial on measuring just-noticeable-differences, “Measuring a JND using
a staircase procedure”46. Generally speaking, PsychoPy can be used in two different ways:
it is possible to write a Python script that imports and uses the psychopy module, or
one can use the graphical Builder interface, as shown in Figure 3. In the first case,
the user can just import and use the parselmouth library alongside psychopy, but also
when using the graphical user interface, Praat’s algorithms and potential can be accessed
through Parselmouth. Crucially, through the addition of Code components the PsychoPy
Builder allows blocks of Python code to be inserted into an experimental design such that
these code blocks are executed on initialisation, during, or on completion of one of the
experiment’s routines (cfr. Figure 3). This is how arbitrary Praat functionality can be
inserted into the experimental procedure to generate and update custom acoustic stimuli
on the fly.

As an illustration of this principle and its simplicity, we have implemented a staircase
design experiment. It was engineered to converge on the lowest signal-to-noise ratio
at which participants can correctly classify a Gaussian white-noise corrupted speech
segment in which the speaker says either ‘bet’ or ‘bat’, loosely based on an experiment
by de Boer (2012). Such a design requires that at the start of each trial, white noise is
added to an audio stimulus, to a degree that is determined by the participant’s response
in the previous trial. Moreover, the resulting stimulus must then be rescaled to have a
constant mean intensity. These computations can be handled easily using Parselmouth,
especially when one is already familiar with how to do this in Praat. Listing 7 shows the
code inserted into the PsychoPy trial. The full PsychoPy builder project as well as the
generated code to run the experiment are provided as supplementary material, together
with the two associated audio files. This example, like the ones before, can serve as a
starting point for building one’s own Python scripts and experiments with Parselmouth.

While PsychoPy provides a convenient framework to set up an experiment in Python,
Parselmouth also allows for Praat functionality to be accessed from a generic Python
model or experiment. For example, Rasilo & Räsänen (2017) describe an online model of
language acquisition where a “learning virtual infant” interacts with a human caregiver in
an experiment. The model of the babbling infant combines different aspects of learning,
including an articulatory model, the clustering and categorisation of the different bab-
bled utterances, and an algorithm to learn associations between these utterances and the
caregiver’s responses. Consequently, most of the implementation of this computational
model would be difficult in the Praat scripting language, as the model might benefit
from using computational libraries. However, the model also involves the extraction of

45http://www.psychopy.org/
46http://www.psychopy.org/coder/tutorial2.html

20

http://www.psychopy.org/
http://www.psychopy.org/coder/tutorial2.html

Figure 3: A screenshot of the PsychoPy Builder showing how the built-in ‘staircase’ loopType and the
custom Python code using Parselmouth (cfr. Listing 7) fit into the overall PsychoPy experiment.

formant frequencies when converting a speech utterance into an acoustic representation.
Since this is only a small aspect of the full model, this is most probably not enough
to encourage a researcher to switch to using Praat, while the model could benefit from
using the established Praat functionality for formant analysis. More generally, this is
why we believe that also for a broader range of computational models and interactive
experiments, acoustic feature extraction and articulatory speech synthesis could poten-
tially be done using the Praat features whereas the rest of the framework can then be
implemented independently, outside Praat. The use of Python as glue language and the
flexibility and modularity of the Python ecosystem (as described in Section 1.1) would

21

-- Begin experiment --

import parselmouth

import numpy as np

import random

conditions = ['a', 'e']

stimulus_files = {'a': 'audio/bat.wav', 'e': 'audio/bet.wav'}

STANDARD_INTENSITY = 70.

stimuli = {}

for condition in conditions:

stimulus = parselmouth.Sound(stimulus_files[condition])

stimulus.scale_intensity(STANDARD_INTENSITY)

stimuli[condition] = stimulus

-- Begin Routine --

random_condition = random.choice(conditions)

random_stimulus = stimuli[random_condition]

noise_samples = np.random.normal(size=random_stimulus.n_samples)

noisy_stimulus = parselmouth.Sound(noise_samples,

sampling_frequency=random_stimulus.sampling_frequency)

noisy_stimulus.scale_intensity(STANDARD_INTENSITY - level)

noisy_stimulus.values += random_stimulus.values

noisy_stimulus.scale_intensity(STANDARD_INTENSITY)

'filename' variable is set by PsychoPy and contains base file name

of saved log/output files, so we'll use that to save our custom stimuli

stimulus_file_name = filename + '_stimulus_' + str(trials.thisTrialN) + '.wav'

noisy_stimulus.resample(44100).save(stimulus_file_name, "WAV")

sound_1.setSound(stimulus_file_name)

-- End routine --

trials.addResponse(key_resp_2.keys == random_condition)

Listing 7: Code snippets accessing Parselmouth functionality inserted into a PsychoPy exper-
iment through a Code Component, respectively in the Before Experiment, Begin Routine, and
End Routine section. Usage of Parselmouth functionality is highlighted in red; a version with
detailed comments can be found in the supplementary material.

then allow Praat to be used in such a context, through Parselmouth.
These five presented usage examples are meant so show the variety of situations in

which a researcher might elect to use Parselmouth, but rather than demonstrating the
functionality per se, we wanted to show how Parselmouth can facilitate the combina-
tion of the specilised functionality of Praat with the wide range of available software
packages and computational environments. After all, these simplified examples of less
than 50 lines of Python code are only scratching the surface of the diversity of tasks
phoneticians, linguists, and other scientists face. With Parselmouth, we hope to have
provided researchers with a tool to enable an easier implementation of more advanced
scientific models and experiments. Just to illustrate with a final hypothetical example,

22

one could even go as far as using a Python web server framework (for instance, Flask47

or Django48) to provide a web service that involves acoustic processing. Such a web ser-
vice could then be used in the context of a crowd-sourced experiment (where users only
run a simple JavaScript program locally), potentially even in combination with Amazon
Mechanical Turk49 which today is sometimes used to recruit participants in large-scale
online experiments (see, for example, the Dallinger experiment automation framework50).

3. Conclusion

We hope to have illustrated how Parselmouth can be useful as a Python interface
to Praat. Though our usage examples focused on visualisation, data file manipulation,
audio manipulation, statistical libraries, and integration into a PsychoPy experiment,
we envisage an unbounded range of practical applications for the package (e.g., various
machine learning libraries and deep learning frameworks that are gaining popularity,
as mentioned in Section 1.1). The aim of Parselmouth is to link Praat and Python;
Parselmouth gives a Praat user access to the wide variety of scientific and utility packages
available for Python, but also hands over control of Praat’s functionality to a Python user
in a way that naturally generalises the user’s experience of programming in Python. We
hope that such a package can significantly broaden the user base for Praat’s technology.

We wish to end by stressing again that Parselmouth relies upon Praat, rather than
replacing it: usage of Parselmouth implies usage of Praat, with its expansive collection
of code and sophisticated algorithms.

3.1. Future Directions & Development

Parselmouth is under active development. We welcome contribution from others in
the community: the project requires not just code, but user feedback, bug reports, feature
requests, usage examples, tutorials, and documentation. We believe there is a strong
demand for sophisticated phonetic data analysis tools in Python, and this demand can
only be fulfilled through community driven efforts. Anybody interested in contributing
or providing feedback or requests can email the first author of this paper, or visit the
dedicated Parselmouth chat room established on Gitter51.

Acknowledgements

YJ would like to thank Robin Jadoul for repeatedly answering questions like “How
would you prefer to write such-and-such in Python?”, and for being my Virgil in the
DLL Inferno, and to thank his co-authors, Piera Filippi, and Andrea Ravignani for their
lasting enthusiasm and encouragements during the development of Parselmouth and for
proof-reading the manuscript, as well as Katie Mudd and Marnix Van Soom for their
feedback and encouragement.

47http://flask.pocoo.org/
48https://www.djangoproject.com/
49https://www.mturk.com/
50https://github.com/Dallinger/Dallinger
51https://gitter.im/PraatParselmouth/Lobby

23

http://flask.pocoo.org/
https://www.djangoproject.com/
https://www.mturk.com/
https://github.com/Dallinger/Dallinger
https://gitter.im/PraatParselmouth/Lobby

Funding: This project was supported by a PhD Fellowship (Aspirant) of the Research
Foundation Flanders - Vlaanderen (FWO) to YJ, and European Research Council grant
283435 ABACUS to BdB.

References

Albin, A. L. (2014). PraatR: an architecture for controlling the phonetics software “Praat” with the R
programming language. The Journal of the Acoustical Society of America, 135 , 2198–2199.

de Boer, B. (2012). Loss of air sacs improved hominin speech abilities. Journal of human evolution, 62 ,
1–6.

Boersma, P. (2001). PRAAT, a system for doing phonetics by computer. Glot International , 5 , 341–345.
Boersma, P., & Weenink, D. (2018). Praat: doing phonetics by computer [Computer program]. Version

6.0.40, retrieved 11 May 2018 from http://www.praat.org/.
Bořil, T., & Skarnitzl, R. (2016). Tools rPraat and mPraat. In P. Sojka, A. Horák, I. Kopeček, & K. Pala

(Eds.), International Conference on Text, Speech, and Dialogue (pp. 367–374). Springer International
Publishing.

De Jong, N. H., & Wempe, T. (2009). Praat script to detect syllable nuclei and measure speech rate
automatically. Behavior research methods, 41 , 385–390.

Filippi, P., Gingras, B., & Fitch, W. (2014). Pitch enhancement facilitates word learning across visual
contexts. Frontiers in psychology, 5 , 1468.

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing In Science & Engineering,
9 , 90–95.

International Phonetic Association (1999). Handbook of the International Phonetic Association: A guide
to the use of the International Phonetic Alphabet . Cambridge University Press.

Jadoul, Y., Ravignani, A., Thompson, B., Filippi, P., & de Boer, B. (2016). Seeking temporal pre-
dictability in speech: comparing statistical approaches on 18 world languages. Frontiers in human
neuroscience, 10 , 586.

Jakob, W., Rhinelander, J., & Moldovan, D. (2017). pybind11 – Seamless operability between C++11
and Python. https://github.com/pybind/pybind11.

Kaernbach, C. (2001). Adaptive threshold estimation with unforced-choice tasks. Attention, Perception,
& Psychophysics, 63 , 1377–1388.

McKinney, W. (2010). Data structures for statistical computing in Python. In Proceedings of the 9th
Python in Science Conference (pp. 51–56). SciPy Austin, TX volume 445.

Peirce, J. W. (2007). PsychoPy – psychophysics software in python. Journal of neuroscience methods,
162 , 8–13.

Peirce, J. W. (2009). Generating stimuli for neuroscience using PsychoPy. Frontiers in neuroinformatics,
2 , 10.

Rasilo, H., & Räsänen, O. (2017). An online model for vowel imitation learning. Speech Communication,
86 , 1–23.

Ravignani, A. (2018). Spontaneous rhythms in a harbor seal pup calls. BMC research notes, 11 , 3.
Suchow, J. W., & Griffiths, T. L. (2016). Rethinking experiment design as algorithm design. In CrowdML

– NIPS ’16 Workshop on Crowdsourcing and Machine Learning.
Walt, S. v. d., Colbert, S. C., & Varoquaux, G. (2011). The NumPy array: a structure for efficient

numerical computation. Computing in Science & Engineering, 13 , 22–30.

24

http://www.praat.org/
https://github.com/pybind/pybind11

	Introduction
	Motivation
	Relation to previous software
	Technical details
	What Praat functionality is already ported in Parselmouth?
	Installation
	Documentation

	Usage Examples
	Data Visualisation
	File Manipulation
	Audio Manipulation
	Integration with Statistical Libraries & Existing Praat Scripts
	Integration into Experimental Design

	Conclusion
	Future Directions & Development

