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Abstract

Previous distributional learning research suggests that adults can improve perception of a non-

native contrast more efficiently when exposed to a bimodal than a unimodal distribution. Studies 

have also suggested that perceptual learning can transfer to production. The current study tested 

whether the addition of visual images to reinforce the contrast and active learning with feedback 

would result in lcearning in both conditions and would transfer to gains in production. Native 

English-speaking adults heard stimuli from a bimodal or unimodal /o/-/œ/ continuum. No group 

differences were found on a discrimination task, possibly suggesting that the supports eliminated 

previously documented group differences. On an identification task, listeners in the bimodal group 

showed better performance than the unimodal group on the endpoint stimuli. Production results 

indicated that both groups showed increased Euclidean distance between the target vowels after 

training, suggesting that perceptual training improved production skills in both conditions. 

Contrary to expectations, degree of perception and production learning were not correlated. 

Together, these results suggest that a bimodal distribution may aid learning, but that adding images 

to reinforce the contrast and active learning to the training paradigm could mitigate disadvantages 

found previously for participants exposed to a unimodal distribution.

Introduction

Learning to speak a second language with native-like proficiency can be challenging, 

especially for adults. Part of the challenge is learning to perceive and produce speech sounds 

that are not in the first language (L1). Research on the perception of native and non-native 

contrasts shows a shift in perception across the first year of life. Infants begin life able to 

discriminate acoustic variants within and across speech sound categories in all languages 

(Trehub, 1973, 1976; Werker & Tees, 1984). Within a year, they lose the ability to perceive 

non-native phoneme contrasts (Polka & Werker, 1994; Werker & Tees, 1984), while 
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simultaneously learning to ignore some within-category acoustic-phonetic variability for 

native phonemes (Kuhl et al., 1992). These findings led researchers to explore possible 

underlying mechanisms that support this process of perceptual attunement.

Distributional learning as a mechanism for learning non-native contrasts

One possible mechanism is that perceptual attunement stems from sensitivity to statistical 

patterns in the linguistic input. Maye et al. (2002) tested whether sensitivity to distributions 

in the input would affect perception of non-native sound contrasts. English-learning infants 

were presented with tokens drawn from an eight-step acoustic continuum of voice onset time 

(VOT), ranging from pre-voicing to short-lag VOT. Importantly, this contrast does not exist 

in English. Infants were either presented with tokens drawn mostly from near the endpoints 

of the continuum (stimuli 2 and 7), which resulted in a bimodal distribution of input, or with 

tokens drawn primarily from the center of the continuum (stimuli 4 and 5), which resulted in 

a unimodal distribution of sounds in the input. Following training, Maye et al. (2002) tested 

whether infants could discriminate stimuli 3 and 6, which were presented to both groups an 

equal number of times. Infants in the bimodal condition successfully discriminated these 

stimuli, whereas infants in the unimodal condition did not. Maye et al. (2002) argued that 

exposure to different distributions resulted in a change in perception, where infants in the 

bimodal condition inferred two categories, but those in the unimodal group did not. Maye et 

al. (2002) concluded that infants learn speech sound categories with sensitivity to the 

distributions of the sounds to which they are exposed.

Researchers have also sought to examine whether similar paradigms could be used to train 

non-native sound contrasts in adult listeners. The acquisition of non-native speech sound 

categories is different for adults compared to infants, as infants are tuning perception to their 

native language, whereas adults learning a non-native contrast already have a phonological 

system in place for their native language. Abundant research on the perception of second 

language (L2) sound categories shows that the relationship between the L1 and L2 sounds 

affects perception of the L2 sounds (Best, 1991; Escudero, 2005; Flege, 2003; Kuhl & 

Iverson, 1995). Despite the difference between learning a novel contrast for infants versus 

adults, a few studies have provided some evidence for the benefits of using a distributional 

learning paradigm to train L2 speech sounds in adults.

Similar to the study with infants, Maye and Gerken (2000) presented English-speaking 

adults with synthesized stimuli along an eight-step VOT continuum ranging from pre-voiced 

to short-lag for an alveolar contrast. As in the infant study, training stimuli were either drawn 

from a bimodal or unimodal distribution. To ensure that adults were attending to the training 

task, they were asked to check a box following presentation of each stimulus, but were 

otherwise listening passively to the stimuli. Using a discrimination task with only the 

endpoint stimuli (1 and 8), which were presented the same number of times in both the 

unimodal and bimodal conditions, the authors found that adults in the bimodal group 

discriminated these stimuli significantly better than those in the unimodal group. Similar 

results were found for a velar stop contrast in Maye and Gerken (2001). The authors 

interpreted these findings as evidence that adults can learn a non-native contrast through 

exposure to a bimodal distribution of a speech sound contrast.
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Hayes-Harb (2007) tested whether a distributional learning paradigm or a lexical contrast 

would lead to better discrimination by adults. Participants were exposed to sounds along a 

pre-voiced to short-lag VOT eight-step continuum in one of six conditions: unimodal with 

no images; bimodal with no images; stimuli 2 and 7 with no images (“two-seven”); stimuli 2 

and 7 with one image (“no contrast”); stimuli 2 and 7 with two images (“contrast”); no 

training at all (“control”). The contrast condition was included to determine whether the 

addition of pictures used to reinforce the contrast (termed “lexical support” in the original 

study) would facilitate learning. Similar to the previous studies, the adults listened passively 

as the stimuli were presented during the exposure phase. As found in previous studies, 

participants in the bimodal group performed better than those in the unimodal group. In 

addition, participants in the contrast group (with two images who only heard stimuli 2 and 7) 

performed significantly better on the discrimination task than those in either the no contrast 

group (who had one image) or the two-seven group (no images), showing that the addition of 

contrasting pictures improves discrimination of a novel sound contrast. Two other important 

findings emerged. First, participants in the contrast group outperformed those in the bimodal 

group, suggesting that the addition of images to support a contrast leads to better 

discrimination than exposure to a distribution alone. Second, the no training control group 

showed relatively good discrimination despite a lack of training. Analyses showed that this 

group did not significantly differ from either the bimodal group or the contrast group, but 

did perform significantly better than the unimodal group, suggesting that the unimodal 

condition actually serves to suppress the contrast. In her dissertation, Hayes (2003) tested 

four groups of participants where half in both the unimodal and bimodal conditions were 

shown one image for all 8 stimuli, and half were shown one image for stimuli 1–4 and a 

different image for stimuli 5–8. To ensure that participants were attending to the task, they 

were asked to check a box after each trial, but otherwise were passive during the listening 

portion. The bimodal condition with two images led to significantly better discrimination 

than a unimodal condition with one image, suggesting some benefit of two images, as 

assigning sounds to one of two images could help draw attention to the contrast. Critical to 

the current study, Hayes (2003) made no explicit comparison between the bimodal condition 

with two images and the unimodal condition with two images. The data indicate a numerical 

difference (29.6% accuracy for the bimodal with two images and 17.4% for unimodal with 

two images), but another comparison of more extreme differences (29.6% accuracy for the 

bimodal with two images and 15.9% for bimodal with one image) yielded a non-significant 

finding with a two-tailed test. Thus, it remains unclear whether the addition of contrasting 

images could mitigate the suppression of the contrast, as was found in Hayes-Harb (2007), 

where the unimodal group with one image performed worse than the bimodal group with 

one image.

Baese-Berk (2010) also replicated and extended the findings from the previous studies of 

distributional learning with adults. Also using a negative to short-lag VOT continuum, 

Baese-Berk (2010) presented listeners with only the extreme combination of conditions: 

either a bimodal distribution with two images or a unimodal distribution with a single image. 

As with the other studies using adult participants, the exposure task involved implicit 

learning, where listeners passively listened to each stimulus and then indicated that they 

completed a trial by pressing a key to advance to the next trial. An important modification of 
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Baese-Berk (2010) was that training spanned two days. As expected, the bimodal group with 

two images demonstrated incremental learning across the two days on a discrimination task, 

whereas the unimodal group with one image did not.

Whereas the above studies all tested the perception of a temporal VOT contrast, Escudero et 

al. (2011) and Wanrooij et al. (2015) used a distributional learning paradigm to test the 

perception of vowels. In Escudero et al. (2011), native Spanish speakers were trained on the 

Dutch /ɑ/-/aː/ contrast. Rather than comparing unimodal versus bimodal groups, they 

compared two different bimodal groups, one where the continuum was enhanced (F1 range: 

600–885 Hz, F2 range: 1000–1430 Hz) and one where it was compressed (F1 range: 700–

795 Hz, F2 range: 1115–1330 Hz). They found a trend where participants in the enhanced 

group performed better than those in the compressed group. In a follow-up study, Wanrooij 

et al. (2015) created two conditions where various measures of dispersion (e.g., range, 

standard deviation) were matched between the bimodal and unimodal distributions. In 

contrast to previous work, they found no differences between the two groups. They 

concluded that previous studies of distributional learning may have found differences in 

learning not due to the number of peaks (two versus one), but instead due to differences in 

the dispersion of the stimuli that were presented. Importantly for the current study, these 

researchers found no effect of input distribution.

Finally, the aforementioned studies on distributional learning utilized a passive learning 

paradigm (i.e., implicit/reflexive/unsupervised) to demonstrate whether speech 

categorization can occur implicitly. As this line of research has evolved into a line of 

research attempting to optimize the training paradigm for learning a non-native contrast, it is 

important to consider how training approaches that incorporate an active learning paradigm 

(i.e., explicit/reflective/supervised) have yielded promising results. A recent distributional 

learning study examined how active learning with feedback could cause listeners to shift 

which acoustic cues they used to identify a stop-voicing contrast in the native language of 

the listeners (Harmon et al., 2019). Participants were presented with either a unimodal or 

bimodal distribution of VOT and also with support of a secondary cue to voicing in stops 

(fundamental frequency). Importantly for the current study, no effect of input distribution 

was found when feedback was provided. Instead, participants whose feedback reinforced the 

alternate voicing cue (fundamental frequency) changed their perception to depend on the 

secondary cue. In a similar study, Goudbeek et al. (2008) trained Spanish and English 

listeners on non-native Dutch vowel contrasts differing in either duration (/ʏ/~/ø/) or formant 

frequency (/ʏ/~/ø/). They found that listeners more easily learned the contrast with the 

dimension most relevant in their language (formant frequency in Spanish; duration in 

English), and that accuracy feedback increased learning in both conditions. This suggests 

that accuracy feedback can improve learning of contrasts whether familiar or novel acoustic 

cues are trained. The incorporation of accuracy feedback may actually lead to such strong 

learning effects that previously documented differences found between passive learning 

paradigms are no longer present when feedback is provided. Training Japanese listeners on 

the /ɹ/~/l/ contrast, McCandliss et al. (2002) found the expected advantage for listeners 

exposed to an adaptive condition (i.e., two sounds start out maximally different and become 

more similar over the course of training) compared with a fixed condition. However, this 

group difference was no longer present when participants were provided accuracy feedback. 
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This finding indicates that accuracy feedback leads to more robust learning than when 

listeners are provided adjusted input in a passive learning paradigm.

Taken together, previous work suggests that adults exposed passively to a bimodal 

distribution can learn a non-native contrast. However, these previous studies also suggest 

that a variety of other factors may contribute to, or even eliminate, changes in perception 

following training. In particular, these factors include the addition of images to support one 

versus two labels and the incorporation of active learning with feedback. Furthermore, 

possible differences in the mechanisms involved in learning consonant categories versus 

vowel categories may also impact individuals’ abilities to learn novel speech categories. 

Thus, a goal of the current study is to explore whether the combination of these factors could 

enhance learning of a non-native contrast in the unimodal condition or whether the benefits 

of a bimodal distribution would still remain.

Relationship between perception and production

When learning a second language, individuals must not only learn to perceive the sound 

contrasts in a second language, they must also learn to produce these same contrasts. Studies 

of spontaneous imitation within a speaker’s native language suggest that the auditory input 

can change a speaker’s productions. For example in shadowing studies where participants 

repeat words or sentences heard over headphones, shadowed productions are more similar 

perceptually and acoustically to the productions from the target speaker than are baseline 

productions (Goldinger, 1998; Mitterer & Ernestus, 2008; Shockley et al., 2004). In terms of 

explicit perceptual training, several studies from different disciplines have explored whether 

perceptual training can transfer to improvement in production.

Bradlow et al. (1997) investigated how perceptual training impacted both perception and 

production of /r/-/l/ by Japanese learners of English. During training, participants listened to 

five different speakers producing minimal pairs containing the target phonemes, identified 

whether they heard an /r/ or an /l/, and then were provided with feedback. Across training, 

listeners’ perception of this non-native contrast improved. In addition, even though 

production was not directly trained, words produced after training were rated as better 

productions than those produced prior to training. This suggests that learning to perceive the 

contrast between /r/ and /l/ transferred to improved production of the same contrast. 

However, even though the learners improved in both perception and production overall, 

individual perception and production abilities were not found to be correlated, highlighting 

the presence of individual variation. In a follow-up study, Bradlow et al. (1999) found that 

these improvements in perception and production were maintained three months later. These 

findings suggest that there was a reliable and lasting transfer of learning from perception to 

production.

Baese-Berk (2010) also examined both perception and production of non-native contrasts in 

a perceptual training task. As mentioned above, participants completed training with a 

distributional learning paradigm to learn the non-native pre-voiced to short-lag VOT 

contrast. In addition to perceptual measures, participants also completed a production task in 

which they were asked to repeat the endpoint stimuli from the acoustic continuum. A three-

way interaction was found between training group (bimodal with two images vs. unimodal 
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with one image), day (1 vs 2) and endpoint token (1 vs 8). Numerically, participants in the 

bimodal group showed a larger change in the VOT difference (2.3 ms on day 1 versus 3.8 ms 

on day 2), although post-hoc comparisons were not conducted. An additional analysis in the 

bimodal group examined the relationship between perceptual learning and production to 

determine whether individual differences in perception predict performance on the 

production task. The regression model with perception (discrimination) performance 

resulted in a significantly better fit than one without, suggesting that perception and 

production are linked such that those who reach the greatest level of accuracy on the 

perception task are more likely to also show the greatest distinction between the two target 

sounds in production.

In addition to second language learning, researchers have also explored whether perceptual 

training can improve speech production in children with speech sound disorders. Rvachew 

(1994) explored the benefits of perceptual training on the production of /ʃ/ for preschoolers 

who exhibited difficulty producing this sound. The preschool-aged children were either 

given perception training on the word shoe (trained on /ʃ/), the words shoe and moo (trained 

on /ʃ/), or the words cat and Pete (not trained on /ʃ/). Children were instructed to identify 

whether the stimulus was produced correctly or with an error and were provided with 

immediate feedback. Following six weeks of perceptual training, a post-training production 

test was administered. The groups that received perceptual training for /ʃ/ showed greater 

gains in production than the control group that did not receive training for /ʃ/. This suggests 

that perceptual training transfers to gains in production for children with speech sound 

disorders. Similar results were found in Jamieson and Rvachew (1992) and Rvachew et al. 

(2004).

Individual differences in perceptual learning

While some previous studies of the perception-production link have examined whether 

individual differences in perceptual skills predict which participants will improve in 

production, few studies have examined which participants are likely to improve in the 

perceptual domain. Several researchers have suggested that a participant’s performance on 

perceptual tasks may be related to working memory (Kong & Edwards, 2016; Manis et al., 

1997; McBride-Chang, 1996). Kong and Edwards (2016) found that inhibition and task 

shifting ability were related to individual categorization patterns (degree of categoricity) and 

hypothesized that working memory plays a role in learning new categories. In studies 

investigating speech perception in young children, the relationship between performance on 

perceptual tasks and working memory has been described as bidirectional, where the process 

of perceptual attunement builds working memory, which in turn, leads to greater perception 

of speech sound contrasts (Manis et al., 1997; McBride-Chang, 1996). For these reasons, we 

administered several tests of working memory to ensure that there are no differences in 

working memory skills between the groups.

Current study

The current study extends the research on distributional learning by modifying the procedure 

in two ways in order to optimize learning and allow us to test whether participants in the 

unimodal condition can learn a non-native contrast. First, as in previous studies including 
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Hayes (2003), the current procedure involves the use of different images to support category 

learning. One difference in our design is that participants in both the unimodal and bimodal 

group were provided with two images. We used two images in both the bimodal and 

unimodal conditions to directly assess whether those in a bimodal condition would continue 

to outperform those in a unimodal condition given this additional support. Second, we also 

included accuracy feedback to add an active component to the learning task. Previous studies 

of distributional learning with adults have involved passive learning tasks during which 

participants check a box or press a button after hearing each stimulus. As intended, this 

paradigm closely mirrors the passive way in which infants are exposed to sounds in their 

native language, but it may be that some form of active engagement with each stimulus is 

beneficial to adults. Given the previous discussion of learning benefits found in the presence 

of accuracy feedback in various training paradigms, we were interested in whether active 

learning would lead to enhanced learning for a non-native contrast. Additionally, we were 

interested in whether previously found differences between unimodal and bimodal groups 

would be affected by the incorporation of accuracy feedback, as found with adjusted versus 

fixed conditions in McCandliss et al. (2002) and in the cue-reweighting in Harmon et al. 

(2019).

The majority of studies of distributional learning have used a temporal VOT contrast. Like 

Escudero et al. (2011) and Gulian et al. (2007), the current study examines perceptual 

learning of a vowel contrast. Previous research has found differences in how individuals 

perceive vowels versus consonants (Fry et al., 1962), where both identification and 

discrimination performance appears to be more categorical for consonants than for vowels. 

Thus, perceptual training of a vowel contrast could lead to different learning patterns than 

for a consonantal contrast, as in most previous studies using a distributional learning 

paradigm. In addition, in American English, most dialectal differences are manifested as 

differences in vowels (Labov et al., 2006), thus adult listeners’ perception may be more 

flexible in learning to perceive a vowel contrast, which may manifest as longer learning 

trajectories for non-native vowel contrasts than for consonant contrasts.

When selecting a vowel contrast, we considered which non-native vowel contrast would be 

most difficult for speakers of American English to learn. Several studies have demonstrated 

that the front-back contrast between rounded vowels in French (Levy, 2009a, 2009b; Levy & 

Strange, 2008) and German (Polka, 1995; Strange et al., 2009) is difficult for American 

English listeners to perceive. In an alveolar context, the discrimination error rate was 27% 

for the /y/-/u/ contrast and 38% for the /œ/-/o/ contrast (Levy, 2009b). In the current study, 

we use the French /œ/-/o/ contrast in an alveolar context because of its high confusability 

and because production of /d/ in the /dyt/ context is often affricated, thus providing 

prevocalic acoustic cues.

Finally, in addition to these changes in study design, we also tested working memory for the 

participants to ensure that there were no group differences. The training paradigm in the 

current study included two images and accuracy feedback while participants were exposed 

to either a unimodal or bimodal distribution of an /œ/-/o/ contrast. In addition to these two 

primary supports, the training spanned two days to provide multiple training blocks and to 

allow for the inclusion of the working memory tests. Though not intended as an additional 
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support, we acknowledge that the ability to consolidate information overnight can facilitate 

learning new categories (Earle et al., 2017; McGregor, 2014). We are interested in whether 

the addition of these supports will allow listeners in both conditions to learn to perceive and 

produce a novel contrast. Results supporting this hypothesis would contradict previous 

research demonstrating a unimodal disadvantage (i.e., bimodal advantage) characterized by 

suppression of the perception of a novel category (Hayes-Harb, 2007). We ask the following 

four questions:

1. Do the participants in the unimodal condition learn to perceive the non-native 

vowel contrast differently than those in the bimodal condition based on a 

perceptual discrimination task?

2. Do the participants in the unimodal condition learn to perceive the non-native 

vowel contrast differently than those in the bimodal condition based on a 

perceptual identification task?

3. Does perceptual training transfer to gains in production of the same non-native 

vowel contrast?

4. Is perceptual skill (discrimination/identification) associated with production 

abilities after training?

Experimental/Materials and methods

Participants

Thirty-two adults ages 18–30 participated in the study (6 male, 26 female). All were native 

speakers of American English, passed a hearing screening at 500, 1000, 2000, and 4000 Hz 

at 25 dB HL, and had no history of a speech or language disorder. All participants were 

compensated for their time. Participants reported having spoken or studied the following 

languages: Spanish (n = 23), Italian (n = 2), Hindi (n = 2), Gujarati (n = 1), Polish (n = 1), 

and American Sign Language (n = 1). Half were randomly assigned to the bimodal (13 

females; 3 males) and half to the unimodal condition (13 females; 3 males). Within these 

groups, half were assigned to stimulus order A and half to stimulus order B (see procedure 

for description). The age breakdown of each condition is included in Table 1. Two additional 

participants completed the experiment but were not included in data analysis. Exclusion of 

these participants is described in the statistical analysis section.

Stimuli

A 29-year-old male native speaker of Parisian French who had been living in the United 

States for five years recorded a set of French nonwords. The speaker was recorded in a 

sound-attenuated booth using a head-mounted Shure 10-A unidirectional (cardioid) 

condenser microphone with a flat frequency response from 40 to 20,000 Hz. Productions 

were digitized into 16-bit stereo recordings via a Fostex FR-2LE field recorder at 44.1 kHz 

and transferred via Compact Flash card to a computer. The speaker produced five repetitions 

of nine French nonwords in a carrier phrase as they appeared in random order on a computer 

screen. The carrier phrase, “J’ai dit ______ à des amis” (“I said ___ to my friends”), was 

adapted from Levy (2009a). The nonwords consisted of each of the vowels (/œ, o, i, y, e, ɛ, 
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a, ɔ, u/) in the /radVt/ context, and were presented following French orthographic 

conventions.

The stimuli recordings were downsampled to 11025 Hz and amplitude normalized in Praat 

(Boersma & Weenink, 2019). Vowels were spliced out of the /radVt/ context and included 

the release burst of the /d/ up through the final visible peak in the acoustic waveform before 

the /t/. Duration measures were taken from the waveform and confirmed with the 

spectrogram. A Praat script was used to extract the first three formant frequencies (F1, F2, 

F3) from the midpoint of the vowel.

The productions of /œ/ and /o/ that were most similar in F1 and duration while showing the 

greatest differences in F2 values were selected as the base vowels for synthesis. To create an 

eight-step continuum, stimuli were synthesized with linear predictive coding in Matlab 

(MathWorks Inc., 2000). A window size of 256 samples was used (corresponding with the 

sampling rate) with a hop size of 128 samples and an LPC order of 12 (corresponding to the 

order of the synthesis filter). The /œ/ sample was used as the source, providing the excitation 

portion of the output signal, and the /o/ sample was used as the destination, providing the 

spectral filter to be applied to the source signal. The mix percentage was increased from 0% 

(the source signal synthesized with its own spectral filter) up to 100% (the source signal 

synthesized with the destination’s spectral filter completely) in 2% increments. Filter 

coefficients describing the spectral envelope of each input signal were computed using 

Levinson-Durbin recursive autocorrelation. To obtain interim stimuli, the source and 

destination filter coefficients were interpolated based on the mix percentage. This resulted in 

a resynthesis filter representing the interpolation of the input signals’ spectral filters. For 

each sample of the frame being processed, the excitation signal obtained from the source 

signal was multiplied by an interpolated gain factor determined from the mix percentage, 

yielding a scaled excitation value to which the synthesis filter was applied. This process 

resulted in synthesized output signals which have frame-accurate applications of the spectral 

filter described by the LPC order and mix percentage.

To select eight steps from this 51 step continuum, the original F2 values of /œ/ (1467 Hz) 

and /o/ (1045 Hz) were converted to a Bark scale using the f2bark function in the ‘hqmisc’ 

package (Quené, 2014) in R (RStudio Team, 2017). These converted Bark values were used 

as the ideal endpoints to select the Bark values that were equally spaced along the perceptual 

scale of F2. The continuum used in the current study comprised the 8 steps that were the 

closest matches to these ideal 8 steps from the set of 51 synthesized steps. Although the 

actual values did not match the ideal values exactly, no selected step differed by more than 

0.03 Bark from the ideal value. The remaining vowels (/i/, /y/, /e/, / ɛ/, /a/, /ɔ/, and /u/) were 

each selected based on similarity in duration to the selected /œ/ and /o/ tokens and the 

centrality of their formant values among the five repetitions. Formant and duration 

information about all selected stimuli are presented in Table 2.

Procedure

Participants attended two one-hour sessions on consecutive days and completed the tasks 

presented in Table 3. Each task will be described in more detail below. All experimental 

tasks except the hearing screening were presented with E-Prime 2.0 software (Psychology 
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Software Tools) on a laptop. Stimuli were presented at a comfortable listening level with 

Sennheiser HD-280 headphones in the training, discrimination, and identification tasks. For 

the repetition task, recordings were made using a Sennheiser HMD 280-XQ-2 combination 

headphones and microphone with a Fostex FR-2LE recorder. For all tasks, participants sat in 

a sound-attenuated booth. To indicate responses, the screen was labeled with the possible 

responses and participants either used keys 1–8 on the presentation laptop or an Empirisoft 

DirectIN response box with eight buttons.

Training Task

Participants completed a self-paced training task in which they heard stimuli from the 8-step 

continuum and were asked to identify the sound by selecting one of two images: an orange 

cloud-like shape or a lavender spiky shape. These two images were displayed on the screen. 

For half of the participants in each condition, the cloud-like shape was associated with 

the /œ/ half of the continuum (1–4) and the spiky shape was associated with the /o/ half of 

the continuum (5–8). For the other half of the participants, the mapping was reversed. 

Participants pressed “5” to select the cloud-like shape and “8” to select the spiky shape. 

After making their response, immediate feedback was provided in the form of a “correct” or 

“incorrect” displayed on the screen. No practice trials were provided. Following the 

feedback screen, there was a 1000 ms delay before the next trial began. Each training block 

took approximately five minutes to complete. Participants completed four training tasks 

spanning two days to allow for consolidation and multiple training blocks on each day.

Each training task involved listening to 48 stimuli from the eight-step synthesized 

continuum in random order. The number of times each step was presented varied based on 

condition. The distributions of the bimodal and unimodal conditions are depicted in Figure 1 

and match those from previous distributional learning studies. For the bimodal condition, 

participants heard steps 1, 4, 5, and 8 three times, steps 3 and 6 six times, and steps 2 and 7 

twelve times. In the unimodal condition, participants heard steps 1, 2, 7, and 8 three times, 

steps 3 and 6 six times, and steps 4 and 5 twelve times. As with previous studies, steps 1, 3, 

6, and 8 were heard the same number of times in both the unimodal and bimodal conditions.

Vowel perception tasks

Two perception tasks were included in the current study: an ABX discrimination task and an 

identification task. The discrimination task provided a way to explore both within and 

across-category perception before, during, and after training. As we were also interested in 

the degree of categoricity that subjects acquired in each condition, we also administered an 

identification task. An identification task reveals the steepness of a perceptual identification 

curve, but must be administered after training has begun (when the categories have thus 

already begun to form).

In the ABX discrimination task, participants heard three stimuli drawn from the acoustic 

continuum with a 750 ms inter-stimulus interval. After presentation of the third stimulus, 

participants were asked whether the final stimulus (X) was the same as the first (A) or the 

second (B) stimulus. An ABX task, rather than AX, was used to minimize response bias 

(Best et al., 2001). Participants pressed “5”, which was labeled “1st,” or “8”, which was 
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labeled “2nd” to make their response. After making their selection, there was a 1000 ms 

delay before the next trial began. No feedback was provided. To ensure that participants 

understood the task, a practice block was administered in which participants performed the 

task with /i/ and /ɛ/. The entire task took approximately eight minutes to complete.

The stimuli for the discrimination task were selected pairs from the 8-step synthesized 

continuum. As in Baese-Berk (2010), we included contrasts from within a sound category 

(stimulus points 1–3 and 6–8) and contrasts across the category boundary (stimulus points 

1–8, and 3–6), which are the stimuli that both groups heard the same number of times. An 

additional pair of stimuli (4–5) was also included to test whether additional practice on these 

ambiguous stimuli (differing by only one step along the continuum) in the unimodal 

condition would result in better discrimination than the bimodal condition. For each 

comparison, four possible orders were created (e.g., 1–3-1, 1–3-3, 3–1-1, 3–1-3). Each ABX 

task included three blocks of 20 trials (5 pairs * 4 orders) that were presented in a fully 

random order, resulting in 60 trials. For the across-boundary comparisons, steps 1 and 8 

were considered easy to discriminate as they were maximally different, steps 3 and 6 were 

considered moderate, and steps 4 and 5 were considered hard to discriminate.

Participants also completed two identification tasks in which each of the eight steps along 

the continuum was presented five times in random order. The setup of the task was identical 

to training, but no feedback was provided. To remind listeners of the labels, four practice 

trials of the two endpoint stimuli were provided. The identification task took approximately 

four minutes. Since the mapping of shapes to categories was established in the first training 

task, the first administration of the identification task immediately followed the first training. 

To capture as much learning as possible from the beginning to the end of the training, a 

second identification task was administered immediately after the fourth (final) training.

Working memory tasks

To control for individual differences in working memory, participants completed four tests 

believed to tap into different components of working memory.

The Forward Digit Span is associated with the Phonological Loop which permits short-term 

storage of auditory information and verbal rehearsal (Baddeley, 2000). In this task, 

participants listened to pre-recorded lists of digits from the Wechsler Adult Intelligence 

Scale - Fourth Edition (WAIS-IV) (Wechsler, 2008) and were asked to repeat them. Lists 

varied in length from two to ten digits, with two lists at each length. The criterion for 

termination of the test was two incorrectly repeated lists at one length. The total number of 

correctly repeated lists was used as each participant’s score.

The Backward Digit Span is associated with the Central Executive, which controls attention 

and manipulation of information (Baddeley, 2000). This task was like the Forward Digit 

Span task, but participants were asked to repeat the numbers in the reverse order.

The ability to listen to and repeat sentences is associated with the Episodic Buffer, which 

serves as an intermediary store that interfaces with long-term memory (Baddeley, 2000). 

This was assessed with the Recalling Sentences subtest of the Clinical Evaluation of 
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Language Fundamentals - Fourth Edition (CELF-4) (Semel et al., 2003). Participants 

listened to pre-recorded sentences and were asked to repeat them exactly as they heard them. 

As this test was normed to an adult population, we used the published standard scores with a 

mean of 10 and a standard deviation of 3.

Finally, a visual recall task was used as a measure of the Visuospatial Sketchpad, the visual 

analogue of the Phonological Loop (Baddeley, 2000). A computerized version of the Corsi 

block-tapping task was used (Berch et al., 1998; Corsi, 1972). In this task, nine white 

squares with black outlines were displayed on a white screen. The squares were selected by 

turning entirely black one at a time in a particular sequence and participants were asked to 

tap the squares in exactly the same order on a touch-screen computer. Following a brief 

practice, the main task included three sequences of each length ranging from two to nine 

squares. The criterion for termination was incorrect recall of all three sequences at a 

particular length. Similar to the Digit Span tasks, the Corsi block-tapping task was scored by 

counting the total number of correctly remembered lists.

Repetition task

Before any training had occurred and after all training was finished, participants completed a 

repetition task in which they listened to /dVt/ tokens and repeated them. Each repetition task 

involved three practice trials (/det/, /dat/, /dut/) followed by random presentation of four 

repetitions of each of the two endpoint stimuli (Steps 1 and 8) of the synthetic continuum 

and four repetitions of each of the nine natural French stimuli (/œ/, /o/, /i/, /y/, /e/, /ɛ/, /a/, /

ɔ/, and /u/). Participants were told that they would be hearing some words in another 

language and that they should repeat what they heard. They were not explicitly told to 

imitate the tokens. As training occurred with the synthesized stimuli, analyses in the current 

study were on the repetitions of the synthesized tokens only. After each stimulus was 

presented, a 1500 ms delay allowed sufficient time for participants to repeat each stimulus 

and prepare for the next trial.

Acoustic analysis of the repetition data

Trained research assistants marked the boundaries of the vowels in the /dVt/ repetitions, 

using the same measurement and formant extraction process used for the training stimuli. 

The frequency maximum was set to five formants in 5000 Hz for males and five formants in 

5500 Hz for females. For each participant per vowel target, any F1 and F2 values that were 

more than two standard deviations from that participant’s mean were hand checked. These 

hand-checked formant values were used to replace the initial, automatic formant measures if 

they differed from these initial measures by more than 10 Hz. For Step 1, four F1 values and 

three F2 values were checked and of these only one F1 value and no F2 values were 

corrected. For Step 8, eight F1 values and four F2 values were checked and of these only one 

F1 value and one F2 value were corrected.

For each participant, average F1 and F2 formant values were calculated at pre-training and at 

post-training for repetitions of Steps 1 and 8. For each participant, the Euclidean distance 

between these two vowels was then calculated based on Equation (1). A larger Euclidean 
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distance between Step 1 and Step 8 represents a greater acoustic distinction between the two 

vowels, suggesting a more native-like production.

Euclideandistance = F1Step1 − F1Step8
2 + F2Step1 − F2Step8

2 (1)

Statistical analysis

For both the discrimination task and the identification task, generalized logistic mixed 

effects models were fit to the accuracy data with the glmer function in the ‘lme4’ package 

(Bates et al., 2015) in R. All categorical predictors were sum-coded and all models were fit 

with bound optimization by quadratic approximation. When main effects and interactions 

needed to be examined, marginal means were estimated and the significance of the relevant 

marginal contrasts was evaluated using the emmeans function in R (Lenth, 2019). When 

marginal means were estimated, an effect size and standard error of the difference (or 

difference of differences) were provided. All p-values in emmeans were adjusted using 

Holm’s method for multiple comparisons.

Two participants were eliminated from all analyses. One participant was excluded from the 

unimodal condition based on performance in which the participant marked too many 

identical responses in a row on the discrimination task (17/60, 14/60) and on the 

identification task (18/48, 13/48, 16/48), which suggested inattention to the tasks. Another 

participant was excluded from the bimodal condition based on perfectly inaccurate 

discrimination performance (0% correct) on the easiest (1–8) difficulty level, suggesting that 

this participant had misunderstood the task instructions to select the item that matched the 

third stimulus.

Results

First, we examined performance on the working memory tasks to ensure that participants in 

the two conditions did not differ in these abilities. Independent samples t-tests confirmed no 

differences between the two training conditions on any of the working memory measures 

(see Table 4).

Second, to ensure that the participants in the two conditions did not differ in their perceptual 

ability prior to training, generalized logistic mixed-effects models were fit to the 

discrimination data at Time 1. The full model included fixed effects for Difficulty (across-

category easy [1–8], across-category moderate [3–6], across-category hard [4–5], and 

within-category [1–3 and 6–8]), Condition (bimodal, unimodal), and their interaction. The 

model also included random slopes for Difficulty by Participant and a random intercept for 

Participant.

Model comparison between models with and without the interaction between Difficulty and 

Condition revealed no difference in model fit (χ2(3) = 1.34, p = 0.721), thus the model 

without the interaction was used as the base model. Results of this model at Time 1 revealed 

no significant difference between the two conditions (β = −0.034, SE = 0.061, z = −0.56, p = 
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0.576), suggesting that listeners in both groups had similar pre-training perceptual abilities. 

The results of the full model can be found in Appendix A.

We calculated least-mean squares on Difficulty using the emmeans function, which revealed 

significant differences for all comparisons, as shown in Table 5. Performance was 

significantly different across all levels of Difficulty with performance as follows: easy 

across-category better than moderate across-category better than within-category better than 

hard across-category (as can be seen in Figure 2 in the next section). Due to these 

differences, subsequent analyses of the discrimination data involved separate models for 

each level of Difficulty.

Discrimination

Four models were fit to the discrimination data, one for each level of Difficulty with Time 

(1,2,3,4), Condition (unimodal, bimodal), the interaction between Time and Condition, and 

Order (mapping the purple spiky shape to the /o/ end of the continuum or to the /œ/ end of 

the continuum). We also included random slopes for Time by Participant and a random 

intercept for Participant. Figure 2 presents the means and confidence intervals at all four 

Time points.

For the easy across-category trials (discriminating Steps 1 and 8, left panel of Figure 2), 

model comparisons between a model with and without the interaction between Time and 

Condition revealed no difference in model fit (χ2(3) = 0.54, p = 0.909), thus the model 

without the interaction was used as the base model. This model without the interaction 

revealed a significant effect of Time, and a subsequent emmeans analysis revealed 

significant improvement in accuracy between Time 1 and Time 3 (p = 0.018), as seen in 

Table 6.

For the moderate across-category trials (discriminating Steps 3 and 6, second panel of Figure 

2), model comparisons between a model with and without the interaction between Time and 

Condition revealed no difference in model fit (χ2(3) = 1.97, p = 0.580), thus the model 

without the interaction is used as the base model. As with the easy across-category model, 

there was a significant effect of Time, in which an emmeans analysis on Time revealed 

significant improvement in accuracy between Time 1 and Time 4 (p = 0.007), as seen in 

Table 7.

For the hard across-category trials (discriminating Steps 4 and 5, third panel of Figure 2), 

model comparisons between a model with and without the interaction between Time and 

Condition revealed no difference in model fit (χ2(3) = 2.91, p = 0.407), thus the model 

without the interaction is used as the base model. The model without the interaction revealed 

no significant effects. As can be seen in Figure 2, performance on the hard across-category 

trials is near chance.

For the within-category trials (discriminating Steps 1 and 3 and discriminating Steps 6 and 

8, right-most panel of Figure 2), model comparisons between a model with and without the 

interaction between Time and Condition revealed no difference in model fit (χ2(3) = 1.75, p 

= 0.625), thus the model without the interaction is used as the base model. No predictors 
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contributed significantly to the model fit. As can be seen in Figure 2, performance on the 

within-category trials is also near chance.

Importantly, none of the models had significant effects of Condition (all p > 0.356) or of the 

interaction between Time and Condition. Together, these results suggest that participants in 

both conditions learned to discriminate similarly. Additionally, Order also was not a 

significant predictor of discrimination accuracy in any of the models (all p > 0.355), 

indicating that across all sessions and Difficulty levels, participants who completed the 

training with mapping A (mean = 67.7%, sd = 0.47) did not differ in discrimination accuracy 

from those who were trained with mapping B (mean = 67.6%, sd = 0.47). The full set of 

results for all models can be found in Appendix B.

Identification

To assess perceptual learning on the identification tasks, we examined overall accuracy to 

provide a broad picture of performance, as was done in several of the original studies of 

second-language sound acquisition. An additional reason to look at overall accuracy in these 

data is that after a single training block, some participants had not learned to label the two 

categories with any consistency. As a result, these participants did not have a pattern of 

responses that would allow a categorization curve to be fit well. To avoid spurious slopes 

(e.g., those where the fitted curves were positive instead of negative), we elected to examine 

the raw data (accuracy) so that participants who did not achieve sufficient categorical 

performance in the first identification task (and thus whose categorization curves could not 

be fit) could remain in the analysis.

It is specifically reasonable to examine raw accuracy in our identification task because 

participants were trained to map the first four steps onto one category and map the last four 

steps onto the other category. Due to the U-shaped nature of the identification accuracy 

curves, we fit a model that included both linear and quadratic terms for Step. Step was 

treated as a continuous variable because it is based on a continuous change in F2. First, Step 

was centered (subtracting the mean) and then the quadratic term for Step (Step^2) was 

generated from the centered version of Step. This allowed us to examine the convexity of the 

curve at the point where Step is 0 (the center of the distribution). A generalized logistic 

mixed-effects model was fit to the identification accuracy data with Time (1, 2), Condition 

(unimodal, bimodal), scaled and centered Step, scaled and centered Step^2, Order, and all 

possible interactions between Time, Condition, and the linear and quadratic terms for Step. 

The two Step terms were not included as interactions with each other. We also included a 

random intercept for Participant, random slopes for Time, Step, and Step^2 by Participant, 

and random slopes for the interaction of Time and Step by Participant and of Time and 

Step^2 by Participant. Accuracy data by Condition, Step, and Time and the fitted quadratic 

curves are plotted in Figure 3.

Model comparisons between a model with and without the two three-way interactions 

(Time:Condition:Step and Time:Condition:Step^2) revealed no significant difference in 

model fit (χ2(2) = 0.207, p = 0.902). Thus, the model with only the two-way interactions is 

used as the base model. The full model output for this model with all the 2-way interactions 

is in Appendix C. This model revealed a significant effect of Time (p < 0.001), with greater 
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accuracy at Time 2 than Time 1. There was no significant effect of Step (linear), because the 

slope at the center of Step is essentially flat. As expected, there was also a significant effect 

of Step^2 (p < 0.001), where accuracy is greater at the two ends than in the middle. 

Importantly, the model also revealed two significant interactions with Step^2 indicating 

differences in the degree of convexity. Curves that are less convex are flatter and indicate 

less difference in performance between Steps in the middle versus endpoints of the 

continuum. The interaction between Time and Step^2 (p < 0.001) indicates that the quadratic 

curve is more convex at Time 2 than Time 1. The interaction between Condition and Step^2 

(p = 0.001) indicates that the quadratic curve is more convex in the bimodal than the 

unimodal condition. Both of these interactions appear to be driven by an increase in 

accuracy at the endpoints of the continuum, rather than a decrease in accuracy at the middle 

of the continuum. Indeed, a post-hoc analysis using a model examining performance for 

Steps 1 and 8, with Time, Step, Condition, Order, and the interaction between Condition and 

Time as fixed-factors and random slopes for Time by Participant revealed significantly better 

performance for the bimodal than the unimodal group on these endpoint stimuli (estimate = 

0.93, SE = 0.43, z = 2.15, p = 0.0319).

Production

Two analyses were conducted on the production data. First, we conducted an analysis of the 

Euclidean distance to examine change over time for the two groups. To address this 

question, a repeated-measures analysis of variance (ANOVA) was run on Euclidean distance 

because each participant only contributed two data points, one at pre-training and another at 

post-training. A paired-samples t-test confirmed that the groups did not differ at pre-training 

(t(30) = 1.54, p = 0.134). The ANOVA included Condition (unimodal, bimodal) as a 

between-subjects factor and Time (pre, post) as a within-subjects factor, as shown in Figure 

4. Results revealed a main effect of Time (F(1, 30) = 7.56, p = 0.009, Cohen’s d = 0.346). 

Neither the main effect of Condition (F(1, 30) = 1.38, p = 0.249) nor the interaction (F(1, 

30) = .67, p = 0.418) reached significance. The changes in Euclidean distance are driven 

primarily by changes in the second formant, as expected. Across all participants, F1 values 

for the two target stimuli changed by less than 4 Hz. In contrast, F2 for Step 1 was raised 

(fronted) on average by 22 Hz and for Step 2 was lowered (backed) by 54 Hz. Thus, 

participants produced a greater difference between the vowels both by fronting the /œ/ target 

and backing the /o/ target.

Second, we explored whether individual differences in perception are associated with 

production post-training. To do this, we compared a series of 16 linear regression models 

similar to the model comparison performed in Campbell et al. (2018) to determine which 
perceptual measure and interaction structure would best predict production post-training. All 

models included two structural variables: Euclidean distance at pre-training as a measure of 

baseline production and Condition (unimodal, bimodal). Each model examined one of four 

possible measures of perception: average accuracy on the ABX discrimination task pre-

training (Time 1, ABX pre) and post-training (Time 4, ABX post), and average accuracy on 

the identification task across all eight steps at Time 1 (ID pre) and Time 2 (ID post). For 

each of these four perception measures, a set of four models was considered that differed 

based on the interaction structure: (i) no interaction term, (ii) an interaction between the 
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perception measure and Condition, (iii) an interaction between the production measure 

(Euclidean distance at pre-training) and Condition, or (iv) the interaction between the 

perception measure and the production measure (Euclidean distance at pre-training). All 

continuous variables were scaled and centered. Figure 5 provides a visual summary of these 

16 models. Before creating the models, we confirmed that there were no significant 

correlations between the production measure (Euclidean distance at pre-training) and any of 

the four perception measures (all r < 0.164, all p > 0.369).

The best among the 16 models was selected based on both the Akaike Information Criteria 

(AIC) (Akaike, 1974) and Bayesian Information Criteria (BIC) (Schwarz, 1978), where 

lower values indicate a better-fitting model. AIC and BIC can be used to identify the model 

that best explains the variation in the outcome measure. Both AIC and BIC penalize the log-

likelihood of the data by accounting for the cost of estimating the parameters in each model, 

but BIC penalizes models with more parameters more than AIC. All regression models were 

fit using the lm function in the ‘lme4’ package in R (Bates et al., 2015).

Table 8 provides the AIC and BIC values for each of the 16 models. The model that included 

post-training identification with no interactions was selected as the best-fitting model based 

on both AIC and BIC.1 In this best model, a significant effect was found for Euclidean 

distance at pre-training (β =149.59, SE = 27.49, t = 5.44, p < 0.0001), but not for 

Identification at post-training (β = 52.85, SE = 26.47, t = 1.99, p = 0.055) or Condition (β = 

−13.59, SE = 26.47, t = −0.51, p = 0.614). The effect of Euclidean distance at pre-training 

indicates that participants with a larger Euclidean distance at pre-training also had larger 

Euclidean distance at post-training (see Figure 6).

Discussion

The current study examined perceptual learning for the non-native vowel contrast /œ/-/o/ by 

native speakers of American English and whether perceptual training would transfer to gains 

in production. Participants were either trained with a bimodal distribution or a unimodal 

distribution. Importantly, rather than completing a passive learning task, participants actively 

engaged with each stimulus by selecting one of two images (visual support) and receiving 

feedback regarding their accuracy (active learning). Perceptual learning was assessed with 

both a discrimination task and an identification task. No differences were found between the 

two conditions in the discrimination task (Question 1). On the identification task, 

participants in the bimodal condition had a more convex (less flat, narrower) curve due to an 

increase in accuracy at the endpoint stimuli relative to those in the unimodal condition 

(Question 2). With respect to Question 3 that asked whether training in perception would 

lead to gains in production, we found that production improved between baseline (pre-

training) and post-training, as measured by the Euclidean distance between the vowel 

1While the simple model (i.e., with no interactions) with post-training identification as the perception predictor had the lowest BIC 
value, the other simple models with the other perception predictors had the next lowest BIC values. To determine whether these 
slightly higher BIC values indicated meaningfully different models, we calculated Bayes Factors for each model based on 
Wagenmakers (2007) and Raftery (1995). The Bayes Factors suggested weak evidence for the simple model with post-training 
identification compared to the model with pre-training identification (BF01 = 0.675), post-training ABX (BF01 = 0.738), and pre-
training ABX (BF01 = 0.698). This suggests that there is only weak evidence to support one perceptual predictor over the other in this 
set of simple models.
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productions, for both groups of participants. Contrary to our expectations, we did not find 

that an individual’s perceptual skills predicted degree of transfer to production (Question 4). 

Together, these results provide evidence for the benefit of exposure to a bimodal distribution, 

corroborating findings from previous studies. Additionally, these results offer support for our 

methodological strategy of enhancing perceptual learning in the unimodal condition. We 

address each of these conclusions in turn below.

Data from the identification task supports previous findings of an advantage for learning 

novel sound contrasts when exposed to a bimodal distribution. In our analysis, we found that 

the two groups differed in their accuracy on stimuli drawn from the endpoints of the acoustic 

continuum. While this finding provides additional evidence for the benefit of a bimodal 

distribution, it critically shows that this advantage persists even when participants are 

provided with additional supports in the form of images to reinforce the contrast and in the 

form of an active learning paradigm. As mentioned in the introduction, previous work with 

adults that had used a distributional learning paradigm typically did not include images to 

reinforce the contrast in the unimodal group: Baese-Berk (2010) provided the bimodal 

participants with two images, but unimodal participants with only one image. Although 

Hayes (2003) did include a condition where the unimodal group saw two images, no direct 

comparison was made between the unimodal group with two images and the bimodal group 

with two images. Thus, our findings from the identification task provide new and additional 

support for the benefits of a bimodal distribution. Furthermore, our finding that the 

difference between the two groups was characterized by changes in performance on the 

endpoint stimuli fits nicely with a recent study that found performance on endpoint stimuli 

to be especially useful for comparing across groups, in their case for individuals with and 

without reading impairments (O’Brien et al., 2018).

There are two possible explanations for the found pattern of results in the identification 

analysis. First, the differences at the endpoints may truly reflect a benefit for learning in the 

bimodal condition. Alternatively, the difference may stem from the attention paid to frequent 

versus infrequent stimuli and the corresponding acoustic and perceptual distances between 

the emphasized stimuli. The unimodal condition draws attention to the steps in the center of 

the continuum, whereas the bimodal condition draws attention to near-endpoint stimuli 

(stimuli 2 and 7). Thus, the difference in accuracy at the endpoints may have been due to 

inherent condition-specific differences in direction of attentional focus. This may reflect a 

Perceptual Magnet Effect (Kuhl & Iverson, 1995) in which listeners in the bimodal group, 

who have extensive exposure to stimuli 2 and 7, may have perceived stimuli 1 and 8 as 

similar to these frequent stimuli. That is, stimuli 1 and 8 are acoustically similar to stimuli 2 

and 7 (1 and 2 are only 0.32 Bark apart; 7 and 8 are only 0.31 Bark apart).

While the identification task provided some evidence for an advantage in the bimodal 

condition, the remaining tasks and analyses showed no differences between the two groups. 

With the exception of the identification task, these results differ from previous work that 

showed a learning advantage in the bimodal condition across perception and production tests 

following training (Baese-Berk, 2010; Hayes, 2003; Maye & Gerken, 2000, 2001; Maye et 

al., 2002). In the present study, it is likely that overall performance was enhanced due to the 

modifications in the design of the training portion of both the unimodal and bimodal 
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conditions, specifically the inclusion of two images to reinforce a contrast and the inclusion 

of accuracy feedback. Furthermore, it may be that these supports increased performance in 

the unimodal condition relatively more than has been demonstrated in previous studies. 

Future research should explore this possibility by comparing these results to another group 

trained passively on the same stimuli.

The design of the current study is not equipped to tease apart which support helped the 

unimodal group the most and allowed them to perform at levels similar to those in the 

bimodal group. We speculate that the inclusion of contrasting images in the unimodal 

condition allowed participants to begin building new categories for sounds not present in 

their L1. While the addition of contrasting images has been shown to improve performance 

for participants in bimodal conditions (Baese-Berk, 2010; Hayes, 2003), previous research 

has not included analysis of two images applied to a unimodal condition. In addition, we 

speculate that the addition of active learning (identification with feedback) also aided 

learning. Previous research has already demonstrated that the inclusion of feedback is 

associated with gains in non-distributional training studies (Baese-Berk & Samuel, 2015; 

Bradlow et al., 1997; Goudbeek et al., 2008; McCandliss et al., 2002). The current study was 

specifically designed to combine these two modifications to provide the most support for 

participants in the unimodal condition, which had previously been found to either not result 

in learning or to actually inhibit learning of a novel sound contrast. Future studies will be 

needed to tease apart the relative contribution of these two supports, and to determine 

whether these supports aid learning above and beyond the benefits of a bimodal distribution 

alone. Given the finding from Harmon et al. (2019) that no differences are found for the 

unimodal and bimodal groups when accuracy feedback is also provided, we cautiously 

suggest that the active engagement with the stimuli was partially responsible for the learning 

found in both groups, as well as the increased learning found in the unimodal group 

compared with previous studies.

One additional possibility is that the distributions of the stimuli are not perfectly bimodal 

and unimodal if we consider exposure during both the training blocks and the testing blocks. 

As described, stimulus presentation during the training blocks was carefully controlled to 

provide participants with exposure following the pattern in Figure 1. However, interleaved 

throughout the training blocks were testing blocks (discrimination, identification, repetition) 

in which participants were exposed to additional tokens of steps 1, 3, 4, 5, 6, and 8. 

Although participants were not provided with feedback following their interaction with the 

stimuli (as was done during the training blocks), it is possible that the additional exposure 

altered the distributions to be more similar to one another than intended. Although this is a 

possibility, our study is not the first to include testing blocks interleaved throughout training. 

Indeed, Baese-Berk (2010) also included discrimination and identification using steps 1, 3, 

6, 8 and still found differences in category learning between the unimodal and bimodal 

groups in a passive learning paradigm with contrasting images only in the bimodal 

condition. Given this precedent for interleaving trainings with the same stimuli, we do not 

believe that this additional exposure underlies the lack of a difference between the two 

groups in our study.
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While we interpret our findings to indicate that the additional supports aided learning, we 

acknowledge that it is also possible that aspects of the particular stimuli used in this task 

were responsible for the learning pattern we observed. Most previous studies using a 

distributional learning paradigm have used a temporal consonant (VOT) contrast, whereas 

the current study used a spectral vowel contrast. It is possible that vowels and consonants are 

learned differently, in such a way that distributional information is less important or used 

less efficiently for learning a vowel contrast. Therefore, the results of the current study may 

reflect a phenomenon specific to vowels, such that the added supports may only improve 

learning of a non-native vowel contrast. We leave exploration of this possibility to future 

research.

In addition to examining the benefit of distributional learning (and the added supports) for 

perception, we also examined whether this perceptual training paradigm would lead to gains 

in production. Based on Euclidean distances in acoustic space between the two vowels in 

pre-training and post-training repetition tasks, the bimodal and the unimodal groups both 

demonstrated gains in production. This indicates that perceptual training not only leads to 

gains in perception, it also leads to gains in production. These results are in line with past 

studies such as Bradlow et al. (1997), Baese-Berk (2010), and Rvachew (1994) that showed 

gains in both perception and production following perceptual training. We acknowledge that 

our outcome measure (Euclidean distance) reflects the subject-specific acoustic distinctness 

between the two trained vowels instead of a more direct index of accuracy, such as native 

listener ratings.

To address whether individual differences in perceptual leaning predict production, we 

compared a series of models with different perceptual measures and interaction terms. We 

expected that listeners with better perceptual skills would also demonstrate better production 

following training. Contrary to this expectation, we found that the perceptual measure in the 

best-fitting model did not significantly predict production performance. This finding differs 

from Baese-Berk (2010), who found that post-training discrimination significantly predicted 

gains in production. However, in line with our expectations, we did find that participants 

who produced the most acoustically distinct target vowels prior to any perceptual training 

also produced the most acoustically distinct target vowels following training. In other words, 

participants who started out with a larger division between the two sounds maintained a 

larger division between the two sounds after all training was over.

Conclusions

The primary focus of the current study was to test whether additional supports would result 

in learning a non-native contrast in participants exposed to both a bimodal and unimodal 

distribution. We asked whether the previously found disadvantage for a unimodal 

distribution relative to a bimodal distribution could be mitigated by including contrasting 

images and accuracy feedback in both learning conditions. Results of the discrimination task 

indicated that listeners in the unimodal condition can learn as well as those in a bimodal 

condition, which we interpret as evidence for the benefit of these additional supports. We 

found some evidence for a benefit of a bimodal distribution for the endpoint stimuli in the 

identification task. Importantly, the analysis of the production data revealed a transfer effect, 
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where the Euclidean distance between the two target vowels increased following perceptual 

training. However, no relationship was found between perceptual skill and production 

performance. The current study opens several lines of additional inquiry, including the 

question of which added support was responsible for the relatively enhanced learning found 

in the unimodal condition. In particular, the addition of an active training paradigm, which in 

this study relies on the presence of two images and accuracy feedback, may enhance 

learning and be useful to second language learners. While the original studies of 

distributional learning showed that both infants and adults can learn a contrast through 

passive exposure to a bimodal distribution, the current study shows that active learning with 

a unimodal distribution leads to as much learning as with a bimodal distribution. This 

deemphasis of the role of distribution in favor of learner supports has implications for 

research in second language learning in adults.

Acknowledgements

The authors would like to thank Duncan MacConnell, who synthesized the stimuli, and Ashley Quinto, who helped 
with data collection. We are also grateful to Erika Levy and Tara McAllister for their valuable feedback, and to 
Scott Seyfarth and Daphna Harel for statistical support. Many thanks to all participants for their cooperation in this 
study.

Funding Details

This work was supported by the National Institute on Deafness and Other Communication Disorders of the National 
Institutes of Health under Grant F31DC018197 (PI: H. Kabakoff).

Appendix

Appendix A

Output of the logistic mixed effects models for the discrimination task at Time 1

estimate SE z value p-value

(Intercept) 0.85 0.089 9.52 <0.001

Condition1 −0.034 0.061 −0.56 0.576

Difficulty1 (easy: 1, within: −1) 1.28 0.18 7.23 <0.001

Difficulty2 (hard: 1, within: −1) −0.81 0.11 −7.12 <0.001

Difficulty3 (medium: 1, within: −1) 0.030 0.11 0.28 0.776

Random effects Type Variance Std.Dev.

Participant (intercept) 0.12 0.35

Difficulty1 (by-participant slope) 0.27 0.52

Difficulty2 (by-participant slope) 0.11 0.33

Difficulty3 (by-participant slope) 0.02 0.15

Appendix

Appendix B

Output of the logistic mixed effects models for the discrimination task by Difficulty level

Model output for the easy, across-category contrast

estimate SE z value p-value
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(Intercept) 2.81 0.26 10.75 <0.001

Time1 (Time 1: 1; Time 4: −1) −0.68 0.21 −3.22 0.001

Time2 (Time 2: 1; Time 4: −1) −0.13 0.25 −0.52 0.603

Time3 (Time 3: 1; Time 4: −1) 0.77 0.34 2.25 0.025

Condition1 0.02 0.20 0.11 0.911

Order1 0.01 0.21 0.03 0.976

Random effects Type Variance Std.Dev.

Participant (intercept) 1.42 1.19

Time1 (by-participant slope) 0.11 0.33

Time2 (by-participant slope) 0.18 0.42

Time3 (by-participant slope) 0.44 0.67

Model output for the moderate, cross-category contrast

estimate SE z value p-value

(Intercept) 1.27 1.14 8.86 <0.001

Time1 (Time 1: 1; Time 4: −1) −0.37 0.12 −3.14 0.002

Time2 (Time 2: 1; Time 4: −1) 0.05 0.14 0.37 0.711

Time3 (Time 3: 1; Time 4: −1) 0.02 0.14 0.12 0.902

Condition1 −0.12 0.13 −0.92 0.356

Order1 0.12 0.13 0.92 0.355

Random effects Type Variance Std.Dev.

Participant (intercept) 0.50 0.71

Time1 (by-participant slope) 0.07 0.27

Time2 (by-participant slope) 0.10 0.32

Time3 (by-participant slope) 0.19 0.43

Model output for the hard, across-category contrast

estimate SE z value p-value

(Intercept) 0.07 0.06 1.12 0.264

Time1 (Time 1:1; Time 4: −1) −0.03 0.09 −0.30 0.767

Time2 (Time 2:1; Time 4: −1) −0.01 0.09 −0.06 0.955

Time3 (Time 3:1; Time 4: −1) 0.04 0.09 0.42 0.678

Condition1 0.01 0.06 0.21 0.830

Order1 0.00 0.06 −0.01 0.993

Random effects Type Variance Std.Dev.

Participant (intercept) 0.04 0.19

Time1 (by-participant slope) 0.01 0.08

Time2 (by-participant slope) 0.03 0.17

Time3 (by-participant slope) 0.00 0.07

Model output for the within-category contrast

estimate SE z value p-value

(Intercept) 0.44 0.06 6.92 <0.0001

Time1 (Time 1: 1; Time 4: −1) −0.10 0.07 −1.35 0.177

Time2 (Time 2: 1; Time 4: −1) −0.05 0.07 −0.76 0.449
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Time3 (Time 3: 1; Time 4: −1) 0.00 0.07 −0.03 0.974

Condition1 −0.05 0.06 −0.85 0.393

Order1 0.00 0.06 −0.06 0.952

Random effects Type Variance Std.Dev.

Participant (intercept) 0.08 0.29

Time1 (by-participant slope) 0.03 0.18

Time2 (by-participant slope) 0.01 0.12

Time3 (by-participant slope) 0.01 0.07

Appendix

Appendix C

Output of the generalized logistic mixed effects model for identification accuracy

estimate SE z value p-value

(Intercept) 2.48 0.24 10.43 <0.001

Condition1 0.39 0.19 2.09 0.037

Time1 −0.73 0.14 −5.14 <0.001

Order1 0.01 0.08 0.10 0.919

Step 0.18 0.15 1.20 0.232

Step^2 1.83 0.20 9.32 <0.001

Condition1:Time1 0.00 0.08 0.00 1.000

Time1:Step −0.08 0.13 −0.62 0.537

Condition1:Step 0.10 0.12 0.90 0.368

Time1:Step^2 −0.69 0.13 −5.26 <0.001

Condition1: Step^2 0.50 0.15 3.26 0.001

Random effects Type Variance Std.Dev.

Participant (intercept) 1.409 1.187

Time1 (by-participant slope) 0.349 0.591

Time1:Step (by-participant slope interaction) 0.235 0.485

Time2:Step (by-participant slope interaction) 1.197 1.094

Time1:Step^2 (by-participant slope interaction) 0.430 0.655

Time2:Step^2 (by-participant slope interaction) 1.607 1.268

Appendix

Appendix D

Output of the generalized logistic mixed effects model for identification accuracy for only 

the near and far stimuli.

estimate SE z value p-value

(Intercept) 2.237 0.212 10.52 <0.001

Condition1 0.176 0.207 0.853 0.393

Time1 −0.424 0.147 −2.88 0.003
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estimate SE z value p-value

Distance1 0.594 0.098 6.04 <0.001

Order1 0.211 0.193 1.09 0.273

Condition1:Time1 0.175 0.136 1.28 0.199

Condition1:Distance1 0.366 0.097 3.74 <0.001

Time1:Distance1 −0.108 0.098 −1.10 0.269

Condition1:Session1:Distance1 0.119 0.097 1.22 0.220

Random effects Type Variance Std.Dev.

Participant (intercept) 0.994 0.997

Time1 (by- participant slope) 0.247 0.497
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Figure 1. 
Sample distributions of the unimodal and bimodal conditions.
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Figure 2. 
Discrimination accuracy across the four Time points split by level of Difficulty with 

standard error of the mean bands.
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Figure 3. 
Identification accuracy and fitted quadratic curves for each Step at each Time point split by 

Condition. Horizontal and vertical jitter are added to the plot.
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Figure 4. 
Box plots of Euclidean distance between /œ/ and /o/ at pre-training and post-training, 

grouped by Condition.
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Figure 5. 
All models predicted the Euclidean distance at post-training from two structural variables, 

one of four perception variables, and one of four possible sets of interactions, for a total of 

16 models.

Kabakoff et al. Page 31

J Phon. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6: 
Scatter plot of Euclidean distance (ED) pre-training (x-axis) and the Euclidean distance at 

post-training (y-axis).
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Table 1.

Age breakdown by Condition and Order

N Age range Age mean (SD)

Bimodal 16 18–29 22.4 (3.1)

A 9 19–25 22.0 (2.5)

B 7 18–29 23.0 (3.9)

Unimodal 16 18–30 22.2 (2.8)

A 8 18–30 22.0 (3.6)

B 8 20–25 22.5 (1.8)

Total 32 18–30 22.3 (2.9)
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Table 2.

Formant frequencies of original and synthesized stimuli

Step Ideal F2 (Bark) Actual F2 (Bark) F1 (Hz) F2 (Hz) F3 (Hz) Duration (ms)

original /œ/ - 10.95 401 1467 2400 140

1 10.95 10.94 400 1465 2399 140

2 10.63 10.63 403 1398 2408 140

3 10.33 10.33 406 1335 2413 140

4 10.02 10.03 407 1273 2419 140

5 9.72 9.73 408 1215 2422 140

6 9.41 9.44 409 1161 2422 140

7 9.10 9.08 410 1095 2425 140

8 8.79 8.79 410 1045 2425 140

original /o/ - 8.79 410 1045 2465 138

/i/ - - 292 1936 2952 129

/y/ - - 307 1762 2383 119

/e/ - - 393 1999 2466 218

/ɛ/ - - 501 1741 2548 131

/a/ - - 651 1451 1451 133

/ɔ/ - - 531 1359 2518 133

/u/ - - 306 1083 2405 126
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Table 3.

Order of tasks

Day 1 Day 2

Discrimination 1 Discrimination 3

Production 1 Training 3

Training 1 Corsi block-tapping

Identification 1 Recalling Sentences

Hearing screening Training 4

Forward/Backward Digit Span Identification 2

Training 2 Discrimination 4

Discrimination 2 Production 2
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Table 4.

Descriptive statistics for working memory measures for participants in two conditions

WM measure
Bimodal Unimodal

Student t-test comparing conditions Cohen’s d
Mean SD Mean SD

Forward Digit Span 10.3 2.30 9.94 1.98 t(30) = 0.49, p = 0.63 0.167

Backward Digit Span 6.94 2.54 6.56 2.22 t(30) = 0.49, p = 0.63 0.159

Recalling Sentences 10.50 2.25 10.25 2.59 t(30) = 0.49, p = 0.63 0.103

Corsi block-tapping 14.75 2.18 13.56 2.34 t(30) = 0.49, p = 0.63 0.528
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Table 5.

emmeans comparison between the four levels of Difficulty at Time 1 in the ABX discrimination task. P-values 

are adjusted using Holm’s method.

contrast estimate SE z ratio p-value

easy - hard 1.85 0.18 10.137 <0.0001

easy - moderate 1.03 0.19 5.509 <0.0001

easy - within 1.55 0.17 9.251 <0.0001

hard - moderate −0.82 0.15 −5.376 <0.0001

hard - within −0.30 0.13 −2.361 0.0182

moderate - within 0.52 0.13 3.872 0.0002
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Table 6.

emmeans comparison between the four levels of Time for the easy across-category contrasts in the ABX 

discrimination task. P-values are adjusted using Holm’s method.

contrast estimate SE z ratio p-value

Time 1 - Time 2 −0.55 0.33 −1.68 0.337

Time 1 - Time 3 −1.44 0.49 −2.97 0.018

Time 1 - Time 4 −0.72 0.33 −2.17 0.150

Time 2 - Time 3 −0.90 0.52 −1.73 0.335

Time 2 - Time 4 −0.17 0.38 −0.44 0.659

Time 3 - Time 4 0.73 0.49 1.49 0.335
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Table 7.

emmeans comparison between the four levels of Time for the moderate across-category contrasts in the ABX 

discrimination task. P-values are adjusted using Holm’s method.

contrast estimate SE z ratio p-value

Time 1 - Time 2 −0.42 0.20 −2.12 0.171

Time 1 - Time 3 −0.39 0.21 −1.87 0.245

Time 1 - Time 4 0.67 0.21 −3.26 0.007

Time 2 - Time 3 0.03 0.24 0.14 0.890

Time 2 - Time 4 −0.25 0.22 −1.16 0.595

Time 3 - Time 4 −0.28 0.22 −1.29 0.595
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Table 8

AIC and BIC for all 16 models predicting the Euclidean distance at post-training. Lowest AIC and BIC values 

of the 16 models are marked in bolded text.

Perception measure 
included in model

Main 
effects 
Only

Main effects + 
Perception* 
Condition

Main effects + 
Production* 
Condition

Main effects + 
Perception* 
Production

AIC BIC AIC BIC AIC BIC AIC BIC

ABX pre-training 416.87 424.20 416.62 425.42 418.34 427.14 417.69 426.48

ABX post-training 417.27 424.60 419.11 427.91 418.49 427.29 419.15 427.94

ID pre-training 416.66 423.99 418.34 427.13 418.52 427.31 418.63 427.43

ID post-training 415.19 422.52 416.59 425.39 417.03 425.83 417.18 425.98
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