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Abstract

Mobile robot localization is the problem of determining a robot’s pose from sensor data. This
article presents a family of probabilistic localization algorithms known as Monte Carlo Localization
(MCL). MCL algorithms represent a robot’s belief by a set of weighted hypotheses (samples),
which approximate the posterior under a common Bayesian formulation of the localization problem.
Building on the basic MCL algorithm, this article develops a more robust algorithm called Mixture-
MCL, which integrates two complimentary ways of generating samples in the estimation. To apply
this algorithm to mobile robots equipped with range finders, a kernel density tree is learned that
permits fast sampling. Systematic empirical results illustrate the robustness and computational
efficiency of the approach.  2001 Published by Elsevier Science B.V.
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1. Introduction

Mobile robot localization is the problem of estimating a robot’s pose (location,
orientation) relative to its environment. The localization problem is a key problem in
mobile robotics. It plays a pivotal role in various successful mobile robot systems (see
e.g., [10,25,31,45,59,65,74] and various chapters in [4,41]). Occasionally, it has been
referred to as “the most fundamental problem to providing a mobile robot with autonomous
capabilities” [8].

The mobile robot localization problem comes in many different flavors [4,24]. The
most simple localization problem—which has received by far the most attention in the
literature—is position tracking [4,64,74,75]. Here the initial robot pose is known, and
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the problem is to compensate incremental errors in a robot’s odometry. Algorithms for
position tracking often make restrictive assumptions on the size of the error and the shape
of the robot’s uncertainty, required by a range of existing localization algorithms. More
challenging is the global localization problem [6,34,61], where a robot is not told its
initial pose but instead has to determine it from scratch. The global localization problem
is more difficult, since the error in the robot’s estimate cannot be assumed to be small.
Consequently, a robot should be able to handle multiple, distinct hypotheses. Even more
difficult is the kidnapped robot problem [20,24], in which a well-localized robot is tele-
ported to some other place without being told. This problem differs from the global
localization problem in that the robot might firmly believe itself to be somewhere else
at the time of the kidnapping. The kidnapped robot problem is often used to test a robot’s
ability to recover from catastrophic localization failures. Finally, all these problems are
particularly hard in dynamic environments, e.g., if robots operate in the proximity of people
who corrupt the robot’s sensor measurements [5,71].

The vast majority of existing algorithms address only the position tracking problem
(see e.g., the review [4]). The nature of small, incremental errors makes algorithms
such as Kalman filters [28,37,47,68] applicable, which have been successfully applied
in a range of fielded systems (e.g., [27,42,44,63]). Kalman filters estimate posterior
distributions of robot poses conditioned on sensor data. Exploiting a range of restrictive
assumptions—such as Gaussian noise and Gaussian-distributed initial uncertainty—they
represent posteriors by Gaussians. Kalman filters offer an elegant and efficient algorithm
for localization. However, the restrictive nature of the belief representation makes plain
Kalman filters inapplicable to global localization problems.

This limitation is overcome by two related families of algorithms: localization with
multi-hypothesis Kalman filters and Markov localization. Multi-hypothesis Kalman filters
represent beliefs using mixtures of Gaussians [9,34,60,61], thereby enabling them to
pursue multiple, distinct hypotheses, each of which is represented by a separate Gaussian.
However, this approach inherits from Kalman filters the Gaussian noise assumption. To
meet this assumption, virtually all practical implementations extract low-dimensional
features from the sensor data, thereby ignoring much of the information acquired by a
robot’s sensors. Markov localization algorithms, in contrast, represent beliefs by piecewise
constant functions (histograms) over the space of all possible poses [7,24,30,36,40,50,
55,56,66,70]. Just like Gaussian mixtures, piecewise constant functions are capable of
representing complex, multi-modal representations. Some of these algorithms also rely on
features [36,40,50,55,66,70], hence are subject to similar shortcomings as the algorithms
based on multi-hypothesis Kalman filters. Others localize robots based on raw sensor data
with non-Gaussian noise distributions [7,24]. However, accommodating raw sensor data
requires fine-grained representations, which impose significant computational burdens. To
overcome this limitation, researchers have proposed selective updating algorithms [24] and
tree-based representations that dynamically change their resolution [6]. It is remarkable
that all of these algorithms share the same probabilistic basis. They all estimate posterior
distributions over poses under certain independence assumptions—which will also be the
case for the approach presented in this article.

This article presents a probabilistic localization algorithm called Monte Carlo local-
ization (MCL) [13,21]. MCL solves the global localization and kidnapped robot problem
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in a robust and efficient way. It can accommodate arbitrary noise distributions (and non-
linearities in robot motion and perception). Thus, MCL avoids a need to extract features
from the sensor data.

The key idea of MCL is to represent the belief by a set of samples (also called:
particles), drawn according to the posterior distribution over robot poses. In other words,
rather than approximating posteriors in parametric form, as is the case for Kalman
filter and Markov localization algorithms, MCL represents the posteriors by a random
collection of weighted particles which approximates the desired distribution [62]. The
idea of estimating state recursively using particles is not new, although most work on
this topic is very recent. In the statistical literature, it is known as particle filters [17,
18,46,58], and recently computer vision researchers have proposed the same algorithm
under the name of condensation algorithm [33]. Within the context of localization, the
particle representation has a range of characteristics that sets it aside from previous
approaches:

(1) Particle filters can accommodate (almost) arbitrary sensor characteristics, motion
dynamics, and noise distributions.

(2) Particle filters are universal density approximators, weakening the restrictive
assumptions on the shape of the posterior density when compared to previous
parametric approaches.

(3) Particle filters focus computational resources in areas that are most relevant, by
sampling in proportion to the posterior likelihood.

(4) By controlling the number of samples on-line, particle filters can adapt to the
available computational resources. The same code can, thus, be executed on
computers with vastly different speed without modification.

(5) Finally, participle filters are surprisingly easy to implement, which makes them an
attractive paradigm for mobile robot localization. Consequently, MCL has already
been adopted by several research teams [16,43], who have extended the basic
paradigm in interesting new ways.

However, there are pitfalls, too, arising from the stochastic nature of the approximation.
Some of these pitfalls are obvious: For example, if the sample set size is small, a well-
localized robot might lose track of its position just because MCL fails to generate a sam-
ple in the right location. The regular MCL algorithm is also unfit for the kidnapped robot
problem, since there might be no surviving samples nearby the robot’s new pose after it has
been kidnapped. Somewhat counter-intuitive is the fact that the basic algorithm degrades
poorly when sensors are too accurate. In the extreme, regular MCL will fail with perfect,
noise-free sensors. All these problems can be overcome, e.g., by augmenting the sample set
through uniformly distributed samples [21], generating samples consistent with the most
recent sensor reading [43] (an idea familiar from multi-hypothesis Kalman filtering [1,34,
61]), or assuming a higher level of sensor noise than actually is the case. While these ex-
tensions yield improved performance, they are mathematically questionable. In particular,
these extensions do not approximate the correct density; which makes the interpretation of
their results difficult.

To overcome these problems, this article describes an extension of MCL closely related
to [43], called Mixture-MCL [72]. Mixture-MCL addresses all these problems in a way
that is mathematically motivated. The key idea is to modify the way samples are generated
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in MCL. Mixture-MCL combines regular MCL sampling with a “dual” of MCL, which
basically inverts MCL’s sampling process. More specifically, while regular MCL first
guesses a new pose using odometry, then uses the sensor measurements to assess the
“importance” of this sample, dual MCL guesses poses using the most recent sensor
measurement, then uses odometry to assess the compliance of this guess with the robot’s
previous belief and odometry data. Neither of these sampling methodologies alone is
sufficient; in combination, however, they work very well. In particular, Mixture-MCL
works well if the sample set size is small (e.g., 50 samples), it recovers faster from robot
kidnapping than any previous variation of MCL, and it also works well when sensor models
are too narrow for regular MCL. Thus, from a performance point of view, Mixture-MCL
is uniformly superior to regular MCL and particle filters.

The key disadvantage of Mixture-MCL is a requirement for a sensor model that permits
fast sampling of poses. While in certain cases, such a model can trivially be obtained, in
others, such as the navigation domains studied here and in [24], it cannot. To overcome
this difficulty, our approach uses sufficient statistics and density trees to learn a sampling
model from data. More specifically, in a pre-processing phase sensor readings are mapped
into a set of discriminating features, and potential robot poses are then drawn randomly
using trees generated. Once the tree has been constructed, dual sampling can be done very
efficiently.

To shed light onto the performance of Mixture-MCL in practice, empirical results are
presented using a robot simulator and data collected by physical robots. Simulation is
used since it allows us to systematically vary key parameters such as the sensor noise,
thereby enabling us to characterize the degradation of MCL in extreme situations. To verify
the experimental findings obtained with simulation, Mixture-MCL is also applied to two
extensive data sets gathered in a public museum (a Smithsonian museum in Washington,
DC), where during a two-week period in the fall of 1998 our mobile robot Minerva gave
interactive tours to thousands of visitors [71]. One of the data set comprises laser range
data, where a metric map of the museum is used for localization [71]. The other data set
contains image segments recorded with a camera pointed towards the museum’s ceiling,
using a large-scale ceiling mosaic for cross-referencing the robot’s position [14]. In the
past, these data have been used as benchmark, since localization in this crowded and
feature-impoverished museum is a challenging problem. Our experiments suggest that our
new MCL algorithm is highly efficient and accurate.

The remainder of this article is organized as follows. Section 2 introduces the regular
MCL algorithm, which includes a mathematical derivation from first principles and an
experimental characterization of MCL in practice. The section also compares MCL with
grid-based Markov localization [24], an alternative localization algorithms capable of
global localization. Section 3 presents examples where regular MCL performs poorly,
along with a brief analysis of the underlying causes. This section is followed by the
description of dual MCL and Mixture-MCL in Section 4. Section 5 describes our approach
to learning trees for efficient sampling in dual MCL. Experimental results are given in
Section 6. Finally, we conclude this article by a description of related work in Section 7,
and a discussion of the strengths and weaknesses of Mixture-MCL (Section 8).
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2. Monte Carlo localization

2.1. Bayes filtering

MCL is a recursive Bayes filter that estimates the posterior distribution of robot poses
conditioned on sensor data. Bayes filters address the problem of estimating the state x

of a dynamical system (partially observable Markov chain) from sensor measurements.
For example, in mobile robot localization the dynamical system is a mobile robot and its
environment, the state is the robot’s pose therein (often specified by a position in a two-
dimensional Cartesian space and the robot’s heading direction), and measurements may
include range measurements, camera images, and odometry readings. Bayes filters assume
that the environment is Markov, that is, past and future data are (conditionally) independent
if one knows the current state. The Markov assumption will be made more explicit below.

The key idea of Bayes filtering is to estimate a probability density over the state space
conditioned on the data. This posterior is typically called the belief and is denoted

Bel(xt) = p(xt | d0...t ).

Here x denotes the state, xt is the state at time t , and d0...t denotes the data starting at
time 0 up to time t . For mobile robots, we distinguish two types of data: perceptual data
such as laser range measurements, and odometry data, which carry information about robot
motion. Denoting the former by o (for observation) and the latter by a (for action), we have

Bel(xt) = p(xt | ot , at−1, ot−1, at−2, . . . , o0). (1)

Without loss of generality, we assume that observations and actions arrive in an alternating
sequence. Notice that we will use at−1 to refer to the odometry reading that measures the
motion that occurred in the time interval [t − 1; t], to illustrate that the motion is the result
of the control action asserted at time t − 1.

Bayes filters estimate the belief recursively. The initial belief characterizes the initial
knowledge about the system state. In the absence of such knowledge, it is typically
initialized by a uniform distribution over the state space. In mobile robot localization, a
uniform initial distribution corresponds to the global localization problem, where the initial
robot pose is unknown.

To derive a recursive update equation, we observe that expression (1) can be transformed
by Bayes rule to

Bel(xt) = p(ot | xt , at−1, . . . , o0)p(xt | at−1, . . . , o0)

p(ot | at−1, . . . , o0)
. (2)

Because the denominator is a constant relative to the variable xt , Bayes rule is usually
written as

Bel(xt) = ηp(ot | xt , at−1, . . . , o0)p(xt | at−1, . . . , o0), (3)

where η is the normalization constant

η = p(ot | at−1, . . . , o0)
−1. (4)
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As noticed above, Bayes filters rest on the assumption that future data is independent of
past data given knowledge of the current state—an assumption typically referred to as the
Markov assumption. Put mathematically, the Markov assumption implies

p(ot | xt , at−1, . . . , o0) = p(ot | xt ) (5)

and hence our target expression (3) can be simplified to:

Bel(xt) = ηp(ot | xt )p(xt | at−1, . . . , o0).

We will now expand the rightmost term by integrating over the state at time t − 1:

Bel(xt) = ηp(ot | xt )

∫
p(xt | xt−1, at−1, . . . , o0)p(xt−1 | at−1, . . . , o0)dxt−1. (6)

Again, we can exploit the Markov assumption to simplify p(xt | xt−1, at−1, . . . , o0):

p(xt | xt−1, at−1, . . . , o0) = p(xt | xt−1, at−1) (7)

which gives us the following expression:

Bel(xt) = ηp(ot | xt )

∫
p(xt | xt−1, at−1)p(xt−1 | at−1, . . . , o0)dxt−1. (8)

Substituting the basic definition of the belief Bel back into (8), we obtain the important
recursive equation

Bel(xt) = ηp(ot | xt )

∫
p(xt | xt−1, at−1)Bel(xt−1)dxt−1. (9)

This equation is the recursive update equation in Bayes filters. Together with the initial
belief, it defines a recursive estimator for the state of a partially observable system. This
equation is of central importance in this article, as it is the basis for various MCL algorithms
studied here.

To implement (9), one needs to know two conditional densities: the probability p(xt |
xt−1, at−1), which we will refer to as next state density or simply motion model, and the
density p(ot | xt ), which we will call perceptual model or sensor model. Both models
are typically stationary (also called: time-invariant), that is, they do not depend on the
specific time t . This stationarity allows us to simplify the notation by denoting these models
p(x ′ | x, a), and p(o | x), respectively.

2.2. Probabilistic models for localization

The nature of the models p(x ′ | x, a) and p(o | x) depends on the specific estimation
problem. In mobile robot localization, which is the focus of this article, both models
are relatively straightforward and can be implemented in a few lines of code. The
specific probabilistic models used in our implementation have been described in depth
elsewhere [24]; therefore, we will only provide an informal account.

The motion model, p(x ′ | x, a), is a probabilistic generalization of robot kinemat-
ics [10,73]. As noticed above, for a robot operating in the plane the poses x and x ′ are



S. Thrun et al. / Artificial Intelligence 128 (2001) 99–141 105

Fig. 1. The density p(x′ | x,a) after moving 40 meter (left diagram) and 80 meter (right diagram). The darker a
pose, the more likely it is.

three-dimensional variables. Each pose comprises a robot’s two-dimensional Cartesian co-
ordinates and its heading direction (orientation, bearing). The value of a may be an odom-
etry reading or a control command, both of which characterize the change of pose. In
robotics, change of pose is called kinematics. The conventional kinematic equations, how-
ever, describe only the expected pose x ′ that an ideal, noise-free robot would attain starting
at x , and after moving as specified by a. Of course, physical robot motion is erroneous;
thus, the pose x ′ is uncertain. To account for this inherent uncertainty, the probabilistic mo-
tion model p(x ′ | x, a) describes a posterior density over possible successors x ′. Noise is
typically modeled by zero centered, Gaussian noise that is added to the translation and ro-
tation components in the odometry measurements [24]. Thus, p(x ′ | x, a) generalizes exact
mobile robot kinematics typically described in robot textbooks [10,73] by a probabilistic
component.

Fig. 1 shows two examples of p(x ′ | x, a). In both examples, the initial pose x is shown
on the left, and the solid line depicts the odometry data as measured by the robot. The
grayly shaded area on the right depicts the density p(x ′ | x, a): the darker a pose, the more
likely it is. A comparison of both diagrams reveals that the margin of uncertainty depends
on the overall motion: Even though the pose of a noise-free robot are the same for both
motion segments, the uncertainty in the right diagram is larger due to the longer overall
distance traversed by the robot.

For the MCL algorithm described further below, one does not need a closed-form
description of the motion model p(x ′ | x, a). Instead, a sampling model of p(x ′ | x, a)

suffices. A sampling model is a routine that accepts x and a as an input and generates
random poses x ′ distributed according to p(x ′ | x, a). Sampling models are usually easier
to code than routines that compute densities in closed form. Fig. 2 shows a sample model
of p(x ′ | x, a), applied to a sequence of odometry measurements, as indicated by the solid
line. As is easy to be seen, the sequence of particle sets approximates the densities of a
robot that only measures odometry.

Let us now turn our attention to the perceptual model, p(o | x). Mobile robots are
commonly equipped with range finders, such as ultrasonic transducers (sonar sensors) or
laser range finders. Fig. 3(a) shows an example of a laser range scan, obtained with an RWI
B21 robot in an environment whose approximate shape is also shown in Fig. 3(a). Notice
that the range finder emits a plateau of light that covers a horizontal 180 degree range, for
which it measures the distance to the nearest objects.
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Fig. 2. Sampling-based approximation of the position belief for a robot that only measures odometry. The solid
line displays the actions, and the samples represent the robot’s belief at different points in time.

For range finders, we decompose the problem of computing p(o | x) into three parts:
(1) the computation of the value a noise-free sensor would generate;
(2) the modeling of sensor noise; and
(3) the integration of many individual sensor beams into a single density value.

Assume the robot’s pose is x , and let oi denote an individual sensor beam with bearing
αi relative to the robot. Let g(x,αi) denote the measurement of an ideal, noise-free
sensor whose relative bearing is αi . Since we assume that the robot is given a map of
the environment such as the one shown in Fig. 3(a), g(x,αi) can be computed using ray
tracing [49]. We assume that this “expected” distance g(x,αi) is a sufficient statistic for
the probability p(oi | x), that is

p(oi | x) = p
(
oi | g(x,αi)

)
. (10)

The exact density p(oi | x) is shown in Fig. 3(b). This density is a mixture of three
densities: a Gaussian centered at g(x,αi) that models the event of measuring the correct
distance with small added Gaussian noise, an exponential density that models random
readings as often caused by people, and a discrete large probability (mathematically
modeled by a narrow uniform density) that models max-range measurements, which
frequently occur when a range sensor fails to detect an object. The specific parameters
of the density in Fig. 3(b) have been estimated using an algorithm similar to EM [15,52],
which starts with a crude initial model and iteratively labels several million measurements
collected in the Smithsonian museum, while refining the model. A smoothed version of
these data is also shown in Fig. 3(b), illustrating that our probabilistic model is highly
accurate.
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(a) laser scan and map

(b) sensor model p(oi | x)

(c) probability distribution for different poses

Fig. 3. (a) Laser range scan, projected into a map. (b) The density p(o | x), where the peak corresponds to the
distance an ideal, noise-free sensor would measure. (c) p(o | x) for the scan shown in (a). Based on a single
sensor scan, the robot assigns high likelihood for being somewhere in the main corridor.



108 S. Thrun et al. / Artificial Intelligence 128 (2001) 99–141

Finally, the individual density values p(oi | x) are integrated multiplicatively, assuming
conditional independence between the individual measurements:

p(o | x) =
∏
i

p(oi | x). (11)

Clearly, this conditional independence can be violated in the presence of people (which
often block more than one sensor beam). In such cases, it might be advisable to subsample
the sensor readings and use a reduced set for localization [24].

Fig. 3(c) depicts p(o | x) for the sensor scan shown in Fig. 3(a) and the map shown
in gray in Fig. 3(c). Most of the probability mass is found in the corridor region, which
reflects the fact that the specific sensor measurement is more likely to have originated in
the corridor than in one of the rooms. The probability mass roughly lies on two bands,
and otherwise is spread through most of the corridor. The density shown in Fig. 3(c) is
equivalent to the posterior belief of a globally localizing robot after perceiving only one
sensor measurement.

2.3. Particle approximation

If the state space is continuous, as is the case in mobile robot localization, implementing
(9) is not a trivial matter—particularly if one is concerned about efficiency.

The idea of MCL (and other particle filter algorithms) is to represent the belief Bel(x)

by a set of m weighted samples distributed according to Bel(x):

Bel(x) ≈ {
x(i),w(i)

}
i=1,...,m

.

Here each x(i) is a sample of the random variable x , that is, a hypothesized state (pose). The
non-negative numerical parameters w(i) are called importance factors, which throughout
this paper will be such that they sum to 1 (although this is not strictly required in
particle filtering). As the name suggests, the importance factors determine the weight
(=importance) of each sample [62]. The set of samples, thus, define a discrete probability
function that approximates the continuous belief Bel(x).

The initial set of samples represents the initial knowledge Bel(x0) about the state of the
dynamical system. For example, in global mobile robot localization, the initial belief is a
set of poses drawn according to a uniform distribution over the robot’s universe, annotated
by the uniform importance factor 1/m. If the initial pose is known up to some small margin
of error, Bel(x0) may be initialized by samples drawn from a narrow Gaussian centered on
the correct pose.

The recursive update is realized in three steps.
(1) Sample x

(i)
t−1 ∼ Bel(xt−1) from the (weighted) sample set representing Bel(xt−1).

Each such particle x
(i)
t−1 is distributed according to the belief distribution Bel(xt−1).

(2) Sample x
(i)
t ∼ p(xt | x

(i)
t−1, at−1). Obviously, the pair 〈x(i)

t , x
(i)
t−1〉 is distributed

according to the product distribution

qt := p(xt | xt−1, at−1) × Bel(xt−1). (12)

In accordance with the literature on the SIR algorithm (short for: Sampling
importance resampling) [62,67,69], we will refer to this distribution qt as the
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proposal distribution. Its role is to “propose” samples of the desired posterior
distribution, which is given in Eq. (9); however, it is not equivalent to the desired
posterior.

(3) Finally, correct for the mismatch between the proposal distribution qt and the
desired distribution specified in Eq. (9) and restated here for the sample pair
〈x(i)

t−1.x
(i)
t 〉:

ηp
(
ot | x(i)

t

)
p
(
x

(i)
t | x(i)

t−1, at−1
)
Bel

(
x

(i)
t−1

)
. (13)

This mismatch is accounted for by the following (non-normalized) importance
factor, which is assigned to the ith sample:

w(i) = p
(
ot | x(i)

t

)
. (14)

Following [62], the importance factor is obtained as the quotient of the target
distribution (13) and the proposal distribution (12), up to a constant scaling factor:

ηp(ot | x(i)
t )p(x

(i)
t | x(i)

t−1, at−1)Bel(x(i)
t−1)

p(x
(i)
t | x(i)

t−1, at−1)Bel(x(i)
t−1)

= ηp
(
ot | x(i)

t

)
. (15)

Notice that this quotient is proportional to w(i), since η is a constant.
The sampling routine is repeated m times, producing a set of m weighted samples x

(i)
t

(with i = 1, . . . ,m). Afterwards, the importance factors are normalized so that they sum
up to 1 and hence define a discrete probability distribution.

Table 1 summarizes the MCL algorithm. It is known [69] that under mild assumptions
(which hold in our work), the sample set converges to the true posterior Bel(xt ) as m goes
to infinity, with a convergence speed in O(1/

√
m). The speed may vary by a constant

factor, which can vary drastically depending on the proposal distribution. Due to the
normalization, the particle filter is only asymptotically unbiased. Care has to be taken if
the number of samples is extremely small (e.g., less than 10), as the bias increases as

Table 1
The MCL algorithm

Algorithm MCL(X,a,o)

X′ = ∅
for i = 0 to m do

generate random x from X according to w1, . . . ,wm

generate random x′ ∼ p(x′ | a,x)

w′ = p(o | x′)
add 〈x′,w′〉 to X′

endfor

normalize the importance factors w′ in X′

return X′
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the sample set size decreases. In the extreme case of m = 1, the measurements ot will
plainly be ignored, and the resulting expectation of this single sample is heavily biased
by the prior. In all our implementations, however, the number of samples is sufficiently
large.

2.4. Examples

We performed systematic experiments in a range of different settings to evaluate the
performance of MCL in practice.

2.5. Simulation

Simulation was employed for evaluation since it allows us to freely vary key parameters,
such as the amount of sensor noise. Further below, we will make use of this freedom to
characterize situations in which MCL performs poorly.

Fig. 4 shows an example in which a simulated mobile robot localizes an object in 3D. In
our simulation, this robot can detect the (approximate) location of the object in the image
taken by its camera, but the lack of depth estimation in mono-vision makes it impossible
to localize the object from a single camera image. Instead, the simulated robot has to
view the object from multiple viewpoints. However, changing the viewpoint introduces
additional uncertainty, as robot motion is inaccurate. Additionally, in our simulation, the
visual field of the robot is limited to a narrow region in front of the robot, which further

Fig. 4. Successful localization sequence for our robot simulation of object localization. The final error is 36.0 cm.
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Fig. 5. Average error of MCL as a function of the number of simulated robot steps/measurements.

complicates the object localization problem. Our noise simulation includes a simulation of
measurement noise, false positive measurements (phantom detections) and false negative
measurements (failures to detect the target object). To enable us to systematically vary
key parameters such as the perceptual noise, our results use a mobile robot simulator that
models control error (reminiscent of an RWI B21 robot) and noise in perception (Gaussian
position noise, false negatives, and false positives). Notice that this task is more difficult
than the first one, due to the impoverished nature of the robot sensors and the large number
of symmetries.

Fig. 4 depicts different states of global object localization. Initially, the pose of the
object is unknown, as represented by the uniform sample set in Fig. 4 (first diagram).
As the simulated robot turns in a wide circle, unable to see the object (despite a handful
of phantom detections), the samples gradually populate the unexplored part of the state
space (Fig. 4, second diagram). The third diagram shows the first “correct” object sighting,
which reinforces the samples that happen to be close to the correct object pose. A few
measurements later, repetitive sightings of the object lead to a posterior shown in the fourth
diagram of Fig. 4. Fig. 5 shows systematic error curves for MCL in global localization for
different sample set sizes m, averaged over 1,000 individual experiments. The bars in this
figure are confidence intervals at the 95% level.

The reader should notice that these results have been obtained for a perceptual noise
level of 20% (for both false-negative and false-positive) and an additional position noise
that is Gaussian-distributed with a variance of 10 degrees. For our existing vision system,
these error rates are much lower, but may not necessarily be independent.

2.6. Robot with sonar sensors

Fig. 6 shows an example of MCL in the context of localizing a mobile robot globally
in an office environment. This robot, called Minerva, is an RWI B18 robot equipped with
sonar range finders. It is given a map of the environment. In Fig. 6(a), the robot is globally
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(a)

(b)

(c)

Fig. 6. Global localization of a mobile robot using MCL (10,000 samples): (a) initial particle set, uniformly
distributed (projected into 2D). (b) Particles after approximately 2 meters of robot motion. Due to environment
symmetry, most particles are centered around two locations. (c) Particle set after moving into a room, thereby
breaking the symmetry. These experiments were carried out with an RWI B21 robot.
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(a) (b)

Fig. 7. (a) Accuracy of grid-based Markov localization using different spatial resolutions. (b) Accuracy of MCL
for different numbers of samples (log scale).

uncertain; hence the samples are spread uniformly through the free-space (projected into
2D). Fig. 6(b) shows the sample set after approximately 2 meters of robot motion, at which
point MCL has disambiguated the robot’s position up to a single symmetry. Finally, after
another 2 meters of robot motion, the ambiguity is resolved, and the robot knows where it
is. The majority of samples are now centered tightly around the correct position, as shown
in Fig. 6(c).

Of particular interest shall be a comparison of MCL to an alternative localization
algorithm capable of global mobile robot localization. In particular, we compared MCL
to grid-based Markov localization, our previous best stochastic localization algorithm and
one of the very few algorithms capable of localizing a robot globally [7,23]. The grid-
based localization algorithm relies on a fine-grained piecewise constant approximation
for the belief Bel, using otherwise identical sensor and motion models. The fact that our
implementation employs identical sensor and motion models and is capable of processing
the same data greatly facilitates the comparison. Fig. 7(a) plots the localization accuracy
for grid-based localization as a function of the grid resolution. Notice that the results
in Fig. 7(a) were not generated in real-time. As shown there, the accuracy increases
with the resolution of the grid, both for sonar (solid line) and for laser data (dashed
line). However, grid sizes below 8 cm do not permit updating in real-time in the specific
testing environment, even when highly efficient selective update schemes are applied [24].
Results for MCL with fixed sample set sizes are shown in Fig. 7(b). These results have
been generated using real-time conditions, where large sample sizes (> 1,000 samples)
result in loss of sensor data due to time constraints. Here very small sample sets are
disadvantageous, since they infer too large an error in the approximation. Large sample sets
are also disadvantageous, since processing them requires too much time and fewer sensor
items can be processed in real-time. The “optimal” sample set size, according to Fig. 7(b),
is somewhere between 1,000 and 5,000 samples. Grid-based localization, to reach the same
level of accuracy, has to use grids with 4 cm resolution—which is infeasible given even our
best computers.
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Fig. 8. Ceiling map of the National Museum of American History, which was used as the perceptual model in
navigating with a vision sensor. The map was acquired using an RWI B18 robot.

2.7. Robot with upward-pointed camera

Similar results were obtained using a camera as the primary sensor for localization [12].
To test MCL under challenging real-world conditions, we evaluated it using data collected
in a populated museum. During a two-week exhibition, our robot Minerva (Fig. 8) was
employed as a tour-guide in the Smithsonian’s Museum of Natural History, during which
it traversed more than 44 km [71]. To aid localization, Minerva is equipped with a
camera pointed towards the ceiling. Fig. 8 shows a mosaic of the museum’s ceiling. Since
the ceiling height is unknown, only the center region in the camera image is used for
localization.

This data set is among the most difficult in our possession, as the robot traveled with
speeds of up to 163 cm/sec. Whenever it entered or left the carpeted area in the center
of the museum, it crossed a 2 cm bump which introduced significant errors in the robot’s
odometry. When only using vision information, grid-based localization fatally failed to
track the robot. This is because the enormous computational overhead makes it impossible
to incorporate sufficiently many images. MCL, however, succeeded in globally localizing
the robot and tracking the robot’s position in this specific data set. Fig. 9 shows a sequence
of belief distributions during localization using MCL. However, as we will see below, in
a second data sequence recorded during the museum’s opening hours MCL would have
failed to localize the robot if only vision information had been used—of course, in the
actual exhibit [5] the laser was instrumental for localization.
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(a)

(b)

(c)

Fig. 9. Global localization of a mobile robot using a camera pointed at the ceiling. This experiment has been
carried out with the Minerva tour-guide robot, an RWI B18 robot.
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Fig. 10. Solid curve: error of MCL after 100 steps, as a function of the sensor noise. 95% confidence intervals
are indicated by the bars. Notice that this function is not monotonic, as one might expect. Dashed curve: Same
experiment with high-error model. These results were obtained through simulation.

3. Limitations of MCL

As noticed by several authors [17,46,58], the basic particle filter performs poorly if the
proposal distribution, which is used to generate samples, places not enough samples in
regions where the desired posterior Bel(xt ) is large.

This problem has indeed practical importance in the context of MCL, as the following
example illustrates. The solid curve in Fig. 10 shows, for our object localization example,
the accuracy MCL achieves after 100 steps, using m = 1,000 samples. These results were
obtained in simulation, enabling us to vary the amount of perceptual noise from 50% (on
the right) to 1% (on the left). It appears that MCL works best for 10% to 20% perceptual
noise. The degradation of performance towards the right, when there is a lot of noise, hardly
surprises. The less accurate a sensor, the larger an error one should expect. However, MCL
also performs poorly when the noise level is too small. In other words, MCL with accurate
sensors may perform worse than MCL with inaccurate sensors. At first glance, this finding
may appear to be a bit counter-intuitive in that it suggests that MCL only works well in
specific situations, namely those where the sensors possess the “right” amount of noise.

Fig. 11 depicts an example run for highly accurate sensors in which MCL fails. When
the object is first sighted, none of the samples is close enough to the object’s true position.
As a consequence, MCL gradually removes all samples with the exception of those located
in the simulated robot’s “dead spot”, which is the center of its circular trajectory. Clearly,
localization fails in this example, with a final error of 394 cm. Unfortunately, the more
accurate the sensors, the smaller the support of p(o | x), hence the more likely this problem
occurs.

There are, of course, fixes. At first glance, one might add artificial noise to the sensor
readings. A more sensible strategy would be to use a perceptual model p(ot | xt ) that
overestimates the actual sensor noise, instead of adding noise to the sensor measurements.
In fact, such a strategy, which has been adopted in [21], partially alleviates the problem:
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Fig. 11. Unsuccessful localization sequence for our robot simulation of object localization. The final error in this
case is 394 cm.

The dashed curve in Fig. 10 shows the accuracy if the error model assumes a fixed 10%
noise (shown there only for smaller “true” error rates). While the performance is better,
this is hardly a fix. The overly pessimistic sensor model is inaccurate, throwing away
precious information in the sensor readings. In fact, the resulting belief is not any longer
a posterior, even if infinitely many samples were used. Other fixes include the addition of
random samples into the posterior [21], and the generation of samples at locations that
are consistent with the sensor readings [43]—a strategy that is similar to Mixture-MCL
below but without proper sample weighting is mathematically questionable. While these
approaches have shown superior performance over strict MCL in certain settings, neither
of them can be expected to converge to the true posterior as the sample set size goes to
infinity.

To analyze the problem more thoroughly, we first notice that the true goal of Bayes
filtering is to calculate the product distribution specified in Eq. (13). Thus, the optimal
proposal distribution would be this product distribution. However, sampling from this
distribution directly is too difficult. As noticed above, MCL samples instead from the
proposal distribution qt defined in Eq. (12), and uses the importance factors (15) to account
for the difference. It is well known from the statistical literature [17,46,58,69] that the
divergence between (12) and (13) determines the convergence speed. This difference is
accounted by the perceptual density p(ot | xt ): If the sensors are entirely uninformative,
this distribution is flat and (12) is equivalent to (13). For low-noise sensors, however,
p(ot | xt) is typically quite narrow, hence MCL converges slowly. Thus, the error in
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Fig. 10 is in fact caused by two different types of errors: one arising from the limitation
of the sensor data (= noise), and one that arises from the mismatch of (12) and (13) in
MCL. As we will show in this article, an alternative version of MCL exists that practically
eliminates the second error source, thereby enhancing the accuracy and robustness of the
approach.

4. Mixture-MCL

4.1. The dual of MCL

We will now derive an alternative version of MCL, called dual Monte Carlo localization.
This algorithm will ultimately lead to the main algorithm proposed in this article, the
Mixture-MCL algorithm.

The key idea of the dual is to “invert” the sampling process, by exchanging the roles of
the proposal distribution and the importance factors in MCL. More specifically, dual MCL
generates samples of the state x

(i)
t by virtue of the following proposal distribution:

q̄t = p(ot | xt )

π(ot)
with π(ot ) =

∫
p(ot | xt )dxt . (16)

Here the normalizer, π(ot), is assumed to be finite, which indeed is the case for mobile
robot localization in environments of bounded size. Dual MCL can be viewed as the
logical inverse of the sampling in regular MCL: Rather than guessing the state x

(i)
t and

then using the most recent observation to adjust the importance of a guess, dual MCL
guesses states corresponding to the most recent observation, and adjusts the importance
factor in accordance with the prior belief Bel(xt−1). Consequently, the dual proposal
distribution possesses complimentary strengths and weaknesses: while it is ideal for highly
accurate sensors, its performance is negatively affected by measurement noise. The key
advantage of dual MCL is that when the distribution of p(o | x) is narrow—which is
the case for low-noise sensors—dual sampling can be more effective than conventional
MCL.

4.2. Importance factors

We will now provide three alternative ways to calculate the importance factors for q̄t .
The first is mathematically the most elegant, but for reasons detailed below it is not well
suited for mobile robot localization. The other two require an additional smoothing step.
Both work well for mobile robot localization.

4.2.1. Approach 1
(Proposed by Arnaud Doucet, personal communication.) The idea is to draw random

pairs 〈x(i)
t , x

(i)
t−1〉 by sampling x

(i)
t as described above, and x

(i)
t−1 by drawing from Bel(xt−1).

Obviously, the combined proposal distribution is then given by

q̄1,t = p(ot | xt )

π(ot)
× Bel(xt−1) (17)
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and the importance factors are given by

w(i) = p
(
x

(i)
t | x(i)

t−1, at−1
)
. (18)

To see the latter, we notice that the importance factor is the quotient of the target
distribution (13) and the proposal distribution (17), up to a scaling factor:

[
p(ot | x(i)

t )

π(ot)
Bel(x(i)

t−1)

]−1

ηp
(
ot | x(i)

t

)
p
(
x

(i)
t | x(i)

t−1, at−1
)
Bel

(
x

(i)
t−1

)

= ηp
(
x

(i)
t | x(i)

t−1, at−1
)
π(ot ) ∝ p

(
x

(i)
t | x(i)

t−1, at−1
)
. (19)

This approach is mathematically more elegant than the two alternatives described below,
in that it avoids the need to transform sample sets into densities (which will be the case
below). However, in the context of global mobile robot localization, the importance factor
p(x

(i)
t | at−1, x

(i)
t−1) will be zero (or vanishingly small) for many pose pairs 〈x(i)

t , x
(i)
t−1〉.

This is because it is unlikely that independently drawn poses x
(i)
t and x

(i)
t−1 are “consistent”

with the action at−1 under the motion model. We have therefore not implemented this
approach. However, for other estimation problems using particle filters it might work well,
which is the reason why it is described in this article.

4.2.2. Approach 2
The second approach seeks to calculate importance factors for samples x

(i)
t more

directly. This approach requires a separate forward phase, in which an auxiliary density
function is constructed that is subsequently used to calculate importance factors.

In the forward phase, our approach generates samples x
(j)

t−1 ∼ Bel(xt−1) and then

x
(j)
t ∼ p(xt | x

(j)

t−1, at−1). As is easily seen, each resulting sample x
(j)
t is distributed

according to p(xt | at−1, d0...t−1). Together, they represent the robot’s belief at time t

before incorporating the sensor measurement ot . Belief distributions of this type are often
referred to as predictive distributions in the Kalman filtering literature [51], since they
represent the prediction of state xt based on the action at−1 and previous data, but before
incorporating the sensor measurement at time t . To use this distribution for calculating
importance factors, the ‘trick’ is to transform the samples x

(j)
t into a kernel density tree

(kd-tree) [3,53] that represents the predictive distribution p(xt | at−1, d0...t−1) in closed
form. Using this tree, we can now calculate p(x

(i)
t | at−1, d0...t−1) for any sample x

(i)
t

generated by the dual sampler.
We now have all pieces together to define the second version of the dual sampler.

Similar to the previous approach, samples x
(i)
t are generated according to the proposal

distribution q̄2,t = q̄t as defined in Eq. (16). However, instead of sampling from Bel(xt−1),
this approach directly assigns importance factors to samples x

(i)
t using the kd-tree that

represents

w(i) = p
(
x

(i)
t | at−1, d0...t−1

)
. (20)

To verify the correctness of this approach, we notice that the quotient of the Bayes filter
target distribution (9) and the proposal distribution (16) is indeed proportional to the
importance factors w(i).
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[
p(ot | x(i)

t )

π(ot)

]−1

ηp
(
ot | x(i)

t

)∫
p
(
x

(i)
t | xt−1, at−1

)
Bel(xt−1)dxt−1

=
[
p(ot | x(i)

t )

π(ot)

]−1

ηp
(
ot | x(i)

t

)
p
(
x

(i)
t | at−1, d0...t−1

)

= ηπ(ot)p
(
x

(i)
t | at−1, d0...t−1

)
. (21)

In comparison to the first approach discussed here, this approach avoids the danger of
generating pairs of poses 〈x(i)

t , x
(i)
t−1〉 for which w(i) = 0. On the other hand, it involves

an explicit forward sampling phase that requires the induction of a probability density
function from samples using a kd-tree. The induction step smoothes the resulting density,
which reduces the variance of the estimation. However, the primary role of converting
samples into kd-trees is that it facilitates the calculation of the importance weights.

4.2.3. Approach 3
The third approach avoids the explicit forward-sampling phase of the second approach,

but it tends to generate smaller importance factors. In particular, the third approach
transforms the initial belief Bel(xt−1) into a kd-tree, very much like in the forward phase
of the second approach. For each sample x

(i)
t ∼ q̄t , one now draws a sample x

(i)
t−1 from the

distribution

p(x
(i)
t | xt−1, at−1)

π(x
(i)
t | at−1)

, (22)

where

π
(
x

(i)
t | at−1

) =
∫

p
(
x

(i)
t | xt−1, at−1

)
dxt−1. (23)

As above, we assume that the integral π(x
(i)
t | at−1) is finite, which is trivially the case in

the context of mobile robot localization.
In other words, our approach projects x

(i)
t back to a possible predecessor pose x

(i)
t−1.

Consequently, the pair of poses 〈x(i)
t , x

(i)
t−1〉 is distributed according to the proposal

distribution

q̄3,t = p(ot | xt )

π(ot)
× p(xt | xt−1, at−1)

π(xt | at−1)
, (24)

which gives rise to the following importance factor

w(i) = Bel
(
x

(i)
t−1

)
. (25)

To see, we notice that w(i) is proportional to the following quotient of the target distribution
(13) and the proposal distribution q̄3,t specified in (24):

[
p(ot | x(i)

t )

π(ot)

p(x
(i)
t | x(i)

t−1, at−1)

π(x
(i)
t | at−1)

]−1

ηp
(
ot | x(i)

t

)
p
(
x

(i)
t | x(i)

t−1, at−1
)
Bel

(
x

(i)
t−1

)

= ηπ(ot)π
(
x

(i)
t | at−1

)
Bel

(
x

(i)
t−1

)
. (26)
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Table 2
The dual MCL algorithm (third approach)

Algorithm dual_MCL_3(X,a,o)

X′ = ∅
generate kd-tree b from X

for i = 0 to m do

generate random x′ ∼ p(x′ | o)/π(o)

generate random x ∼ p(x′ | ā, x)/π(x′ | a)

w′ = b(x)

add 〈x′,w′〉 to X′

endfor

normalize the importance factors w′ in X′

return X′

When calculating w(i), the term Bel(x(i)
t−1) is calculated using the kd-tree representing

this belief density. In our derivation, we silently assumed that the term π(x
(i)
t | at−1) is

a constant, hence can be omitted. This is indeed a very good approximation for mobile
robot localization, although in the general case of dynamical systems this assumption may
not be valid. Table 2 shows the algorithm that implements this specific version of dual
MCL.

4.2.4. Performance
The reader should notice that all three approaches require a method for sampling poses

from observations according to q̄t —which can be non-trivial in mobile robot applications.
The first approach is the easiest to implement and mathematically most straightforward.
However, as noted above, we suspect that it will be inefficient for mobile robot localization.
The two other approaches rely on a density estimation method (such as kd-trees). The third
also requires a method for sampling poses backwards in time, which further complicates its
implementation. However, the superior results given below may well make this additional
work (i.e., implementing the dual) worthwhile.

Unfortunately, dual MCL alone is insufficient for localization. Fig. 12 depicts the
performance of dual MCL using the third approach, under the same conditions that led
to the MCL results shown in Fig. 10. In both figures, the horizontal axis depicts the
amount of noise in perception, and the vertical axis depicts the error in centimeters,
averaged over 1,000 independent runs. Two things are remarkable: First, the accuracy is
now monotonic in perceptual noise: More accurate sensors give better results. Second,
however, the overall performance is much poorer than that of conventional MCL. The poor
performance of dual MCL is due to the fact that erroneous sensor measurements have a
devastating effect on the estimated belief, since almost all samples are generated at the
“wrong” place.
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Fig. 12. Error of dual MCL as a function of the sensor noise. The error appears to increase monotonically with
the sensor noise, but the overall error level is high. Compare this graph to Fig. 10. These results were obtained
through simulation.

4.3. The Mixture-MCL algorithm

In many practical situations, plain MCL will work sufficiently well. However, as the
experimental results suggest, neither version of MCL alone—the plain MCL algorithm and
its dual—delivers satisfactory performance in certain situations. The plain MCL algorithm
fails if the perceptual likelihood is too peaked. The dual MCL only considers the most
recent sensor measurement, hence is prone to failure when the sensors fail, regardless
of which of the three alternatives is used to calculate importance factors. However, each
approach has complimentary strengths and weaknesses, suggesting that a combination of
both might yield superior performance.

Mixture-MCL, the final algorithm described in this paper, merges both approaches. In
Mixture-MCL, samples are generated by both plain MCL, and (one of) its duals, with
a mixing rate of φ (with 0 � φ � 1). This is achieved by generating each sample with
probability 1 − φ using standard MCL, and with probability φ using a dual.

Table 3 states the Mixture-MCL algorithm, using the third variant for calculating
importance factors in the dual. As is easy to be seen, the Mixture-MCL algorithm combines
the MCL algorithms in Table 1 with the dual algorithm in Table 2, using the (probabilistic)
mixing ratio φ. With probability 1 − φ, MCL’s sampling mechanisms is used to generate
a new sample. Otherwise, samples are generated via the dual. Notice that both types of
samples are added to the same sample set before normalization. To make the two types
of importance factors compatible, it is necessary to multiply the importance factors of the
dual samples by π(o)π(x ′ | a), when compared to the algorithm stated in Table 2. To see
why, we notice that Eq. (15) suggests that the importance factors for plain MCL should be
ηp(o | x). Similarly, the importance factors of the third version of the dual were derived
as ηπ(o)π(x ′ | a)b(x), according to Eq. (26), where b denotes the tree generated from
the corresponding belief Bel. Since the constant η occurs in both of versions of MCL, it
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Table 3
The Mixture-MCL algorithm, here using the third variant
of dual MCL (see Table 2)

Algorithm MixtureMCL(X,a,o)

X′ = ∅
generate kd-tree b from X

for i = 0 to m do

with probability 1 − φ do

generate random x from X according to w1, . . . ,wm

generate random x′ ∼ p(x′ | a,x)

w′ = p(o | x′)
add 〈x′,w′〉 to X′

else do

generate random x′ ∼ p(x′ | o)/π(o)

generate random x ∼ p(x′ | ā, x)/π(x′ | a)

w′ = π(o)π(x′ | a)b(x)

add 〈x′,w′〉 to X′

endif

endfor

normalize the importance factors w′ in X′

return X′

can safely be omitted. Thus, an appropriate importance factor for samples generated by
regular MCL is p(o | x ′), and π(o)π(x ′ | a)b(x) for samples generated by its dual. In our
implementation, we approximate π(o)π(x ′ | a) by a constant.

Fig. 13 shows results obtained in simulation. Shown there are performance results of
Mixture-MCL, using the second (thick line) and third (thin line) variant of the dual for
calculating importance factors. All experiments use a fixed mixing ratio φ = 0.1, and are
averaged over 1,000 independent experiments per data point. A comparison with Fig. 10
suggests that Mixture-MCL is vastly superior to regular MCL, and in certain cases reduces
the error by more than an order of magnitude. These results have been obtained with the
third method for calculating importance factors. In our simulation experiments, we found
that the second approach yields slightly worse results, but the difference was not significant
at the 95% confidence level.

5. Sampling from the dual proposal distribution

For some sensors, sampling from the dual proposal distribution q̄ can be far from trivial.
For example, if the mobile robot uses proximity sensors and a metric map as described
in Section 2.2, sampling from the inverse, q̄ is not straightforward. The reader may recall
that Section 2.2 outlines a closed-form routine for computing the forward model p(o | x),
which accepts both the pose x and an observation o as an input. However, dual MCL
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Fig. 13. Error of Mixture-MCL, combining regular and dual importance sampling. Mixture-MCL outperforms
both components by a large margin, and its error is monotonic in the sensor noise. Thick line: second approach,
thin line: third approach for dual sampling. Compare this graph to Figs. 10 and 12. These results were obtained
through simulation.

requires us to sample poses x from a density proportional to p(o | x), given just the
observation o as an input. In other words, we are in need of a routine that accepts a range
scan o as input, and which generates poses x .

The key idea here is to “learn” a sampling model of the joint distribution p(o, x) from
data, such that samples of the desired proposal distribution can be generated with ease. The
specific representation chosen here is again a set of kd-trees, each of which models p(o, x)

for a subset of “similar” observations o, and each of which recursively partitions the space
of all poses in a way that makes it easy to sample from q̄ = p(o | x)/π(o).

The data used to construct the trees are samples 〈x, o〉 of poses x and observations o that
are distributed according to the joint distribution, p(x, o). There are two ways to sample
from the joint: (1) synthetically, using the existing probabilistic models, and (2) using the
physical robot to gather data (and the probabilistic model to augment such data).

• The synthetic sampling scheme is relatively straightforward. To generate a single
sample, joint can be done in two cascaded sampling steps:
(1) a pose x is sampled from a uniform distribution, and
(2) for this pose, an observation is sampled according to p(o | x).
Sampling is repeated, until a sufficient number of samples has been generated (e.g., a
million). Obviously, the resulting sample set represents the joint distribution p(x, o).

• An alternative way to generate samples of the joint is to use data collected by
a physical robot. This approach is preferable if one cannot easily sample from
the perceptual model p(o | x)—as is actually the case in our existing software
implementation (fixes such as rejection sampling [69] are inefficient). In general,
sampling from the perceptual model is particularly difficult when using cameras,
since this is a problem similar to the computer graphics problem. Luckily, sensor
measurements o randomly collected by a robot are samples of p(o), assuming that
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the robot is placed randomly in its environment. However, robots are usually unable
to measure their poses—otherwise there would not be a localization problem.
Luckily, importance sampling [62] offers a solution. The following routine generates
samples from the desired joint distribution:
(1) Generate an observation o using a physical robot in a known environment with a

random (but unknown) pose.
(2) Generate a large number of poses x according to a uniform distribution over the

set of all robot poses.
(3) For each pose x , compute the importance factor p(o | x) using the perceptual

model described in Section 2.2.
Samples 〈x, o〉 generated using this approach, along with their importance factors
p(o | x), approximate the joint p(o, x).

Equipped with samples representing the joint distribution, let us now turn our attention to
learning trees that permit fast sampling from the dual proposal distribution q̄ . Again, there
are multiple options to generate such trees. In our approach, the sensor measurements o are
mapped into a low-dimensional feature vector. For laser range scans, a good set of features
is the following three:

• The location of a sensor scan’s center of gravity, relative to the robot’s local coordinate
system. The center of gravity is obtained by connecting the end-points of the
individual range measurements and calculating the center of gravity of the enclosed
area in 2D, relative to the robot’s location. Its location is encoded in polar coordinates
(two parameters).

• The average distance measurement, which is a single numerical parameter.
Together, these three values are treated like sufficient statistics, that is, we assume it suffices
to know f (o) to sample x , hence

p(o | x)

π(o)
= p(f (o) | x)

π(f (o))
. (27)

A discrete grid is then stipulated over these three values, and a kd-tree is grown for every
(discrete) combination of the feature values f (o). Each tree, thus, is conditioned on f (o)

(and hence on o). The depth of the tree depends on the total likelihood of a region in pose
space: the more likely a pose given a specific observation f (o), the deeper the tree (and
hence the smaller the region covered by that leaf). Sampling from a tree is very efficient,
since it only involves a small number of random coin flips.

Fig. 14 illustrates our sampling algorithm in practice. Shown in Fig. 14(a) is an example
range scan along with an occupancy grid map [19,54] as described in Section 2.2. From this
scan, our approach extracts the three features described above (center of gravity, average
distance). Fig. 14(b) shows the tree that corresponds to these features, which partitions the
state space recursively into small hyper-rectangular regions. Sampling from this tree yields
sample sets like the one shown in Fig. 14(c).

The tree constructed here can be built off-line, before robot operation. This is in contrast
to the trees used to represent beliefs in Mixture-MCL, which must be built on-line after
each belief update. This distinction is important when considering running times of the
different variants of MCL. Because building a tree representing p(o, x) is an off-line
operation, it does not factor into the running time of the algorithm. It should be noted,
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(a) laser scan and map

(b) tree for this scan

(c) samples of poses generated from tree

Fig. 14. Sampling from a distribution proportional to p(x | o): (a) example range scan and map, (b) tree that
partitions the state space for this scan, and (c) samples of poses x generated from the tree. The underlying data
was collected by the Minerva data, an RWI B18 robot.
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however, that the tree significantly increases the memory requirements of the approach.
For example, the tree for generating samples from laser range scans in the museum
environment requires approximately 80 MB of memory.

6. Experimental results

Systematic experimental results were conducted to evaluate the advantage of Mixture-
MCL to regular MCL under a wide range of circumstances. The comparisons were carried
out for a range of localization problems, with an emphasis on the more difficult global
localization problem and the kidnapped robot problem. As above, real robot experiments
were augments by systematic simulation results, where key parameters such as the amount
of sensor noise could easily be controlled. When emulating global localization failures in
the kidnapped robot problem, it is important that the tree used for calculating importance
factors in the dual filter be non-zero everywhere. This was achieved by using a Dirichlet
prior for estimating the probabilities in the leaves of the tree.

6.1. Simulation

Fig. 13 shows the performance of Mixture-MCL, under conditions that are otherwise
identical to those in Fig. 10. As these results suggest, our new MCL algorithm outperforms
both MCL and its dual by a large margin. At every single noise level, our new algorithm
outperforms its alternatives by a factor that ranges from 1.07 (high noise level) to 9.7
(low noise level). For example, at a noise level of 1%, Mixture-MCL algorithm exhibits
an average error of 24.6 cm, whereas MCL’s error is 238 cm and that of dual MCL is
293 cm. In comparison, the average error with noise-free sensors and the optimal estimator
is approximately 19.5 cm.

Mixture-MCL degrades gracefully to very small sample sets. Fig. 15 plots the error of
conventional MCL (top curve) and Mixture-MCL (bottom curve) for different error levels,
using m = 50 samples. With only 50 samples, regular MCL basically fails to track the
robot’s position in our simulation. Mixture-MCL exhibits excellent performance, and is
only slightly inferior to m = 1,000 samples. Viewed differently, these findings suggest that
Mixture-MCL is computationally an order of magnitude more efficient than conventional
MCL.

Finally, Mixture-MCL tends to exhibit superior performance in the kidnapped robot
problem. Fig. 16 shows the average localization error averaged over 1,000 simulation
runs, as a function of time. The three different curves in that figure correspond to three
different algorithms: MCL (thin curve), MCL with added random samples (dashed curve),
and Mixture-MCL (thick curve). At time step 100, the simulated robot is kidnapped: it is
tele-ported to a random pose without being told. As argued in the introduction, kidnapping
is a way to test the ability of a localization algorithm to recover from catastrophic failures.
As the results in Fig. 16 suggest, Mixture-MCL recovers faster than any alternative MCL
algorithm, despite the fact that we optimized parameters such as the ratio of random
samples beforehand. Regular MCL fails entirely to recover from the kidnapping, since
it tends to lack samples at the new robot pose. The addition of random samples overcomes
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Fig. 15. Error of MCL (top curve) and Mixture-MCL (bottom curve) with 50 samples (instead of 1,000) for each
belief state. These results were obtained through simulation.

Fig. 16. Kidnapped robot problem: Localization error as a function of time, for three different approaches: MCL
(thin curve), MCL with added random samples (dashed curve), and Mixture-MCL (thick curve). At time t = 100,
the robot is tele-ported to a random pose without being told. As these results suggest, Mixture-MCL is most
efficient in recovering from this incident. These results were obtained through simulation.

this problem, but is inefficient. Mixture-MCL places samples more thoughtfully, which
increases its efficiency in recovering from kidnapping.

6.2. Robot with laser range finder

Mixture-MCL has also been evaluated using data recorded by Minerva. As outlined
above, the data contains logs of odometry measurements and sensor scans taken by
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Fig. 17. Estimated path of the Minerva robot in the Smithsonian Museum of National History.

Minerva’s two laser range-finders (see [22] for details). Fig. 17 shows part of the map
of the museum and the path of the robot used for this evaluation.

As already reported in Section 2.4, conventional MCL reliably succeeds in localizing
the robot. Thus, our attention here is to evaluate Mixture-MCL for the kidnapped robot
problem. To do so, we repeatedly introduced errors into the odometry information. These
errors made the robot lose track of its position with probability of 0.01 when advancing
one meter.

Fig. 18 shows comparative results for our three different approaches. The error is
measured by the percentage of time, during which the estimated position deviates by more
than 2 meters from the reference position. Obviously, Mixture-MCL yields significantly
better results, even if plain MCL is augmented by 5% random samples. Mixture-MCL
reduces the error rate of localization by as much as 70% more than plain MCL; and 32%
when compared to the case where plain MCL is augmented with uniform samples. These
results are significant at the 95% confidence level.

6.3. Robot with upward-pointed camera

We also compared Mixture-MCL in the context of visual localization, using only camera
imagery obtained with the robot Minerva during public museum hours [12]. Notice that
this data set is not the same as the one used above; in particular, it contains an unexplained,
unnaturally large odometry error, which occurred for unknown reasons. In this particular
case, the odometry reported back by the robot’s low-level motion controller jumped by
a large mount. We suspect that the error was caused by an overflow in the low-level
robot motion control software, which is inaccessible to us. Since we did not expect
such an error, our software did not check for unnaturally large odometry readings and
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Fig. 18. Performance of conventional (top curve), conventional with random samples (middle curve) and mixture
(bottom curve) MCL for the kidnapped robot problem in the Smithsonian museum. The error rate is measured in
percentage of time during which the robot lost track of its position. These results were obtained using a physical
robot.

accepted it as if it was correct. Such an error, whatever its cause, induces a kidnapped
robot problem. Moreover, the image sequence used for evaluation is of poor quality, as
people often intentionally covered the camera with their hand and placed dirt on the
lens.

Fig. 19 shows two sample sets (large images), superimposed on the ceiling mosaic,
which have been generated by Mixture-MCL during localization. Arrows mark samples
generated by the regular MCL sampler. Next to these diagrams, the center regions of the
most recent camera images are shown (small diagrams), which are used for generating
samples in the dual filter. In Fig. 19(a), the most recent image suggests that the robot
is under a ceiling light. Consequently, the dual sampler generates samples close to light
sources. In Fig. 19(b), the camera measurement is considerably dark, suggesting a location
in the center octagon. Notice that we changed the brightness of the ceiling map to increase
the visibility of the samples; the authentic ceiling map is shown in Fig. 8.

Fig. 20 depicts the localization error obtained when using vision only (calculated using
the localization results from the laser as ground truth). The data covers a period of
approximately 4,000 seconds, during which MCL processes a total of 20,740 images. After
approximately 630 seconds, the aforementioned error in the robot’s odometry leads to a
loss of the position. As the two curves in Fig. 20 illustrate, regular MCL (dashed curve)
is unable to recover from this event, whereas Mixture-MCL (solid curve) recovers. For
this data set, MCL with added random sample performs similarly well as Mixture-MCL.
These results are not statistically significant in that only a single run is considered, but
they confirm our findings with laser range finders, indicating that Mixture-MCL is indeed
a robust localization method.
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(a) sample set and ceiling mosaic camera image (center region)

(b) sample set and ceiling mosaic camera image (center region)

Fig. 19. Two sample sets generated by Mixture-MCL, along with the most recent camera image (center region of
the image only). The arrows mark the samples generated using the conventional MCL sampler, whereas the other
samples are generated by the dual. In (a), the most recent camera measurement suggests that our Minerva robot
is near a ceiling light, whereas in (b) the measurement suggests a location in the center octagon.

6.4. Running times

A final issue addressed in our experiments concerns the running time of MCL
algorithms. Clearly, the absolute time depends on a variety of factors, such as the number
of samples, the nature of the probabilistic models and the sensor data, the amount of pre-
processing required (e.g., for extracting features from camera images), and the underlying
computer platform. The numbers discussed in this section shed some light onto the relative
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Fig. 20. Plain MCL (dashed curve) compared to Mixture-MCL (solid line). Shown here is the error for a
4,000-second episode of camera-based localization in the Smithsonian museum, using the robot Minerva.

(a) (b)

Fig. 21. (a) Time (in seconds on a 500 MHz Pentium PC) required for one full belief computation using regular
MCL (dashed line) and Mixture-MCL (solid line), plotted as a function of the number of particles. (b) Percentage
of time spent generating density trees in Mixture-MCL. All results are averaged over 1,000 updates using the
robot simulator.

requirements of MCL and Mixture-MCL. They also illustrate that MCL methods can
be implemented highly efficiently, requiring only a small fraction of the computational
resources of a typical PC. All results reported here were obtained with a Pentium PC
running at 500 MHz and equipped with sufficient RAM to hold all data in main memory.

Fig. 21(a) shows the time required for a full MCL update as a function of the number of
samples, for our robot simulation. The solid line in Fig. 21(a) corresponds to regular MCL,
whereas the dashed line shows the time required to run Mixture-MCL. Both coordinate
axes are logarithmic. The time measurement is approximately linear, as one would expect
when increasing the number of samples. With m = 1,000, regular MCL consumes on
average 8.56×10−3 seconds per update. Mixture-MCL with mixing ratio φ = 0.1 requires
1.02 × 10−2 seconds, which is 19.1% slower than regular MCL. This result appears to be
invariant to the mixing ratio φ as long as φ > 0. For m = 1,000, 29.7% of the total time
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is spent on constructing the kd-tree. Fig. 21(b) plots the fraction of time spent building
the tree in Mixture-MCL for different sample set sizes m. As can be seen there, the curve
first decreases with increasing sample size (from 48.9% for m = 100 samples to 28.7%
for m = 5,000). For m = 10,000 samples, the percentage increases slightly (to 31.1%),
an increase that is statistically significant at the 95% level. The exact cause of this non-
monotonic behavior is unknown to us; we attribute it to side effects of the PC architecture
(e.g., computing with cache versus main memory).

The timing results of our physical robot implementation are similar. The running times
for the MCL implementation using range data are shown in Fig. 22. This diagram shows
the computation time on a 500 MHz Pentium PC, as a function of the sample set size,
both plotted in logarithmic scale. The computation time is broken town into the two basic
components: the integration of odometry measurements (curve marked with solid black
squares), and the integration of range data (all other curves). For example, with m = 1,000
samples, both types of updates can be performed in less than five thousands of a second,
which is approximately 40 times faster than sensor data arrives.

Fig. 22 shows four different timing graphs for integrating range measurements. These
correspond to different sensors (laser versus sonar) and different implementations. The top
two curves in Fig. 22 depict the computation time for a straightforward implementation of
MCL. This implementation calculates the distance to the nearest obstacle on-line, while
integrating sensor data. Two of the three bottom curves show the computation time for

Fig. 22. Processor time required by our MCL implementation using range data. The results are broken down
into the prediction step (bottom curve), where odometry data is processed by sampling new poses, and the
observation step (top curve), where range data is incorporated into the importance factors. Notice that both axes
are logarithmic. The bars indicate 95% confidence intervals.
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an implementation where these distances are pre-computed and stored in a large table
(see [24] for more details). By pre-calculating these distances, the integration of sensor
measurements is sped up by a factor of 16.9. The downside of this technique is its memory
requirement, which lies between 50 MB and 200 MB for indoor maps like the ones shown
in this paper. The difference in computation time between laser and sonar data, which can
be observed regardless of whether or not distances are pre-computed, stems from the fact
that there are many more laser beams per scan than there are sonar beams. Our current
software integrates 60 individual laser measurements for each laser scan, compared to 12
individual sonar measurements per sonar scan.

All these results were obtained for sample sets of fixed size. We notice that our physical
robot implementation of MCL generates sample sets of variable sizes, driven by events.
More specifically, our implementation generates samples until a new sensor measurement
becomes available (up to a maximum number of samples). The advantage of such an
implementation is its adaptivity to the available computational resources. Such resource-
adaptive algorithms are sometimes referred to as any-time algorithms [11,76]. They have
the advantage that when ported to a different computer (e.g., a new, faster PC), they can
exploit the additional computational power without any modification to the program code.
An argument in [5] emphasizes the use of resource-adaptive algorithms as a generic design
principle of mobile robot software.

7. Related work

Mobile robot localization is a fundamental problem in mobile robotics, which has
received considerable attention over the past decades [4,10,25,31,41,45,59,65,74]. As
argued in the introduction of this article, the vast majority of work focuses on the position
tracking problem, where errors are assumed to be small. Most approaches are incapable of
recovering from localization failures, though methods exist for detecting such conditions.
Usually, failures of the localization component require that a robot’s position be entered
manually.

Approaches that solve the global localization and the kidnapped robot problem are
relatively recent, and they commonly rely on Bayes filtering with multi-modal density
representations, just like MCL. A recent article [24] gives a comprehensive overview
of algorithms for mobile robot localization with many references. As argued in the
introduction of this article, there are several alternatives to the approach proposed here.
Among the most prominent ones are probabilistic algorithms that use piecewise constant
functions and Gaussian mixtures to represent the robot’s belief. The former are known as
Markov localization algorithms, and the latter are often implemented as multi-hypothesis
Kalman filters. All of these approaches can be derived from the Bayes filter described in
Section 2.1, which is also the mathematical basis of the various MCL algorithms presented
in this article. Thus, all of these algorithms share the same mathematical basis.

Example for approximating the posterior using piecewise constant densities can be
found in [7,24,30,36,40,50,55,56,66,70]. Many of these approaches approximate the
belief using topological representations of robot environments. In such representations,
the environment is decomposed into a small number of significant places, whose size



S. Thrun et al. / Artificial Intelligence 128 (2001) 99–141 135

and location depends on the structure of the environment. The belief distribution is
approximated by a finite distribution parameterized by these places, sometimes along
with the heading direction. In [24], a variant is described that uses a fine-grained metric
grid to represent the belief. Since the belief space is three-dimensional, the size of the
grid is immense. Thus, [24] presents an approximate updating algorithm that restricts
updates to a small subset of all grid cells that are deemed most relevant. This idea is
carried further in [6], which proposes to use trees for representing beliefs. These trees
represent probability densities with varying resolution, so that more likely regions are
approximated more accurately (similar to the kd-trees generated from samples for dual
MCL). All these approaches differ from the MCL family of algorithms in that they use
parametric representations. They are difficult to implement if high accuracy is needed, but
today’s best implementations yield somewhat inferior performance, as suggested by the
comparison in Section 2.6.

Localization algorithms based on the multi-hypothesis Kalman filter [1,2] represent
beliefs using mixtures of Gaussians [9,34,60,61]. To calculate the covariance matrices
of the individual Gaussian mixture components, the Kalman filtering approach linearizes
the motion model and the perceptual model (see [35] for a recent non-linear extension
of Kalman filters). It also assumes that errors in sensor measurements and robot motion
are Gaussian. For most robot sensors, measurement noise is not Gaussian. Therefore,
Kalman filtering algorithms usually do not use raw sensor data for localization. Instead,
they extract features from which robot poses can be estimated with (assumed) Gaussian
noise [9,34,60,61]. The literature suggests a range of methods to extract features, such as
point features, line features, pairs of points, etc. Using features instead of the raw sensor
data can be loss-free if the features are sufficient statistics of the sensor data relative to
the problem of estimating poses. In practice, however, this is usually not the case, and
significant information may be lost when going from raw data to features. Herein lies
a primary difference to the MCL algorithms presented in this article, which can handle
arbitrary noise models and are capable of using raw sensor data (e.g., laser range data) for
localization.

Nevertheless, multi-hypothesis Kalman filters have been applied with great success
to various versions of the localization problem, including position tracking and global
localization [34,60,61]. Certain update steps in the multi-hypothesis Kalman filter can be
leveraged across multiple Gaussians, which leads to an efficient implementation [61]. The
basic update equations of these approaches can be shown to be hybrid versions of the Bayes
filter with continuous and discrete components. Thus, these algorithms are imminently
related to the MCL algorithms described here. From the conceptual point of view, Gaussian
mixtures are similar to sample sets, with the key difference that Gaussians are continuous
distributions, not just discrete samples, since they possess an associated covariance matrix.
Two of the three versions of Mixture-MCL, for example, require a step where a kd-tree
is generated from a sample set; such a set would not be necessary with the Gaussian
representations, since mixtures of Gaussians are already continuous distributions. To keep
the number of mixture components manageable in real-time, the approaches referenced
above apply heuristics for terminating unlikely Gaussians and creating new ones when
indicated by the sensor data. These heuristics are similar, but not identical, to the techniques
proposed here. In MCL, unlikely samples are terminated probabilistically, as a side effect
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of the sampling step. Mixture-MCL creates new hypotheses based on momentary sensor
measurements, but it does so stochastically, and it considers the previous belief when
determining the initial weight (probability) given to a new hypothesis. The significance of
these differences are currently poorly understood. Generating a sample is generally faster
than a Kalman filter update (which requires matrix inversion), but we suspect that more
samples are needed to approximate a density than Gaussian mixtures.

Particle filters, as basic statistical tools, have become popular for tracking and position
estimation in the last few years, as for example documented by a forthcoming book on
this topic [18]. Recent research, has led to a range of variants of the basic particle filters.
The poor performance of particle filtering in cases where the proposal distribution differs
significantly from the target distribution has been observed by several authors, e.g., [17,39,
46,58]. Typical “fixes” involve the design of a different proposal distribution that places
more weight on the tails of a distribution. In this light, Mixture-MCL can be viewed
as one way to deal with this mismatch problem, one that works well for mobile robot
localization.

Particle filters have been applied with great success to other estimation and tracking
problems of practical importance. In computer vision, particle filters are commonly
known as condensation algorithm, where they have been applied with remarkable success
to visual tracking problems [32,33,48]. Their application to mobile robot localization
has been proposed in [13,21] and since been adopted (and extended) by several other
researchers [16,43]. In our own work, we recently extended the basic paradigm to
collaborative localization for a whole team of mobile robots [22].

To the best of our knowledge, the idea of the dual particle filter proposed here and
in [72] is new. Obviously, it works well in the context of mobile robot localization. While
the aim of the article is to evaluate the Mixture-MCL algorithm in practice, it should be
straightforward to devise a proof of convergence of all three versions of Mixture-MCL,
assuming convergence of kd-trees. The idea of a dual is related to a recent article by
Lenser and Veloso [43], who also propose to generate samples in accordance with the
most recent sensor measurement. Like us, they evaluated their approach in the context of
mobile robot localization. There are two main differences between their and our work:
First, their approach generates samples that maximize the perceptual density p(o | x),
instead of sampling from p(o | x). Second, and more importantly, their approach does
not take past evidence into account when generating samples from sensor readings, that
is, their approach does not adjust the importance factors of samples generated by the dual
in accordance with Bel(xt−1). Consequently, the resulting estimate does not approximate
the posterior. For example, if the environment consists of disconnected components (e.g.,
rooms), such an approach can place non-zero likelihood behind walls that are physically
impossible to traverse. Our approach relies on the same basic idea, but asymptotically
approximates the desired posterior.

The idea of sampling from the sensor measurement (the “evidence”) has also been
proposed in the context of Bayes networks [29,57], in particular in the context of
marginalization using Monte Carlo sampling. Under the name of “arc reversal”, Kanazawa
and colleagues [38] have proposed an efficient sampling algorithm that jump-starts samples
at Bayes network nodes whose value is known, then propagating those samples throughout
the network to obtain an estimate of the desired marginal distribution. This approach
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is significantly more efficient than the importance sampler in Bayes networks (which
follows the causality expressed by the Bayes network), for reasons that are identical to
those given here. Our approach can be viewed as implementing this idea in the context
of particle filtering, using somewhat different mathematical equations to account for
the differences of Bayes networks and particle filtering. Also, our approach combines
both sampling methodologies, which is essential for the superior performance of this
approach.

8. Conclusion

This article introduced a new mobile robot localization algorithm, called Mixture Monte
Carlo Localization. Mixture-MCL is a version of particle filters that combines a regular
sampler with its dual. By combining both, our approach overcomes a range of limitations
that currently exist for different versions of MCL, such as the inability to estimate
posteriors for highly accurate sensors, poor degradation to small sample sets, and the ability
to recover from unexpected large state changes (robot kidnapping).

Mixture-MCL possesses a range of unique advantages over previous localization
algorithms capable of global localization from ambiguous features:

(1) Efficiency. Mixture-MCL inherits its computational efficiency from particle filters,
which focus computational resources in areas that are most probable.

(2) Versatility. It also inherits from particle filters the ability to approximate a huge
range of non-parametric densities, and to accommodate (almost) arbitrary non-
linear system dynamics, sensor characteristics, and non-Gaussian noise. Often, the
posterior is centered on a small subspace of the state space. Mixture-MCL does
not require an explicit, parametric model of this subspace; instead, it models such
subspaces implicitly by generating samples accordingly.

(3) Resource adaptiveness. Our implementation of Mixture-MCL is any-time [11,
76], in that the number of samples can be determined dynamically based on the
available computational time between two consecutive sensor measurements. As a
consequence, the software can be run on many different computer platforms, where
it adapts to the available computational resources.

(4) Robustness. By mixing regular forward sampling with its dual, Mixture-MCL
performs robustly under a range of circumstances, such as highly accurate sensors,
robot kidnapping, and very small sample sets.

Extensive experimental results suggest that Mixture-MCL consistently outperforms MCL
and related Markov localization algorithms.

While this article focused on the mobile robot localization problem, we conjecture that
its basic algorithms transcend to a much broader range of state estimation problems for
temporal dynamic systems. Bayes filters have been applied to estimation problems for
decades, and a recent interest in Monte Carlo approximations [18,26] suggests that the
probabilistic paradigm is well suited for a broad range of state estimation problems in noisy
temporal domains. While this article has described the limitations of particle filtering in
the context of mobile robot localization, we envision that many other estimation domains
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might suffer similar problems that can be overcome by mixing particle filters with their
duals.
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