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Abstract

The purpose of this article is to present a multi-strategy approach to learn heuristics for planning.
This multi-strategy system, called HAMLET-EVOCK, combines a learning algorithm specialized in
planning (HAMLET) and a genetic programming (GP) based system (EVOCK: Evolution of Control
Knowledge). Both systems are able to learn heuristics for planning on their own, but both of them
have weaknesses. Based on previous experience and some experiments performed in this article, it
is hypothesized that HAMLET handicaps are due to its example-driven operators and not having a
way to evaluate the usefulness of its control knowledge. It is also hypothesized that even if HAMLET

control knowledge is sometimes incorrect, it might be easily correctable. For this purpose, a GP-
based stage is added, because of its complementary biases: GP genetic operators are not example-
driven and it can use a fitness function to evaluate control knowledge. HAMLET and EVOCK are
combined by seeding EVOCK initial population with HAMLET control knowledge. It is also useful
for EVOCK to start from a knowledge-rich population instead of a random one. By adding the GP
stage to HAMLET, the number of solved problems increases from 58% to 85% in the blocks world
and from 50% to 87% in the logistics domain (0% to 38% and 0% to 42% for the hardest instances
of problems considered).
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Many interesting problems in Artificial Intelligence can be formulated in terms of
search in a state space: optimization, planning, machine learning, etc. In order to explore
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efficiently such (usually huge) state-spaces, different Machine Learning (ML) techniques
have been devised. Some of them learn global heuristics such as macro-operators [10,19,
32], “chunks” [37], or cases [13,14,41]. Other techniques learn local search heuristics (or
control knowledge) [8,26].

All machine learning algorithms have biases that determine how they generalize to
unseen instances [38]. Sometimes it is desirable that they possess other learning biases.
However, it might be difficult to add those biases if the ML algorithm is very specialized. In
this paper we intend to use Evolutionary Computation (EC) techniques to flexibly add those
biases to an existing ML technique. EC includes methods such as Genetic Algorithms [12],
Classifier Systems [12,34] and Genetic Programming (GP) [20]. EC algorithms explore
concept spaces using different biases to other ML methods, as we will discuss throughout
the paper. Also, some of the EC techniques learning biases can be declaratively stated in
an evaluation function—the fitness function.

In this article we combine an ML and an EC technique to learn symbolic heuristics
in a complex search domain: planning. In particular, we propose a two-stage loosely
coupled multi-strategy system (HAMLET-EVOCK), that learns control knowledge for
PRODIGY4.0, a means-ends bidirectional planner [39]. The first stage—HAMLET—is
an incremental deductive-inductive multi-strategy system itself, built by Borrajo and
Veloso [5]. The second stage (EVOCK: Evolution of Control Knowledge) is a GP based
system whose purpose is to add corrective biases to HAMLET [1]. HAMLET-EVOCK is
loosely coupled in the sense that the output of the first stage is just fed into the second
stage, by seeding the GP initial population, instead of starting from a random one.

The goal of the HAMLET deductive subcomponent is to obtain approximately correct
control knowledge by means of Explanation Based Learning techniques (EBL) [26], while
the aim of the inductive subcomponent is to incrementally refine it. However, we have
found out that HAMLET does not always generate more accurate control knowledge by
observing more and more examples. We suspect that this is due to its example-driven
operators (like AQs [24]). This means that the only way HAMLET can refine current control
knowledge is by being presented the proper set of examples. Unfortunately, if the example-
space is large, it could take HAMLET very long to generate correct control knowledge.
Additionally, as HAMLET EBL subcomponent learns from search trees, preferably fully
expanded, it has to be trained with simple planning problems. It might be the case that
the examples needed to refine the control knowledge do not even exist in that subspace of
planning problems.

Our most important guiding hypothesis for this paper is that even though HAMLET

can produce incorrect control knowledge, it is only partially incorrect. This means that it
could be used with profit by other ML technique which moves through the concept space
using complementary biases (this is our second hypothesis). For this purpose, we use GP,
whose learning operators (mutation and crossover) do not require examples to modify its
candidate hypotheses and therefore it is not limited by significant examples being rare.
Our GP based control knowledge learner, EVOCK, is able to use additional non-example-
driven operators besides mutation and crossover. As usual, such operators are blind, and
therefore EVOCK can also benefit from being combined with an example-driven system.

Also, we use EVOCK fitness function to measure some properties of the control
knowledge that cannot be easily assessed by HAMLET. At its best, HAMLET tries to obtain
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control rules which are as general and correct as possible, but it is not concerned with rules
being useful or simple. With respect to usefulness, an incremental system like HAMLET

gives equal weight to all training problems whereas in some cases it might be desirable to
ignore some of them if that helps to solve many other problems. This is easily achieved
by EVOCK using a fitness function that counts the number of problems solved in a given
time limit. With respect to simplicity, HAMLET tends to generate a lot of control rules.
But having many control rules slows PRODIGY4.0 down. Again, it is very easy to include
a term in the fitness function so that the complexity of the control rules is reduced. One
could think that simply doing an utility analysis (similar to PRODIGY4.0-EBL [26]) would
be enough for solving these problems. As we show with some experiments, in which rules
are removed from the set of control rules according to the fitness function, this does not
solve completely the problem.

This paper is structured as follows. Section 2 comments on learning heuristics for
planning. Section 3 describes in detail HAMLET-EVOCK, our multi-strategy architecture.
Empirical results showing that the multi-strategy approach improves on the mono-strategy
one will be shown and analyzed in Section 4. This will be followed by Related Work in
Section 5, Conclusions in Section 6 and Future Lines of Work in Section 7.

2. The learning task

Classical planning methods always involve search. Applying control knowledge at
decision points in a search algorithm can yield far better performance than brute-force
search. However, providing the “right” control knowledge is usually very hard for humans
for they have to understand the way in which the planner works. The purpose of this article
is to automatically learn and improve control knowledge for a classical planning system:
PRODIGY4.0. PRODIGY4.0 searches a state-space bidirectionally, from an initial situation
S towards the goals G, and vice versa [39]. PRODIGY4.0 uses an augmented STRIPS
representation. We could have chosen any other planner for this study, given that all
planners (even the most sophisticated ones such as Blackbox [18] or Graphplan [4]) involve
some kind of search. We decided to use PRODIGY4.0 for its simplicity for introspection
and for having a well integrated control knowledge module.

PRODIGY4.0 follows a four step decision cycle, as shown in Table 1. (1) First, the
system must decide whether to apply the applicable planning operators to the current
situation S (forward mode), or to work on a goal in G (backward mode). If in forward
mode, the first currently applicable operator is applied.1 If in backward mode, (2) an
unachieved goal g ∈ G must be selected. Then, (3) an operator O able to fulfill g must
be chosen. And finally, (4) its unbound variables must be bound. Each one of these four
decision points are backtracking points. PRODIGY4.0 allows to define control rules to help
the planner to take the right alternative at those points and avoid backtracking. Control
rules can select, reject or prefer alternatives at decision points. Fig. 1 shows an example of
a control rule for the blocks world domain.

1 In the latest versions of PRODIGY4 0, this is also a decision point, that determines which ground operator
will be applied We do not consider it in this article, though
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Table 1
PRODIGY4 0 four step decision cycle

Procedure Prodigy-base (S,G)

S,G are the current situation and goals, respectively
g is a goal
O is an unground operator
Ob is a ground operator
b is a binding

• (1) Decide whether to work in forward or in backward mode:
· If in forward mode, apply to S one of the ground operators whose

preconditions are true in S
· If in backward mode:

(2) Select a goal g ∈ (G− S)
(3) Select an operator O that can satisfy g
(4) Select a binding b for grounding O G←G ∪ preconds(Ob)

(control-rule select-operators-unstack
(if (and (current-goal (holding <b1>))

(true-in-state (on <b1> <b2>))))
(then select operator unstack))

Fig 1 Example of a control rule for selecting the unstack operator in the blocks world If (holding <o1>)
is to be achieved, and it is currently true that block <b1> is on block <b2>, then the planner should select
UNSTACK to achieve that goal

This control rule says that if PRODIGY4.0 is working on trying to hold an object,
<b1>,2 (this is a goal in G) and this object is on top of another one, <b2>, in the
current state S, then PRODIGY4.0 should select the operator UNSTACK and reject the rest
of operators that could achieve the same goal. In terms of search, this means that those
successor nodes that are not related to the UNSTACK operator should be pruned.

3. HAMLET-EVOCK: A multi-strategy approach

HAMLET-EVOCK is a multi-strategy system made of two different learning systems:
HAMLET and EVOCK. HAMLET is an incremental example-driven method for learning
control rules for planning, and EVOCK is the module that implements the GP paradigm
adapted for searching in the space of sets of control rules. The first two subsections
describe HAMLET, GP and the advantages of combining such different paradigms in terms
of complementary biases. Section 3.3 describes how they are actually combined. Finally,
Sections 3.4, 3.5, and 3.6 explain in detail EVOCK learning biases.

2 Variables are represented within < and >
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Fig 2 HAMLET high level architecture Inputs to HAMLET are: the domain description D, the set of training
problems P , and other learning parameters L HAMLET outputs control knowledge C

3.1. HAMLET

HAMLET is an incremental learning method based on EBL [25] (Explanation Based
Learning) and inductive refinement [5]. Fig. 2 shows HAMLET modules and their
connection to PRODIGY4.0.

The inputs to HAMLET are a task domain description (D), a set of training problems
(P ), and other learning-related parameters (L).3 The output is a set of control rules (C).
HAMLET has two main modules: the Bounded Explanation module, and the Refinement
module.

For each p ∈ P , HAMLET makes a first call to PRODIGY4.0 with D, p, and the
control knowledge C learned in previous cycles (initially C is empty). The Bounded
Explanation module analyzes the resulting search tree ST . From the right decisions, this
module generates a new set of rules that are added to the previous set C. Then, the
Refinement module tries to generalize rules that have the same right hand side. HAMLET

calls PRODIGY4.0 again with the control rules learned so far C. After solving the same
problem, PRODIGY4.0 generates the search tree STC . From the wrong decisions made by
the rules, the Bounded Explanation module generates negative examples that are stored
for future use by the Refinement module. Also, since the generalized rules might cover
previously found negative examples, the Refinement module specializes them to avoid that
situation. We refer to [39] for further details about HAMLET.

HAMLET has been tested in several domains: the standard blocks world and the logistics
domain [5], some variations of them [3], and other domains such as a process planning
domain, a work-flow domain, and a satellite control domain (results not published yet).
HAMLET usually helped to improve the efficiency of the base-level problem solver as
well as the quality of the solutions. However, HAMLET suffers from some weaknesses.

3 HAMLET is also able to use a plan quality metric In this article we use the standard quality metric
(minimizing the number of operators in the plan) It is not included in Fig 2 to avoid cluttering it
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Fig 3 Learning curve for HAMLET in the blocks world and the logistics domain It also displays the evolution of
the number of learned rules in both domains

In order to show them graphically, the following experiment was carried out. HAMLET

was trained with 600 problems (with one or two goals) in two domains: the blocks world
and the logistics domain. Every 50 problems, the rules obtained were tested with 416 and
346 testing problems (in the blocks world and the logistics domain, respectively). Testing
problems are much harder (difficulty varies from 5 to 50 goals), to check generality. Fig. 3
displays the evolution of the proportion of testing problems solved and the number of rules
learned in both domains.

Fig. 3 shows that, although HAMLET is able to learn control rules that improve accuracy,
some training problems can decrease it. Also, even after having seen 600 problems, the best
control rules returned by HAMLET are able to solve only 54% of the testing problems in
the blocks world, and 47% in the logistics domain, within a reasonable time limit.4

We believe that the main reason behind this behavior is due to HAMLET example-driven
operators. In order to refine an incorrect control rule, HAMLET assumes that eventually it
will find an appropriate set of positive and negative examples. Example-driven operators
seem a good heuristic, but given that the potential problem space is huge, the likelihood of
finding the appropriate set of problems might be very small in some cases, and learned rules
might remain partially correct for a long time. Furthermore, because HAMLET requires
preferably fully expanded search trees, learning is limited to simple problems. However,
the examples needed to refine the control rules might not even exist in the subspace
of simple problems. Additionally, HAMLET—as any other incremental system—has no
global picture of the usefulness of the learned control knowledge. It considers all training
problems equally, whereas in some cases it might be desirable to ignore some of them if

4 Here, we use the same time limit as in Section 4 1: 150
16 (1+ floor( #goals

10 ))
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that helps to solve many other problems. The previous analysis should not be considered a
complete diagnostic, but a guiding hypothesis for this article.

Fig. 3 also displays the evolution of the number of learned rules. It shows that HAMLET

has a strong tendency to increase the number of control rules (up to 16 rules in the blocks
world and 91 in the logistics domain) even though this does not always improve the number
of testing problems solved. The more rules there are, the longer it takes to evaluate them,
so this should be avoided, if possible. Also, it can be observed that there is not a direct
correlation of number of learned rules and performance decrease, as usually happens in
utility analysis.

We hypothesize that although HAMLET control knowledge is sometimes incorrect, it is
only partially incorrect, and could be corrected and improved by means of other learning
system with complementary biases. Based on this assumption, we have chosen to combine
HAMLET with GP because it possesses the appropriate biases. It is not example-driven and
not incremental; and it can evaluate the usefulness and compactness of hypotheses. GP is
described in the next section.

3.2. Genetic programming

GP is an Evolutionary Computation (EC) method that has been used for program
induction and machine learning [20]. GP searches in the space of computer programs,
trying to find a “good enough” computer program according to some metric. GP is a kind
of Beam Search [36]. It maintains a set (or population) of many computer programs (or
individuals), each one usually represented as a parse tree.

GP search is guided by a heuristic (or fitness) function. It measures how well a
computer program performs, according to a set of user defined fitness cases. Standard GP
uses three search genetic operators: reproduction, mutation, and crossover. Reproduction
copies an individual without changes. Mutation replaces a subtree of the individual by
another randomly generated one. Crossover swaps two randomly chosen subtrees from
two different individuals, as shown in Fig. 4. Table 2 depicts the algorithm followed by
steady-state GP, which is the variety used in this work.

One important aspect of the previous algorithm is the selection of individuals for
reproduction and for replacement. The most common selection method chooses individuals
with a probability proportional to their fitness. Another method—tournament selection—
selects randomly a subset of individuals in the population and returns the best one (or the
worst, in case of replacement).

Fig 4 The crossover operator swaps two subtrees randomly chosen
7



Table 2
Steady state GP algorithm

Function steady-state GP (AO,→p AO, f )

AO contains the available genetic operators
→pAO is a vector containing the probabilities of selecting each operator
f is the fitness function
P is the genetic population
G is a genetic operator
I1, I2, and I3 are individuals

(1) Create P containing random individuals
(2) Assign a fitness value to each individual in P using f
(3) Repeat until some termination criterion is satisfied:

(a) Select G from AOaccording to→p AO
(b) Select I1 from P according to its fitness IF G is crossover, select also I2 Better individuals are

more likely to be selected
(c) Select I3 from P to be replaced Worse individuals are more likely to be selected
(d) Apply G to I1 (and to I2 if the operator selected was crossover) and replace I3 with it

In contrast to HAMLET, GP follows a generate-and-test approach to modify hypotheses
(mutation and crossover), instead of being example-driven. GP is not incremental either.
Also, the fitness function can evaluate individuals for usefulness, compactness, etc. On the
other hand, EVOCK learning operators do not contain as much knowledge about learning
in the planning domain as those of HAMLET. Therefore, GP might also benefit from the
combination. Next section explains how this is achieved.

3.3. HAMLET-EVOCK

This section explains how HAMLET and EVOCK are combined in the multi-strategy
system HAMLET-EVOCK. Fig. 5 displays its basic architecture. HAMLET, PRODIGY4.0,
and the problem generator are preexisting modules.

Training HAMLET-EVOCK occurs in two stages. First, HAMLET learns a set of control
rules from a training set randomly generated by the problem generator. Then, they are used
to seed EVOCK initial population. EVOCK tries to evolve HAMLET set of control rules
by using a second training set (also generated by the problem generator). PRODIGY4.0
is used differently by the two learning systems. HAMLET sends the training problems to
PRODIGY4.0, which solves them, and sends back the search trees, from which HAMLET

can learn, as explained in Section 3.1. EVOCK uses PRODIGY4.0 to evaluate its individuals
(each individual is a set of control rules). For that purpose, individuals are loaded into
PRODIGY4.0 and then [PRODIGY4.0+ individual] is run on the training problems (or
fitness cases). Performance data such as whether the problems were solved or not, or the
time required to solve them, is returned to EVOCK. This is used to determine the worth
(fitness) of the individual to guide selection. EVOCK can also learn starting from a random
population, as in standard GP. When EVOCK finishes, it returns its best individual.

The next three subsections describe EVOCK by explaining its learning biases according
to Utgoff [38] (language, exploration, and evaluation biases).
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Fig 5 Architecture of HAMLET-EVOCK First, HAMLET learns control rules from problems generated by
the problem generator (L are HAMLET learning parameters) HAMLET rules are used to seed EVOCK initial
population Then, EVOCK tries to improve them by using new training problems PRODIGY4 0 is used by
EVOCK to evaluate individuals

3.4. The language bias

Any learning system is biased by the language that is used to represent candidate
hypotheses and examples. In the case of GP, individuals represent the hypotheses and
in our case, we decided that each individual represents a set of control rules. Each of
the control rules has two parts, the left hand side (LHS) and the right hand side (RHS).
The LHS contains a list of conditions that need to be true for the rule to be applied. The
RHS specifies the decision to be made. Each condition calls a meta-predicate, which are
functions that have access to PRODIGY4.0 internal state. The meta-predicates used in this
paper are:

• true-in-state(fact): it tests if fact is true in the current planning situation S.
• current-goal(goal): it checks if goal is the current goal the planner is working

on.
• target-goal(goal): it tests whether goal is one of the pending goals in G.
• some-candidate-goals(goal1, goal2, . . . ): it is equivalent to:
target-goal (goal1) ∨ target-goal (goal2) ∨ . . . .

Usually, in GP there are no constraints on the structure to evolve: any combination
of functions and terminals is valid. This is called operational closure[20]. However,
in EVOCK case, PRODIGY4.0 constrains the syntax of the control rules. Also, meta-
predicates must be supplied with the right type of arguments. And more importantly, it is a
waste of search time to create expressions that are known not to be valid in the first place.
Therefore EVOCK individuals are constrained to PRODIGY4.0-valid ones (in the literature,
such structures are called constrained structures[20] or strongly typed structures[27]).
Actually, EVOCK individuals are constrained by the same sublanguage than HAMLET

(select, apply, and sub-goal rules, and the same meta-predicates). In order to
achieve this, only valid individuals must be created in the initial population. Also, applying
a genetic operator to valid individuals must produce valid individuals.
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Table 3
Domain independent grammar for generating syntactically correct sets of control rules LIST-ROOT-T is the
axiom of the grammar

LIST-ROOT-T → (list RULE-T) | (list RULE-T RULE-T) |
RULE-T → (rule AND-T ACTION-T)
AND-T → (and METAPRED-T) | (and METAPRED-T METAPRED-T) |
METAPRED-T → (true-in-state GOAL-T) | (target-goal GOAL-T) |

(current-goal GOAL-T) | (some-candidate-goals LIST-OF-GOALS-T)
LIST-OF-GOALS-T → (list-goal GOAL-T) | (list-goal GOAL-T GOAL-T) |
ACTION-T → (select-goal GOAL-T) | (select-operator OP-T) |

(select-bindings BINDINGS-T) | sub-goal | apply

Table 4
Domain dependent grammar for generating syntactically correct sets of control rules in the logistics domain
EVOCK is able to automatically generate this grammar from the domain description

OP-T → load-truck | load-airplane | unload-truck |
unload-airplane | drive-truck | fly-airplane

BINDINGS-T → (load-truck-b OBJECT-T TRUCK-T LOCATION-T) |
(load-airplane-b OBJECT-T AIRPLANE-T AIRPORT-T) |
(unload-truck-b OBJECT-T TRUCK-T LOCATION-T) |
(unload-airplane-b OBJECT-T AIRPLANE-T AIRPORT-T) |
(drive-truck TRUCK-T LOCATION-T LOCATION-T) |
(fly-airplane AIRPLANE-T AIRPORT-T AIRPORT-T)

GOAL-T → (at-truck TRUCK-T LOCATION-T) | (at-obj OBJECT-T LOCATION-T) |
(inside-truck OBJECT-T TRUCK-T) |
(inside-airplane OBJECT-T AIRPLANE-T)

The creation of valid individuals is achieved by using two special-purpose production
grammars: domain independent (shown in Table 3) and domain dependent (shown in
Table 4). This second grammar is generated on-the-fly by EVOCK for any domain
described in PRODIGY4.0 Description Language [6].5 The grammar shown in Table 4 is
for the logistics domain, a well known planning domain described in [40]. In this domain,
packages have to be delivered to several locations using trucks (inside a city) or airplanes
(between cities).

Terminal symbols in the grammars are displayed in lowercase and non-terminal
generative symbols are shown in uppercase. This grammar has production rules that
follow the structure A→ (FaA1A2 . . .)|(FbB1B2 . . .)| . . . , where Fa is a terminal and
Ai,Bi, . . . are either terminals or non-terminals. They generate lisp sentences such as
(FaA1A2 . . .). A whole individual is generated by starting with the LIST-ROOT-T
symbol, and randomly applying the production rules until an individual is completed. As
it can be seen, each individual is a list of control rules.

5 Some non-terminal symbols, like OBJECT-T, do not appear in the grammar They only generate terminal
symbols like <object-1>, <object-2>, , which are control rule variables This is also true for TRUCK-T,
CARRIER-T, AIRPLANE-T, LOCATION-T, AIRPORT-T, and POST-OFFICE-T
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Besides being able to generate valid individuals for the initial population, EVOCK
genetic operators need to transform valid individuals into valid individuals. For mutation,
the process is similar to creating a whole individual. First, the mutation point is randomly
selected (as in standard mutation). Then, EVOCK determines which non-terminal symbol
generated the element at the mutation point. This is achieved by checking the right hand
side of the productions, and comparing them with the element at the mutation point. For
instance, if the element at the mutation point was and, then its non-terminal generative
symbol would be AND-T, as the third production of the grammar in Table 3 indicates.
Finally, it replaces the subtree at the mutation point by a randomly grown one by applying
the production rules from the non-terminal symbol (AND-T, in this case). This mechanism
enforces that the new subtree is of the same type than the old one, which is enough in this
case to assure correctness.

Constrained crossover works likewise. First, a crossover point is selected randomly in
the mother individual. Then, the non-terminal symbol that generated it is determined. Next,
a crossover point that was generated with the same symbol is randomly selected in the
father individual. Finally, both subtrees are swapped, as in standard crossover, to produce
the offspring.

3.5. The exploration bias

The exploration bias deals with the way in which the learning algorithm explores the
search space. EVOCK uses the standard GP operators and some others specially tailored
for this learning task. All of them use a grammar to always produce correct individuals,
as explained in Section 3.4. Besides constrained mutation and crossover, EVOCK uses the
following operators:

• Adding Crossover: it takes a rule (RULE-T) or a goal (GOAL-T) from an individual
and adds them to another individual at LIST-ROOT-T and LIST-OF-GOALS-
T points, respectively. This operator adds subtrees to individuals, whereas standard
crossover replaces them.
• Growing mutation: it adds a randomly generated rule (RULE-T) or goal (GOAL-T)

at points generated by LIST-ROOT-T and LIST-OF-GOALS-T, respectively. It is
equivalent to adding crossoverwith a randomly generated individual.
• Chopping off mutation: a randomly selected rule or goal is pruned from the individual.
• Join: it selects one variable in the control rule (like <object-1>) and substitutes

it by any other variable in the control rule that already exists. The rationale behind
this operator is that sometimes there are conditions in a rule that are not related with
other conditions by common variables. This is usually undesirable. For instance, in the
blocks world, if there is a control rule to pick-up an object <obj1> when some other
conditions are true, our experience says that many of those other conditions should
refer to <obj1> as well. The join operator is a simple way of creating these references.

EVOCK can also seed its initial population to focus the search, as explained in
Section 3.3.
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3.6. The evaluation bias

The evaluation bias concerns the preference criteria used by GP for selecting an
individual over another, which is coded as a fitness function. This fitness function must
reflect the goal of the system, which is to generate an individual that solves as many
problems as possible (limited by a timeout or node limit)6 and faster than PRODIGY4.0.
To achieve this goal, a hierarchical fitness function has been devised [1]. A hierarchical
function contains several components to be maximized (or minimized). Instead of using
a weighted addition of the components to compare different individuals, a hierarchical
function compares them using the first component. If there are draws, it uses the second
component, and so on. There are other alternatives for multi-criteria optimization such as
Pareto (see for instance [21]). We selected hierarchical functions because it is a simpler
approach that does not require a big population to store the whole Pareto front. The
components of EVOCK hierarchical fitness function are as follows:

(1) Performance in training problems: to maximize. It contains three sub-components,
ordered as follows:
(a) Number of problems solved by the individual expanding strictly fewer nodes than

PRODIGY4.0: to maximize.
(b) Number of problems solved by the individual: to maximize.
(c) Total number of nodes expanded by the individual: to minimize. This is used

instead of time because measured time varies slightly even when the system is
run in similar conditions. This would make the process non-deterministic and
experiments unrepeatable.

(2) Number of different variables: to minimize. It relates to the same bias as the join
operator. It is desired to have meta-predicates in the LHS inter-related by common
variables.

(3) Generality/Compactness: to maximize. Generality and compactness is encouraged by
minimizing the number of restrictions in the LHS of the control rules (i.e., the number
of true-in-state and some-candidate-goals (SCG) meta-predicates) and by
maximizing the number of arguments of SCG (SCG is equivalent to a disjunction of
meta-predicates. Therefore, the more arguments, the more general a control rule is).
Further compactness is achieved by minimizing the number of control rules and the
size in nodes of the individual.

Component (1)(a) deserves a longer explanation. Training problems are necessarily
easy; otherwise the time limit for fitness evaluation would be too large. However,
PRODIGY4.0 is able to solve easy problems without heuristics. Therefore, a good strategy
for individuals to score well in the “number of problems solved” component (1)(b) is
to do nothing at all and let the planner do all the work. This is very easy to achieve,
for instance, by means of control rules with conditions that never match. On the other
hand, individuals that do modify the behavior of the planner are likely to be only partially

6 The node limit is 4N , where N is the number of nodes required by PRODIGY4 0 to solve the problem
without backtracking
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correct, and to solve fewer problems than the planner without any heuristics. Therefore,
individuals that do nothing will be selected and those that modify the behavior of the
planner will not, even though many of the latter might be corrected in the long term.
To change this undesirable behavior, we added a first component that forced individuals
to do something positive: solving problems using strictly fewer nodes than PRODIGY4.0
(component (1)(a)). Individuals that do nothing will score 0 in this component and will
be selected against. However, there is a risk: there can be some individuals that obtain
a good score in this component but that solve fewer problems (they score poorly in the
second component). This might happen, but in the long term it is expected that, once the
first component cannot be improved further, the second component will take the lead and
begin to be improved itself.

4. Empirical results

The aim of this section is to describe how HAMLET-EVOCK has been tested. We will
first describe how the experiments were carried out. Then, we will show the results and
comment on them.

4.1. Experimental setup

First, 400 problems in two planning domains (blocks world and logistics domain) were
randomly generated to train HAMLET and obtain the HAMLET seed. Then 192/188 new
training problems from the blocks world and the logistics domains, respectively, were
randomly generated and used by EVOCK to evolve HAMLET seed. The training sets
contain planning problems with 1 and 2 goals and from 2 to 5 objects (blocks in the blocks
world and packages in the logistics domain). As GP is stochastic, EVOCK was run 50
times using the same HAMLET seed, but with a different random seed for the random
number generator (i.e., 50 GP-runs). Finally, the best set of control rules from each run
was evaluated with 416/346 testing problems (blocks world/logistics domain) randomly
generated by the same problem generator. Those problems are much more difficult than
the ones used for learning, so that scalability of the rules can be checked. The time limit
for testing a problem is calculated with the formula ttest= 150

16 (1+ floor( #goals
10 )) seconds,

where #goals is the number of goals in the testing planning problem. Testing was carried
out on a 400 MHz Pentium II with 256 MB RAM. This experimental sequence corresponds
to the thick line of Fig. 6 and will be referred to as HAMLET-EVOCK.

Obtaining good results from the multi-strategy system is not enough. It is necessary to
know what would have happened if all the training problems would have been given to
HAMLET, instead of dividing them between the two components of HAMLET-EVOCK.
If HAMLET alone produces better results than HAMLET-EVOCK, then the multi-strategy
system is obviously not solving HAMLET deficiencies. Therefore, after learning with the
first training set, HAMLET was fed with the second one. From them, HAMLET produced
a new set of control rules, which was subsequently tested. This second experimental
sequence is represented by the thin line of Fig. 6 and it will be referred to as HAMLET-
HAMLET because it uses HAMLET in sequence.

13



Fig 6 Description of the three different experimental configurations: multi-strategy HAMLET-EVOCK vs
monolithic HAMLET-HAMLET and stand-alone EVOCK

Although it is not the focus of this article, another experimental configuration was
carried out to compare the effects of seeding EVOCK initial population (that is, HAMLET-
EVOCK) with EVOCK starting from a random population, as in standard GP. This third
experimental setup (dashed line in Fig. 6) will be referred to as EVOCK, because EVOCK
is used as a stand-alone learning system. In both EVOCK and HAMLET-EVOCK, two
different configurations were tried, with population sizes of 2 and 300, respectively (the
respective tournament set sizes were 2 and 5. No crossover was used in the 2-population).
However, the greedy configuration (2-population) significantly outperformed the more
exploratory one in both domains.7 Therefore, in this paper we only report the results
for the greedy configuration, so as not to clutter the results section. Both EVOCK and
HAMLET-EVOCK were run for a maximum of 100000 evaluations (an evaluation is a call
to PRODIGY4.0 to evaluate an individual with a single training problem).

4.2. Results

In this section, results of the three experimental configurations will be discussed
and compared. The GP runs for the stand-alone configuration EVOCK and the multi-
strategy configuration HAMLET-EVOCK are summarized in Fig. 7. This figure is a
cumulative frequency graph, that shows the frequency (y-axis) with which an experimental
configuration yields a set of control rules that is able to solve a given percentage of
problems or more (x-axis). This can be interpreted as an estimation of the probability
an experimental configuration will produce an individual that solves, at least, a given
percentage of problems. Results for PRODIGY4.0 and HAMLET seed are also provided
for comparison purposes (the dashed and continuous vertical lines in Fig. 7). Given that

7 It might be possible that larger populations (i e , more exploratory configurations) would give better results
if given many more evaluations However, results obtained with 2 populations were so good that we did not try
more computationally expensive experiments
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Fig 7 Frequency of GP runs (y-axis) that are able to solve a proportion x of problems (x-axis) or more Results
for the blocks world are on the left and for the logistics domain on the right

these two systems are not stochastic, they are represented by vertical lines. The purpose of
these results is to visualize the effects of seeding EVOCK initial population with HAMLET

seed.
We have used approximate randomization to determine whether the differences between

EVOCK and HAMLET-EVOCK shown in Fig. 7 are statistically significant [7]. In
particular, for each frequency of solved problems (x-axis of graphics in Fig. 7) we
calculated the probability that the differences between the cumulative frequencies of
EVOCK and HAMLET-EVOCK are due to chance, at the 5% level. Results are analyzed as
follows:

• In the blocks world, the cumulative probability is always greater for HAMLET-EVOCK
than for EVOCK (and this is statistically significant). This means that, for instance, it
will take HAMLET-EVOCK fewer runs to find an individual that solves 40% of the
problems. Also, it is clear that HAMLET-EVOCK improves over the seed supplied by
HAMLET, as 90% of the runs do better than HAMLET alone.
• This happens in the logistics domain as well: 93% of the GP-runs improve over

HAMLET seed. However, the analysis of the cumulative frequency diagram is not so
clear-cut as in the blocks world case. In the range (0%, 62%), HAMLET-EVOCK is
able to find good individuals more frequently than EVOCK (and this is statistically
significant). However, there are no significant differences in the range (62%, 100%).
In fact, the best individuals are found by EVOCK. This might be due to chance, or
to the fact that the HAMLET seed in the logistics domain is very large (56 rules),
whereas EVOCK best individual contains only 3 rules. Therefore, it might be very time
consuming for HAMLET-EVOCK to correct the HAMLET seed. In fact, it only manages
to obtain a 21 rule individual. In the blocks world, the HAMLET seed is only 12 rules
long, not very far away from the 5 rule best individual created by stand-alone EVOCK.
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It could be thought that a simpler integration of HAMLET and GP would perform
equivalently. After all, HAMLET has a way of creating rules, but no way of evaluating
which ones to keep. EVOCK has both: constrained genetic operators for the former and
the fitness function for the latter. What would happen if EVOCK fitness function was
used to remove non-useful HAMLET seed rules?. It is possible that HAMLET is after all
a better control rule generator, if only its control rules were filtered somehow, like the
utility analysis carried out in [26]. In order to test this simpler approach, we have tried
another configuration of the multi-strategy system where EVOCK can either prune rules
or add rules that were already present in the HAMLET seed (no other genetic operators are
allowed).8 Addition of rules provides a sort of backtracking mechanism, to test whether a
control rule that had already been removed has some good effects once other rules have
been removed. The effects of HAMLET-EVOCK with the restricted set of genetic operators
have been labeled ’HAMLET+pruning’ in Fig. 7. In both domains, the cumulative curve
is almost vertical, which means that in most runs HAMLET-EVOCK got an equivalent
individual. This restricted multi-strategy configuration is able to improve HAMLET seed. If
only the best individuals are taken into account (which are not very different from the worst
ones), the HAMLET seed is improved by 7% in the blocks world and by 12% in the logistics
domain (see also Table 5). These results allow to draw three important conclusions:

• The HAMLET seed contains quite good control rules and therefore, it makes sense to
use them as seed for HAMLET-EVOCK.
• The HAMLET seed contains incorrect control rules (once removed, performance

increases). In fact, in the logistics domain, the main source of power is pruning. The
best individual from HAMLET+pruning solves 62% of the testing problems, and
after that value, differences between EVOCK and HAMLET-EVOCK do not differ
significantly (see Fig. 7).
• However, mere pruning does not get as good results as full-fledged HAMLET-EVOCK.

The “creative” aspects of GP are required as well (mutation, crossover, etc.).

In summary, HAMLET-EVOCK is able to improve significantly HAMLET seed and to
find good individuals (although not always the best ones) more frequently than EVOCK
alone. But it is interesting to know whether HAMLET alone scores better when given all
the training examples (i.e., the HAMLET-HAMLET configuration). The learning curve in
Section 3.1 (Fig. 3) already hints that this will not necessarily improve HAMLET control
rules.

Table 5 shows that when HAMLET tries to refine and improve a set of control rules
previously learned by itself (HAMLET seed in Table 5), the percentage of test problems
solved actually drops: in the blocks world it falls from 58 to 18%, in the logistics domain
it gets from 50 to 47%. This is a confirmation of the oscillatory behavior displayed in
Section 3.1 (Fig. 3). On the other hand, HAMLET-EVOCK improves the set of control
rules given as seed for the initial population: 58–85% in the blocks world and 50–87% in
the logistics domain. Therefore, it seems that the multi-strategy system does better than the

8 Actually, it was one of the reviewers who suggested this experiment
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Table 5
Results for PRODIGY4 0, HAMLET seed, HAMLET-HAMLET, EVOCK (random seed), HAMLET-EVOCK, and
HAMLET+ pruning in the blocks world and logistics domains

Blocks world Logistics domain

% Problems Number % Problems Number
solved of rules solved of rules

PRODIGY4 0 26% 43%
HAMLET seed 58% 12 50% 56
HAMLET-HAMLET 18% 13 47% 64
EVOCK 80% 3 98% 3
HAMLET-EVOCK (best ind ) 85% 5 87% 21
HAMLET+Pruning (best ind ) 65% 5 62% 16

Fig 8 Proportion of problems solved when varying the testing time limit from 0 to 100% Results for the blocks
world are on the left and for the logistics domain on the right

mono-strategy one. It is also noticeable that HAMLET-EVOCK produces individuals with
fewer control rules than the seeding individual (12 to 5 control rules in the blocks world and
56 to 21 in the logistics domain) hence returning more efficient individuals. On the other
hand, HAMLET-HAMLET always increases the number of control rules: from 12 to 13
in the blocks world and from 56 to 64 in the logistics domain. Thus, HAMLET-EVOCK
provides the sought compactness bias to HAMLET.

Segre et al. [33] critique an arbitrary choice of a time limit for testing. Fig. 8 displays
how the proportion of problems solved increases when the allocated testing time goes
from 0 to 100% of the maximum testing time limit ttest. If we had observed that the
HAMLET seed or HAMLET-HAMLET solved more and more problems as the allocated time
increased, and this did not happen for HAMLET-EVOCK, it should have been concluded
that HAMLET would eventually outperform the multi-strategy system. However, Fig. 8
shows that this is not the case. Therefore, the reason of HAMLET-HAMLET drop in
performance is not that it generates clever but slow to evaluate rules, but that they are
not very correct rules.

In order to show that the set of control rules learned are general and useful for more
complex problems, a breakdown of the results is displayed in Tables 6 and 7. Problem
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Table 6
Breakdown of the number of testing problems solved in the blocks world by HAMLET and EVOCK according to
the number of goals and objects

# Goals-# Objects PRODIGY4 0 HAMLET seed HAMLET-HAMLET HAMLET-EVOCK EVOCK

50-50 (4%) 0% 0% 0% 38% 31%
20-50 (11%) 8% 33% 4% 77% 71%
20-20 (11%) 10% 29% 4% 73% 65%
10-50 (11%) 21% 60% 19% 94% 83%
10-20 (11%) 25% 56% 15% 85% 75%
10-15 (11%) 40% 48% 15% 85% 77%
05-50 (10%) 18% 70% 2% 92% 88%
05-20 (10%) 20% 90% 18% 98% 92%
05-15 (10%) 42% 88% 38% 98% 95%
05-10 (10%) 65% 88% 60% 95% 95%

Table 7
Breakdown of the number of testing problems solved in logistics domain by HAMLET and EVOCK according to
the number of goals and objects

# Goals-# Objects PRODIGY4 0 HAMLET seed HAMLET-HAMLET HAMLET-EVOCK EVOCK

50-50 (14%) 0% 0% 0% 42% 77%
20-50 (9%) 3% 0% 0% 87% 97%
20-20 (8%) 7% 7% 0% 90% 100%
10-50 (4%) 13% 0% 0% 80% 100%
10-20 (4%) 20% 53% 33% 80% 100%
10-15 (4%) 20% 67% 40% 87% 100%
10-10 (4%) 7% 67% 40% 80% 100%
05-50 (3%) 42% 0% 0% 83% 100%
05-20 (3%) 58% 75% 67% 83% 100%
05-15 (3%) 42% 42% 58% 67% 100%
05-10 (3%) 25% 58% 67% 67% 100%
05-05 (3%) 33% 83% 92% 100% 100%
02-50 (3%) 90% 40% 40% 90% 100%

complexity is measured by the number of goals and objects in the planning problem. This
is shown in the first column of Tables 6 and 7 (the quantity in parentheses represents the
percentage of problems of that difficulty level there are in the testing set). Usually, the more
goals and objects a problem has, the more difficult it is for the planner to solve it. The last
assertion can be easily checked in Table 6, where results for PRODIGY4.0 are supplied. For
instance, PRODIGY4.0 solves none of the 50-50 problems. HAMLET-EVOCK improves
drastically with respect to the initial seed (HAMLET seed) by solving very hard problems
(50 goals and 50 objects). The percentage of testing problems solved for PRODIGY4.0
working alone and HAMLET-HAMLET results are also shown.9

9 In the logistics domain, results for the 2-20, 2-15, 2-10, 2-5, 2-2, 1-50, 1-20, 1-15, 1-10, 1-5, and 1-2 types
are not shown because they are not very interesting They comprise about 33% of the testing problems EVOCK
solves all of them and the other configurations solve most of them (percentages are always greater than 80%, and
very often greater than 90%)
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4.3. Learning curves

In this section, we study experimentally how the performance of EVOCK and
HAMLET-EVOCK changes when three important parameters are modified: the number
of evaluations, the number of training examples, and the quality of the HAMLET seed.
Due to GP being rather time expensive, these learning curves contain only three points
(three cumulative frequency curves, actually) corresponding to three different parameter
values. One of the three points represents the cumulative curve obtained from the default
parameters that was already discussed in Fig. 7 of Section 4.2. The other two have been
generated from 30 GP-runs each. This is true for all the graphs of this section. It is not easy
to quantify whether one cumulative frequency curve is “better” than another. Here, we
have decided to carry out an approximate randomization test like in Section 4.2. One curve
is considered better than another if it has a significantly (0.05 level) higher probability of
obtaining an individual that solves at least x% of the testing problems. x is the percentage
of problems solved by HAMLET+pruning (this has been discussed previously in Table 5).
x = 0.65 for the blocks world and x = 0.62 for the logistics domain. We have considered
this a reasonably non-arbitrary way of focusing on the interesting part of the distributions
(their upper tail).

Figs. 9(a) and (b) show how the cumulative frequency graphs for EVOCK and
HAMLET-EVOCK change when the number of evaluations increases from 33333 to
100000. Differences for EVOCK are not significant, which means that EVOCK had already
converged at 33333 evaluations, and that no significant over-fitting occurs by allowing
more evaluations. In the case of HAMLET-EVOCK, there are significant differences for
the (66666, 33333) curves. Probably, HAMLET-EVOCK needs enough evaluations to
correct the often complex HAMLET seed. Fig. 10 displays the same information for the
logistics domain. In this case, EVOCK benefits from increasing the number of evaluations
((66666, 33333) are significantly different), although it seems to be converging at 100000
evaluations (no significant differences for the (100000, 66666) curves), as shown in
Fig. 10(a). HAMLET-EVOCK also improves as evaluations increase, as shown in Fig. 10(b)

(a) (b)

Fig 9 Cumulative frequency graphs of EVOCK (a) and HAMLET-EVOCK (b) for 33333, 66666, and 100000
evaluations, respectively (blocks world domain)
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(a) (b)

Fig 10 Cumulative frequency graphs of EVOCK (a) and HAMLET-EVOCK (b) for 33333, 66666, and 100000
evaluations, respectively (logistics domain)

(a) (b)

Fig 11 Cumulative frequency graphs of EVOCK (a) and HAMLET-EVOCK (b) for 64, 128, and 192 examples,
respectively (blocks world domain)

(significant differences for (66666, 33333)). The HAMLET seed in the logistics domain is
even larger than in the blocks world, so this result makes sense.

Figs. 11 and 12 display the cumulative frequency graphs when the number of training
problems changes from 1/3 of the original training data, to 2/3, and 3/3, in the blocks
world and the logistics domain, respectively. The number of evaluations has been reduced
proportionally to keep evaluations per problem constant. Otherwise, decreasing the number
of training problems to be processed for each individual would increase the number of
GP generations and therefore, the number of applications of the genetic operators. In
that case, it would be uncertain whether performance is different because fewer training
problems were used, or because genetic operators were applied more times. Fig. 11(a)
shows that EVOCK gives about the same result for 1/3, 2/3, and 3/3 of the examples.
Indeed, approximate randomization shows that these differences are not significant. This
means that EVOCK had already converged with only 1/3 of the training examples. This
is the case also for HAMLET-EVOCK (see Fig. 11(b)). In the logistics domain, EVOCK
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(a) (b)

Fig 12 Cumulative frequency graphs of EVOCK (a) and HAMLET-EVOCK (b) for 62, 124, and 188 examples,
respectively (logistics domain)

(a) (b)

Fig 13 Cumulative frequency graphs of HAMLET-EVOCK starting with two different seeds in the blocks
world (a) and the logistics domain (b), respectively HAMLET-EVOCK (1) is the result of seeding EVOCK with
HAMLET seed 1 Likewise for HAMLET-EVOCK (2)

seems to improve as the number of examples increases, as Fig. 12(a) shows (differences
are significant for the (124, 62) curves). HAMLET-EVOCK has almost already converged
with only 1/3 of the training data (Fig. 12(b)). Differences are significant only for the (188,
62) curves.

It is also interesting to observe how HAMLET-EVOCK depends on the number of
problems solved by the HAMLET seed. Figs. 13(a) and (b) display the cumulative
frequencies of HAMLET-EVOCK having been seeded with two different seeds, in the
blocks world and the logistics domain, respectively. HAMLET seed 2 refers to the seed
that has been used so far. HAMLET seed 1 refers to the worst HAMLET set of control
rules obtained in Fig. 3. In the blocks world, HAMLET-EVOCK obtains a similar result
with both seeds (no significant differences), although HAMLET seed 1 is much worse than
HAMLET seed 2. In the logistics domain, HAMLET-EVOCK results look worse for the bad
seed (differences are significant). However, they are not as bad as HAMLET seed 1 might
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suggest. It seems that HAMLET-EVOCK is sensible to the quality of the seed, although not
strongly so. This piece of evidence confirms one of the assumptions of this article: even
though HAMLET can generate quite inaccurate rules, they are only partially incorrect and
can be corrected by GP. It is also reasonable that HAMLET-EVOCK finds more difficult
to correct the HAMLET seeds of the logistics domain, because they are bigger than in the
blocks world.

4.4. Plan quality considerations

It has been shown that HAMLET-EVOCK is able to improve PRODIGY4.0 and HAMLET

solvability horizons. However, although HAMLET learns from best quality (shortest)
solutions,10 EVOCK does not have a definite bias towards that end. Therefore, it would be
interesting to know whether HAMLET-EVOCK and EVOCK take advantage of a tradeoff
between solving more problems and plan quality. We also want to know whether HAMLET

seed is able to bias HAMLET-EVOCK towards finding control rules that improve plan
quality.

Table 8 tries to answer that question. Columns labeled as “better”, “equal”, and “worse”
give the number and percentage of testing problems where the quality of HAMLET-EVOCK
plans is better, equal or worse, respectively, to those of PRODIGY4.0, HAMLET seed,
and EVOCK. Only those problems that can be solved by both HAMLET-EVOCK and the
other system to be compared with are considered. Finally q̄H−E−q̄B

q̄B
% displays the average

improvement in quality of HAMLET-EVOCK with respect to the other three configurations
(B = PRODIGY4.0, HAMLET seed, or EVOCK). q̄H−E is the average quality of those
problems solved by both HAMLET-EVOCK and system B . q̄B is the corresponding value
for system B . Negative values for the latter column indicate HAMLET-EVOCK is better
than B and positive values that it is worse, in terms of plan quality. Column “Range”
displays the minimum and maximum average quality improvement values along with the
type of problems where such value was reached.

• HAMLET-EVOCK vs. PRODIGY4.0: in the blocks world, HAMLET-EVOCK does not
improve the quality with respect to PRODIGY4.0 (no plan is shorter than those of
PRODIGY4.0), but it does in the logistics domain: 23% of the problems have a shorter
solution than PRODIGY4.0, and only 7% of them are longer. Solutions are 2% shorter
on average. For problems with 10 goals and 15 objects, the reduction is remarkable:
22% (see column “Range” in the same Table 8). Therefore, in this case HAMLET-
EVOCK is not taking advantage of a solvability/quality tradeoff.
• HAMLET-EVOCK vs. HAMLET seed: in the blocks world, HAMLET-EVOCK provides

longer solutions than the initial seed in 14% of the plans, and only 4% of them are
shorter. On average, solutions are 3% longer. This effect is not so acute in the logistics
domain, but there is no improvement on HAMLET seed in terms of quality (0%).

10 Plan quality can be measured in different ways: plan execution time, economic cost, etc [31] Here, we use
a typical quality metric, which is the number of planning operators in the plan (i e , the length of the plan; the
shorter, the better)
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Table 8
Comparison of HAMLET-EVOCKwith PRODIGY4 0, HAMLET seed, and EVOCK in terms of plan quality

Better Equal Worse
q̄H−E−q̄B

qB
% Range

HAMLET-EVOCK vs PRODIGY4 0
Blocks world 0 (0%) 106 (98%) 2 (2%) 0% All < 1%
Log domain 173 (23%) 519 (70%) 52 (7%) −2% −22% (10-15) to 0% (1-15)

HAMLET-EVOCK vs HAMLET seed
Blocks world 9 (4%) 193 (82%) 32 (14%) +3% −2% (5-10) to +12% (20-20)
Log domain 27 (16%) 128 (74%) 18 (10%) 0% −6% (20-20) to +5% (5-20)

HAMLET-EVOCK vs EVOCK
Blocks world 7 (2%) 305 (93%) 15 (5%) 0% 0% (5-50) to +1% (50-50)
Log domain 102 (34%) 172 (57%) 15 (9%) −2% −11% (2-10) to +4% (10-50)

Therefore, it seems that HAMLET-EVOCK is able to solve more problems than the
HAMLET seed (see previous results of Fig. 7) by sometimes increasing plan length.
• HAMLET-EVOCK vs. EVOCK: it seems that seeding EVOCK has no noticeable effect

in the blocks world (0% average improvement). However, it does in the logistics
domain: solutions are 2% shorter and 34% of the problems have a shorter solution with
HAMLET-EVOCK than its non-seeded counterpart, and only 9% of the problems have
a longer solution. Therefore, although in the logistics domain the individual that solves
more problems was found by EVOCK, HAMLET-EVOCK manages to give shorter
solutions. The multi-strategy configuration shows his worth again.

In summary, HAMLET-EVOCK can sometimes increase the number of problems solved
by decreasing plan quality, but this is not necessarily so. Also, the HAMLET seed bias
HAMLET-EVOCK conveniently with respect to plan quality.

5. Related work

There have been different approaches to acquire control knowledge for non-trivial (non-
linear) planning. Some of them use analogy [15,41], others pure deduction (EBL) [16,
17,26], pure induction [23], and some combine deduction (EBL) and induction like
HAMLET [5] and SCOPE [8,9] (EBL+ ILP). However, they do not use genetic search as a
component for the multi-strategy system. In particular, Estlin offers many results that could
be used for comparison purposes with our approach [8]. Results in the logistics domain are
particularly well suited. Unfortunately, they use a different base planner (UCPOP [30]
is a partial order planner, whereas PRODIGY4.0 is a total order planner) and it is not
clear how problems containing many packages (logistics domain) are generated. Different
machines to ours were also used. However, a rough comparison can be done by comparing
results for the hardest problems. Estlin reports that SCOPE solves 24% of the 50-goal
50-package problems in the logistics domain when given a time limit of 500 seconds on a
Ultra Enterprise 5000. SCOPE requires 165 seconds on average per problem solved. On
the other hand, EVOCK and HAMLET-EVOCK are able to solve 77 and 42% of the 50-
goal 50-package problems, respectively, when testing time is limited to about 56 seconds
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(in a Pentium II 400 MHz). Notice also that 50-50 problems are very hard for the base
planner PRODIGY4.0 (it solves none of them within the time limit as shown in Table 6).
This is also true for UCPOP. All in all, it seems that HAMLET-EVOCK is doing better
than SCOPE in this domain. It would be interesting to see if SCOPE benefits from a GP
stage add-on, in the same way than HAMLET does.

Some innovative approaches to planning use genetic programming [20]. This approach
was started by Koza [20], who evolved a planner that solved a very specific set of problems
in the blocks world domain. Handley [11] used GP to evolve plans for specific problems
in the blocks world domain. Muslea [28] generalized, extended, and formalized this idea,
and showed how any planning problem could be translated to an equivalent GP problem.
He tested it successfully in several domains. Spector [35] also analyzed these two basic
approaches for GP-planning. The main difference with our approach is that they used GP
to search in the space of plans or planners, and we are exploring the space of heuristics for
a planner. We believe this is a better approach, because searching in the space of plans can
not be very efficient when large problems are considered. And searching in the space of
full-blown planners seems like a daunting task. On the other hand, searching for just the
heuristics is a more feasible task and once they have been found, they reduce the amount
of search needed to solve future planning problems.

In the Genetic Algorithm field, there are two main approaches named Pittsburg [34] and
Michigan [12] that have been applied for learning rules. In the Michigan approach, each
individual is a rule. Therefore, it is not well suited for disjunctive concepts (consisting
of several of these rules), except if additional techniques like ’niching’ and ’species
formation’ are used [22]. Also, a method for extracting the solution from the population
must be used (like the Universal Suffrage operator in [29]). In the Pittsburgh approach,
each individual is a set of rules. Therefore each individual can represent a whole disjunctive
concept. Its main disadvantage is that it requires more space. On the other hand, the search
method is just a simple Genetic Algorithm. Our work follows the Pittsburgh approach but
we have used the symbolic variable length structures of GP.

In this work, we use a grammar both to generate the initial random population and to
check individuals for syntactic correctness. Whigham [42] also uses grammars, although
the representation is different. His individuals are the actual parse trees, whose non-
leave nodes contain the generative terms of the grammar. That is, only the leaves of the
tree represent the actual individual. The rest of the nodes are the grammar non-terminal
nodes used to generate the individual. This has the advantage that in order to cross two
individuals, the system only has to check that both crossing points come from the same
non-terminal, whereas in EVOCK case, nodes have to be looked up in the grammar. But
Whigham’s approach requires to build the actual individual before each evaluation whereas
EVOCK does not need to. Another difference with his work is that EVOCK grammar is
built on-the-fly for each different planning domain.

6. Conclusions

In this article, we have described a multi-strategy approach, HAMLET-EVOCK, that
learns control rules for a planning system (PRODIGY4.0). HAMLET is able to learn control
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knowledge on its own. However, HAMLET generates too many control rules, which do not
always generalize well. This led us to combine it with EVOCK (a GP-based system), to
overcome HAMLET problems. Our work is based in three assumptions:

• HAMLET produces incorrect control knowledge mainly because of two of its biases:
– Its example-driven operators, which require the proper examples to refine the rules

and generate correct control knowledge. Those examples might be very rare because
of the size of the example-space, or might not even exist in the problem subspace
used for learning.

– Its incremental nature does not permit a global picture of the usefulness of the
acquired control knowledge. HAMLET considers equally all training problems,
whereas in some cases it would be useful to ignore some of them so that many
others can be solved.

• HAMLET incorrect control knowledge is only partially incorrect (i.e., it can be
corrected).
• HAMLET incorrect control knowledge can be corrected and improved by combining

it with another ML system with complementary biases (this is the multi-strategy
assumption).

GP possesses the right biases, according to our previous hypotheses:

• Contrary to HAMLET, EVOCK genetic operators are not example-driven. Mutation
and crossover do not depend on actual examples to change and correct individuals. Of
course, in some cases it could be more difficult for EVOCK to find the right mutation
than for HAMLET to get the right example, but this is not the case of the domains tested
in this article.
• GP can easily evaluate usefulness and compactness of control knowledge by means of

its fitness function.

HAMLET and EVOCK have been coupled in a simple fashion: a set of control rules
generated by HAMLET are used to seed EVOCK initial population, which in turn, will
apply its own biases to the HAMLET seed. HAMLET-EVOCK has been tested in two
planning domains: the blocks world and the logistics domain. The success of the system
supports our guiding hypotheses. Empirical results show that HAMLET benefits from
the multi-strategy approach. EVOCK also benefits from it because it generates good
individuals more frequently when seeded than by starting from a random population.
However, in the logistics domain, HAMLET-EVOCK is unable to produce control rules
better than the best ones generated by stand-alone EVOCK, although the results are not
significantly worse either. A plausible reason, supported by several experiments, is that
in this domain, the best individuals are small, and the sets of control rules generated by
HAMLET tend to be very large. Therefore, it takes a lot of effort to correct the HAMLET

seed, and it is just as profitable to start from scratch. This might also be true of other
domains.
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7. Future lines of work

• HAMLET and EVOCK biases could be integrated more tightly. For instance, HAMLET

could use directly the genetic operators. Or the other way around, EVOCK could take
advantage of HAMLET learning operators.
• Learning from simple problems (that allow to expand completely PRODIGY4.0 search

tree) has proven to be a good assumption in the domains tested in this article.
Other domains might require more complex examples to learn. In that case, partially
expanded trees could be used for learning. In an extreme case, both HAMLET and
EVOCK could learn from a single solution path (i.e., no search tree, only the solution
path) by using what we have called white box fitness functions (there are some
preliminary results in [2]). Solution paths can be generated directly, more efficiently,
without calling the base planer. However, this is likely to have other effects on the
quality and speed of learning, which we would have to study.
• We believe that learning control knowledge to guide the planner towards good quality

solutions (not only in terms of solution length) would not be very difficult to add to
our multi-strategy approach (although finding good quality solutions is much more
difficult than just solving a problem).
• EVOCK flexibility could be used further. Currently, EVOCK explores the space

of select-heuristics, but it could be very easily changed to explore the space of
prefer or reject heuristics. Likewise, considering negated left hand side conditions
would be very easy. All that is needed is to use another language bias by changing
the generating grammar. Many other machine learning (including HAMLET) would
require substantial modifications to make these changes.
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