
ar
X

iv
:c

s/
00

06
03

0v
2 

 [
cs

.R
O

] 
 2

0 
Ju

n 
20

00

Multiagent Control of Self-reconfigurable Robots∗

Hristo Bojinov, Arancha Casal and Tad Hogg

Xerox Palo Alto Research Center

3333 Coyote Hill Road

Palo Alto, CA 94304

October 25, 2018

Abstract

We demonstrate how multiagent systems provide useful control techniques for modular self-reconfigurable
(metamorphic) robots. Such robots consist of many modules that can move relative to each other, thereby
changing the overall shape of the robot to suit different tasks. Multiagent control is particularly well-
suited for tasks involving uncertain and changing environments. We illustrate this approach through
simulation experiments of Proteo, a metamorphic robot system currently under development.

1 Introduction

Modular self-reconfigurable (or metamorphic) robots [35, 29, 36, 30, 21, 28, 27] consist of many simple
identical modules, that can attach and detach from one another to change their overall topology. These
systems can dynamically adapt their shape to suit the needs of the task at hand, e.g., for manipulation,
locomotion, and adaptive structures responding to environmental stresses.

From a planning and control viewpoint, metamorphic robots pose several interesting research challenges.
Self-reconfiguration, or how to change shape automatically, is a new and so far little studied problem for
robots. Decentralized control is a useful approach to this problem especially when the robot has a the large
number of modules, each of which is a self-contained unit with its own processing, sensing and actuation.
With the tight physical interactions due to contact between neighboring modules and constraints arising
from actuator geometry and power limitations, modular metamorphic robots pose an interesting challenge
for multiagent control. They thus require a more physically grounded approach than many studies of artificial
life [10] which tend to concentrate on how complex natural organisms achieve sophisticated crowd behaviors
or deal with abstract agents that currently can not be physically constructed [12, 13, 1]. Alternatively,
biological and chemical techniques for distributed construction of shapes [4, 23] provide examples of local
behaviors producing complex shapes, but are not yet capable of producing general programmable robotic
systems.

One approach to reconfiguration uses a precise specification of the desired locations of all the modules,
and then solves the combinatorial search required to identify motions for the modules according to some
criterion, such as minimizing the number of moves or power consumption. Such searches are generally
intractable for robots consisting of many modules, but can be addressed approximately using heuristics [29,
36, 27, 21, 30, 7, 16]. Unfortunately, in many practical applications, defining an exact target shape may not
be suitable or even possible. This may arise when some modules fail or the nature of the environment or
task is uncertain, for example, when grasping an object of unknown size or shape.

Instead, we use multiagent control to achieve suitable reconfiguration as a side-effect of creating a struc-
ture with the properties (structural, morphological, etc) required for the task. When the properties can be
expressed largely in terms of the local environment for each module, agent-based control often achieves a
suitable shape without any need to precisely specify the exact position of each module. Moreover, an agent-
based architecture is well-suited to decomposing control problems based on the different physical phenomena

∗A condensed version of this paper will appear in Proc. of the Intl. Conf. on Multiagent Systems (ICMAS2000), July 2000.

1

http://arxiv.org/abs/cs/0006030v2


dominant at different scales, especially for metamorphic robots with a large number of tiny modules. For
example, micromachined robots [9] are dominated by friction and other surface forces rather than gravity.
Even smaller structures [17] are subject to randomly fluctuating forces, i.e., Brownian motion. In contrast
to larger robots, these tiny machines readily move objects many times their own weight and have compara-
tively high speeds and strengths [8]. Biology has numerous examples of different structures appropriate for
different scales [34]. In such cases, different types of agents could be responsible for behaviors of individual
modules, small groups of modules and so on, forming a hierarchical or multihierarchical correspondence
between physical structures of the robot and its environment, the levels of specification for the desired task
and the controlling software [15].

A related line of work applies multiagent control to teams of robots cooperating to achieve a common
task [32, 6, 31, 14, 20]. These methods usually apply to independently mobile robots that are not physically
connected and have little or no physical contact. In most current modular robot systems the modules remain
attached to one another forming a single connected whole [7, 30, 29, 28, 27, 36], and giving rise to a number
of tight physical motion constraints that do not apply to teams of independent robots. On the other hand,
the physical contact between modules allows modules to locate their neighbors without complex sensory
processing as would be required, for example, to visually identify a physically disconnected member of a
team. Hence the techniques for coordinating teams are not directly applicable to modular robot controls.
Furthermore, more traditional self-reconfiguration algorithms require an a-priori exact description of a target
shape for the given task, which may not be suitable when the robot operates in uncertain environments.

Specifically, we explore the use of simple, purely local rules to produce control algorithms for accomplishing
tasks such as dynamic adaptation under changing external conditions (e.g., added weight) and grasping
objects. We will use the term behaviors for the specific control algorithms. The assumptions we make are
as follows:

• Modules have limited computational capabilities, consisting of a limited memory and a simple finite-
state machine (FSM). State transitions are driven by the states, the relative positions of a module and
its neighbors, and some external sensor information. The state transitions can update the memory of
a module and its neighbors.

• Communication is limited to immediate neighbors, and a limited number of bits are exchanged at each
step. We specifically did not allow modules to broadcast messages globally, because the power required
would likely not scale well if the size of modules shrinks. Morover, fully utilizing broadcasts would
require more complex knowledge and processing on the part of the modules.

The remainder of this paper presents the design and evaluation of control algorithms for metamorphic
systems that coordinate their actions locally to achieve emergent, global behaviors. The next section describes
the robot platform used in our work and general control primitives. The following two sections present the
results of our algorithms applied to specific tasks and provide an analysis of the behavior.

2 The Robot System

This section describes the modular robot used in our work, its simulator and the control primitives combined
to create the behaviors described below.

2.1 Experimental Robot Platform

Several modular metamorphic robot designs have been proposed [11, 30, 21, 29, 28, 27, 35]. For our study, we
focus on one such design: Proteo [36], which is a modular self-reconfigurable, or metamorphic, robot being
developed at Xerox PARC. In the current design, modules are rhombic dodecahedra (polygons with twelve
identical faces, each of which is a rhombus). Modules attach to one another along their faces forming general
three dimensional solids. To achieve a change of shape modules on the outer surface roll over the substrate
of other modules to new positions. This type of reconfiguration has been called “substrate reconfiguration”,
in contrast with other existing reconfiguration classes [7].

The rhombic dodecahedron can be thought of as the 3D analog of the hexagon and has several useful
properties. Notably, these polyhedra result in maximium internal volume for a given surface area [34],

2



meaning more room for packing electronic and mechanical components. Also, all module-on-module rotations
are always 120 degrees, unlike the cube which requires 180 degree rotations in certain cases. A main
disadvantage is that twelve faces per module need to be actuated, increasing the complexity and expense of
the hardware. For a target module size in the centimeter scale, current actuator technologies result in large
weight to power ratios and high cost per module. A manually actuated version of Proteo has been built and
is shown in Figure 1. Modules connect along their faces, as illustrated in Figure 2.

Figure 1: An actual proteo module and its schematic representation.

Figure 2: Two connected proteo modules and their schematic representation from a different viewpoint.
Each module can rotate onto its neighbor’s adjacent faces.

In addition to actuators, the modules can communicate directly with their neighbors. Depending on the
application, they can also include various sensor elements, e.g., to detect forces imposed by the environment
or the weight of other modules.

For the experiments reported below, we used a simulation of the Proteo robot platform. This simulation
includes the physical motion constraints on the modules, allowing them to rotate onto neighboring modules
only when that motion is not obstructed by other modules. This simulation has the modules operating
asynchronously. Specifically, every module is given a chance to execute its behavior exactly once each time
cycle. The behavior executions for the modules are ordered in a different, random way for each time cycle.
When the behavior code is executed each module describes what movement (if any) it wants to perform at
the end of the cycle. After all the behavior code is executed, the simulator attempts to perform the requested

3



movement for each module in turn, subject to geometrical constraints. This means that a module might be
denied the movement it has requested.

The control programs in the modules are not directly notified of the outcome of their movement requests
(by means of an exception, for example). While this capability could certainly be added to the system, we
found it is not necessary for applying our coordination techniques to the tasks described below. This lack
of notification means modules can become “stuck” and attempt the same movement in vain for several time
cycles. However, the overall behavior is still achieved because at the same time other modules are able to
complete their moves, and can eventually remove the obstacle preventing motion. Alternatively, the motion
of these other modules can sufficiently change the structure that the stuck module decides on another motion.

Another programming issue was how a module should sample randomly from the available moves. When
a completely random move is desired, the module simply picks with equal probability from the available
moves to neighboring positions. When a directed random move is needed, a different method is used, which
picks only from the available moves that go in a direction that has a positive dot product with a specified
general direction in space. The latter approach is used when there is some bias direction inherent to the
specific application (e.g. the direction of the “ball” in the grasping behavior described in Section 3.4). While
such biased choices do not necessarily result in the most direct motion toward the goal, the randomness
reduces the likelihood of becoming stuck and increases robustness in case of failed modules. From a global
planning perspective, this randomness can be viewed as a simple search procedure that avoids the potentially
intractable combinatorial search of finding an optimal set of motions for all the modules.

The simulation does not model all the details of the hardware. For example, it does not include limits
on power consumption or actuator strength that could be significant in actual hardware implementations.
The simulator also assumes the modules operate correctly and have accurate local sensory information, e.g.,
concerning contact with neighbors or other objects or mechanical stress. The results of the simulation are
illustrated using the schematic representation of the modules included in Figures 1 and 2.

2.2 Control Primitives

While the Proteo system illustrates the issues facing modular robotics and provides a useful testbed, our
methods are not tied to any specific design, but instead are applicable to metamorphic robots in general.
Specifically, the agents make use of a few primitive constructs that are combined to form a control program
for each module. These primitives allow simple communication and coordination among the modules, and
could be implemented by a variety of modular robots.

Our approach uses the following primitives:

Growth is the process that creates structures. It is important to provide a mechanism for focusing the
movement of modules to specific spots. Otherwise, if the movement is too random, it could take a long
time before any reasonably good structure is grown.

Seeds are the main agents that cause growth. A seed is a module that attracts other modules in order to
further grow the structure. As more modules are attracted to a seed, they can in turn become seeds
themselves, and thus propagate the growth process.

Scents are the means of global communication among modules. Scents are propagated through the system
in a distributed breadth-first fashion as follows. Each module keeps track of the scent strength at
its location with a value in its memory. Those modules that emit the scent set their own value to
zero. Other modules examine the scent values of their neighbors at each time step, and then set their
own scent value to one more than the minimum value among their neighbors. Thus, smaller values
indicate a stronger scent, and a scent gradient is created throughout the structure. Scent values are an
approximation of the minimum distance to a scent-emitting module in the system at any given time.
The approximation arises because scents are broadcast via neighbors and thus can take many steps to
propagate throughout the entire system, and during this time modules can move. Nevertheless, as dis-
cussed further in Section 4, the scents generally propagate much faster than substantial rearrangements
of the modules so this approximation worked quite well. We typically use either one or two different
scents in our experiments. Seeds emit a scent to attract modules, and modules that are searching for
seeds move along the surface gradient of the scent to find them.

4



SEED
S=0 S=1

S=2
S=3

Figure 3: A simple chain of modules with one SEED (yellow) and three SEARCH modules (red, with the
color intensity corresponding to the scent values). In this simple structure, scent values exactly correspond
to the distance from the seed.

The Mode of a module is its present FSM state. For instance, seeds are usually denoted by the SEED
mode, modules that search for seeds are in the SEARCH mode, modules that are part of the finished
structure are in the FINAL mode, and modules that cause branching are in NODE mode. The mode
in turn will determine the rules of behavior of a module.

A final component of our control method is the use of random motions when different choices appear
equally useful. This allows modules to continue performing even when the scent gradients do not completely
specify the best direction. Because such random motions are less efficient than following gradients, our
algorithms arrange for relatively few states to search before useful gradient information is found.

A simple example is shown in Figure 3. A single SEED module, with scent S = 0, is connected to a chain
of modules in SEARCH mode with successively larger scent values. In this configuration, only the SEARCH
module at the end of the chain is free to move. Its neighbor’s smaller scent value (i.e., S = 2) indicates that
the module at the end of the chain can find a position with even smaller scent value by rolling over the faces
of its neighbor. One possible sequence of steps following from this initial configuration is shown in Figure 4.
For simplicity, this figure shows the remaining modules remaining stationary.

In this example, the moving module goes directly toward the seed. However, the gradient does not specify
precisely which other face is best. Instead, the free module moves randomly over the available faces of its
neighbor until it encounters the module with S = 1. At this point, the moving module updates its scent
value to S = 2 and then continues its search for the seed by moving over the faces of the S = 1 module.
Because there are only a few faces to explore before new gradient information is found, this use of random
search is likely to complete after only a few moves.

3 Results

This section presents experiments on Proteo with some environmental sensing and using our agent-based
control algorithms within each module. The experiments were restricted to no more than a few hundred
modules to keep simulation times reasonable (i.e., at most several hours).

3.1 A Chain

A chain is often the preferred locomotion configuration of modular robots for moving over steps, snaking
into holes or squeezing through narrow passages. We describe a simple local algorithm that, starting from
an arbitrary connected configuration, creates a single, one-module-thick chain. Initially, all modules are in
the SLEEP mode. The other possible modes are: SEARCH, FINAL, and SEED. A module is arbitrarily
picked to serve as the initial seed to start the chain. This initial seed can be determined centrally, or each

5



Figure 4: Moving toward the seed. Starting from the initial configuration of Figure 3, the module at the
end of the chain moves toward the seed, reducing its scent value (shown by the colors) as it contacts other
modules closer to the seed.

module in SLEEP mode can be given a small probability to become a seed at each step. This module will
pick a direction of growth and emit a scent to start attracting other modules toward it. When a module
moves next to the seed module and is connected to it in the chosen direction, the chain grows by one module
and that new module then becomes the new seed that will further grow the chain.

The control rules for each module are:

• If in SLEEP mode, if a scent is detected, go to SEARCH mode.

• If in SEARCH mode, propagate scent and move along scent gradient.

• If in SEED mode, emit scent, and if a module has appeared in the direction of growth, set that module
to SEED mode, and go to FINAL mode.

• If in FINAL mode, propagate scent.

These rules amount to a simple finite-state machine for each module, shown in Figure 5. An example
configuration of a group of modules following these rules is given in Figure 6. As the algorithm continues,
the modules form a single chain.

3.2 Recursive Branching for Locomotion and Manipulation

A variety of applications for modular robots can benefit from a branching structure with “limbs” at several
levels. In such a hierarchical structure, each level has varying degrees of precision, range of motion and
strength. For example, one level of branching gives a structure that can be used as an artificial hand or as a
“spider” for locomotion. Adding extra levels of branching results in “fingers” or “toes” with lower strength
and range of motion but higher level of precision. Human limbs exhibit only two levels of branching, but
a robot could grow as many levels as needed to achieve increasingly complex manipulation and locomotion
tasks [26].

6



Propagate scent

Descend gradient,

propagate scent

SLEEP FINAL

SEEDSEARCH

If scent

detected

If neighbor is a 

SEED in the 

correct orientation

If neighbor became

a new SEED

Emit scent

Figure 5: The module modes and conditions causing modules to change mode used to form a chain.

Figure 6: Chain Behavior. The Proteo system is shown here half-way to a complete chain. The colors
indicate the current module states: white modules have settled (FINAL mode) and red modules are still
looking for a place in the structure (SEARCH mode). The yellow module is the current SEED.

7



Figure 7: Branching Behavior. In this picture the second-level branches are not completely grown because
the available modules have been depleted. Purple modules are nodes that spawn yellow seeds. The node
scent threshold was T = 12 and maximum branch count B = 6.

The algorithm is as follows. All modules are initially in the SLEEP mode. Growth is initiated when a
module randomly decides to switch to the NODE mode. In this mode it attracts other modules (emits a
scent) and randomly chooses which ones will become seeds. When it has spawned a certain number of seeds,
the node becomes inactive. This experiment uses two scents: a “regular” scent is used to grow the structure
(as in the Chain example), and a second “node” scent is used by modules to determine how far the nearest
node is. If this distance is too big, a module can decide to become a node. The rules are:

• If in SLEEP mode, if regular scent is detected, go to SEARCH mode.

• If in SEARCH mode, propagate both scents and move along the regular scent gradient.

• If in SEED mode, propagate the node scent, and emit a regular scent; if there is a neighboring module
in the direction of growth of the branch, set that module to be a seed, and go to FINAL mode.

• If in FINAL mode, propagate both scents; if the node scent is weak (i.e., has a value greater than some
threshold T ), go to NODE mode.

• If in NODE mode, emit both scents, spawn seeds in random directions, until a certain count is reached
B, then go to INODE mode.

• If in INODE mode, emit a node scent and propagate the regular scent.

An example structure resulting from these rules is shown in Figure 7. The threshold T determines the
distance between nodes, i.e., how far modules continue building one branch before starting new branches.
The count B determines the branching ratio throughout the structure.

3.3 Dynamically Adapting to External Forces

One important task for reconfigurable robots is to adjust themselves in response to environmental forces.
For instance, a collection of such robots supporting a weight on a set of “legs” should be able to change the
location and density of the legs when the weight shifts. As a simple example of this task, we examined the
formation of legs to support a flat structure with an additional imposed force whose location could change
over time. For simplicity, we neglect the weights of the modules themselves, i.e., we assume their weights
are small compared to the weight of the additional objects they are supporting on top of the flat structure
or “table”.

8



Figure 8: Adaptive Behavior, Sequence 1. Arrows indicate where the weight is placed. Initially, the right
side receives little stress, so it has only one leg (leftmost picture). The weight is shifted to the right, and the
table adapts by disbanding most of the legs on the left, and growing more legs on the right side (next three
pictures). Red modules are available for additional legs if needed. On the top of the table, white modules
are in FIXED mode while the blue ones are roots. The view in the last two pictures is from underneath
the table to better show the migration to the right side, and also shows some yellow SEED modules. In
this example, the the probability for a root to create or disband legs are pmax = pmin = 0.05. The weight
thresholds were Fmax = 2 to create new legs and Fmin = 1 to disband legs. In this example, the board was a
30 by 30 square with roots distributed uniformly thoughout the board, separated by a distance of 3 modules
in each direction.

For this behavior, we form some of the modules into a “board” (the top of the table) which supports the
additional weight. These modules, which never move, are of two types. The first, always in FIXED mode,
only transmit scent. The second type are “root” modules which are uniformly spaced over the board and
can communicate with each other, e.g., through signals sent locally through the fixed modules. We assume
these signals propagate much faster than the physical movements of the modules. The roots are grouped into
regions on the board (in the experiments reported here, we use two regions: the two halves of the board).

We assume modules are equipped with a force sensor that allows them to measure the weight they are
supporting. Furthermore, we assume the modules can either determine the direction gravity acts or this
direction toward the ground is prespecified when creating the roots in the board. Roots within a region
monitor the total weight supported in that region by communicating their sensor readings.

The root modules on the board can be in one of three modes: ROOT, IROOT or AROOT. Initially the
root modules are in IROOT mode, which monitor the weight they are supporting and may start growing a
leg. AROOT mode emits a scent to attract other modules to start growing a leg, in much the same way
as growing a single chain. Once the leg starts growing, the root shifts to ROOT mode, where it remains
until the weight it supports drops below a specified threshold in which case it probabilistically causes its
leg to disband. Thus the root modules grow or disband legs probabilistically according to how much weight
is experienced in their part of the table. We refer to root modules in ROOT or AROOT mode as “active”
roots.

The fixed and root modules are set at the beginning and don’t change throughout the experiment. All
other modules are initially in SLEEP mode. The structure first grows legs, then disbands some of them and
creates new ones according to shifts in weight (controlled interactively by the user of the simulator).

The rules for this behavior for the root modules are:

• If in IROOT mode, if average weight per active root in its region is above a certain threshold Fmax,
with a small probability pmax: go to AROOT mode.

• If in AROOT mode, emit scent.

• If in ROOT mode, if average weight per active root in its region is below a certain threshold Fmin,
with a small probability pmin: set all FINAL and SEED neighbors to DISBAND mode, go to IROOT
mode.

Although similar adaptive behaviors can occur with a range of values for the thresholds, one important issue

9



is to prevent the disbanding of a single leg supporting a minimal weight in a region. In our experiments, this
minimal value is one unit of weight, so we should have Fmin ≤ 1. The rules for the remaining modules are:

• If in SLEEP mode, if a scent is detected, go to SEARCH mode.

• If in SEARCH mode, propagate scent and move along its gradient; if there is a neighboring SEED or
AROOT module and location is towards the ground with respect to this neighbor

– if this neighbor is a SEED, set it to FINAL mode, otherwise set it to ROOT mode

– go to SEED mode

• If in SEED mode, if touching the ground, go to FINAL mode.

• If in FIXED or FINAL mode, transmit scent.

• If in DISBAND mode, set all FINAL and SEED neighbors to DISBAND mode, go to SEARCH mode.

Figure 8 illustrates how, once created, a supporting structure can adapt in response to changes in external
forces. The behavior dynamically adapts the location and number of its legs to accommodate changes in the
supported weight. In this example, we suppose weight W1 is applied to the first half of the table and W2

applied to the second half, with an arbitrary choice of units giving W1 +W2 = 10. In each half of the table,
active roots communicate their sensory information to determine how much of this weight is supported by
those in their half of the table. The result is the average weight supported by each active root in each half
of the table, i.e., w1 = W1/N1 for the first half (where N1 is the number of active roots in the first half),
and similarly for w2 as the average weight supported per active root on the second half.

The probabilistic growing and disbanding of legs avoids possible oscillations in root behavior: if deter-
ministic, when the weight shifts, many roots could decide to grow legs, then disband them on the next step,
thus oscillating between the two without doing anything useful. Such oscillations are common for systems
with synchronous updates [18, 22]: randomization is a simple technique to prevent spurious synchronization
of agent activity.

After a root r decides to grow a leg, some time is required for the modules to move to that root and
produce the leg. However, because a root’s decision to grow a leg is based on the weight in its region averaged
over the active roots, once root r starts the process of growing a leg by emitting scent, the average weight per
active root drops immediately and proportionately with the number of supporting modules. This change,
rapidly communicated among the roots, gives feedback to other roots in the region and prevents other legs
from growing nearby unnecessarily. In practice, this implies that the weight must be shifted slowly: the
system will not be able to respond quickly to sudden changes.

Figure 9: Adaptive Behavior, Sequence 2. The weight is now moved to the center of the table. The table
adapts by shifting legs from the right to the middle.

An indication of how fast the modules react to external conditions is the number of steps after a weight
shift until a new stable configuration is achieved. In the examples shown here, this time is on the order of
200 cycles. This includes the time needed to disband some legs and construct some new ones. Although
the modules know about the shifted weight immediately, some time is needed until some roots decide to
disband their legs, and some inactive roots decide to grow legs. These decisions are probabilistic: each root
decides to change its state (go from active to inactive or vice versa) with a probability we chose to be on the

10



Figure 10: Grasping Behavior. White modules (in FINAL mode) form eight “fingers” that grow towards the
object. When the object is reached, the fingers start growing around it (with modules switching to TOUCH
mode, in blue). The modules have contact sensors to know if they are touching the object. The yellow
modules are the current TOUCHSEED’s.

order of 1/R where R is the total number of roots in the structure. Thus it is unlikely that many roots will
decide to switch state at the same time step, thereby avoiding unstable or oscillating system behavior. We
depend on the rough assumption that decisions to disband or grow legs have immediate effect on the strain
felt by the modules in the system. This assumption is questionable for real-world applications, especially
with larger structures. However, it provides a good starting point. In real-world applications the trade-off
will be between fast response with a risk of oscillating behavior and a slow, but stable response to external
conditions.

3.4 Grasping an Object

The previous example showed how simple agent-based control allows the robot to respond to changes in
environmental stress. In practice, such robots will be used to perform a globally specified task, leading to
the question of how high-level, imprecise specifications can be combined with low-level behaviors.

As an example of such a task, we examined the behaviors required for Proteo to reach out and grasp an
object of unknown shape and size and with only roughly specified location by “growing” around it. In this
behavior the only modules that do substantial work are the modules in SEARCH mode. Initially all modules
are in SLEEP mode, except for eight modules that are set to SEED mode (to create eight branches to grow
toward the object). Two types of seeds are used: SEED modules, and TOUCHSEED modules. Initially
growth is caused by SEED modules, but once the object is reached, seeds transfer to the TOUCHSEED
state. The two types of seeds allow modules in SEARCH mode to know whether to grow in the direction
of the object (to reach it) or to grow the structure around the object (to grasp it). The system is initially
given the approximate direction the object is in, however, it has no knowledge of the exact direction of the
object, how far it is, or what shape and size it has. The modules are assumed to have contact sensors to
detect when the object has been reached. The rules are simple:

• If in SLEEP mode, if scent is detected, go to SEARCH mode.

• If in SEARCH mode, propagate scent, and move along the scent gradient; if a seed has been found: if
touching the object, then set seed to TOUCH mode, and go to TOUCHSEED mode; otherwise, if not
touching the object, and seed is in SEED mode, find a spot next to the seed in the direction of the
object, set seed to FINAL mode, and go to SEED mode; otherwise, make a random move.

• If in TOUCHSEED or SEED mode, emit scent.

• If in TOUCH or FINAL mode, propagate scent.

This example incorporates a global goal, specified by the general direction of the object, with local
adjustments by the agents to the actual object surface. It thus illustrates an important decomposition of the

11



control task into global specification in terms of general parameters combined with low-level control based
on the actual environment of the modules. This decomposition considerably simplifies the overall motion
planning since the global specification need not have access to all the details of the environment, knowledge
of which modules might have failed, etc.

These two examples could be combined: including stress sensors could also allow the modules to adjust
for the object weight if it is to be picked up rather than just grasped.

4 Local Minima and Stability

Local control has the danger of getting trapped in locally “comfortable” configurations that are not globally
suitable. Our agent approach provides good solutions to this problem both for individual modules and the
system as a whole.

A module searches for a seed by moving along a gradient of least-descent. In Proteo, modules can only
move by “rolling” over the outside surface of the structure, while scents can propagate through the inside
of the structure. Usually this is not a problem: all modules searching for seeds are constantly moving
preventing any fixed local extremum. However, a problem may arise when some modules remain fixed.
Modules searching for seeds may not be able to follow the internal scent and get through to seeds on the
other side because fixed modules effectively block the way. There are two possible solutions: one is to alter
the design to allow modules to pass through other modules (by squeezing through), and the other is to use
only a surface scent, which the modules can follow easily.

At a higher level, the whole system is performing a search for a configuration that suits a given criteria.
If the reconfiguration rules are not set up carefully, however, the system may never converge to a suitable
state. For instance, if for each module we only specify preferred immediate neighbor configurations, the most
likely result is that surface modules will settle quickly and comfortably, preventing modules on the inside of
the structure from moving. Thus, something must guide the overall reconfiguration. We use the concepts of
growth and seeds to drive the reconfiguration of the whole system in a focused way.

We found the structures grown are generally stable. During growth, stability depends mostly on the
ratio of scent propagation speed to module speed. Since modules generally move slower than they can
transmit scent, the response to scents does not introduce oscillating behavior [19] or irregular growth, and
the intermediate configurations are well-balanced at all times.

5 Conclusions

We have presented an agent-based approach to self-reconfiguration for modular robots that results in the
creation of “emergent” structures with the desired functionality. We use purely local, simple rules and limited
sensing. To “grow” stable structures, modules are guided by local attractors (seeds) and global gradients
(scents) toward good configurations. Different structures result by varying the number and combination of
seeds and scents in the algorithm.

Because the method has a strong random component, the specific shape of the resulting structures is
non-deterministic. However, the resulting structure has the desired functionality. This is particularly well-
suited to tasks with a strong element of uncertainty in the precise nature of the task or in the environment,
in contrast to other reconfiguration algorithms.

We examined two tasks for which the reconfigurable nature of the robots is well suited: adjusting struc-
tures to environmental stresses and grasping an object whose detailed shape is not known. The global
behavior of the algorithms we developed for these tasks was determined through simulations of the Proteo
robot. The control primitives can easily be scaled up to a larger number of modules, and down in the size
of individual modules, and are general enough to fit most modular robot designs.

This approach could be used in conjunction with other self-reconfiguration or control methods, as part of
an overall hierarchical control scheme to handle increasingly complex tasks. Lately, an important research
effort is applying genetic algorithms to the control of autonomous systems [24] or FPGA programming [33].
The techniques described in this paper are amenable to evolutionary approaches, and could benefit from
these results. Specifically, a population of agent programs combining the control primitives in different
ways could be tested against variations in the desired task to evolve better behaviors according to various

12



performance metrics [2]. In the context of the primitives presented here, genetic techniques could identify
methods to modulate the various parameters in our methods, e.g., the probabilty to form a seed for new
growth.

Finally, improvements in hardware design to augment current module capabilities could greatly aid
reconfiguration. Scaling down the size of individual modules using micromachines (MEMS) [5, 3] or molecular
assemblies could benefit actuation. For instance, protein motors can carry weights orders of magnitude larger
than their own, at speeds that are impressive given their size [17, 25]. This means a module could carry
several others around as it moves, something current Proteo modules cannot do. In addition, designs that
allow individual modules to change their shape and size could also enhance overall performance. These
improvements, however, would require truly interdisciplinary expertise in biology, materials, and electronics
and remain, for the most part, a formidable challenge. Nevertheless, as such robotic systems are developed,
multiagent control approaches are likely to help them achieve robust behaviors.

Acknowledgments

We thank Ying Zhang who wrote the original Proteo simulator used in our experiments.

References

[1] Harold Abelson et al. Amorphous computing. Technical Report 1665, MIT Artificial Intelligence Lab,
August 1999.

[2] Forrest H. Bennett III and Eleanor G. Rieffel. Design of decentralized controllers for self-reconfigurable
modular robots using genetic programming. In Proc. of the 2nd NASA/DOD Workshop on Evolvable
Hardware, July 2000.

[3] Andrew A. Berlin and Kaigham J. Gabriel. Distributed MEMS: New challenges for computation.
Computational Science and Engineering, 4(1):12–16, January-March 1997.

[4] Ned Bowden, Andreas Terfort, Jeff Carbeck, and George M. Whitesides. Self-assembly of mesoscale
objects into ordered two-dimensional arrays. Science, 276:233–235, 1997.

[5] Janusz Bryzek, Kurt Petersen, and Wendell McCulley. Micromachines on the march. IEEE Spectrum,
pages 20–31, May 1994.

[6] P. Caloud et al. Indoor automation with many mobile robots. In Proc. of the Intl. Workshop on
Intelligent Robots and Systems. IEEE, 1990.

[7] Arancha Casal and Mark Yim. Self-reconfiguration planning for a class of modular robots. In SPIE Sym-
posium on Intelligent Systems and Advanced Manufacturing: Sensor Fusion and Decentralized Control
in Robotic Systems, pages 246–257, 1999.

[8] K. Eric Drexler. Nanosystems: Molecular Machinery, Manufacturing, and Computation. John Wiley,
NY, 1992.

[9] Thorbjörn Ebefors et al. A walking silicon micro-robot. In Proc. of the 10th Intl. Conf. on Solid-State
Sensors and Actuators (TRANSDUCERS99), pages 1201–1205, 1999.

[10] Joshua M. Epstein and Robert Axtell. Growing Artificial Societies. MIT Press, Cambridge, MA, 1996.

[11] T. Fukuda and S. Nakagawa. Dynamically reconfigurable robotic systems. In Proc. of the Intl. Conf.
of Robotics and Automation. IEEE, 1998.

[12] S. Hackwood and G. Beni. Self-organization of sensors for swarm intelligence. In Proc. of the Conference
on Robotics and Automation (ICRA92). IEEE, 1992.

[13] J. Storrs Hall. Utility fog: The stuff that dreams are made of. In B. C. Crandall, editor, Nanotechnology,
pages 161–184. MIT Press, Cambridge, MA, 1996.

13



[14] Brosl Hasslacher and Mark W. Tilden. Living machines. In L. Steels, editor, Robotics and Autonomous
Systems: The Biology and Technology of Intelligent Autonomous Agents. Elsivier, 1995.

[15] Tad Hogg and Bernardo A. Huberman. Controlling smart matter. Smart Materials and Structures,
7:R1–R14, 1998. Available at http://xxx.lanl.gov/abs/cond-mat/9611024.

[16] K. Hosokawa et al. Self-organizing collective robots with morphogenesis in a vertical plane. In Proc. of
the Conference on Robotics and Automation (ICRA98). IEEE, 1998.

[17] Joe Howard. Molecular motors: Structural adaptations to cellular functions. Nature, 389:561–567, 1997.

[18] Bernardo A. Huberman and Natalie S. Glance. Evolutionary games and computer simulations. Pro-
ceedings of the National Academy of Science USA, 90:7716–7718, August 1993.

[19] J. O. Kephart, T. Hogg, and B. A. Huberman. Dynamics of computational ecosystems. Physical Review
A, 40:404–421, 1989.

[20] Hiroaki Kitano, editor. Robocup-97: Robot Soccer World Cup I, volume 1395 of Lecture Notes in
Computer Science. Springer, Berlin, 1998.

[21] Keith Kotay, Daniela Rus, Marsette Vona, and Craig McGray. The self-reconfiguring robotic molecule:
Design and control algorithms. Algorithmic Foundations of Robotics, 1998.

[22] William G. Macready, Athanassios G. Siapas, and Stuart A. Kauffman. Criticality and parallelism in
combinatorial optimization. Science, 271:56–58, 1996.

[23] Ross J. Metzger and Mark A. Krasnow. Genetic control of branching morphogenesis. Science, 284:1635–
1639, 1999.

[24] Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA, 1996.

[25] Carlo Montemagno and George Bachand. Constructing nanomechanical devices powered by biomolec-
ular motors. Nanotechnology, 10:225–231, 1999.

[26] Hans Moravec. Mind Children: The Future of Robot and Human. Harvard University Press, Cambridge,
MA, 1988.

[27] Satoshi Murata et al. A 3-D self-reconfigurable structure. In Proc. of the Conference on Robotics and
Automation (ICRA98), page 432. IEEE, 1998.

[28] Satoshi Murata, Haruhisa Kurokawa, and Shigeru Kokaji. Self-assembling machine. In Proc. of the
Conference on Robotics and Automation (ICRA94), pages 441–448, Los Alamitos, CA, 1994. IEEE.

[29] Amit Pamecha, Imme Ebert-Uphoff, and Gregory S. Chirikjian. Useful metrics for modular robot motion
planning. IEEE Transactions on Robotics and Automation, 13:531–545, 1997.

[30] D. Rus and M. Vona. Self-reconfiguration planning with compressible unit modules. In Proc. of the
Conference on Robotics and Automation (ICRA99). IEEE, 1999.

[31] J. R. Rush, A. P. Fraser, and D. P. Barnes. Evolving cooperation in autonomous robotic systems. In
Proceedings of the IEEE International Conference on Control, London, March 21-24 1994. Institute of
Electrical Engineers.

[32] Luc Steels. Cooperation between distributed agents through self-organization. Journal on Robotics and
Autonomous Systems, 1989.

[33] A. Thompson and P. Layzel. Analysis of unconventional evolved electronics. Communications of the
ACM, 42(4):71–79, 1999.

[34] Darcy Wentworth Thompson. On Growth and Form. Cambridge University Press, Cambridge, 1992.

14

http://xxx.lanl.gov/abs/cond-mat/9611024


[35] Mark Yim. Locomotion with a Unit-Modular Reconfigurable Robot. PhD thesis, Stanford University,
1994.

[36] Mark Yim, John Lamping, Eric Mao, and J. Geoffrey Chase. Rhombic dodecahedron shape for self-
assembling robots. Technical Report P97-10777, Xerox PARC, 1997.

15


