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Abstract

In automated negotiation systems consisting of self-interested agents, contracts have traditionally
been binding. Leveled commitment contracts—i.e., contracts where each party can decommit by
paying a predetermined penalty—were recently shown to improve expected social welfare even if
agents decommit strategically in Nash equilibrium. Such contracts differ based on whether agents
have to declare their decommitting decisions sequentially or simultaneously, and whether or not
agents have to pay the penalties if both decommit. For a given contract, these mechanisms lead to
different decommitting thresholds, probabilities, and expected social welfare. However, this paper
shows that each of these mechanisms leads to the same social welfare when the contract price and
penalties are optimized for each mechanism separately. Our derivations allow agents to construct
optimal leveled commitment contracts. We show that such integrative bargaining does not hinder
distributive bargaining: the surplus can be divided arbitrarily (as long as each agent benefits), e.g.,
equally, without compromising optimality. Nonuniqueness questions are answered. We also show
that surplus equivalence ceases to hold if agents are not risk neutral.
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1. Introduction

In automated negotiation systems consisting of self-interested agents, contracts have
traditionally been binding [5,15,17]. Once an agent agrees to a contract, she has to follow
through with it no matter how future events unravel. Although a contract may be profitable
to an agent when viewed ex ante, it need not be profitable when viewed after some future
events have occurred. Similarly, a contract may have too low expected payoff ex ante, but
in some realizations of the future events it may be desirable. Normal full commitment
contracts are unable to take advantage of the possibilities that such future events provide.

On the other hand, many multiagent systems consisting of cooperative agents incorpo-
rate some form of decommitment in order to allow agents to accommodate new events. For
example, in the original Contract Net Protocol [24], the agent that contracts out a task could
send a termination message to cancel the contract even when the contractee had partially
fulfilled it. This was possible because the agents were not self-interested: the contractee
did not mind losing part of its effort without a monetary compensation. Similarly, the role
of decommitment among cooperative agents has been studied in meeting scheduling using
a contracting approach [23].

Contingency contracts have been suggested for utilizing the potential provided by future
events among self-interested agents [14]. The contract obligations are made contingent on
future events. In some games this increases the expected payoff to both parties compared
to any full commitment contract. However, contingency contracts are often impractical,
especially as a negotiation instrument among software agents, for several reasons. The
space of combinations of future events can be large and it is rare that both agents are
cognizant of all possible future worlds ex ante and have evaluated their utility in each
future world. Even if the real-world parties are cognizant of all possible future worlds,
building this information into a software agent can be an error-prone and prohibitively
tedious undertaking. Also, to maximize the economic efficiency that a contingency contract
can provide, the agents may need to condition the contract on every possible combination
of future events, which leads to a combinatorial explosion in the contingency table. Finally,
when events are not mutually observable, ex post, the observing agent could lie about what
transpired. Therefore, contingency contracts generally rely on some nonmanipulable event
verification mechanism.

As a response to these practical difficulties associated with contingency contracts,
leveled commitment contracts were recently introduced as another method for capitalizing
on future events [19]. From an AI search perspective, they can be viewed as a backtracking
instrument that works even among self-interested agents.1 Instead of conditioning the
contract on future events, a mechanism is built into the contract that allows unilateral
decommitting. This is achieved by specifying the level of commitment by decommitment
penalties, one for each agent. If an agent wants to decommit—that is, wants to be
freed from the obligations of the contract—the agent can do so simply by paying the
decommitment penalty to the other party. The method requires no explicit conditioning

1 More conventional backtracking techniques may not be applicable in this setting because a backtrack would
only occur if every one of the self-interested agents would gain from it. An agent would not agree to give up gains
that it has already obtained through negotiation.
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of the contract on future events: each agent can do her own conditioning dynamically. No
event verification method against lying is required either.

Principles for assessing decommitment penalties have been studied in the economic
analysis of law [3,13], but the purpose has usually been to assess a penalty on the agent
that has breached the contract after the breach has occurred. Similarly, penalty clauses
for partial failure—such as not meeting a deadline—are commonly used in contracts,
but the purpose is usually to motivate the agents to follow the contract. Instead, in
leveled commitment contracts, explicitly allowing decommitting from the contract for a
predetermined price is used as an active method for utilizing the potential provided by
an uncertain future.2 By design, breach will occur at times, and this increases the social
welfare among the contract parties on an expected value basis.

Another key difference between classic work on the economics of law and this paper
is that we do not assume that agents breach sincerely, but rather we take into account the
fact that rational agents will breach strategically. Specifically, a rational agent is reluctant
to decommit because there is a chance that the other party will decommit, in which case
the former agent gets freed from the contract, does not have to pay a penalty, and collects a
penalty from the breacher. This also distinguishes our research from work on constructing
contracts by combining different option contracts.

Sandholm and Lesser recently showed that despite such strategic decommitting, the
leveled commitment feature increases each contract party’s expected payoff, and enables
contracts in settings where no full commitment contract is beneficial to all parties [20]. The
intuitive reason for this is that in many of the cases where the leveled commitment contract
turns out undesirable ex post, it will be undone. This paper studies the same setting and the
same contract types as they did, but derives new results.

The rest of the paper is organized as follows. Section 2 introduces the contracting
setting. In Section 3 we review the different leveled commitment contracting mechanisms
(protocols), and how rational agents would decommit in them. This gives rise to the
natural question: which mechanism leads to the best results for the agents? In Section 4
we derive the somewhat surprising result that although the optimal contract parameters
(price and decommitment penalties) differ among the mechanisms, if the parameters
are optimized for each mechanism separately, the mechanisms lead to the same social
welfare. Section 5 presents positive results regarding the interplay between integrative and
distributive bargaining in leveled commitment contracting, and shows how to construct a
fair optimal contract. Section 6 discusses nonuniqueness of the optimal contract. Section 7
shows that surplus equivalence ceases to hold if agents are not risk neutral. Finally,
Section 8 concludes.

2. Our contracting setting

Consider a contracting setting with two risk neutral agents who attempt to maximize
their own expected payoff: the contractor who pays to get a task done, and the contractee

2 Decommitting has been studied in other settings, e.g., where there is a constant inflow of agents, and they
have a time cost for searching partners of two types: good or bad [4].
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who gets paid for handling the task. Handling a task can mean taking on any types of
constraints. The method is not specific to classical task allocation. The framework can
be interpreted as modeling other types of settings than task allocation also, for example
general allocation of rights and obligations where the agents’ costs and gains of the rights
and obligations may change. In what follows, we word the results in the context of task
allocation.

The contractor tries to minimize the contract price ρ that he has to pay the contractee.
The contractee tries to maximize the payoff ρ that she receives from the contractor. We
study a setting where the future of the agents involves uncertainty. We model this as the
agents potentially receiving outside offers (which are full-commitment contracts3).4 The
contractor’s best (lowest) outside offer v is only probabilistically known ex ante by both
agents, and is characterized by a probability density function f (v). The contractee’s best
(highest) outside offer w is also only probabilistically known ex ante, and is characterized
by a probability density function g(w).5 ,6 The variables v and w are assumed statistically
independent, and f (v) and g(w) are common knowledge.

The contractor’s options are either to make a contract with the contractee or to wait
for v. Similarly, the contractee’s options are either to make a contract with the contractor
or to wait for w. The two agents could make a full commitment contract at some
price. Alternatively, they can make a leveled commitment contract which is specified
by the contract price, ρ, the contractor’s decommitment penalty, a, and the contractee’s
decommitment penalty, b.

In this paper, we focus on a setting where each agent has exactly one chance to
decommit. The contractor has to decide on decommitting when he knows his outside offer
v but does not know the contractee’s outside offer w. Similarly, the contractee has to decide
on decommitting when she knows her outside offer w but does not know the contractor’s.
This seems realistic from a practical automated contracting perspective.7

As we will show, the contractor will decommit whenever his outside offer is lower than
a threshold, v∗, which we call the contractor’s decommitting threshold. We denote by pa

the probability that the contractor will decommit, i.e., the chance that his outside offer is

3 Equivalently, the outside offers could be leveled commitment contracts, in which case the agent would use
the expected payoff from such a contract as its “value” of the outside offer.

4 The framework can also be interpreted to model situations where the agents’ cost structures for handling
tasks and for getting tasks handled change, for example, due to resources going off-line or becoming back on-
line.

5 If the contractor does not receive an outside offer, v corresponds to its best (lowest) outstanding outside offer.
One can also interpret −v as the contractor’s fallback payoff, that is, payoff that it receives if no contract is made.
Analogously, if the contractee does not receive an outside offer, w corresponds to its best (highest) outstanding
outside offer or its fallback payoff.

6 Games where at least one agent’s future is certain, are a subset of these games. In such games all of the
probability mass of f (v) and/or g(w) is on one point.

7 The agents could be forced to make their decommitting decisions at a particular time, or equivalently they
could be allowed to make the decisions during an interval (the model would still hold at least as long as the
agents’ outside options/valuations do not change during the interval). The model could also be used in a setting
where the agents do not know their outside offers exactly at the time they have to decide on decommitting. In that
case, to evaluate the desirability of decommitting, each agent would use as its best outside offer the expectation
of its best outside offer based on the probability distribution it has about its best outside offer at that time.
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Table 1
Main symbols used in the paper

ρ Contract price.
a Contractor’s decommitment penalty.
b Contractee’s decommitment penalty.
v Contractor’s best (lowest) outside offer.
w Contractee’s best (highest) outside offer.
f (v) Ex ante probability density function over v.
g(w) Ex ante probability density function over w.
v∗ Contractor’s decommitting threshold.
w∗ Contractee’s decommitting threshold.
pa Probability that the contractor decommits.
pb Probability that the contractee decommits.
πa Contractor’s expected payoff.
πb Contractee’s expected payoff.
H(v∗,w∗) Surplus generated by making a contract.

less than v∗. Similarly, the contractee will decommit whenever her outside offer is greater
then a threshold, w∗, which we call the contractee’s decommitting threshold. We denote by
pb the probability that the contractee will decommit, i.e., the chance that her outside offer
is greater than w∗. All of these variables (v∗, pa , w∗, pb) are endogenous to the model.
That is, their values are not assumed, but rather the values are determined by the model.
Table 1 summarizes the main symbols that are used in the paper.

3. Leveled commitment contracting mechanisms

A key concern with leveled commitment contracts is that a rational agent is reluctant
to decommit because there is a chance that the other party will decommit, in which case
the former agent gets freed from the contract, does not have to pay a penalty, and collects
a penalty from the breacher. Despite such strategic decommitting, the leveled commitment
feature increases each contract party’s expected payoff, and enables contracts in settings
where no full commitment contract is beneficial to all parties [20]. We derive the Nash
equilibrium [10] where each agent’s decommitting strategy is a best response to the other
agent’s decommitting strategy. The results of the paper take into account the fact that agents
decommit strategically in this way. The equilibrium depends on the interaction mechanism.
We study six natural leveled commitment contracting mechanisms, which cover the space
of sensible mechanisms that we conceived. The mechanisms differ based on the order in
which the agents have to reveal their decisions (decommit/not), and based on whether or
not the agents have to pay the penalties to each other if both decommit:

(1) Contractee has to reveal its decision first, both pay if both decommit (SEQD).
(2) Contractee has to reveal its decision first, neither pays if both decommit. If the

contractee decommits, the contractor can only lose by decommitting (assuming the
contractor’s penalty is positive). Therefore, the situation where both decommit never
occurs. Thus this mechanism is analogous to SEQD, and will not be discussed further.
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(3) Contractor has to reveal its decision first, both pay if both decommit. This case is
mathematically analogous to SEQD, and will not be discussed further.

(4) Contractor has to reveal its decision first, neither pays if both decommit. If the
contractor decommits, the contractee can only lose by decommitting (assuming the
contractee’s penalty is positive). Therefore, the situation where both decommit never
occurs. Thus this mechanism is analogous to the one above, and will not be discussed
further.

(5) The agents reveal their decisions simultaneously (not necessarily at the same time, as
long as the second one to reveal does not learn what the first agent decided before the
second agent has to decide), both pay if both decommit (SIMUDBP).

(6) The agents reveal their decisions simultaneously (not necessarily at the same time, as
long as the second one to reveal does not learn what the first agent decided before the
second agent has to decide), neither pays if both decommit (SIMUDNP).

Put together, in the rest of the paper we can focus on three mechanisms (SEQD, SIMUDBP,
SIMUDNP), and the results will apply to all six.

3.1. Sequential decommitting, contractee first (SEQD)

In a sequential decommitting (SEQD) game, one agent has to declare her decommitting
decision before the other. We focus on the case where the contractee has to decommit first.
In the subgame where the contractee has not decommitted, the contractor’s best move is to
decommit if −v − a > −ρ, i.e., the contractor decommits if his outside offer, v, is below a
threshold v∗

SEQD = ρ − a. So, the probability that he decommits is

pa =
v∗

SEQD∫
−∞

f (v)dv.

The contractee gets w − b if she decommits, w + a if she does not but the contractor
does, and ρ if neither decommits. Thus the contractee decommits if w − b > pa(w +
a) + (1 − pa)ρ. A contract where pa = 1 cannot be strictly individually rational to both
agents since breach will occur for sure. On the other hand, when pa < 1 the inequality
above shows that the contractee decommits if her outside offer exceeds a threshold
w∗

SEQD = ρ + (b + apa)/(1 − pa). So, the probability that she decommits is

pb =
∞∫

w∗
SEQD

g(w)dw.

The rest of the paper uses the following six shorthand notations:

E(v) ≡
∞∫

−∞
vf (v)dv, E(w) ≡

∞∫
−∞

wg(w)dw,
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E(v, v∗) ≡
v∗∫

−∞
vf (v)dv, E(v∗, v) ≡

∞∫
v∗

vf (v)dv,

E(w,w∗) ≡
w∗∫

−∞
wg(w)dw, E(w∗,w) ≡

∞∫
w∗

wg(w)dw.

We are now ready to study the value generated by a contract. The contractor’s expected
payoff under the contract is

πa = pb

[ ∞∫
−∞

(−v + b)f (v)dv

]

+ (1 − pb)

[ v∗
SEQD∫

−∞
(−v − a)f (v)dv +

∞∫
v∗

SEQD

(−ρ)f (v)dv

]

= pb

[
b − E(v)

] + (1 − pb)
[−E(v, v∗

SEQD) − apa − ρ(1 − pa)
]

= −[
pa(1 − pb)a − pbb + (1 − pa)(1 − pb)ρ

] − E(v) + (1 − pb)E(v∗
SEQD, v)

= −E(v) − φSEQD(ρ, a, b) + (1 − pb)E(v∗
SEQD, v),

where

φSEQD(ρ, a, b) = pa(1 − pb)a − pbb + (1 − pa)(1 − pb)ρ.

The contractee’s expected payoff under the contract is

πb =
∞∫

w∗
SEQD

g(w)(w − b)dw +
w∗

SEQD∫
−∞

g(w)
[
pa(w + a) + (1 − pa)ρ)

]
dw

= −pbb + (1 − pb)
[
paa + (1 − pa)ρ

] + E(w∗
SEQD,w) + paE(w,w∗

SEQD)

= [
pa(1 − pb)a − pbb + (1 − pa)(1 − pb)ρ

] + E(w) − (1 − pa)E(w,w∗
SEQD)

= E(w) + φSEQD(ρ, a, b) − (1 − pa)E(w,w∗
SEQD).

The expected social welfare under the contract is

π = πa + πb = E(w) − E(v) + (1 − pb)E(v∗
SEQD, v) − (1 − pa)E(w,w∗

SEQD)

= π fallback + H(v∗
SEQD,w∗

SEQD),

where π fallback = E(w) − E(v) is the expected social welfare that would prevail without
the contract (i.e., expected welfare from the outside offers), and the surplus created by the
contract is H(v∗

SEQD,w∗
SEQD) where

H(x,y) =
y∫

−∞
g(w)dw

∞∫
x

vf (v)dv −
∞∫

x

f (v)dv

y∫
−∞

wg(w)dw.
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This notion of surplus is a key concept, and will be used throughout the rest of the
paper.

3.2. Simultaneous decommitting, both pay if both decommit (SIMUDBP)

In our simultaneous decommitting games, agents have to reveal their decommitment
decisions simultaneously. We first discuss the SIMUDBP variant where both have to pay
the penalties if both decommit. The contractor decommits if pb · (−v + b − a) + (1 −
pb)(−v − a) > pb · (−v + b) + (1 − pb)(−ρ). A contract where pb = 1 cannot be strictly
individually rational to both agents since breach will occur for sure. On the other hand,
when pb < 1 the inequality above shows that the contractor decommits if his outside offer
is less than a threshold v∗

SIMUDBP = ρ − a/(1 − pb). So, the probability that he decommits
is

pa =
v∗

SIMUDBP∫
−∞

f (v)dv.

The contractee decommits if (1−pa)(w−b)+pa(w−b+a) > (1−pa)ρ+pa(w+a).
A contract where pa = 1 cannot be strictly individually rational to both agents since breach
will occur for sure. On the other hand, when pa < 1 the inequality above shows that the
contractee decommits if her outside offer exceeds a threshold w∗

SIMUDBP = ρ+b/(1 − pa).
So,

pb =
∞∫

w∗
SIMUDBP

g(w)dw.

The contractor’s expected payoff under the contract is

πa = pb

[ v∗
SIMUDBP∫
−∞

(−v + b − a)f (v)dv +
∞∫

v∗
SIMUDBP

(−v + b)f (v)dv

]

+ (1 − pb)

[ v∗
SIMUDBP∫
−∞

(−v − a)f (v)dv +
∞∫

v∗
SIMUDBP

(−ρ)f (v)dv

]

= pb

[−E(v, v∗
SIMUDBP) + (b − a)pa − E(v∗

SIMUDBP, v) + b(1 − pa)
]

+ (1 − pb)
[−E(v, v∗

SIMUDBP) − apa − ρ(1 − pa)
]

= −[
paa − pbb + ρ(1 − pa)(1 − pb)

] − E(v) + (1 − pb)E(v∗
SIMUDBP, v)

= −E(v) − φSIMUDBP(ρ, a, b) + (1 − pb)E(v∗
SIMUDBP, v),

where

φSIMUDBP(ρ, a, b) = paa − pbb + ρ(1 − pa)(1 − pb).

Similarly, the contractee’s expected payoff under the contract is
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πb = pa

[ ∞∫
w∗

SIMUDBP

g(w)(w − b + a)dw +
w∗

SIMUDBP∫
−∞

(w + a)g(w)dw

]

+ (1 − pa)

[ ∞∫
w∗

SIMUDBP

g(w)(w − b)dw +
w∗

SIMUDBP∫
−∞

ρg(w)dw

]

= pa

[
E(w∗

SIMUDBP,w) + E(w,w∗
SIMUDBP) + pb(a − b) + (1 − pb)a

]
+ (1 − pa)

[
E(w∗

SIMUDBP,w) − pbb + ρ(1 − pb)
]

= [
paa − pbb + ρ(1 − pa)(1 − pb)

] + E(w) − (1 − pa)E(w,w∗
SIMUDBP)

= E(w) + φSIMUDBP(ρ, a, b) − (1 − pa)E(w,w∗
SIMUDBP).

The expected social welfare under the contract is

π = πa + πb

= E(w) − E(v) + (1 − pb)E(v∗
SIMUDBP, v) − (1 − pa)E(w,w∗

SIMUDBP)

= π fallback + H(v∗
SIMUDBP,w

∗
SIMUDBP),

where π fallback and H(x,y) are defined as in Section 3.1.

3.3. Simultaneous decommitting, neither pays if both decommit (SIMUDNP)

In a simultaneous decommitting game where neither agent has to pay the penalty if
both decommit (SIMUDNP), the contractor decommits if pb · (−v)+ (1 −pb)(−v − a) >

pb · (−v + b) + (1 − pb)(−ρ). A contract where pb = 1 cannot be strictly individually
rational to both agents since breach will occur for sure. On the other hand, when pb < 1,
the inequality above shows that the contractor decommits if his outside offer is less than a
threshold v∗

SIMUDNP = ρ − a − bpb/(1 − pb). So,

pa =
v∗

SIMUDNP∫
−∞

f (v)dv.

The contractee decommits if (1 − pa)(w − b) + paw > (1 − pa)ρ + pa(w + a).
A contract where pa = 1 cannot be strictly individually rational to both agents since
breach will occur for sure. On the other hand, when pa < 1, the inequality above shows
that the contractee decommits if her outside offer exceeds a threshold w∗

SIMUDNP =
ρ + b + apa/(1 − pa). So,

pb =
∞∫

w∗
SIMUDNP

g(w)dw.

The contractor’s expected payoff under the contract is
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πa = pb

[ v∗
SIMUDNP∫
−∞

(−v)f (v)dv +
∞∫

v∗
SIMUDNP

(−v + b)f (v)dw

]

+ (1 − pb)

[ v∗
SIMUDNP∫
−∞

(−v − a)f (v)dv +
∞∫

v∗
SIMUDNP

(−ρ)f (v)dv

]

= pb

[−E(v, v∗
SIMUDNP) + b(1 − pa) − E(v∗

SIMUDNP, v)
]

+ (1 − pb)
[−E(v, v∗

SIMUDNP) − apa − ρ(1 − pa)
]

= −[
pa(1 − pb)a − (1 − pa)pbb + ρ(1 − pa)(1 − pb)

]
− E(v) + (1 − pb)E(v∗

SIMUDNP, v)

= −E(v) − φSIMUDNP(ρ, a, b) + (1 − pb)E(v∗
SIMUDNP, v),

where

φSIMUDNP(ρ, a, b) = pa(1 − pb)a − (1 − pa)pbb + ρ(1 − pa)(1 − pb).

Similarly, the contractee’s expected payoff under the contract is

πb = pa

[ ∞∫
w∗

SIMUDNP

g(w)w dw +
w∗

SIMUDNP∫
−∞

(w + a)g(w)dw

]

+ (1 − pa)

[ ∞∫
w∗

SIMUDNP

g(w)(w − b)dw +
w∗

SIMUDNP∫
−∞

ρg(w)dw

]

= pa

[
E(w∗

SIMUDNP,w) + E(w,w∗
SIMUDNP) + (1 − pb)a

]
+ (1 − pa)

[
E(w∗

SIMUDNP,w) − pbb + ρ(1 − pb)
]

= [
pa(1 − pb)a − (1 − pa)pbb + ρ(1 − pa)(1 − pb)

]
+ E(w) − (1 − pa)E(w,w∗

SIMUDNP)

= E(w) + φSIMUDNP(ρ, a, b) − (1 − pa)E(w,w∗
SIMUDNP).

The expected social welfare under the contract is

π = πa + πb

= E(w) − E(v) + (1 − pb)E(v∗
SIMUDNP, v) − (1 − pa)E(w,w∗

SIMUDNP)

= π fallback + H(v∗
SIMUDNP,w

∗
SIMUDNP),

where π fallback and H(x,y) are defined as in Section 3.1.
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3.4. Individual rationality (IR) constraints

The contractor’s individual rationality (IR) constraint states that he will participate in
the contract if and only if that gives him higher (or equal) expected payoff than waiting for
the outside offer:

πa � −E(v).

For each of the mechanisms (SEQD, SIMUDBP, SIMUDNP), it follows from the formula
for πa that

πa � −E(v) ⇔ φ(ρ, a, b) � (1 − pb)E(v∗, v).

For example, for the SEQD mechanism, this means

φSEQD(ρ, a, b) � (1 − pb)E(v∗
SEQD, v).

Similarly, the contractee’s IR constraint is

πb � E(w).

For each of the mechanisms (SEQD, SIMUDBP, SIMUDNP), it follows from the formula
for πb that

πb � E(w) ⇔ (1 − pa)E(w,w∗) � φ(ρ, a, b).

For example, for the SEQD mechanism, this means

(1 − pa)E(w,w∗
SEQD) � φSEQD(ρ, a, b).

3.5. (Non)uniqueness of the decommitting equilibrium

Given the distributions of outside offers f and g, and a contract (ρ, a, b), in the
sequential decommitting games the Nash equilibrium pair of decommitting thresholds
(v∗,w∗) is unique. This is because the formulas from Section 3.1 give a closed form
solution for v∗ and then for w∗. Specifically, v∗

SEQD = ρ − a. It follows that pa =∫ v∗
SEQD

−∞ f (v)dv is determined. From this it follows that w∗
SEQD = ρ + (b + apa)/(1 − pa)

is determined.
On the other hand, as shown by Sandholm, Sikka and Norden [21], given the

distributions of outside offers f and g, and a contract (ρ, a, b), the simultaneous
decommitting games can sometimes have multiple Nash equilibrium pairs of decommitting
thresholds (v∗,w∗). Whether or not such multiplicity occurs depends on the distributions
of outside offers f and g and the contract parameters ρ, a, and b. The potential multiplicity
of equilibria in the SIMUDBP game can be understood from the following group of four
equations from Section 3.2 that defines the Nash equilibria for the SIMUDBP game:

v∗
SIMUDBP = ρ − a

1 − pb

, w∗
SIMUDBP = ρ + b

1 − pa

,

pa =
v∗

SIMUDBP∫
−∞

f (v)dv, pb =
∞∫

w∗
SIMUDBP

g(w)dw.
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This group can have multiple solutions (v∗
SIMUDBP,w∗

SIMUDBP).
Similarly, the potential multiplicity of equilibria in the SIMUDNP game can be

understood from the following group of four equations from Section 3.3 that defines the
Nash equilibria for the SIMUDNP game:

v∗
SIMUDNP = ρ − a − bpb

1 − pb

, w∗
SIMUDNP = ρ + b + apa

1 − pa

,

pa =
v∗

SIMUDNP∫
−∞

f (v)dv, pb =
∞∫

w∗
SIMUDNP

g(w)dw.

This group can have multiple solutions (v∗
SIMUDNP,w∗

SIMUDNP).
If a unique equilibrium is desired, the sequential mechanism can be used to guarantee

uniqueness.

4. Surplus equivalence

Now, which of the leveled commitment contracting mechanisms would be best for the
agents? In this section we prove the main result of the paper, i.e., that if the contract
price and the decommitting penalties are optimized for each game (SEQD, SIMUDBP,
or SIMUDNP) separately, each of the games leads to the same social welfare (in the
game’s social welfare maximizing equilibria). In other words, each of the games leads
to the same surplus over what the agents would get without a contract (by taking their
outside offers/fallbacks). This is surprising since the optimal contracts differ for the games.
Also, for a given contract, the decommitting thresholds, decommitting probabilities, and
expected social welfare generally differ across the games.

We start by proving that if a leveled commitment contract can generate positive surplus,
H (i.e., it can lead to higher expected social welfare than making no contract and waiting
for the outside offers), then an unconstrained optimum exists.

Lemma 1. Let f and g be probability distributions on (−∞,∞) with finite expectations.
Let

H(x,y) =
y∫

−∞
g(w)dw

∞∫
x

vf (v)dv −
∞∫

x

f (v)dv

y∫
−∞

wg(w)dw. (†)

If maxx,y H(x, y) > 0, then there exists a global maximum (a∗, b∗) of H that satisfies

a∗ =
∫ b∗
−∞ wg(w)dw∫ b∗
−∞ g(w)dw

, b∗ =
∫ ∞
a∗ vf (v)dv∫ ∞
a∗ f (v)dv

. (‡)

Specifically, H(a∗, b∗) = maxx,y H(x, y) = (b∗ − a∗)(1 − px)(1 − py) where

px =
a∗∫

−∞
f (v)dv, py =

∞∫
b∗

g(w)dw.
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The proof of Lemma 1 is technical, and is presented in Appendix A.
Now we are ready to prove the main result:

Theorem 1. Let f and g have finite expectations. If an expected social welfare maximizing
IR leveled commitment contract is chosen for each of the mechanisms (SEQD, SIMUDBP,
and SIMUDNP) separately (and an expected social welfare maximizing equilibrium is
played in the SIMUDBP and SIMUDNP games), each mechanism yields the same social
welfare, i.e., the same sum of payoffs to the agents.8 The mechanisms have at least one
expected social welfare maximizing equilibrium pair (v∗,w∗) of decommitting thresholds
(and the associated decommitting probabilities) in common. The optimal contracts can
differ across the mechanisms, but each mechanism has an optimal contract where the
decommitment penalties are nonnegative.

Proof. As shown earlier in the paper, for each mechanism,

π = π fallback + H(v∗,w∗),
πa = −E(v) − φ(ρ, a, b) + (1 − pb)E(v∗, v),

πb = E(w) + φ(ρ, a, b) − (1 − pa)E(w,w∗).
Therefore, the IR constraints reduce to

(1 − pa)E(w,w∗) � φ(ρ, a, b) � (1 − pb)E(v∗, v).

If maxx,y H(x, y) � 0, then π = π fallback + H(v∗,w∗) � π fallback, i.e., there exists no
contract that is (strictly) IR for both agents. In other words, the agents will wait for the
outside offers. Thus all three mechanisms have the same payoffs.

If maxx,y H(x, y) > 0, then by Lemma 1, there exists a finite, global optimum (a∗, b∗)
that satisfies (‡). For the three mechanisms, v∗, w∗, and φ(ρ, a, b) are determined
differently based on ρ,a, b,f, and g. If we can prove that for each game there exist
ρ, a, and b such that the threshold values v∗, and w∗ determined by them are identical
to a∗ and b∗, then the social welfare is π fallback + H(a∗, b∗), i.e., a maximal value of
π fallback + H(x,y). We also have to guarantee that this configuration satisfies the IR
constraints. These facts would mean that all three mechanisms lead to the same social
welfare. We also show that at an optimum, a � 0 and b � 0.

For shorthand, let λ(z) ≡ zb∗ + (1 − z)a∗ for 0 � z � 1. Now, a∗ � λ(z) � b∗, and λ(z)

increases monotonically. The IR constraints can be simplified to

(1 − px)(1 − py)a
∗ � φ(ρ, a, b) � (1 − px)(1 − py)b

∗. (§)

From the formula for H(a∗, b∗) in Lemma 1 and the fact that H(a∗, b∗) > 0 we get px < 1
and py < 1.

Case 1. SEQD: Here a∗ = v∗
SEQD = ρ − a, so a = ρ − a∗. Because b∗ = w∗

SEQD =
ρ + (b + pxa)/(1 − px), b = pxa

∗ + (1 − px)b∗ − ρ = λ(1 − px) − ρ. Substituting the
expressions for a and b into the expression for φSEQD(ρ, a, b) gives

8 Note that this equivalence holds not only on an expected value basis, but also ex post when the agents
have found out their outside offers, have made their decommitting decisions, and have paid the associated
decommitting penalties.
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φSEQD(ρ, a, b) = px(1 − py)a − pyb + (1 − px)(1 − py)ρ

= px(1 − py)[ρ − a∗] − py

[
pxa

∗ + (1 − px)b∗ − ρ
]

+ (1 − px)(1 − py)ρ

= ρ − pxa∗ − (1 − px)pyb∗.

So the IR constraints (§) become

(1 − px)(1 − py)a∗ � ρ − pxa
∗ − (1 − px)pyb

∗ � (1 − px)(1 − py)b∗

⇔ (1 − px)pyb∗ + (1 − py + pxpy)a
∗ � ρ � (1 − px)b

∗ + pxa∗

⇔ λ
(
(1 − px)py

)
� ρ � λ(1 − px).

Because λ is increasing and py � 1, there exists a ρ that satisfies the IR constraints. For
such ρ values, a = ρ − a∗ � 0 and b = λ(1 − px) − ρ � 0.

Case 2. SIMUDBP: Here a∗ = v∗
SIMUDBP = ρ − a/(1 − py), so a = (1 − py)(ρ − a∗).

Also, b∗ = w∗
SIMUDBP = ρ + b/(1 − px), so b = (1 − px)(b

∗ − ρ). Substituting the
expressions for a and b into the expression for φSIMUDBP(ρ, a, b) gives

φSIMUDBP(ρ, a, b) = pxa − pyb + (1 − px)(1 − py)ρ

= px

[
(1 − py)(ρ − a∗)

] − py

[
(1 − px)(b∗ − ρ)

]
+ (1 − px)(1 − py)ρ

= (1 − pxpy)ρ − px(1 − py)a
∗ − py(1 − px)b

∗.

So the IR constraints (§) become

(1 − px)(1 − py)a∗ � φSIMUDBP(ρ, a, b) � (1 − px)(1 − py)b
∗

⇔ (1 − px)(1 − py)a∗ � (1 − pxpy)ρ − px(1 − py)a
∗ − py(1 − px)b

∗

� (1 − px)(1 − py)b∗

⇔ py(1 − px)

1 − pxpy
b∗ + 1 − py

1 − pxpy
a∗ � ρ � (1 − px)

1 − pxpy
b∗ + px(1 − py)

1 − pxpy
a∗

⇔ λ

(
py(1 − px)

1 − pxpy

)
� ρ � λ

(
(1 − px)

1 − pxpy

)
.

Because λ is increasing and

0 � py(1 − px)

1 − pxpy

� (1 − px)

1 − pxpy

� 1,

there exists a ρ that satisfies the IR constraints. For such ρ values, a = (1 −py)(ρ − a∗) �
0, and b = (1 − px)(b∗ − ρ) � 0 because a∗ � λ(z) � b∗.

Case 3. SIMUDNP: Recall that

a∗ = v∗
SIMUDNP = ρ − a − pyb

1 − py

, b∗ = w∗
SIMUDNP = ρ + b + pxa

1 − px

.

Since px < 1 and py < 1, these formulas can be converted into linear equations:

(1 − py)a + pyb = (1 − py)(ρ − a∗), pxa + (1 − px)b = (1 − px)(b∗ − ρ).
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There are two subcases based on the value of px + py .
In the subcase where px +py = 1, the linear equation group has no solution or infinitely

many solutions depending on ρ. For a solution to exist, ρ must satisfy

(1 − py)(ρ − a∗) = (1 − px)(b
∗ − ρ), i.e., ρ = pxa

∗ + pyb
∗ = λ(py)

and a and b must satisfy

pxa + pyb = pxpy(b
∗ − a∗).

If so, we can compute b as b = px(b∗ − a∗) − (px/py)a. Substituting the formulas for ρ

and b into φSIMUDNP(ρ, a, b) gives

φSIMUDNP(ρ, a, b) = px(1 − py)a − (1 − px)pyb + (1 − px)(1 − py)ρ

= pxa + pxpya
∗.

The IR constraints (§) become

(1 − px)(1 − py)a
∗ � pxa + pxpya∗ � (1 − px)(1 − py)b

∗

⇔ 0 � a � py(b∗ − a∗).
Given this restriction on a, and the above relationship between a and b, we get

0 � b � px(b∗ − a∗). So, a solution of the desired type exists for this subcase.
In the subcase where px + py �= 1, we can solve a and b directly as a function of ρ:

a = 1 − px

1 − px − py

[
ρ − (1 − py)a

∗ − pyb
∗] = 1 − px

1 − px − py

[
ρ − λ(py)

]
,

b = 1 − py

1 − px − py

[
pxa

∗ + (1 − px)b∗ − ρ
] = 1 − py

1 − px − py

[
λ(1 − px) − ρ

]
.

Substituting these into φSIMUDNP(ρ, a, b) gives

φSIMUDNP(ρ, a, b) = px(1 − py)a − (1 − px)pyb + (1 − px)(1 − py)ρ

= (1 − px)(1 − py)(ρ − pxa∗ − pyb∗)
1 − px − py

.

Then, the IR constraints (§) become

a∗ � ρ − a∗px − b∗py

1 − px − py

� b∗.

In the subsubcase where px + py < 1, this is equivalent to pyb∗ + (1 − py)a∗ � ρ �
(1 − px)b∗ + pxa∗, i.e., λ(py) � ρ � λ(1 − px), so a solution of the desired type exists.
Furthermore,

a = 1 − px

1 − px − py

[
ρ − λ(py)

]
� 0, b = 1 − py

1 − px − py

[
λ(1 − px) − ρ

]
� 0.

In the subsubcase where px + py > 1, the IR constraints become (1 − px)b∗ + pxa∗ �
ρ � pyb∗ + (1 − py)a

∗, i.e., λ(1 − px) � ρ � λ(py), so again a solution of the desired
type exists. Furthermore,

a = (1 − px)(λ(py) − ρ)

px + py − 1
� 0, b = (1 − py)(ρ − λ(1 − px))

px + py − 1
� 0. ✷
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4.1. Existence of optimal IR contracts

It follows from the proof of Theorem 1 that if some leveled commitment contract
generates positive surplus to the agents in the aggregate, then there exists an optimal
leveled commitment contract that generates positive surplus to each agent, i.e., the contract
is agreeable in the sense of individual rationality. More strongly:

Proposition 1. Let f and g have finite expectations. For SEQD, SIMUDBP, and SIMUDNP,
maxx,y H(x, y) > 0 iff there exists an expected social welfare maximizing contract
(ρ, a, b) that is individually rational (IR) for both agents.

Proof. Immediate from the proof of Theorem 1. ✷
Based on this result, throughout the rest of the paper we assume maxx,y H(x, y) > 0.

Recall that we denote an optimal (x, y) by (a∗, b∗).

5. Integrative vs. distributive bargaining

Proposition 1 showed that among optimal contracts there exist ones that are beneficial
for both parties. However, the question of how to divide the surplus between the
agents remains, that is, how to choose among the expected social welfare maximizing,
individually rational contracts. Each agent’s expected surplus is her expected payoff under
the contract minus the expected fallback payoff: ea = πa − π fallback

a = πa + E(v) and
eb = πb − π fallback

b = πb − E(w). It is conceivable that in leveled commitment contracts
there is a tradeoff between integrative bargaining (maximizing the expected social welfare)
and distributive bargaining (splitting the surplus between the agents). It could be that some
splits cannot be supported by an optimal contract. However, we show that this problem
cannot occur. It turns out that any individually rational split can be supported by an optimal
contract:

Proposition 2. Let f and g have finite expectations. For each one of the games (SEQD,
SIMUDBP, and SIMUDNP), for any given β ∈ [0,1] there exists an expected social welfare
maximizing contract where ea = βH(a∗, b∗), and eb = (1 − β)H(a∗, b∗).

Proof. Follows from the proof of Theorem 1. The split of surplus, fixed by the value of β ,
is controlled by choosing ρ in the contract. The decommitting penalties, a and b, are then
chosen based on ρ using the formulas in the proof of Theorem 1 to maximize expected
social welfare. ✷

Since the agents would only agree to individually rational splits anyway, Proposition 2
means that for all practical purposes, integrative and distributive bargaining do not hinder
each other in leveled commitment contracts. Of course, the contract has to be chosen
carefully. First ρ should be chosen (in the IR range) which determines the distributive part.
Then the penalties, a and b, are calculated based on ρ in order to maximize expected social



T. Sandholm, Y. Zhou / Artificial Intelligence 142 (2002) 239–264 255

welfare. Choosing the penalties first does not allow the same separation of integrative and
distributive bargaining because once a and b are fixed, the choice of ρ is limited if one
wants to construct an expected social welfare maximizing contract.

The fact that distributive bargaining does not hinder integrative bargaining in leveled
commitment contracts makes the leveled commitment mechanism a modular component
technology for automated negotiation. The leveled commitment feature can be used to
increase expected social welfare when there is uncertainty about the future. The fact
that in leveled commitment contracts, distributive bargaining does not hinder integrative
bargaining means that the leveled commitment contract technique can be directly used
in conjunction with any standard distributive bargaining method. These methods include
noncooperative bargaining mechanisms (such as alternating offers bargaining with time
discounting [6,16], alternating offers bargaining with a constant cost per bargaining
round [16], and unrestricted bargaining under deadlines [22]), as well as axiomatic
bargaining solutions [7,9,11,12]. See [8] for an overview of the bargaining literature.

5.1. Fair optimal contracts

Proposition 2 implies that there is no tradeoff between expected social welfare
maximization and fairness (aka. symmetry, equality) in leveled commitment contracts
since both of these desiderata can be satisfied simultaneously. There exists an expected
social welfare maximizing contract where the surplus is split equally between the agents
(ea = eb).

Distributive bargaining is a large research field of its own, and a literature review is
beyond the scope of this short paper. However, significant support has been given for
solutions that maximize the product of the surpluses [9,12,15]. It turns out that in leveled
commitment contracts, such product maximization is equivalent to choosing an expected
social welfare maximizing contract that splits surplus equally:

Proposition 3. Let f and g have finite expectations. For each one of the games (SEQD,
SIMUDBP, and SIMUDNP), eaeb is maximized iff the contract maximizes expected social
welfare and ea = eb. Such a contract always exists.

Proof. By Proposition 2 we know that there exists a contract (ρ, a, b) that satisfies ea = eb

and maximizes expected social welfare. Next we calculate an upper bound on the product
of surpluses:

eaeb �
(

ea + eb

2

)2

=
(

π − π fallback

2

)2

=
(

H(v∗(ρ, a, b),w∗(ρ, a, b))

2

)2

�
(

maxx,y H(x, y)

2

)2

.

We proceed to show that this upper bound is reached—implying that the product is
maximized—when surplus is equally split and expected social welfare maximized. The
first inequality holds with equality iff ea = eb , i.e., surplus is equally split. The second
inequality holds with equality at the optimum, and there only. ✷
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We now give the closed form formulas for determining such a contract that maximizes
expected social welfare, maximizes eaeb , and splits the surplus equally. Now,

ea = eb

⇔ −φ(ρ, a, b) + (1 − px)(1 − py)b∗ = φ(ρ, a, b) − (1 − px)(1 − py)a
∗

⇔ φ(ρ, a, b) = (1 − px)(1 − py)(a∗ + b∗)/2.

We use the formulas from the proof of Theorem 1.
Case 1. SEQD:

φSEQD(ρ, a, b) = ρ − pxa∗ − (1 − px)pyb
∗.

Combining this with the formula for φ(ρ, a, b), we get

ρ = pxa∗ + (1 − px)pyb∗ + (1 − px)(1 − py)(b∗ + a∗)/2

= 1 + px − py + pxpy

2
a∗ + (1 − px)(1 + py)

2
b∗ = λ

(
(1 − px)(1 + py)

2

)
.

The optimal penalties are then determined by ρ:

a = ρ − a∗ = λ

(
(1 − px)(1 + py)

2

)
− λ(0) = (1 − px)(1 + py)

2
(b∗ − a∗),

b = λ(1 − px) − ρ =
(

1 − px − (1 − px)(1 + py)

2

)
(b∗ − a∗)

= (1 − px)(1 − py)

2
(b∗ − a∗).

Case 2. SIMUDBP:

φSIMUDBP(ρ, a, b) = (1 − pxpy)ρ − px(1 − py)a∗ − (1 − px)pyb∗.

Combining this with the formula for φ(ρ, a, b), we get

(1 − pxpy)ρ = (1 + px)(1 − py)

2
a∗ + (1 − px)(1 + py)

2
b∗

⇔ ρ = λ

(
(1 − px)(1 + py)

2(1 − pxpy)

)
.

The optimal penalties are then determined by ρ:

a = (1 − py)(ρ − a∗) = (1 − py)
(1 − px)(1 + py)

2(1 − pxpy)
(b∗ − a∗)

= (1 − px)(1 − p2
y)

2(1 − pxpy)
(b∗ − a∗),

b = (1 − px)(b∗ − ρ) = (1 − px)
(1 + px)(1 − py)

2(1 − pxpy)
(b∗ − a∗)

= (1 − p2
x)(1 − py)

2(1 − pxpy)
(b∗ − a∗).
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Case 3. SIMUDNP: There are two subcases based on px + py .
If px + py = 1, then ρ = λ(py). By using the formula for φ(ρ, a, b) together with

φSIMUDNP(ρ, a, b) = pxa + pxpya
∗, we get

a = py

2
(b∗ − a∗), b = px

2
(b∗ − a∗).

If px + py �= 1, then

φSIMUDNP(ρ, a, b) = (1 − px)(1 − py)(ρ − pxa∗ − pyb∗)
1 − px − py

= (1 − px)(1 − py)
b∗ + a∗

2
.

We solve for ρ from the equality above to get

ρ = pxa∗ + pyb∗ + 1 − px − py

2
(b∗ + a∗)

= 1 + px − py

2
a∗ + 1 − px + py

2
b∗ = λ

(
1 − px + py

2

)
.

The optimal penalties are then determined by ρ:

a = 1 − px

1 − px − py

[
ρ − λ(py)

] = 1 − px

1 − px − py

1 − px − py

2
(b∗ − a∗)

= 1 − px

2
(b∗ − a∗),

b = 1 − py

1 − px − py

[
λ(1 − px) − ρ

] = 1 − py

1 − px − py

1 − px − py

2
(b∗ − a∗)

= 1 − py

2
(b∗ − a∗).

The two subcases can be combined independent of px + py :

ρ = λ

(
1 − px + py

2

)
, a = 1 − px

2
(b∗ − a∗), b = 1 − py

2
(b∗ − a∗).

Finally, it is worth noting that if the surplus is divided equally, and the conditions of
Theorem 1 are met, then each of the decommitting mechanisms gives each agent the same
payoff.

6. Nonuniqueness of the social welfare maximizing equilibrium and the optimal
contract

In Section 3.5 we discussed the fact that for a given contract, the equilibrium is unique
in the sequential mechanisms, but there can be multiple equilibria in the simultaneous
mechanisms.

In this section we study uniqueness issues when we allow the contract itself to vary.
The main findings are:
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• The social welfare maximizing equilibrium is not always unique. This holds for each
of the decommitting mechanisms (SEQD, SIMUDBP, and SIMUDNP).

• For any one of the decommitting mechanisms in turn, any given equilibrium is
supported by a continuum of contracts—specifically, those contracts that are on a line
in the 3-dimensional space (ρ, a, b).

We will now discuss these issues in more detail.
The surplus, H(x,y), can have multiple global maxima (even truly distinct ones that are

not in the same neighborhood, as the following example shows). In particular, the social
welfare maximizing decommitment threshold pair (a∗, b∗) determined in Lemma 1 is not
always unique. The following example shows a case with 3 local maxima of which 2 are
global maxima. Let the distributions of the outside offers be

f (v) =
{

1/10 if 0 � v � 10,
0 otherwise,

g(w) =
{

117/3520 if 0 � w < 320/47,
8/33 if 320/47 � w � 10,
0 otherwise.

We use Lemma 1 to find all local maxima. Because f (v) > 0 and g(w) > 0 for all v,w ∈
[0,10], each local maximum (x, y) must satisfy the pair of equations (‡). Substituting our
particular f into the second equation of the pair gives y = (10 + x)/2. After substituting
our particular g into the first equation of the pair, we treat the cases y < 320/47 and
y � 320/47 separately. The former case gives a line, and the latter case gives a quadratic
curve. For each case, the pair of equations is solved to find (x, y). The former case leads
to one solution, namely (10/3,20/3). The latter case leads to two solutions: (4,7), and
(5,15/2). The corresponding surplus values are H(10/3,20/3) = H(5,15/2) = 65/132,
and H(4,7) = 27/55. Since 27/55 < 65/132, both (10/3,20/3) and (5,15/2) are global
maxima, while (4,7) is only a local maximum.

Now, it is easy to work backwards from any maximum (x, y), be it local or global, and
determine the contracts that support it. For example, consider the sequential decommitting
(SEQD) mechanism. The probability that the contractor decommits is now a constant
pa = ∫ x

−∞ f (v)dv. Then, the contracts that support the specific equilibrium (x, y) are
again (as in Section 3.1) defined by the equations

x = ρ − a,

y = ρ + b + apa

1 − pa

,

which are now linear equations. So, these two linear equations in three variables (ρ, a, b)

define the SEQD contracts that support the equilibrium (x, y). Since there are only
two equations and three variables, there is a continuum of contracts that support the
equilibrium. These contracts are on a line in the 3-dimensional space (ρ, a, b).

It is easy to work backwards from any maximum (x, y), be it local or global,
and determine the contracts that support it even for the simultaneous decommitting
mechanisms. The decommitting probabilities, pa = ∫ x

−∞ f (v)dv and pb = ∫ ∞
y

g(w)w,
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are now constants since x and y are constants. For the SIMUDBP mechanism, the contracts
that support the equilibrium (x, y) are defined (as in Section 3.2) by the two equations

x = ρ − a

1 − pb

,

y = ρ + b

1 − pa

,

which are now linear equations. Similarly, for the SIMUDNP mechanism, the contracts
that support the equilibrium (x, y) are defined (as in Section 3.3) by the two equations

x = ρ − a − bpb

1 − pb

,

y = ρ + b + apa

1 − pa

,

which are now linear equations.
So, the two linear equations in three variables (ρ, a, b) define the contracts that support

the equilibrium (x, y). Since there are only two equations and three variables, there is a
continuum of contracts that support the equilibrium. These contracts are on a line in the
3-dimensional space (ρ, a, b).

To summarize, in this section we studied uniqueness questions when the contract
itself is allowed to vary. There can be multiple welfare maximizing equilibria (as well
as other equilibria which are only local maxima of the surplus function). For each of
the mechanisms in turn, the contracts that support any given equilibrium form a line in
the 3-dimensional space (ρ, a, b). Again, one can interpret the contract price, ρ, as the
parameter (which is to be used for distributive bargaining), which determines the values of
the decommitting penalties a and b that support the desired equilibrium.9

Nonuniqueness of the optimal threshold pair—and the associated nonuniqueness of
the optimal contract line in the space (ρ, a, b)—does not prevent the use of leveled
commitment contracts. To maximize expected social welfare, any one of the optimal
contract lines can be used. Finally, choosing a specific point from that line corresponds
to distributive bargaining, and we showed earlier in the paper that this does not hinder the
integrative bargaining.

7. Agents with risk attitudes

So far we discussed agents that attempt to maximize expected payoff, i.e., they are
risk neutral. For a utility maximizing agent, i , to be risk neutral, the utility function,
ui :πi → �, would be linearly increasing. Risk attitudes are captured in the usual way by
making ui nonlinear. We now show that the surplus equivalence of leveled commitment
contracts does not generally hold for agents that are not risk neutral, and in different

9 The individual rationality constraints can be incorporated directly into this view. Under the interpretation that
ρ is the parameter, the contractor’s IR constraint gives an upper bound on ρ and the contractee’s IR constraint
gives a lower bound on ρ.
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settings, different leveled commitment mechanisms are best in terms of expected social
welfare (that is, sum of expected utilities).10

Consider the following distributions of outside offers:

f (v) =
{

1/100 if v ∈ [0,100],
0 otherwise,

g(w) =
{

1/110 if w ∈ [0,110],
0 otherwise.

Now, for risk seeking agents with utility functions of the form ucontractor(x) =
ucontractee(x) = x3, the maximal expected social welfares are: maxSEQD π ≈ 284192,
maxSIMUDBP π ≈ 322522, maxSIMUDNP π ≈ 334194. So, the simultaneous mechanism
where neither pays if both decommit is the best, the simultaneous mechanism where both
pay if both decommit is the second, and the sequential mechanism is the worst.

On the other hand, for risk averse agents with utility functions of the form ucontractor(x) =
ucontractee(x) = x1/3, the maximal expected social welfares are: maxSEQD π ≈ 0.914,
maxSIMUDBP π ≈ 0.925, maxSIMUDNP π ≈ 0.905. So, the simultaneous mechanism where
both pay if both decommit is better than the one where neither pays if both decommit, and
the sequential mechanism is between the two simultaneous mechanisms.

8. Conclusions

In automated negotiation systems consisting of self-interested agents, contracts have
traditionally been binding. Such contracts do not allow the contract parties to capitalize
on uncertain future events. Contingency contracts can be used to avoid this problem, but
as we discussed, they suffer from several practical problems—especially when applied to
automated negotiation.

Recently, leveled commitment contracts were introduced as a more practical alternative
for addressing this problem [19]. In a leveled commitment contract, the agents can
backtrack out of the contract unilaterally by paying a predetermined, agent-specific penalty.
In such mechanisms, a rational agent is reluctant to decommit because there is a chance that
the other party will decommit, in which case the former agent gets freed from the contract,
does not have to pay a penalty, and collects a penalty from the breacher. It was recently
shown that despite such strategic decommitting (in Nash equilibrium of the decommitting
game), the leveled commitment feature increases each contract party’s expected payoff,
and enables contracts in settings where no full commitment contract is beneficial to all
parties [20].

In this paper we studied six different leveled commitment contracting mechanisms that
differ based on whether agents have to declare their decommitting decisions sequentially
or simultaneously, and whether or not agents have to pay the penalties if both decommit. In

10 There exist particular distributions of outside offers (f and g) and particular utility functions that go along
with these distributions, such that the surplus happens to be the same for the different leveled commitment
mechanisms.
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general, given the distributions of outside offers and the contract parameters (contract price,
the contractor’s breach penalty, and the contractee’s breach penalty), these mechanisms
lead to different decommitting thresholds and probabilities for the contract parties, and
different levels of expected social welfare.

Leveled commitment contracts are often more practical than contingency contracts.
However, they cannot always achieve the same social welfare because the agents decommit
strategically: some contracts are inefficiently kept. Our intuitions suggested that sequential
decommitting mechanisms would lead to higher social welfare than simultaneous ones
since the last agent decommits truthfully. We also thought that mechanisms where neither
agent pays a penalty if both decommit would promote decommitting and increase welfare.

However, we showed that, somewhat surprisingly, all six leveled commitment contract
mechanisms lead to the same social welfare when the contract price and decommitting
penalties are optimized for each mechanism separately.

We showed that in leveled commitment contracts, integrative bargaining does not
hinder distributive bargaining—as long as the interaction between the two is handled
appropriately. Specifically, the surplus from leveled commitment can be divided arbitrarily
(as long as each agent benefits), e.g. equally, without compromising optimality, as long as
the decommitting penalties are tailored to the contract price so as to maximize expected
social welfare. One practical way to do this is to conduct distributive bargaining over the
contract price, and to then optimize the decommitting penalties to that price. The fact
that in leveled commitment contracts, integrative bargaining does not hinder distributive
bargaining, means that leveled commitment can be used as a modular technology in
automated negotiation to increase expected social welfare among the contract parties, while
using any standard noncooperative distributive bargaining mechanism as the technology for
dividing the surplus.

In cooperative bargaining theory, the product maximizing solution has a central role [9,
12,15]. We showed that in each of the leveled commitment contracting mechanisms this
solution exists, and it is exactly the solution that divides the expected surplus equally.

We also studied uniqueness questions. Given distributions of outside offers and a
contract, the equilibrium is unique in the sequential mechanisms, but not always in
the simultaneous mechanisms. When we allow the contract to vary, the social welfare
maximizing equilibrium is not always unique. This holds for each of the decommitting
mechanisms—even the sequential ones. For any one of the decommitting mechanisms in
turn, any given equilibrium is supported by a continuum of contracts—specifically, those
contracts that are on a line in the 3-dimensional space spanned by the contract price, the
contractor’s breach penalty, and the contractee’s breach penalty.

Finally, we showed that the surplus equivalence ceases to hold if agents are not risk
neutral. The ranking of the mechanisms (in terms of expected social welfare) depends on
the utility functions of the contract parties.

Our derivations allow agents to construct optimal leveled commitment contracts, and
to divide the gains arbitrarily (as long as each agent benefits), for example equally. Using
this theory we developed fast algorithms for contract optimization [21], and provide a
free contract optimization service on the web as part of eMediator, our next generation
electronic commerce server prototype (http://www.cs.cmu.edu/~amem/eMediator/) [18].
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Several important avenues for future research remain. Sequences of multiple leveled
commitment contracts among multiple parties lead to interesting behavior where one
decommit can trigger another, etc. That is beyond the scope of the model in this paper,
but we have experimentally studied such cascade effects and different mechanisms and
parameterizations of mechanisms among strategic agents [2] and myopic agents [1]. Future
research involves analytical work in extending the theory of this paper to the setting of
multiple sequential contracts. Even the analysis of a single contract where the penalties
and/or distributions of outside offers change over time promises to be interesting.

Appendix A. Proof of Lemma 1

Proof. Because f and g have finite expectations, we can extend the domain of H(x,y)

to [−∞,∞] × [−∞,∞], i.e., we treat infinities as numbers. Choose an arbitrary global
maximum (x0, y0). Because maxx,y H(x, y) > 0, H(x0, y0) > 0. Using this and (†), we
get

y0∫
−∞

g(w)dw > 0,

∞∫
x0

f (v)dv > 0,

i.e., there is nonzero probability for each agent to keep the contract. Let

p(y) ≡
∫ y

−∞ wg(w)dw∫ y

−∞ g(w)dw
, q(x) ≡

∫ ∞
x vf (v)dv∫ ∞
x

f (v)dv
.

The partial derivatives of H with respect to x and y are

Hx(x, y0) = f (x) · (p(y0) − x
) ·

y0∫
−∞

g(w)dw,

Hy(x0, y) = g(y) · (q(x0) − y
) ·

∞∫
x0

f (v)dv.

If p(y0) = x0 and q(x0) = y0, then (x0, y0) satisfies (‡), i.e., it is the desired point
(a∗, b∗), so we are done. Otherwise, we continue as follows. Fix y0. Then H(x,y0) gets its
maximal value at x = p(y0) because Hx(x, y0) � 0 when x � p(y0), and Hx(x, y0) � 0
when x � p(y0). Let x1 = p(y0). So, H(x1, y0) � H(x0, y0). Thus H(x1, y0) is also a
global maximum.

If q(x1) = y0, then (x1, y0) satisfies (‡), so we are done. Otherwise we continue as
follows. Fix x1. Then H(x1, y) gets its maximal value at y = q(x1) because Hy(x1, y) � 0
when y � q(x1), and Hy(x1, y) � 0 when y � q(x1). Let y1 = q(x1). So, H(x1, y1) �
H(x1, y0). Thus H(x1, y1) is also a global maximum.

Keep alternating the above two paragraphs by always replacing xn−1 by xn, and yn−1
by yn until (xn, yn) satisfies (‡). If this does not occur in a finite number of steps, it gives
a sequence {(xn, yn)} of global maxima for function H . We now prove that this sequence
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converges to a point (x∗, y∗) that satisfies (‡). The functions p(y) and q(x) are increasing
because

p′(y) = dp(y)

dy
= g(y)

∫ y

−∞(y − w)g(w)dw(∫ y

−∞ g(w)dw
)2 � 0

and

q ′(x) = dq(x)

dx
= f (x)

∫ ∞
x

(v − x)f (v)dv(∫ ∞
x f (v)dv

)2 � 0.

Therefore, p ◦ q is also increasing. Note that xn+1 = p ◦ q ◦ xn. If x1 > x0, then x0 �
x1 � x2 � · · · � xn � · · · and {xn} is increasing. If x1 < x0, {xn} is decreasing. Similarly,
yn+1 = q ◦ p ◦ yn and {yn} is monotonic. Because {xn} and {yn} are monotonic, we can
define x∗ = limn xn and y∗ = limn yn. Because the set of global maxima is closed, (x∗, y∗)
is a global maximum. Finally,

x∗ = limxn+1 = lim p ◦ q ◦ xn = limp ◦ yn = p(y∗),

and

y∗ = limyn+1 = lim q ◦ p ◦ yn = limq ◦ xn+1 = q(x∗),

so (x∗, y∗) satisfies (‡).
What remains to be shown is the exact form of H(a∗, b∗). If (a∗, b∗) is a global

maximum, then H(a∗, b∗) > 0, so from (†) we get
∫ b∗
−∞ g(w)dw > 0, and

∫ ∞
a∗ f (v)dv >

0. Using this and the fact that f and g have finite expectations, we know that a∗ and b∗ are
finite:

−∞ < a∗ = p(b∗) < ∞ and − ∞ < b∗ = q(a∗) < ∞,

so

H(a∗, b∗) =
b∗∫

−∞
g(w)dw

∞∫
a∗

vf (v)dv −
∞∫

a∗
f (v)dv

b∗∫
−∞

wg(w)dw

=
b∗∫

−∞
g(w)dw · b∗

∞∫
a∗

f (v)dv −
∞∫

a∗
f (v)dv · a∗

b∗∫
−∞

g(w)dv

= (b∗ − a∗)(1 − px)(1 − py). ✷
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