
Artificial Intelligence 88 ( 1996) 163-193 

Artificial 
Intelligence 

Possibilistic reasoning- a mini-survey and uniform 
semantics * 

Churn-Jung Liau a,*, Bertrand I-Peng Lin b,l 
a InsMute of Information Science, Academia Sinica, Taipei, Taiwan 
h Department of CSIE, National Taiwan Universiq, Taipei, Taiwan 

Received April 1995; revised March 1996 

Abstract 

In this paper, we survey some quantitative and qualitative approaches to uncertainty management 
based on possibility theory and present a logical framework to integrate them. The semantics 
of the logic is based on the Dempster’s rule of conditioning for possibility theory. It is then 
shown that classical modal logic, conditional logic, possibilistic logic, quantitative modal logic 
and qualitative possibilistic logic are all sublogics of the presented logical framework. In this 
way, we can formalize and generalize some well-known results about possibilistic reasoning in a 
uniform semantics. Moreover, our uniform framework is applicable to nonmonotonic reasoning, 
approximate consequence relation formulation, and partial consistency handling. 
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1. Introduction 

There are essentially two kinds of logical formalisms for reasoning about possibility 
and necessity. On the one hand, the quantitative approach represents numerical possibil- 
ity and necessity of logical formulas in the language directly. The most remarkable cases 
of this approach are possibilistic logic (PL, [ 161) and quantitative modal logic (QML, 
[ 341). For example, in PL, the well-formed formulas (f N c) and (f I7 c) denote 
that the necessity and the possibility of the sentence f are greater than or equal to c re- 
spectively. On the other hand, the qualitative approach represents the relative magnitude 
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of possibility degrees between two formulas. For example, in the representative case 
qualitative possibility logic (QPL, [ 193 ). the wff f 3 g means the possibility degree of 
,f is greater than or equal to that of g. It is shown that QPL is equivalent to a system of 

conditional logic. Obviously, in the quantitative approach, we cannot represent the com- 
parative possibility or necessity between different formulas, whereas in the qualitative 
approach, we cannot reason about the numerical uncertainty directly. Thus, it is intended 
to have a uniform formalism that can integrate both kinds of logics. In this paper, we 
will propose a logic for conditional possibility (LCP) that can serve the purpose. 

2. A mini-survey 

In this section, we will review some logics for reasoning about possibility and neces- 

sity. These include modal logic, conditional logic, possibilistic logic, quantitative modal 
logic and qualitative possibility logic. However. the first step is to fix a propositional 

language. The syntax of the propositional language is as follows: 

( I ) The alphabet: 
0 Logical constants: ? (Lvrum or truth constant) and I (falsunz or false con- 

stant). 
l Propositional variables: PV = {p, q, r.. .). 

0 Classical connectives: 7 (negation), V (or). 
(2) The well-formed formulas (wffs) : 

l All propositional variables and propositional constants are wffs, also called 

atomic formulas. 
l If f and g are wffs, so are -f and ,f ‘V g. 
l Nothing except those determined by the above are wffs. 

(3) Some abbreviations: 
0 f//g=-(1.fV-ig). 

. f>g=-fVg. 

l S-g=(.f>g)A(g>.f). 
Let C denote the set of all wffs of the propositional language. 

2. I. Modal logic 

Just like many branches of logics, the origin of modal reasoning can be traced back 
to the Aristotelian age. However, the first modern logic system for reasoning about 
possibility and necessity appeared in 1912 1321. Since then, modal logic has received 
much attention from philosophical logicians. After the publication of Kripke’s influential 
paper on the semantics of modal logics [ 301, the notion of possible worlds has been 
associated with modal logic closely. In addition to its philosophical interest, modal logic 
has also been applied to program verification (e.g. temporal logic and dynamic logic), 
AI (epistemic logic) and other fields of computer science [26,27,43]. 

We will introduce the syntax and possible world semantics for classical modal logic in 
what follows. Only the essential of modal logic will be touched upon. For more detail, 
the readers can see the introductory textbook 191. 
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To form the wffs of modal logic, a new unary connective 0 is added to propositional 
logic and an additional rule for formation of modal formulas is needed: 

l if f is a wff, then Of is, too. 

Furthermore, 10 -f is abbreviated as Of. 

A possible world model for modal logic is a triplet M = (W, R, V), where W is a 

set of possible worlds, R 2 W x W is a binary relation called accessibility relation on 
W, and V : PV -+ 2” assigns to each propositional symbol in PV a subset of W. If R 
satisfies the condition that for all w E W there exists u E W such that (w, u) E R, then 

the model is called serial. Given a model M and a wff f, we can define the truth set 

I&4 as 

if f E PV, 

if f = lg, 

if f = gV h, 

[ {w I VU((W,U) E R + u E lgliu)}, if f = Og. 

A formula f is satisfiable iff there exists M such that lfl~ $8, and is valid in M iff 

IflM = W. The subscript M will be dropped when it is clear from the context. We use 
M t= f to denote f is valid in M. Let S be a set of wffs, then S kD f iff for all serial 

models M, if for all g E S, M k g, then M + f. Also let D denote the set of wffs f 

such that kD f holds. 

2.2. Conditional logic 

The original purpose of conditional logic is to provide a formal tool for the analysis 
of subjunctive conditional in natural language [ 391. Recently, there have been a number 

of applications of conditional logic to nonmonotonic reasoning and belief revision in AI 

research [ 22,291. 
The syntax of conditional logic is an extension of the propositional language with a 

binary connective + and the following formation rule: 
l if f and g are wffs, then f --+ g is also a wff. 

As for the semantics, there are some competitive paradigms which lead to different 
systems of conditional logics [39]. The one most closely related to possibilistic rea- 

soning is the system-of-spheres semantics proposed by Lewis [33]. According to the 
reformulation in [ 71, we describe a system-of-spheres model (s-model) of conditional 
logic as a triple M = (W ( <,,,)wE~, V), where W and V are the same as in the possible 

world models for modal logic, and for each w E W, <,+.G W x W is a binary relation 
(called preference relation) on W satisfying almost reflexivity, transitivity, almost con- 
nectedness, and nonvacuity. 2 Intuitively, a world u is more possible (preferred, closer) 
than u from the viewpoint of an agent in w if u <,+, u. The set W, =def {u I 30,u <, u} 
is called the accessible worlds from w. The worlds not in W, are considered impossible 
from w. Then, according to Ramsey test, f -4 g is true in w iff an agent in w comes 

*VU E WC, u <n, u (almost reflexivity), Vt,u,u E W, (t <,y u A t4 <,” u) > t Gw u (&xn&ivity), 

vL4.L’ E WW, U <IV LJ V 1: <w u (almost connectedness), and VW, W,, $0 (nonvacuity). 
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to accept g when it revises its belief to accommodate f. Therefore, in addition to the 
definition of truth set for classical connectives, we can define 

If + gl = {w 1 W,. n l.fl = 0 or 

The definition of satisfiability and validity is the same as above. For any set of wffs S 
and wff f, S /==vN f is defined as S bD f except that serial models are replaced by 
s-models. Let VN also denote the set of wffs such that bvN f holds. 

2.3. Possibility theory and related logics 

2.3.1. Possibility theoq 

Possibility theory is developed by Zadeh from fuzzy set theory [ 441. Given a universe 
W, a possibility distribution on W is a function ?r : W 4 [ 0, 11. In general, we require 

the normalized condition is satisfied. That is, SLIP,,~~ r(w) = 1 must hold. Obviously, r 

is a characteristic function of a fuzzy subset of W. Two measures on W can be derived 
from 7r. They are called possibility and necessity measures and denoted by ZZ and N 
respectively. Formally, fl, N : 2w - [O, I] are defined as 

17(A) = supr(w). 
WE/l 

N(A) = I ~ II(A), 

where A is the complement of A with respect to W. 

It can easily be shown that the possibility measure satisfies the following conditions: 

(i) ZZ(W) = I and Z7(8) =O. 

(ii) fl(UiEl Ai) = supit, IZ(A,), where I is a (possibly infinite) index set.” 

Conversely, if a possibility measure 17 is given that satisfies the two properties, then the 

possibility distribution corresponding to 17 can be defined as r(w) = n( {w}) for all 
W E w. 

Just like in probability theory, we can consider the definition of conditional possibility 
distribution. However, how to define it is still controversial. In [2], the following 
definition from [ 151 is adopted. Given a subset A of W, the conditional possibility 
distribution is defined as 

1, if r(x) = Z7(A), .x t A, 

r(xlA) = r(x) 9 if r(x) < ZZ(A), .Y E A, (1) 

0, ifx$A. 

An alternative definition of conditional possibility is by the Dempster’s conditioning rule 
introduced in [41]. According to this rule, if n(A) #O, we define 

’ When W is finite, we can restrict I = { I, 2) and reduce the equation to /I( A U B) = max( I/( A), I7( B)). 
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4x1 
r(.xIA) = n(A)’ ifxE A, 

0, ifx#A, 
(2) 

and if n(A) = 0, we will define T(X~ A) = 1 for all x E W. 
Since in our logic the necessity measure of a proposition will be interpreted as 

epistemic uncertainty of some agent, we prefer (2) that is the conditioning rule for 
consonant beliefs as indicated in [41]. Furthermore, by (2), the logic LCP we will in- 
troduce can be easily extended to accommodate the belief function model. We need only 
replace possibility distributions by basic probability assignments [41] in the semantics 

and modify the satisfaction clauses appropriately, then the probabilistic logic formulas 
introduced in [ 181 can be represented in our logic. In Section 5.1, we will also see that 
the definition facilitates the representation of Goldszmidt and Pearl’s system Z+ [24] 

in our logic. 

Another reason that we adopt (2) is that it is technically more appropriate than ( 1). 

According to (l), r(.IA) is still a normalized possibility distribution on A when A is 
a finite and nonempty subset of W. However, if W is infinite, it is possible that A is an 

infinite subset of W such that ZT( A) < 1 and for all x E A, T(X) < I7( A). In this case, 
we will have ZI(W(A) = ZT(AIA) =&f supXEA r(xlA) = IT(A) < 1, so n-(.IA) is no 
longer normalized. Since in the following logics the universe will be the set of possible 
worlds that may be infinite, we consider ( 1) inappropriate. From now on, when we 
mention conditional possibility, we will refer to the definition (2). 

2.3.2. Possibilistic logic 

Based on possibility theory, Dubois and Prade propose the possibilistic logic (PL) 
[ 13,14,16]. Recall our propositional language C. The wffs of PL based on L are one 

oftheforms(fNc)or(fZTc),wherefECandcE(O,l]. 

A model for PL is also a triplet (w! rr, V), where W and V are still as above and 

T is a possibility distribution on W. For any f E Is, we can define If] as above. In 
what follows, we will identify the truth sets IfI and f in the context of possibility or 
necessity measures. For example, N( ]fj) = N(f), n( Ifl) = Z7( f), etc. Then the truth 
sets are 

l(fNc)l= W ifNt.0 >c, 
0, otherwise, 

l(fnc>l= W if n(f) 2 c, 
0, otherwise. 

Let s u {f} be a set of wffs in PL, then S brL f iff for any PL model M, IS(M = W 
implies If\,,., = W. We can also define the valuation functions VU/N and Vu177 : .C XzpL -+ 

LO,11 as 

Wv(f,S) = SUP{C I S +pL (f N c>}, 

vah(f,S) = SUP{C I s +pL (f 17 c)). 



168 C.-J. Licuc. B.I-I? Lin/Artijicinl Intelligence 88 (1996) 163-I 93 

Note that our presentation of PL is different with the original one proposed by Dubois 
and Prade. We will analyze the difference and prove the two presentations are technically 
equivalent in the following. 

First, from the syntactic aspect, PL is just the propositional part of PL2 defined in 
[ 14, p. 4741. However, since the extension of the base logic C to first order logic is 
straightforward, the difference is not essential. The main difference is thus the semantic 
one. Let R denote the set of all interpretations for C. Then a model for PL2 is just 

a possibility distribution r on n. For the possibility and necessity measures n and N 
induced by rr, the satisfaction relation is defined by 

where Ifi is now the set of all propositional models of f. 

If 7r is a PL2 model, then M, = (0, r, V) is a PL model, where V(p) = {w E D 1 

w /= p} for all p E PV. Obviously, we have 7~ k f iff Ifl~,, = fi for any PL2 wff f. On 
the other hand, given a PL model M = (W T, V), we can define Vu as the propositional 
interpretation associated with 14 E W from the truth assignment V. Then let TM be a 

possibility distribution on fi defined as 

%-M(W) = sup{7r(u) / v, = w. I4 t W}, 

where we assume sup v) = 0 by convention. We can show that /fly = W iff rr,+, k f for 
any PL wff f. Therefore. the semantics for PL and PL2 are equivalent in a technical 

sense. 
Nevertheless, the philosophical meaning of a world and an interpretation is quite 

different. In general, the wffs in ,C describe the objective facts of a world, so two worlds 
may coincide in the objective aspect and be different in the others. From an epistemic 
or doxastic perspective, it is natural to consider a possibility distribution as an agent’s 
view (with uncertainty) on the worlds. Since an agent may have different views in two 
worlds with the same objective facts, the semantics for PL is more general to reflect 
the situation. Of course, the difference is irrelevance when we are reasoning only about 

the agent’s beliefs on the objective world instead of nested beliefs. This is why the 
semantics for PL and PL2 are equivalent when we only consider the possibilistic logic 
formulas. 

Recently, the semantics for possibilistic logic has been generalized to handling partial 
inconsistency [ 13, 141. In the inconsistency-tolerant semantics, an absurd interpretation 
WI is added to f1, then fil = fkJ(w~}, and a PL2 model is just a possibility distribution 

+ on ai. The absurd interpretation is defined such that WI b f for all f E C. Define 

N(f) = ,J$’ - Ww) I OJ t= -f}. 
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$‘(f> = inf (1 -ii(o) 1 w p f}. 
wEnl 

Then, B(f) = max(n(f),?r(ol)) and A(f) = N(f), and the truth condition is 
definedasii+(fL’c) ifffi(f>2cand?rk(f Nc)iff&‘(f)>c. 

Our main results may be generalized to the inconsistency-tolerant setting. However, 
for simplicity, we exhibit only the basic semantics now, and the general consideration 
will be deferred to Section 5.3. 

2.3.3. Quantitative modal logic 
Though PL is useful in reasoning about an agent’s uncertain beliefs, it is not suitable 

for introspective agents, i.e., the agents reasoning about the beliefs of itself. For example, 
we may want to represent the following sentence about a reflective agent: 

The agent considers it completely possible that what he believes with half certainty 
is wrong. 

The sentence can be represented easily in modal logics as 0 (Up A -p) if the term “half 
certainty” is replaced by “complete certainty”. 

By the analogy between necessity (respectively possibility) measure and the modal 
operator 0 (respectively 0) indicated in [ 161, it is reasonable to express the sentence 

as 

However, since PL does not allow the nested use of necessity and possibility operators, 
it is illegal in PL. Although there is no essential difficulty in generalizing the syntax of 
PL to cover these cases, the semantics of PL seems somewhat restrictive. Since only a 

single possibility distribution is associated with a PL model, the semantics corresponds 
to the so-called absolute semantics in [ 381. It can be easily checked that the wff so 
represented is unsatisfiable in the absolute semantics, though the situation described by 

the sentence is intuitively possible. 
However, since possibility distributions reflect the epistemic states of some agent, 

just as the accessibility relations in modal logic do, it is very likely that in different 
possible worlds, the agent has different epistemic states. Thus, we can associate with 
each possible world a possibility distribution independently. Then we can get a kind 

of variable semantics [38]. This motivates the proposal of quantitative modal logic 

(QML). 
In QML, to represent nested necessity and possibility measures, we adopt a less 

cumbersome notation that is compatible with modal operators. In fact, QML can be 
viewed as a logic with multimodal operators. We add to propositional logic two classes 
of modal operators [c] and [c] + for all c E [ 0, 1 ] and the formation rule: 

l if f is a wff, then [cl f and [c]+f are, too. 
We also abbreviate -[ 1 - c]~f and -[ 1 - c]+~f as (c)‘f and (c)f respectively. The 
intuitive interpretation of [cl f (respectively [c]+f> is that an agent believes f with 
certainty at least (more than) c. Thus, the above-mentioned sentence can be translated 
into the following QML wffz (l)( [i]p A 7~). 
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A model for QML is a triplet (M! R, V) just as in modal logic, but R : Wx W --t [0, I] 
is now a serial fuzzy relation on W. For each w E W, a possibility distribution rr,+ can 

be defined as n-,,.(rr) = R( MI, u) for all u E W. Let N,,. denote the necessity measure 
corresponding to 7r,, for each w E W. Then the truth sets are 

~[cl.fi = {w / N,,.(f) 3 c}, 

l[cli.fl = {w / N,,(f) > cl 

Let us call the resultant system QD, then the definitions of satisfiability, validity, and 
S /=o,, f are analogous to those for D. 

Though QML is motivated by an epistemic or doxastic interpretation of possibilistic 

reasoning, the system QD may be not sufficiently strong for reasoning about uncertain 
beliefs. Some further constraints on R, such as transitivity and symmetry may be imposed 

on R to reflect the properties of uncertain beliefs. However, the technical details are 
beyond the scope of the paper, so we will concentrate on the most basic QML system 

QD and refer the interested readers to 1351. 

2.3.4. Qualitative possibility logic 
While PL and QML reason about the possibility and necessity degrees of the wffs, 

qualitative possibility logic (QPL) [ 191 concerns mainly the relative comparison of 
possibility measures between two wffs. 

The syntax of QPL is an extension of a propositional language with a binary connec- 

tive “a” and the following formation rule: 

l if f and g are wffs, then f 3 g is also a wff. 
The wff “f 3 g A -(g 3 f) ” is abbreviated as “f > g”. 

Although QPL is proposed without accompanied formal semantics, the semantics for 
QML can be used here, too. Given such a model as above, let Z7,,. denote the possibility 

measure corresponding to T,,.. Then 

The definition of satisfiability and validity follows directly, and we denote the conse- 
quence relation by /=oPL. 

3. The logic LCP 

In the above-mentioned logics, QML can represent the possibility and necessity de- 

grees of wffs directly, however the relative magnitude of possibility measures between 
two wffs cannot be expressed. Conversely, we cannot express the quantitative aspect of 
possibility theory in QPL. Sometimes, it may be useful to express the quantitative and 
qualitative information in a sentence. For example, (0.8)f A T(OS)+g > f 3 g may 
be meaningful from a semantic viewpoint. However, neither QML nor QPL have the 
expressive power. 

It is suggested that each wff in QPL can be translated into one in QML in [ 191. In 
that paper, a multimodal logic PLp is proposed based on a parameter set P C [0, I J. 
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The syntax and semantics of PLP is the same as those for QML except that the modal 
operators [c] and (c) are restricted to c E P. When P is finite, a translation scheme is 

suggested. Assume P = {cl, c2, . . . , c,} such that 0 < cl < c2 < . . . < c, f 1, then Tr 
is a mapping from the wffs of QPL to those of PLp such that Tr(p) = p for all p E PV, 

Tr(f b g) = ll\(s)Tds) 3 (c;)Tr(f), 
;=I 

and Tr is homomorphic with respect to classical connectives. However, this translation 
scheme is not completely faithful from the viewpoint of our semantics. In fact, we can 

easily imagine a QPL model (or QML model since these two are the same) and a 
possible world such that f 2 g is false in w, while Tr(f 2 g) is true there. This can 

be achieved when there exists an i such that ci+t > n,+.(g) > n,(f) > ci. Thus, if we 
want to express the quantitative and qualitative information in a sentence, the two logics 

must be combined. 
It is not too hard to put QPL and QML together since the two languages have the 

same semantics. We need only allow both 2 and quantitative modal operators in our 

combined language and add both formation rules to those for propositional language, 
then the definition of QML (or QPL) models can be used for the semantics of the 

combined language. Though this is an easy solution to enhance the expressive powers 
of both languages, we can find an even more general language. To completely exploit 
the power of the QML semantics and conditional possibility theory, we can define a 
logic for conditional possibility. In this language, we cannot only express wffs of both 

QPL and QML, but also reason about the conditional possibility of some wff given 
another wff. The logic is first proposed in [36] and some preliminary results appear 

there. 

3.1. Syntax and semantics 

We need two types of conditional connectives: 3 and % for all c E 

additional formation rule is: 

[O,l]. The 

l iffandgarewffsandcE[O,l],thenf%gandf I”’ -g are, too 
We also use the abbreviations: 

(4 ’ 
f- g=7(fkLg), 

fSg= _(f “-cl+ ----g). 

The semantics for QML and QPL is also applicable to LCP Let M = (W, R, V) be a 
QML model and r,,,, n, and N, denote the possibility distribution, possibility measure, 
and necessity measure associated with each world w respectively, then according to 
conditional possibility defined by Dempster’s conditioning rule, we have 

II,(BIA) = suprr,(u]A), 
UEB 

N,(BIA) = 1 - &.(BIA), 
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where A, B C W. Then the truth sets are 

IP-4 = {w I N,.(Q) 2 c}, 

lg+ ICI’ h = {w / N,,.(h(g) > c}. 

In the next section, we will explore the relationship between LCP and the logics 

described above. 

4. LCP as a uniform framework 

To show that LCP is expressive enough for possibilistic reasoning, let us present some 

translation lemmas in this section. Let L1 and L2 be two logics with sets of wffs C, 
and C2 respectively. If Cl and C: are constructed from the same set of propositional 
variables, then a translation mapping from LI to L2 is 7 : Cl + L2 satisfying the 
following classical morphism conditions: 

(i) 7(p) = p if p E PV, 

(ii) I = 77(f), and 

(iii) T(fVg) =7(f) VT(g). 

Let 7-(S) denote {7(f) 1 f E S} for all S C LI. 

Recall that a model for conditional logic is called an s-model. In what follows, we 
will call the models for QML, QPL, or LCP p-models (for possibility models) and 
those for modal logic d-models (for the system D). Furthermore, a model for PL is 

called an a-model (for absolute models). 

4.1. QML and LCP 

The logic most closely related to LCP is QML. since the former is just a direct 
generalization of the latter to the conditional version. Let us consider the translation 
mapping ~1 from QML to LCP The mapping 71 satisfies, besides (i)-(iii), the following 
two requirements: 

(iv11 v(lcl,f) = Txr,t.f.), 

(VI) v(L~l+.f) =T-- ‘I’ 71(f). 

Lemma 1. Let M be an! p-model, therl ,for my wjf f of QML, we have 1 f 1~ = 

171 (.f) IM. 

Proof. Since the fuzzy accessibility relation for the p-model is serial, we have Z7,(f) = 
n,.( fl T) for each possible world w. The result then follows from an induction on the 
structure of wffs. 0 

Proposition 2. Let S be a set of wffs in &ML and f be a QML wff, then S f==aD f iff 

71 (S) &y 71 (.f). 
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4.2. QPL and LCP 

Another logic having the same class of models with LCP is QPL. The translation 
mapping 72 from QPL to LCP satisfies the following requirement: 

(ivz) 72C.f b g) = (72(f) V 72(g) %~2(f)). 

Lemma 3. Let M be any p-model, then for any wff f of QPL, we have Iflu = 172(f) I,+,. 

Proof. By induction on the complexity of wffs. The only nonclassical case is If > g/. 

By the induction hypothesis, we let lflicl = [r~(f)\~ = A and lg/M = \rz(g)(M = B. 

Then w E If 2 gl iff II,(A) 2 II,(B) iff IT,(AIAUB) = 1 iff w E 172(f b g)I. 0 

Proposition 4. Let S be a set of wfss in QPL and f be a QPL w$f, then S bQP,_ f if 

72(S) +Lcp 71 (f). 

4.3. QPL and conditional logic 

Unlike QML and QPL, conditional logic has different semantic models with LCP. 

However, by a transformation between numerical and ordinal scales, we can transform 

these two kinds of models into each other. 4 Consequently, we can prove the translation 

results between QPL and conditional logic. 
First, let us consider the translation mapping 7s from QPL to VN that satisfies the 

following requirement: 

(iv3) 73(f 3 g) = (73(f) V 73(g) -+ 1) V 373(f) V 9(g) + 173(f)). 

Lemma 5. 
( 1) Let M be any finite p-model, then we can find an s-model M’ such that for any 

wfSf of Q% we have IflM = 173(f)IM/. 
(2) Let M be any finite s-model, then we can find a p-model M’ such that for any 

wfff of QK we have Iflw = h(f)lM. 

Proof. (1) Assume M = (w! R, V), then M’ = (W ( <,,.)k,.E~, V), where for each w E W, 
we define 

W,q={ul R(w,u) >0} 

and 

x&y iff (x~W~A~EW~)V(X,~EW,,AR(W,X)~R(W,~)). 

Then by the induction hypothesis, let IfI,+, = (73(f)\,,,! = A and IglM = lrs(g)lMt = B. 
It can be verified that n,(A) > Lf,( B) iff fl,,.( A U B) = 0 or for all u E A U B and 
R(w, u) > 0, there exists u such that R(w, u) > R( w, u) and u E A since M is finite. 

The first disjunct corresponds to the truth of w E )(r3( f) V q(g) --f I) I,,,,’ and the 

second to w E 17(73(g) Vrs(f) ---f lq(f))l,,,f. 

4 More precisely, only finite models can be transformed from s-models into p-models. 



(2) Assume M = (W, (<,,.),,E~~, V). we can define M’ = (u! R, V) such that R satisfies 
the following three requirements: 

(a) R( w, II) = 0 iff it $ W,,.. 

(b) R( w, II) = I for all <,c-maximal elements II, and 
(c) R( w, II) < R( ~7. r,) iff 11 <), I‘. 

Since W is finite. the required R exists, so the result follows from an analogous induction 

as above. 0 

Proof. By using the finite model properties of QPL and VN and the preceding lemma. 

Note the finite model property of VN can he found in [ 33, pp. 134-l 351. while that 
for QPL can he obtained from [ 37, Theor-em 21 directly. [7 

In [ 191, an axiomatic system for QPL is given and it is shown that the system 
is equivalent to an axiomatization of VN. Mot-c precisely, let ~QPL and kv~ denote 
the binary provability relations in the respective systems, then for any set S of QPL 

wffs and QPL wff f, S ~_OPL ,f . .’ T;(S) ‘VN 7?(f). Since the completeness of VN 111 
axiomatization has been established \ 7.33 1. as a byproduct of Proposition 6, we have 
the completeness theorem of the QPL system with respect to the current semantics. 

Proposition 7. Let S be (I firlitc .wt of QPL w;@ and .f he a QPL w$, then S kQP,_ f 

Iff s hJPl. f. 

On the other hand. we can translate conditional wffs into QPL ones. The translation 
mapping 74 satisfies 

(iva) 7j(.f’+ s) = (i > ~~(.f‘i) V (~4C.f’) q 74(g) > 74C.f) A ‘74(g)). 

By using the same model transl‘ormation as above, we can prove the following results. 

Proposition 9. Let S he u ,finite .set of co~rrlirioml logic,forntulas and ,f be o conditional 

/ogic,formula, then S bVN .f #ffr~(S) kQ,,,. r4c.f‘). 

4.4. LCP and conditional logic 

We can provide a translation mapping ham conditional logic to LCP by the COUP 

position of 74 and ‘~2. However. it is also possible to give a more concise translation 
mapping directly. Let ~5 satisfy the following requirement: 
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(ivs) 75C.f ---t g) = T(T - (O)’ v(f)) v (75(f) -=7.5(g)). 

Lemma 10. 
( 1) Let M be any jinite s-model, then we can find a p-model M’ such that for any 

conditional logic wfs f, we have jfj~ = ]TS( f) I,+,!. 

(2) Let M be any jinite p-model, then we can find an s-model M’ such that for any 

conditional logic wfs f, we have IfI ~1 = IT~( f) lM. 

Proof. The model transformations are the same as those used in the preceding subsec- 
tion. We just note that for any sets A, B & W, N,(BIA) > 0 iff ZI,(BC(A) < 1 iff 

3u~AnW,.~‘u(u~,,c~~L’EUB),andn,(A)=OiffAnW,=(b,where17,, W, 

and <w are defined in the respective models. 0 

Proposition 11. Let S be a fmite set of wffs and f be a w# in conditional logic, then 

S kVN f ifs~s(S> hcp n(f). 

Proof. The proof also depends on the preceding lemma and the finite model property 
for LCL? The latter can be obtained directly by the filtration technique introduced in 

[37]. •1 

4.5. Modal and conditional fogies 

The relationship between modal and conditional logic has been explored by Lewis 

[33]. He shows that the modal operators of the system D can be translated into the 

inner or outer modalities of VN. 
For the outer translation mapping, let r{ satisfy the following condition: 

(iv:) G(Clf) =-7’;(f) --f 1. 

For the inner translation mapping, let 7; satisfy the following condition: 

(iv;) T$,(Clf) = T --f T;(f). 

Let M = (W, R, V) be a d-model, then a corresponding s-model can be easily con- 

structed as M’ = (W, (<wf)wE~, V), where for all x,y, w E W, x <,+ y iff (w, y) E R. 

By induction, we have 1 f (M = [Tg( f) IMt = IT;< f) JMf for any modal logic wffs. 
On the other hand, if M = (w! ( <M,)wE~, V) is an s-model, then we can construct the 

outer d-model M” = (W, R, V) such that (w, u) E R iff u E W,,, since W, # 8. Moreover, 
if W is finite, we can have the inner d-model M’ = (w R, V) such that (w, u) E R 

iff u is a <,-maximal element of W. Then, for every modal logic wff f, we have 

lflMO = &(f)IM and IflMl = l7b(f)lM. 
Since the system D has also the finite model property, the following result holds. 

Proposition 12. Let S be a set of modal logic wffs and f be a modal logic wff, then 

S bD f ifs r:(S) kVN Tg( f). Furthermore, if S is fmite, then S ko f i#Td( S) kVN 

+j(f ). 
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4.6. Modal logic and QML 

There are two classes of’ modal operators in QML, so the necessity modality of modal 
logic can be represented in either way. First, for each c > 0, we can have a translation 
mapping 7; satisfying the following requirement: 

(iv;) T$(OJ‘) = [c]~lj(,f). 

Since a d-model can he considered as a p-model by viewing a crisp relation as a 

fuzzy one, we have \f\~ = IT+(~) j M f or any modal wff f and d-model M. On the other 

hand, we have 

Lemma 13. For each p-model A4 = (W, R, V) . w’e can find a d-model IV’ = (W, R’, V) 

such that I,fl,+p = i$(,f) I~for all modal ~$3 ,f. 

Proof. Let R’ be such that (II, rl) E R’ iff R(r*. L’ 1 > I -c. Then, by induction, we have 
w E / LJflMJ iffV’n(R(w,l4) > I -c + II t !~;(,f)lM) iff n,(l~-$(f)lM) 6 1 -c iff 

w E I[cl$(f)l/W 0 

Second, for each c > 0. the translation mapping T;* satisfies the following require- 

ment: 

(iv:+) $* (Of) = [cl IT++. 

Lemma 14. For each finite p-model A4 = (W, R, V). we can find a d-model M’ = 
(W, R’, V) such that IflnJf = /~‘;+(,f)/~ for all modal wfiy f. 

Proof. Let R’ be such that (I*,!.) t R’ rff R(rr,l*) 3 I - c. Then, by induction, we 

have w E 1 0 f I MJ iff VJU( R(w, II) > I .- (’ -+ II t i$+(_f)l,+,) iff (using the finitary 

assumption here) n,,,(l++(f)l~) < I -c iff N’E I(c]‘~;+(f)l~. 0 

Finally, we have 

Proposition 15. Let S be a set of modal logic w8.k arld ,f be a modal logic wff, then 

S /=D .f if T$ ( S) bOD 7; ( f) and if S is $nite. then S /==. f iff T;+ (S) baD 7;+(f). 

4.7. PL and QML 

It is pointed in [34] that QML is a common generalization of PL and modal logic. 
The preceding subsection shows the translation mappings from modal logic to QML. In 
this subsection, a translation mapping from PL to QML will be given. However, because 
the syntax of PL is rather restrictive,s we can define the translation mapping directly 
without the need of conditions (i)-( iii). 

s In fact. it contains only wffs of modal degree I. 
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Fig. I. Relationships between different logics. 

Define~ssuchthat~s((fNC))=[C]fand~s((f~C))=(~)f.~enitiseasyto 

prove the following result. 

Proposition 16. Let S be a set of PL wffs and f be a PL wff, then S bp,_ f iff 

78(S) /=QD 78(f)- 

4.8. Summary 

The results presented in this section may be summarized in Fig. 1. 
Each node of the graph is labeled by a kind of logic, and each arrow between 

two nodes represents a (class of) translation mapping(s) between them. Since the 
node labeled LCP is reachable from all nodes of the graph, many important logics for 

reasoning about possibility and necessity can be represented in the LCP framework. In 
other words, LCP is the most expressive one among all logics described in this paper. 

Now, we will consider some examples that utilize the expressive power of LCF? Since 
we have shown that all the above-mentioned logics can be expressed in LCP, we will 
freely use the wffs of all these logics in our examples. 

Example 17. Let us consider the following knowledge base: 

IfJohn’s height is beyond 180cm, then it is very possible that he is in the basketball 

team. 
It is quite possible that John’s height is beyond 180cm. 

Let p and q denote “John’s height is beyond 180cm” and “John is in the basketball 
team”, respectively and assume that c and d are such that 1 2 c > d > 0. Then we can 
have at least three different representations of the knowledge base in LCP. 
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First, we can represent it as ((c)(p > y), (d)p}. In fact, the representation uses 
only the expressive power of PL. Second, we can use a slight extension of PL to 

encode it as {p > (c)q, (d)p}. F rom the two representations, we can derive only the 
trivial information about the possibility of y. i.e., (0)q. However, if we encode it as 

{/ lc.) 7 -9, (d)y} by utilizing the full expressive power of LCP, then we can derive the 
quite reasonable result, (c. d)y. i.e., it is fairly possible that John is in the basketball 

team. since n(q) > Z7(p A y) 3 (’ l/(p) 3 c. tl. 

Example 18. Continuing the last example, if we have now the additional information 

It is more possible that Peter is irz the basketball team than that John is, 

then WC can add a QPL wff r 3 4 to our knowledge base where r means that Peter is 
in the basketball team, and the result ((,. d)r is also derivable. 

Example 19. Let p and q denote “Smoking causes lung cancer” and “John will give up 
smoking” respectively. We will give our modal operators [c] a doxastic interpretation, 
so the fuzzy relation on the semantics of LCP will be imposed at least the transitivity 

constraint. This induces that the following positive introspection schema is valid, 

]ClP 3 [cl [CIP. 

Thus, when c E I, 1 c]p means that John believes p very certainly. Assume normally, 

John will take care of himself. This fact can be reflected as [c]p x q or simply 

ICI!’ --t q. Assume further John is indeed very certain about p, so we have the knowl- 

edge base {[c]p “’ 
/ 

A 4, [ c]p}. From this WC can derive [ 01 Lq, i.e., John is somewhat 
certain he will give up smoking. The derivation process is roughly as follows. 

f I. [c]p’“‘.cl 

2. ICIP 

3. [CIP 1 ICllClP 

4. LCIP 1 lol-[clP 

I 
5. 

6. 

7. 

8. 

9. 

CIP 1 (])[ClP 

l)lClP 

01 +c lClP 14) 

o]~-[c]I, 3 [O] I4 

01’4 

assumption. 

assumption, 

axiom, 

3,QD. 

4. QD. 

2,5.MP, 

I, 6, LCP. 

7. QD. 

2.4.8.MP. 

where MP is modus ponens and QD and LCP represent the deductions in QD and LCP 

respectively. 

These examples show the general applications of LCP. In addition to these, we will 
investigate two particular applications of LCP in the next section. 
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5. Applications and generalization 

In this section, we consider two applications of our framework and its generalization 
to handing of inconsistent information. 

5. I. Formulation of nonmonotonic inference relations 

Since the pioneering works of Gabbay [ 211 was published, there have been vast 

amounts of literatures on the topic about the properties of general nonmonotonic in- 
ference relations. One of the most important among them is the work by Kraus et al. 

[ 29,3 11. They introduce the following properties for a nonmonotonic inference relation 

t_. Let f,g, h be wffs of the propositional language C throughout this and the next 

subsections. 

The system is called R. Let us call f i_ g a positive sequent (p-sequent) and f k g 
a negative sequent (n-sequent), and assume that S is a set of sequents and A is a 
p-sequent, then we write S F_R A iff there is a derivation6 of A from S by the axiom 

and inference rules in R. 

In [ 111, a general translation scheme from nonmonotonic inference relations to con- 
ditional logics is provided. According to the scheme, denoted by r here, r( f k g) = 
f -+ g and r( f F g) = -(f 4 g). The wffs of the form f ---t g are called conditional 
atoms and conditional literals are conditional atoms or their negations. Then r(S) is de- 
fined as the set of conditional literals translated from the sequents in S by 7. According 
to the results in [ 11, if S is a set of sequents and A is a p-sequent, then S TV A iff 

r(S) kv r(A) iffr(S) bvw T(A) iffT(S) +vTA r(A), where V, VW, and VTA are 
all conditional systems introduced in [ 331. Since VN is an intermediary logic between 
V and VW [ 33, p. 13 11, we have the following result. 

h The notion of derivation is the same as that for classical Gentzen sequent calculus 
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Proposition 20. If S is LI set of sequertts and A is a p-sequent, then S I-R A iff 

T(S) kVN T(A) $7-75 07(S) +,>c~l> 7s 07(A). 

In the above formulation of nonmonotonic reasoning, a conditional f -+ g is consid- 

ered as a default, read as “Typically, .f is g”. and all defaults are supposed to have the 

same degree of strength. Thus the result in the last proposition is also applied to the 
O-entailment of Pearl’s system Z [ 21. However, the quantitative aspect of LCP allows 

us to distinguish the different degrees of strength for defaults. This corresponds exactly 

to Goldszmidt and Pearl’s system Z’ [ 241. 
In [24], a default is of the form (f -+ g, II 1, where f, g E C and n is a positive 

integer. 7 Note that we restrict II to bc a positive integer instead of just a nonnegative 
one as in [24] because this will induce the existence of the least specific a-model for a 
set of defaults in the following presentation. Let d = {( ff -+ gi, ni)} be a set of defaults 

and assume the base language C is finite. An interpretation w is said to verify fi - g; 

if u k f, A gi, to falsify it if o /== ,/; A -R,. and to satisfy it if w /= ,fi 3 g,. Now, a 
ranking function is an assignment of nonnegative integers to the interpretations of G. A 
ranking function K is said to be admissible relative to A if it satisfies 

for every ( f; - gi, !I,) E il. Note thal since r~, is positive, we can use 6 instead of < 
in the above inequality. A sel A is consistent if there exists an admissible K for A. It 
is shown that if d is consistent, then the following mutual recursive equations give the 

minimum admissibIe ranking K-’ fhr LI. 

Definition 21 (see [ 24 ] 1. Define K - iw ) = 0 il‘ ti dues not falsify any rule in A, and 
otherwise, 

Z’(r,) = min{rc’(w) 1 IO k ,/; A 8,) + rl, 

where T; = ( .fi - Ki, II,) E A. 

There is a slight difference between the present definition and the original one, where 

K*(W) = max{Z-+ ( I-;) / w b f, A -gi} + 1. We can use the present definition because 
all n, are positive. We can now define the 0- and l-entailment for the Z+ system. 

Definition 22, Let A be a set of defaults and (f’ - g, II) be a default. 
(1) A O-entails (f - g, n), denoted by A bO (f * g, n), iff all ranking functions 

admissible to A are also admissible to { (.f -ss g, n)}. 
(2) d l-entails (f +-+ g, n), denoted by A /=, (f ++ g, n), iff the minimum admissi- 

ble ranking function of A is admissible to {(f -+ g, /I)}. 

’ The original notation of I? default used in 1241 ic f Ax. We change it to avoid the confusion with our 

LCP operators. 
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A ranking function K is in fact the ordinal conditional function (OCF) defined in 
[42]. Based on the known connection between OCF and possibility theory established 
in [ 171, we can obtain the correspondence between the Z+ system and LCP First, each 

default r = ( f 4~) g, n) is translated into r(r) = f [cl g where c = 1 - 2~“. Note c > 0 
because II is positive. Second, for each ranking function K, we can find a possibility 

distribution GT~ on the set of interpretations 0 such that 7rK( w) = 2-K(“). Third, the 
admissibility condition for K and r corresponds exactly to 

17,(fA1g) < (1 -c) .fl,(fAg). 

This means that K is admissible for A iff rTT, is a PL2 model for r(A) =&f {7(r) 1 r E A}. 
Forth, if rrt and 7~2 are two possibility distributions on 0, we say that n-1 is more specific 

thann-2 ifrrt(w) <TV forallwEn.tetS={f,~giIciE(O,l],fi,giEC}, 
then it can readily be shown that the following rr+ is the least specific possibility 

distribution satisfying S, if S is satisfiable, by using the same technique as in [24] and 

our transla!ion. 

Definition 23. Define rf (w) = 1 if for each i, w F fi A lgi and otherwise, 

7r+(W) = min{C+(ri) 1 W + fi A Tg;}, 

C+(ri) =max{rr+(w) (W +fiAgi}.(l -C;) 

where r; = fi %gi, 

Lemma 24. Let A be a set of defaults, then K is the minimal admissible ranking for A 
iff rr, is the least specific possibility distribution satisfying r(A). 

Proof. This follows from the facts that 

(1) K+ is the minimum admissible ranking for A [24], 
(2) rTT+ is the least specific possibility distribution satisfying r(A), and 
(3) 7rTT,+ is the solution of Definition 23, so is equal to r+. 0 

Finally, we note that for flat conditionals, the LCP semantics are equivalent to PL 
semantics. For two PL models Ml = (WI, ~1, VI) and M2 = (Wz, n-2, V2), Ml is said to 
be more specific than M2, written as Mt C M2, if for all WI E WI there exists w:! E W2 

such that Vl(wl) = V~(w2) and ~TI(WI) < 772(w2). Let 

S= {fi’“‘l,gi I Ci E (09 ll,fi,gi E C}, 

then we write S kLs f %g if all E-maximal PL models satisfying S are also models 

of f [cl g, where f, g E C. Note the L-maximal PL models satisfying S may not be 
unique. However, this does not matter because Mf = (a, z-+, V) is a c-maximal PL 

model such that M+ k f %g iff M /= f %g for any L-maximal PL model M, 
f,g E C and c > 0. Then we have the following result. 



Proposition 25. Let A be u set of defaults. ( f‘ * g, n) be a default, and c = 1 - 2-“, 
then 

( I) A kO U-r& g.n) #‘T(A) +,,Cp .i 5~. 

(2) A /=, (.f - g, II) $7(A) PC .f’Eg if M+ /= ,f 3 g, where M+ arises 
from Dejinition 23 M: r.t. r( A). 

We employ only the flat conditionals in the above formulation. Since for flat condi- 

tionals, the absolute semantics and the variable one coincide, we do not fully utilize the 
expressive power of LCP. However, LCP indeed facilitates a more complex nonmono- 
tonic reasoning scheme. In particular, we can represent defaults about uncertain beliefs. 
For example, the following sentence: 

Epically, on agent veg certainly believing the existence of God will quite certainly 

believe the Biblical words ore true. 

may be encoded in LCP as a wtl‘ of the form 1 c]p + [ d]y with c > d. In addition, 
when the fuzzy relation R in the semantics of LCP is a similarity relation, the quantitative 

aspect of LCP makes it easy to do similarity-based reasoning; we will discuss the topic 
in the next subsection. 

5.2. Formulation of sirnilcrrir~-hasrtI con.seq~~ence rekions 

A fuzzy relation R on X is called a similarily relation iff it satisfies the following 

properties: 
( 1 ) Reflexivity: R(.x, _I-) = 1 for all .r !: X. 

(2) Symmetry: R(x,y) = R(j$,x) for all .t-. 1‘ t X. 
(3) @-transitivity: R(.r. y) j)il R(!,; ) 6 R( .Y, TJ ) for all x. y, x E X, where 6~ is a 

t-norm8 in IO.1 1. 
The reasoning based on the similarity relation is first proposed by Ruspini [40]. In 

a recent article, Dubois et al. [ 121 define three types of similarity-based consequence 
relations. Their work is hased on the propositional logic C. First, let 0 denote the set of 
all propositional interpretations of C and define a similarity relation R on fl. Then any 

wff ,f E C is blurred into a fuzzy proposition ,f‘* such that the characteristic function 
pf- : R + [0, I ] is defined as 

p,/*(w) = sup{Nw, w’) I w’ /= .f} 

Furthermore, if .f; g E C, then another fuzzy proposition ,f* + R* is characterized by 

~I~+? (w, =p,*(o)X- ,+(w). 

where @o-i is the residuated implication w.r.t. ~1 defined as a ES+ b = sup{x 1 a@.~ < b}. 
If A is a fuzzy proposition, then [A ] denotes the fuzzy subset of R-characterized by 
PA and [A JC is the c-cut of [A] for c c [O. I]. 

x z : 10. I I x IO. I] - 10, I 1 IS a t-norm iff it IS acsociative. commutollve, and increasing m both places. 

and I FC <I = a and 0 C$ (I = 0 for all (I E IO, I 1. 
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Let K & L denote the background knowledge. We will identify K with AK, i.e., the 
conjunction of all wffs in K. Then three types of graded entailment relations are defined 

as 
(1) typeI: 

f k:” g iff IKI n IfI G [g*lct 

(2) type II: 

f +F’ g iff IKI C If* * s*lc, 

(3) type III: 

f Ff” g iff IKI C [f* * (f Ag)*l,, 

for all f, g E C and c E [ 0, 1 ] . Note that all types of graded consequence relations rely 
implicitly on a given similarity relation R. Apparently, a similarity relation R corresponds 

to a special p-model MR = (0, R, V), where the set of possible worlds are identified 
with fl and V assigns truth values in an obvious way. In our previous terms, 

ruf’(W) = KJ(f), 

so we have the following results when @ = min: 

(1) f!=T’giffMRkKAf>(c)g, 

(2) fi=:“giffMR kK> (f<sv(c)g), and 

(3) f~~“giffMR~KK((f~fAg)V(c)(fAg)). 
Moreover, if @ = . (i.e., the numerical product), then 

Thus all three types of similarity-based consequence relations can be formulated in 
LCP as wffs valid in a special model. However, the main advantage of logics is that we 
can do reasoning without involving a particular model. For example, in [ 12, Theorem 
I], it is claimed that k;“’ is just the classical logic consequence relation. However, 
the claim is just wrong when R is the universal relation (i.e., R( w, w) = 1 for all 
w E a). Therefore, by using object level reasoning in LCP, we can reformulate the 
generic graded entailment relations. Let QS(@) denote the class of all p-models having 
@-similarity accessibility relations, S be a set of wffs in LCP and A be a wff in LCP, 
then S boscB, A iff for all p-models M E QS(@), M + S implies M b A. The system 
QS(min) is just abbreviated as QS. 

Definition 26. Let K c L, f, g E 13, and c E [0, 11, then 

(1) fk?giffKkQsf>(c)g, 

(2) f I=:’ g iff K kas (f < g V (c)g), and 
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(3) .fl$“~iffKf=~, ((f’<.f’~g)V(c)(fAg)), 

are respectively the type I, II, and III generic graded entailment relations. 

Though the definition is only for the similarity relations based on the t-norm min, 

the semantics of LCP allows us to generalize the definition to any t-norm. However, the 
development of the general logics will be left as further research. 

We observe that the graded entailment relations defined above do not utilize the 

expressive power of nested modalities. However, some axioms of the Q5(@) system 
involving nested use of modalities indeed reflect the properties of similarity relations. 

Intuitively, w /= (C).f means that the world M; is similar to the f-worlds at least to 
the extent c (or in short, rt’ is c-similar to f-worlds). Dually, w /= [c] f means w is 
discernible with Tf-worlds to the extent c or MI is c-characterized by f. 

Now, three characteristic axioms of QS( 8) correspond to the three properties of 

similarity relations. First, the schema T 

says that a world satisfying ,f‘ is completely similar to f-worlds. This reflects the 

reflexivity. Second, the schema 4 

(c)(d)f’ 3 (c is djf‘ 

corresponds to transitivity, that says a world c-similar to worlds d-similar to f-worlds 

is itself c @ d-similar to f-worlds. Finally, the schema B for symmetry 

.f’3 ]cl(l -c)+.f 

means that if a world satisfies J‘, then we can c-discernible it from those worlds that are 
not (I - c)-similar to f-worlds, Putting it in more qualitative terms, this means that if 
f is true in a world, then it is strongly discernible from those worlds only little similar 

to ,f-worlds. 
This shows that the epistemic and similarity interpretations of LCP wffs are just 

two sides of a coin. In fact, when R is viewed as an ordinary fuzzy relation, it is 

the similarity relation between worlds, whereas when it is viewed as a collection of 

possibility distributions {TV j w E W}, it indeed reflects the epistemic possibilities of 
an agent. Thus, under the semantics, the more similar to f-worlds a world is, the more 

possible an agent consider f is true. Consequently, the semantics of LCP allows us to 
do epistemic uncertain reasoning and the similarity-based one in the same framework. 

Another point we would like to consider is the difference between possible worlds 
and interpretations. We have mentioned the significance of the difference in Section 
2.3.2, however, the similarity interpretation provide a concrete example to illustrate it. 

Example 27. Consider a statement p = “X is A” in the interpolative reasoning example 
of [ 121, where X is a variable; take its value in a domain I/. Assume that U is 
infinite, e.g., the positive real number and that A is a subset of U. Then we have only 
two propositional interpretations, {p} or {-p}. However, we may have infinitely many 
possible worlds, each corresponding to a point in I/, and the similarity between worlds 
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is decided not only by the truth value of p, but also by the distance of the two points. 
In other words, we may have two worlds in both of which p is false, but one is very 
close to p-worlds, while the other is very far from p-worlds. Henceforth, the similarity 
relation on 0 may be not sufficient for some real applications. 

5.3. Handling partial consistency 

We have mentioned previously that a recent development of possibilistic logic is the 

handling of partial inconsistency. Here, we will see how the general semantics can 
be assimilated into our framework. For the purely qualitative logics D and VN, we 
only need to drop the seriality and nonvacuity constraints on their models respectively. 
Consequently, we will use the modal logic K [9] and the conditional logic V [ 331. For 
the other logics, let us first modify the definition of conditional possibility measures. 

Assume T is a (not necessarily normalized) possibility distribution on W, N and 17 are 

the associated measures, and 1 E [ 0, 1 ] , then we can define 

II’(A) =max(17(A),1), 

lI(AnB) 

ZI’(BIA) = 17’(A) ’ 
if 17’(A) #O, 

1, otherwise, 

@(An B) 

I?‘( BIA) = L?/(A) ’ 
if L?(A) SO, 

otherwise. 

Let N’(B]A) denote 1 - I7’(BIA). 

For possibilistic logic, we define an inconsistency-tolerant a-model (ita-model) as a 
tuple M = (W T, Yl), where (W, T, V) is a (possibly subnormal) a-model and 1 E [ 0, 1 ] 
is such that 

and define 

if Z?(f) 2 c, 

otherwise. 

Here, the number 1 plays the role of ii( wl) in the semantics with absurd interpretation. 
For QML, QPL, and LCP, we define an inconsistency-tolerant p-model (itp-model) 

as a tuple It4 = (W, R,V!L), where (W, R, V) is a p-model but R may not be serial and 
L : W -+ [0, 11 is a threshold level function such that max(supUEW R( w, u), L(w)) = 1 

for all w E W. Then the syntax and semantics of the three logics are modified as follows. 
( 1) QML: two classes of new modal operators (c) and (c)+ are introduced. 

(a) Syntax: the following formation rule is added 
l if f is a wff, then (c)f and (c)+f are, too. 



(b) Semantics: for the new wffs. 

I(c)fl= (W j 77j,(.f, >, <,.I= L(w)), 

~(c)‘/‘I={w~ Uj,(,f, >c,/=L(w)}. 

(2) QPL: the syntax remains unchanged and the truth set for f 3 g is now defined 

as 

/.f’>gi = {,,* ~77f,.(.f, 3 rz;,.(g:,.r=L(w)}. 

(3) LCP: two classes of new connectives 3 and 0 are introduced. 
(a) Syntax: we add the following formation rule 

l if ,f and g are wffs, then ,f‘ 2 g and f 
(c) 

+g are, too. 

(b) Semantics: 

+-,ql = {W / N;,.t,ylf‘, 3 c.1 = L(w)}. 

1.1’ - Lgi = {w / ,Vj,.(,ql,f‘) _’ i-.1 = L(w)}, 

lj’mzfil=(kt’i I^/j,(sqi,f) 3l’.l=L(W)}. 

I./’ L,qI=(i~.i h(,(,yjJ‘) ::,c..I=L(w)}. 

As for the translation mappings, the respective changes are as follows. For 71, the 

following two additional conditions are imposed. 

(vi,) ~i((c),f‘) =T -‘271(,f’). 

(vii,) 71((c)‘.f‘) = ._ -z--+71(,/‘). 

For ~2, the condition (iv?) is modified to 

(iv;) 72(.f 3 g) = ~2(.f) V77(g) ~cC.1‘). 

For ~2, the condition (ivs) is moditied to 

(iv\) T5(.f * g) = 75( f) em- I” 1 v 7(rc(J’) Al,,). 

The mapping 78 is modified such that q( (,f‘ f/ c) ) = (c),f. The other mappings all 
remain unchanged. Then the results in Section 4 still hold. 

To understand how the extended systems arc applied to reasoning with partially 
consistent information, let LCP* denote rhe extended LCP system and S be a set of wffs 

in LCP’. Then we can detine the nontrivial deduction relation k as follows: 

S+=f J% g iff S blAcr- ,f 3 g and S kLCP. .f‘ 3 1. 

The definitions of Sg,f /(./ g, Sgj” 2~. and Spf xg are given analogously. 
In particular, when ,f = T, the definition coincides with that proposed by Dubois et 
al. for PL [ 14, p. 4661. In other words, we can deduce [ c]g nontrivially only when 
c > sup{d 1 s /=L,cp. [dll}. 
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6. Related work and further research 

There have been quite many works on the qualitative and quantitative aspects of 
possibilistic reasoning in the literature. Here, we can only touch upon very small parts 

of the works most closely related to the present one. 9 
In [ 21, instead of the conditional connective +, a meta level nonmonotonic reasoning 

consequence t=,, is defined with respect to a possibility distribution rr. It is shown that 
f k,, g iff n( f A g) > JY7( f A -g) iff N(gl f) > 0. The property is heavily used in the 
proof of our main lemma. Although their conditional necessity is defined by using the 

conditioning rule ( l), the property holds as well for Dempster’s rule. However, since 
b, is a meta level construct, the nested conditional is not allowed. Thus, in f br g, f 

and g are restricted to the classical wffs and the semantics for PL is sufficient for the 
interpretation of f +, g. Furthermore, the underlying propositional language is assumed 

to be finitary. 
In [20], the finitary assumption of the underlying language is lifted, and a binary 

connective 5 is introduced, so the logic VA defined there is syntactically equivalent to 

QPL. However, their semantics is the absolute sphere model in [ 331. That is, a model 
is a triplet (W, <, V), where < is a preference relation on W. Since there is just one 
preference relation for the whole model instead of each world, the semantics is different 

with that presented here. 
Both the papers cited in the preceding paragraphs are restricted to the discussion 

of the qualitative aspect of possibilistic reasoning, so the mechanisms described there 
cannot represent quantitative measures directly. On the other hand, another logic similar 
to QML is proposed in [8]. The logic is called lattice-based graded logic. In that 
logic, the modal operators [c] are formed for all c from a lattice structure instead 
of the interval [0, 11, so the possibility distribution r, in the semantics for QML is 
generalized to L-fuzzy sets [ 231 in graded logic. The graded logic is more general than 

QML in some rough sense. lo Though the g raded logic cannot be fitted into the present 
framework completely since the semantics used here is restricted by using [ 0,l ]-valued 
possibility distributions, we can easily imagine how to generalize QPL to the lattice- 

based case. However, it is not clear yet how the Dempster rule can be generalized for 
the definition of lattice-based conditional possibility distributions because we lack the 
division operation in a lattice. Thus, how to incorporate the lattice-based multimodal 
logic into the present framework remains an interesting theoretical problem. 

It is also interesting to compare the present framework with that proposed by Boutilier 
[ 3-61. He introduces the logic CO whose syntax is the extension of propositional 

language by two modal operators q and 0 and a CO model is a triplet (W, R, V), where 

R is a transitive and connected binary relation on W. The truth set of 5 f is defined by 

‘) It is suggested by an anonymous referee that our work is much connected to a paper by Dubois and Prade 

in ( 101. However, unfortunately, we could not get the cited book in time when the final version of this paper 

is finished, so the comparison of their results with ours will not be included here. 

“r This is not exactly true since the lattice structure in graded logic is required to be finitely generated while . . 
the interval [ 0, 11 is not. 
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Since R is a ranked relation, it is apparent that a PL model (W, R, V) can be changed 
into a CO model by letting xRy iff n-(x) < r(.v) for all X, y E W, and vice versa for 
finite models. Thus the CO semantics is an absolute one. Furthermore, CO logic only 

allows qualitative wffs. In particular, ,f 3 g in QPL can be written as I? (g > Of), 

where ; f denotes 6 ,f A Of. 
An interesting development is that probability can be introduced into a CO model 

so that an alternative way to combining qualitative and quantitative approaches for 
uncertainty reasoning is provided [6]. The resultant model is called counterfactual 
probability model (CPM). A CPM model is a tuple (W, T, K,u) where (w r, V) is just 
a PL model and p is a probability measure on W. For any wff f E C, define Pi(f) as 

the set of most possible f-worlds. That is, w E P/M(~) iff w k f and for all u E W, if 
M k ,f. then 7~( W) 3 z-( 14). Then the counterfactual probability of g given f is defined 

as 

p(g T f) = APl(.f) n 14) 
k4PQ.f)) 

The difference between CPM logic and LCP is that possibility distributions serve only 
qualitative purpose in CPM while probability is not considered in LCP at all. Therefore, 
how to add probability to LCP is still an open question. This may be a combination of 
LCP models and those proposed by Fagin and Halpern for probabilistic reasoning [ 181. 

In [25], a temporal logic essentially equivalent to CO, called MTL* is proposed, 

where the modal operators 0 and 0 are replaced by H and 6 respectively. Thus, in the 

logic, cf means that in the present or future. f always holds, while Hf means that in 
the past, f always holds. A comparative structure, as they call it, is just a many-valued 

CO model written as (W <, V), where < is a ranked relation and V is a truth assignment 

V : W x PV + 7 with the truth value set 7 = (0, l/n, 2/n,. . , I}. The truth valuation 
V is extended to the whole temporal language by the following equations: 

V( w, Hf) = inf V( u, f), 
I, .c II 

V( w, df) = inf V( u, f). 
w<rr 

The definition of QPL wff .f 3 g in terms of temporal operators is the same as above 
by using CO modal operators. Therefore, MTL* may be seen as a many-valued version 
of CO. Its semantics is thus absolute and qualitative in the reasoning about uncertainty. 
However, it possesses the capability of quantitative reasoning about vagueness or partial 
truth by its many-valued semantics. The addition of many-valued aspects to LCP will 
be a worthwhile research topic. 

In [ 281, finite CO models are used to construct a modal interpretation for possibility 
theory. They consider a finite CO model (M, R, V) with the cardinality of W being IZ. 
Then for any f E C, the function n : C + [0, I] defined as 
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is shown to be a possibility measure and dually the function 

NM(f) = #(I ofl) 
n 

is a necessity measure, where if(A) denotes the cardinality of A. Indeed, since R is a 

ranked ordering, we can easily get a possibility distribution 7r : W + [O,ll by 

and it is clear that ZIM and NM are the possibility and necessity measures associated 

with rr. In fact, we use the result implicitly in 
VN, where we claim that a finite p-model can 

(see Lemma 5 (2) ) . The result here provides a 

tion. 

proving the equivalence of QPL and 
be constructed from a finite s-model 

concrete technique to such construc- 

7. Conclusion 

We have proposed a uniform logic that can reason about quantitative and qualitative 

uncertainty based on possibility theory. Instead of combining QPL and QD in a modular 
way, we use Dempster’s conditioning rule to provide the semantics for the conditional 
necessity formulas so that we can also reason about the conditional possibility and neces- 
sity measures quantitatively. We show that sublogic relations hold between the different 
qualitative and quantitative logics appeared previously in the literatures. The general 
framework is then shown to be useful in formulating nonmonotonic and similarity-based 

consequence relations. 
In this concluding section, we emphasize again that the shift of absolute seman- 

tics from possibilistic reasoning to LCP plays the key role in our work. The seman- 
tic shift facilitates the epistemic or doxastic interpretation of necessity measures and 
justifies the use of nested modalities. The use of nested modalities improves the ex- 
pressive power of the original PL, as our examples show. This also makes it easy 

to represent defaults about uncertain beliefs when applied to nonmonotonic reasoning 
and to express the properties of similarity relations when applied to graded reason- 
ing. 

Because the main concern of this paper is a uniform semantic framework, we do not 
develop a proof theory for LCP However, we exhibit an axiomatic system for LCP in 
the appendix. The soundness of the system can be readily constructed. However, the 
completeness is not established yet. The main difficulty lies in the infiniteness of the 
language. First, the compactness theorem has failed in QML [34]. We can easily find 
an infinite set of wffs that is unsatisfiable and each of its finite subsets is satisfiable, so 
we will only try to prove that S k f iff S t f when S is finite. Then the techniques 
for proving the completeness of conditional logic [7] can be adopted. However, the 
numerical characteristic of possibility distribution adds further complexity, so it may be 
necessary to combine the method provided in [ 181. The details of the proof will be left 
for further research. 
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Appendix A. An axiomatic system for LCP 

This is a modification of Burgess’ system [ 71. In the following presentation, we will 

write c A d instead of min(c, d) for c. d E 10. I 1. 

( I ) Axiom schemata: 
(a) All instances of propositional tautologies. 
(b) Inequality constraints: 

(i) Monotonicity: 

f’ Li ,q __\/ f‘ ILL ,y j 1‘ (‘ ;> (1. 

(ii) Dichotomy: 

.++ <S 1, ,f’ L-L ,q. 

(iii ) Boundary: 

(c) Reflexivity: 

((8 ‘.f 3 (,f u -1.) 
(d) Right and: 

(e) Right weakening: 

(f) Rational monotony: 
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(f@+g) * (f”“> 3 (fhg%h). 

(g) Left or: 

(fY+h) A (&Ah) 3 (f&s) 1 

(fe+h) A px+h) > (fVg”““Ih). 

(h) Dempster’s conditioning: 

(fxg) A (j-A$+“) > (f"d'gnh), 

(j%g) /i (fA&h) > (j-&h), 

(j-k&) A (f/yg%h) > (f"lgAh). 

(i) Nonvacuity: 

(1)T. 

(2) Inference rules: 
(a) MP: 

ffx. 
g 

(b) RPE: 

fg=h 

fo’ 

where f( h/g) is a result of replacing some subformulas of f of form g by 
h. 
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