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Abstract 

We present a novel method for building ABSTRIPS style abstraction hierarchies in planning. The 
aim of this method is to minimize search by limiting backtracking both between abstraction levels 
and within an abstraction level. Previous approaches for building ABSTRIPS style abstractions 
have determined the criticality of operator preconditions by reasoning about plans directly. Here, 
we adopt a simpler and faster approach where we use numerical simulation of the planning 
process. We develop a simple but powerful theory to demonstrate the theoretical advantages of 
our approach. We use this theory to identify some simple properties lacking in previous approaches 
but possessed by our method. We demonstrate the empirical advantages of our approach by a set 
of four benchmark experiments using the ABTWEAK system. We compare the quality of the 
abstraction hierarchies generated with those built by the ALPINE and HIGHPOINT algorithms. 

1. Introduction 

Abstraction is a powerful heuristic for tackling combinatorial complexity. Informally, 

it can be described as the process of mapping a representation of a problem (often 
called the “ground)‘, or “concrete”, representation) onto a new representation (often 
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called the “nbstruct” representation ) which is simpler to handle [ 71. This process can 
be iterated to give a hierarchy of abstract spaces. The aim of abstracting a problem is 

to factor the search space into a set of smaller subspaces, ordered hierarchically by the 

amount of detail within them. We can then search locally within each of these spaces. 
We reline the solution between levels by patching the steps which do not go through. 
Abstraction may not. however. always reduce runtime (for example, see [ 21). Whilst 
the various overheads (e.g. generating the abstract space) usually have a minor impact 
[ 61. “thrashing” between and within abstraction levels can result in poor performance. 

For instance, in order to prove a goal at one level, it may be necessary to undo goals 
satisfied at the upper levels. This causes backtracking between levels. Such backtracking 

can increase runtime exponentially [S]. Determining a good abstraction is therefore vital. 
The goal of this paper is to propose a general methodology for building abstractions 
automatically which minimize search by limiting both the amount of backtracking within 

and between abstraction levels. 
The paper is structured as follows. In Section 2 we describe ABSTRIPS style ab- 

stractions and previous work in this area. We identify how ABSTRIPS style abstractions 
can reduce search in Section 3. WC then define the theoretical properties that a method 
for building such abstractions should possess in Section 4. In Section 5, we propose 
a simple family of methods for building A~STRIPS style abstractions based upon two 
simple operators for adding together criticalities. In Section 6 we prove that this family 

of methods has all the theoretical properties identified in Section 4. We then propose 
two methods for building abstractions based upon this framework in Section 7. We 
illustrate how our methods compute criticalities by means of four examples in Section 
8. We show the empirical advantages of our methods in Section 9 using a set of four 
benchmark experiments with the ABMAK system. In each experiment, we compare 

the quality of the abstraction hierarchies generated with those built by two state of the 
art algorithms. Finally, we end with conclusions (Section 10). Some parts of this paper 

appear in [3]. 

2. ABSTRIPS 

A planning problem is defined by the goal to be achieved, a set of facts true in the 
initial state, and a set of operators. Operators are described by a set of preconditions 
(i.e. a set of conditions which must be true for the operator to be applicable) and a 
set of effects. Effects are divided into adds (i.e. a set of facts which become true) and 
deletes (i.e. a set of facts which become false). In addition, one effect is labeled as 
the primary effect of an operator. Unsupervised preconditions are those that are not the 
effects of any operator. See Appendix A for some examples of operators. 

In ABSTR~PS style abstractions, operator preconditions are ranked according to a 
criticality [ 121. The ith abstract space is constructed by ignoring preconditions with 
rank i or less. To refine a plan at the ith level, we need to achieve those preconditions 
of rank i (for a formal definition of ABSTRIPS style abstractions using Green’s situation 
calculus [ 81 see [7] ). ABSTRIPS style abstractions can give an exponential speed-up 
in the time needed to build a plan [ 6,9 1. However, as mentioned in the introduction, 
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if we have to backtrack, abstraction can greatly increase the time to find a plan. The 
“downward refinement property” [ 1 ] removes the need to backtrack between abstraction 
levels as every abstract plan can be refined to a concrete plan. Unfortunately, relatively 
few abstraction hierarchies possess this property. In practice, we try to build abstractions 

which limit the amount of backtracking between abstraction levels but do not preclude 
it altogether. 

Previous approaches for building ABSTRIPS style abstractions have reasoned about 

plans directly. For example, in ABSTRIPS [ 121 low criticalities were assigned to those 
preconditions which can be achieved with short plans assuming all higher criticality 
preconditions are true. More recently, ALPINE reasoned about operators to build ab- 

straction hierarchies which satisfy the “ordered monotonicity” property [ lo]. In [ I], 
Bacchus and Yang show that backtracking between abstraction levels may be needed 
with such abstraction hierarchies. To reduce such backtracking, they propose the HIGH- 

POINT procedure. This refines the abstraction hierarchies produced by the ALPINE 

procedure using estimates of the probability for successful refinement. The abstractions 

produced by HIGHPOINT are close to having the downward refinement property (in the 
terminology of [ 11, they are “near-DRP”) but may still cause backtracking. 

We propose here a novel method for building ABSTRIPS style abstractions which is 
both fast and simple. Instead of reasoning about plans directly, we simulate the planning 
process numerically. The simplicity of this simulation allows us to impose two simple 

“monotonicity” conditions not guaranteed by previous methods. These conditions ensure 
that harder preconditions are achieved at higher levels of abstractions. This greatly limits 
the amount of backtracking. To test our method empirically, we perform the complete 

set of experiments presented in [ IO] and [ 1 I. On each of these benchmark problems, 
our method gives hierarchies which offer superior performance to those generated by 
both the ALPINE and HIGHPOINT algorithms. We have not yet found a problem domain 

on which our method offers worse performance. 

3. Minimizing search 

To understand how abstraction can reduce search in planning, it is helpful to visualize 

the search space associated with a planning problem (see [5] for a longer discussion 
about the effects of ABSTRIPS abstractions on a planning search space). The search 
space can be seen as a directed graph where nodes correspond to states and arcs 

correspond to operator applications. A planning problem is then to find a path from an 
initial node to some target node. In what follows, we confuse nodes with states, arcs 
with operator applications and paths with plans. The search space is a graph as there is 
usually more than one path between two states. 

If we delete preconditions then we construct a new abstract search space. Finding a 
plan in the abstract search space is typically easier than finding it in the ground space as 
there is no need to check for the deleted preconditions. To refine a plan, we must satisfy 
the deleted preconditions. Consider a single precondition, p deleted from an operator 
op (our argument will generalize to multiple preconditions). Suppose our plan applies 
the operator to a given state s. There are two possibilities. If p holds in s then we are 
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done. Alternatively if p does not hold then we need to find a plan from s to a new state 
in which p holds. In addition, we hope that we do not clobber any other preconditions 
along the way. Abstraction thereby restricts search in the ground space to just the subset 

of paths which pass through s. 
If we cannot find a plan to satisfy the deleted precondition p, then we will have 

to backtrack to the abstract space and find an alternative path between the initial and 
target nodes. If there are many alternative paths, we can spend exponentially more time 
backtracking than planning without abstraction in the original ground space. To limit 

the amount of backtracking between and within abstract spaces, we therefore want to 

ensure that the hardest preconditions are satisfied as soon as possible. In other words, 

we abstract the hardest preconditions in just the most abstract space. This agrees with 

Sacerdoti’s original proposal. 

. . literals omitted will be those that are “details” in the sense that a simple plan 

can be found to achieve them once the more “critical” literals have been achieved 

. [121. 

However, unlike Sacerdoti, we do not consider short plans to be “simple” plans. A 
classic example is found in the manufacturing domain of [ I 1, 131 (see Sections 4 and 
9.4 for more details). The goal of shaping, drilling and painting a steel object has a 
short plan but this is difficult to find. Simple plans are those that are easy to find. As it 

is usually too expensive to run a planner exhaustively and compare the cost of finding 
different plans, we need some method for approximating the cost of finding a plan. In 
the rest of this paper, we outline a methodology for doing this based upon simulating 
the planning process numerically using “criticality functions”. 

4. Criticality functions 

To make finding the cost of plans easier. we make two simplifying assumptions. 
First, we assume that we are building abstractions for a changing world. We therefore 
consider just the operators, ignoring the specific goal to be achieved and the facts which 
happen to be true in the initial state. Our methods could, however, be generalized to take 
into account both the goal and those facts true in the initial state. Second, to simplify 
the numerical simulation, we apply a “granularity” abstraction [7] which deletes the 
arguments to literals. Again, this simplification could be lifted if it proved necessary 
for a particular domain. It is not necessary in any of the benchmark problems tested in 
Section 9. 

Given a set of operators, Ops, we compute the criticality of the operator precondition, 
p, by successive approximation. At the nth iteration, the criticality function C(p, n) 
returns the numerical criticality of p. This converges to a limiting value as we iterate n. 

The intuition is that the easier it is to achieve p, the smaller the numerical criticality of 
p should be. We collect together the limiting numerical criticalities of the same value 
to give the sets Si. We then order these sets using less than, giving Se < . . < S,,. 
Following [ 121, the criticality of a precondition, p, is the index i such that p E S;. In 
the ith level of abstraction, we drop all preconditions of criticality i or less. We thereby 
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achieve the hardest preconditions in the most abstract space. 
We impose various restrictions on criticality functions. There are several obvious 

computational properties required like totality (every precondition must have a single 
criticality) and convergence (numerical criticalities must converge to some limiting 

value). There are also various domain dependent properties. For example, criticality 
functions should be order independent. That is, they should not depend on the order we 
present the operators or their preconditions. This is why we described operators and their 

preconditions as sets. Criticality functions also ought to treat symmetric preconditions 
symmetrically. If swapping the precondition p for the precondition 4 merely reorders 
the operators, then p and q are said to be symmetric preconditions. 

Definition 1 (Symmetry). If p and q are symmetric preconditions then C (p, n) = 

C(q,n). 

Whilst this property (and indeed all the following properties) are only actually re- 

quired of the final limiting numerical criticalities, insisting that the property holds at 

each iteration n is a small burden and makes proofs much easier. We also demand that 
criticality functions treat equivalent effects equivalently. Let Pre(op) be the precondi- 
tions of the operator op and Ops(p) be the subset of operators which have p as primary 

effects. We say that a set of operators, S, is equivalent to a set of operators, T, iff 
(SI = ITI (that is, the sets are the same size) and for any opl E S there is some 0~2 E T 
with Pre(opl ) = Pre(op2) and vice versa. 

Definition 2 (Precondition equivalence). If Ops(p) is equivalent to Ops(q) then 

C(p,n) =C(q,n). 

To reduce backtracking, we demand that the numerical criticality of a precondition 
decreases with the number of operators which achieve it (operator monotonicity) , and 
increases with the number of preconditions to operators which achieve it (precondition 
monotonicity). 

Definition 3 (Operator monotonicity). If Ops(p) is equivalent to a subset of Ops(q) 
then C(p,n) 2 C(q,n). 

We say that a set of operators, S, is subsumed by a set of operators, T, iff ISI = ITJ 
and for any opl E S there is some 0~2 E T with Pre(opl ) 2 Pre(op2). Note that if S 
is equivalent to T then S is subsumed by T and T is subsumed by S. 

Definition 4 (Precondition monotonicity) . If Ops( p) is subsumed by Ops( q) then 

C(p,n> b C(q,n>. 

If operator monotonicity is satisfied, hard preconditions (those that are primary ef- 
fects of few operators) will be proved in the higher abstraction levels. This will tend 
to minimize backtracking. Similarly, if precondition monotonicity is satisfied, hard pre- 
conditions (those primary effects of operators with many preconditions) will be proved 



in the higher abstraction levels. Again this will tend to minimize the need to backtrack. 
Precondition and operator monotonicity both imply precondition equivalence. 

Theorem 5. Precondition or opemtor monotonicity implies precondition equivalence. 

Proof. In the first case, assume precondition monotonicity holds. If Ops( p) is equivalent 
to Op.~(q) then Ops(p) is subsumed by OpsVq). Hence. by precondition monotonicity, 

C(p,n) > C(q,n). But by a symmetric argument, C(q,n) 3 C(p,n). Thus C(p,n) = 

C(q, n). And this satisfies precondition equivalence. A similar argument holds in the 

second case for operator monotonicity. fl 

ALPINE and HIGHPOINT generate abstraction hierarchies which fail to satisfy these 
properties and therefore cause unnecessary backtracking. Consider, for example, the 
manufacturing domain of [ I 1, I.3 1 listed in Appendix A. There are three operators which 
shape, drill and paint objects. The lirst operator has a single precondition Object and 

has Shaped as its primary effect. The second operator also has the single precondition 

Object and has Drilled as its primary effect. The third operator paints a steel object. 
It has Object and Steel as preconditions and has Painted as its primary effect. 

Precondition monotonicity ensures that the numerical criticality of Painted is greater 
or equal to that of both Shaped and Drilled. This agrees with our intuitions, as 

Painted requires an extra precondition. ALPINE, by comparison, assigns Painted the 
lowest criticality. As we will see in Section 9, this can result in a large amount of 

backtracking. 
Note that the trivial criticality function which assigns every precondition the same 

numerical criticality satisfies every one of these properties. This corresponds to no 
abstraction levels. We therefore maximize the number of abstraction levels by treating 
the “greater than or equal to” relations derived from the monotonicity properties as 
“strictly greater than” relations wherever possible. There are many nontrivial functions 
which satisfy these properties. However, these properties are often sufficient to rank 
numerical criticalities. For example. the abstraction hierarchies generated by the methods 

proposed in the next section for the examples of Section 9 follow immediately from 

these properties. 

5. Additive criticality functions 

We can identify a family of solutions by interpreting C (p, n). the numerical criticality 
of the precondition p, as the difficulty of finding a plan for p of depth 0 to II. To simplify 
presentation, we also introduce the numerical criticality of the operator op, C(op,n) 

for II > 0. This is interpreted as the difficulty of finding a plan of depth I to n which 
ends with application of the operator op. Since the plan contains an application of op, 

it must be at least of depth I. 
We now define a family of additive criticality functions based upon this interpretation, 

In the step case, the difficulty of finding a plan for p of depth 0 to FZ is a function of the 
difficulty of finding a plan of depth 0 and of the difficulty of finding plans of depth 1 
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to n ending in an operator that achieves p. And the difficulty of finding a plan of depth 
1 to n ending in the operator op is a function of the difficulty of finding plans of depth 
0 to n - 1 for the preconditions of op. In the base case (that is, at the 0th iteration), 

we assign all preconditions the same numerical criticality, as. 
Our definition of an additive criticality function hinges upon two “additive” operators, 

@ and $, used to add together numerical criticalities. The operator @ determines how 
the criticality of a precondition is computed as a function of the criticalities of the 

operators that achieve it. By comparison, the operator $ determines how the criticality 
of an operator is computed as a function of the criticalities of its preconditions. 

Definition 6 (Additive criticality functions). 

(1) C(P,O) =ao; 

(2) C(p, n) is nonnegative; 
(3) there are two associative and commutative operators, @ and @, with 

Ctp,n) =C(p,O) @C(opt,n) @...@C(Opn,,fi), 

C(op,n) =C(prel,n- 1) $...@C(prej,n- l), 

where op; E Ops(p) and pre; E Pre( op) and for y < z, 

X@Y>X, x@yVx, 

xCBy<xCBz, x@y<x@z. 

Properties ( 1) and (2) state that every precondition is given the same initial numer- 

ical criticality, aa 2 0. This condition can be weakened to allow different initial values 

provided these initial values satisfy order independence, symmetry and precondition and 
operator monotonicity. Property (3) is then sufficient to guarantee all the required prop- 
erties like precondition and operator monotonicity continue to hold at every iteration n. 

For precondition monotonicity to hold, an operator is harder if it has more precondi- 

tions. Since @ is the operator for “adding” the numerical criticalities of preconditions to 
an operator, we therefore require that x@y > x. And an operator is easier if it has easier 

preconditions. We therefore also require that y < z, implies x CD y < x CB z. For operator 
monotonicity to hold, a precondition p is easier if we have more operators to achieve it. 
Since @ is the operator for “adding” the numerical criticalities of operators that achieve 

p, we therefore require that x @ y 6 x. And a precondition is easier if the operators that 
achieve it are easier. We therefore also require that y < z implies x 8 y 6 x ~9 z. 

6. Theoretical properties 

We now show that additive criticality functions satisfy the theoretical properties iden- 
tified in Section 4. By simulating the planning process numerically it is easy both to 
identify and to prove these properties. It is more difficult to guarantee such properties in 
previous approaches as they reason directly with plans. To simplify proofs, we introduce 
some notation for repeated application of @ and @. If the set S contains the elements, 

YI up to Y,,, then 



To show convergence, we first prove that, with an additive criticality function, the 
numerical criticality of preconditions is monotonically decreasing. 

Proof. By induction on II. In the base case. 

Thus C(/>, I) < c(p,()) 
In the step case. 

By the induction hypothesis. 

C(q,n) < C(q,n - I) 

By repeated application of such hypotheses and the fact that y < z implies x@y < x@z, 

qE Prc ( “,’ ) i/E t+P( “{I ) 

By repeated application of this result and the identity, y < z implies x ‘@ y < x @ z, 

Thus, c(p,rz + i) < c(P,fl). r 
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Numerical criticalities computed by an additive criticality function are therefore 
bounded. 

Theorem 8. C(p,n) E [o,aol. 

Proof. By induction on n. In the base case, C (p, 0) = ao. In the step case, the numerical 

criticality is monotonically decreasing. Hence C(p, n+ 1) 6 C(p, n) < ao. But C(p, n) 

is nonnegative by definition. Hence C(p,n) E [O,aol. q 

Note that both ends of this bound can be achieved. 
As a simple consequence of the last two theorems, the numerical criticality converges 

to a limiting value irrespective of the operators. 

Theorem 9. C ( p, n) is convergent. 

Proof. Any bounded monotonically decreasing sequence is convergent. 0 

Just as importantly as convergence, additive criticality functions satisfy the other 
properties identified in Section 4. They are order independent and symmetric since @ 
and @ are associative and commutative operators. Additive criticality functions also treat 
equivalent preconditions equivalently. 

Theorem 10. C (p, n) is precondition equivalent. 

Proof. By cases. If II = 0, all preconditions are assigned the same numerical criticality, 
ua. Equivalent preconditions therefore have the same numerical criticality. If n > 0, we 

assume that p and 9 are equivalent preconditions. 

C(p,n> =a0 @ @ C(r,n- 1) 
wEm(P) ( r E Prr ( op ) > 

-a0 @) 
WEOP.~(9) 

( @ C(r,n-- 1)) 
r-ePw(op) 

=C(q,n). 0 

Additive criticality functions also satisfy both the monotonicity properties. To simplify 

the inductive proof, we introduce a more general monotonicity property that subsumes 
both operator and precondition monotonicity. 

Definition 11 (Monotonicity). If @s(p) is subsumed by a subset of Ops( q) then 

C(p*n) 2 C(q,n). 

The precondition p is more difficult to achieve than the precondition q as there are 
fewer operators for achieving p compared to q, and the operators for achieving p each 
have more preconditions. Trivially, monotonicity implies both operator and precondition 
monotonicity. 
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Theorem 12. C (p, n) is monotonic. 

Proof. The proof uses induction on 12. The base case is trivial as all preconditions have 

the same numerical criticality, au. In the step case, we assume that @s(p) is subsumed 

by a subset of @s(q). Then 

C(p,n+ I) =a0 @ 

i 
@ c(r,fz) . 

f’/‘EOpY( ,’ 1 rEPret “,‘J 1 
We compare this term for term with 

C(q,n+l) =a0 @ ( @ C(r,n) 
r,p EO/‘S( r, ) rlz PreC “,’ ) ) 

As Ops(p) is subsumed by a subset of @s(y), IOps(p)) < lops(q)/. Hence C(p,n+ 
I ) has fewer terms in the @ repeated sum than C( q, II + 1). As Ops(p) is subsumed 
by a subset of Ops( q), the preconditions of an operator achieving p are a superset of 
the preconditions of one of the operators achieving q. The common terms in the @ 
repeated sum of C(p, n+ I ) thus contain more repeated @ terms than the corresponding 

terms in the repeated @ sum of C (q, II + 1) . Thus, by repeated application of x $ y 2 
X, the common terms in the repeated $3 sum of C (p, n + 1) never have a smaller 

numerical criticality than the corresponding terms in the repeated @ sum of C( q, n + 1) 

With fewer terms and common terms having a larger numerical criticality, by repeated 

application of x 3 x @ y and v 3 z implying x @ y 3 x @ z, the repeated 8 sum with 

fewer and larger terms never has a smaller numerical criticality. Hence, C(p, n + 1) 3 

C(q,n + 1). 0 

We could define even more general properties which, instead of comparing the pre- 

conditions to operators, merely compared the numerical criticalities of the preconditions. 
For example, we say that a set of operators. S, is weakly equivalent to a set of operators, 
T, iff for any opl E S there is some opz E T with the numerical criticalities of Pre(opl ) 
equal to the numerical criticalities of Pre( 0~2 ) and vice versa. Equivalence implies weak 
equivalence but not vice versa. Similar definitions could be made for weak subsumption, 
and weak precondition and operator monotonicity. All the theorems proved in this sec- 
tion would still hold under such more general definitions as the proofs depend just on 
the value of the numerical criticality of a precondition. Substituting a precondition for a 
different one of the same numerical criticality will therefore leave the result unaffected. 
However, as we demonstrate in the next sections, we do not need such a generalization 
to build good abstraction hierarchies for our benchmark experiments. 

7. Two solutions 

To calculate criticalities, we now merely need to decide on a p&r of associative 
and commutative operators @ and @ for “adding” criticalities that satisfy the simple 
properties of an additive criticality function. Since 8 and @ are commutative, x@y < x 
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means that x @ y < min(x, y) and x @ y 3 x means that x @ y 2 max( x, y). One of 
the simplest solutions treats these inequalities as equalities. That is, we define 

x@y=min(x,y), 

x@y=max(x,y). 

The numerical criticality of a precondition is therefore the same as that of the easiest 
operator that achieves it. And the numerical criticality of an operator is the same as that 

of its hardest precondition. As min and max satisfy property (3) of the definition of 
an additive criticality function, this solution has all the required theoretical properties 
like operator and precondition monotonicity. Unfortunately, it is not a very interesting 

solution as C (p, n) = ae for all p and fr. We can obtain non-identical limiting criticalities 
if we allow different initial values. However, the final limiting criticalities will always 
have limited diversity as they must be a subset of the initial values. To get nontrivial 

solutions, we need more complex operators for @ and $. In Sections 7.1 and 7.2 we 
propose two novel solutions. The first is based on an analogy with electrical resistance 

whilst the second uses ideas from probability theory. We demonstrate that these solutions 
are empirically useful in Section 9. 

7.1. The RESISTOR model 

Our first solution is based upon the notion of “resistance to change” using an analogy 

with electrical resistance. This solution first appeared in [ 31. To capture the difficulty of 

achieving preconditions, we model them like resistors. The preconditions to an operator 
act like resistors in series. Increasing the number of preconditions makes an operator 
harder to apply. Treating operator preconditions like resistors in series ensures precondi- 
tion monotonicity is satisfied. Operators with the same primary effects act like resistors 
in parallel. Increasing the number of operators with the effect p reduces the difficulty 

of achieving p since we have parallel paths for achieving p. Treating operators with the 
same effects like resistors in parallel ensures that operator monotonicity is satisfied. We 
shall refer to this as the RESISTOR model for computing criticalities. 

As with serial resistors, the numerical criticality of an operator is thus simply the sum 

of the numerical criticalities of its preconditions. We therefore define 

xtBy=x+y. 

As with electrical resistors in parallel, the numerical criticality of a precondition is 
thus simply the parallel sum of the numerical criticalities of the operators with this 
precondition as primary effect. We therefore define, 

-=1+L. 1 

X@Y x Y 

Or equivalently, 

1 
x@y=-. 

i+f 
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A simple induction shows that. 

The 

I 

XI c? ,cG x,, 
=I+. 

I 
I 

RESISTOR model therefore satisfies the following equations. 

C(p, 0) = no. (1) 

I I 
-= 
C(p, n) C(P, 0) 

(2) 

C(op,n) = c C(P,tl- 1). 
,’ E Pr? ( 0,’ 1 

(3) 

Note that a0 always factors out of the final numerical criticalities. The recursive nature 

of these definitions naturally leads to an iterative procedure for computing numerical 
criticalities. The numerical criticalities defined by these equations are always rational 

numbers. Whilst the limiting value of a rational sequence can be irrational, in practice the 
limiting values are usually rational. For efficiency, we compute the numerical criticalities 

to some predetined accuracy and terminate computation when an iteration produces no 

change to the values. 
We now show that this model is indeed an additive criticality function. It therefore 

satisfies all the theoretical properties identified in Section 4 like convergence and operator 

and precondition monotonicity. 

Theorem 13. The RESISTOR tmdel is atI udditive criticality function. 

Proof. We need to verify that @ and @ satisfy the definition of an additive criticality 
function. Property (1) holds by definition. Property (2) holds as numerical criticalities 

correspond to resistances, and so cannot he negative. We thus merely need to check 
property ( 3 ) . 

The operator 8~1 is trivially an associative and commutative operator, and x @ y = 
x+vax.Ify<z thenx~y=.r+~~x+,=x~~. 

The operator @ is trivially a commutative operator. It is an associative operator since 

As J’ cannot be negative, x ;r~ y < .r. In addition, if y 6 ; then 1 /y > 1 /z and 

Previous methods have conventionally given unsupervised preconditions, those that 
cannot be changed by any operator, the maximum criticality. By Eq. ( I), unsupervised 
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preconditions are assigned the numerical criticality aa at n = 0. By Eq. (2), their 
numerical criticality remains at a0 for all subsequent n. In Section 6 we proved that aa is 
the largest numerical criticality possible for an additive criticality function. Unsupervised 

preconditions are therefore assigned the maximum criticality as required. 

Since the RESISTOR model is an additive criticality function it converges, Indeed 
convergence is typically very rapid. In the domains studied in Section 8, each iteration 
adds approximately another decimal digit of precision. This suggests that the difference 
between criticalities at each iteration decreases by at least a constant factor. To explore 
this analytically, we developed a simple model of the RESISTOR model in which each 

operator has m preconditions (that is, for any op, IPre(op> ( = m) and each precondition 

can be achieved by 1 distinct operators (that is, for any p, lops(p) / = 1). This gives an 
and-or search tree in which m is the and-branching and 1 is the or-branching. Under these 
assumptions, the numerical criticality of a precondition converges rapidly. In Appendix 

B, we show that the difference between successive iterations is 0( (Z/m)n) for 1 < m, 
0( 1 /n2) for 1 = m, and O( (m/Z)“) for I > m. This supports our empirical evidence that 
convergence is usually very rapid, and that the difference between successive iterations 

tends to decrease by at least a constant factor with each iteration. 

7.2. The PROBABILITY model 

Our second solution is based upon a probabilistic interpretation of C(p, n). We 

interpret C (p, n), the difficulty of a precondition p, as the probability that there does 

not exist a plan for p of depth 0 to rz. As a simplifying assumption, we assume that 
these probabilities are statistically independent events for different p and n. Since the 

model is based on probabilities, we assume that the initial numerical criticality a0 6 1. 
The preconditions to an operator behave probabilistically like conjunctive events since 

each must be simultaneously true. Increasing the number of events/preconditions in- 
creases the probability of a plan not existing with this operator. By comparison, operators 

with the same primary effects behave probabilistically like disjunctive events. Increasing 
the number of events/operators with the same primary effect p reduces the probability 

of a plan not existing that achieves p. We shall refer to this as the PROBABILITY model 
for computing criticalities. 

As with independent and disjunctive events, the probability that no plan exists for a 

precondition is simply the product of the probabilities that no plan exists for any of the 
operators which achieve it. We therefore define 

x@y=x.y. 

As with independent and conjunctive events, the probability that no plan exists for an 
operator with two preconditions is simply the sum of the probabilities that no plan exists 
for the two preconditions less their product. We therefore define 

x@y=x+y--x.y. 

Or equivalently, 

(l-x@y)=(l-x).(1-y). 



This equation demonstrates the duality between two conjunctive events not occurring 
and two disjunctive events occuring. A simple induction shows that 

(I-x,& &X,,)=fl(l -.r,) 

I 

The PROBABILITY model therefore satisfies the following equations. 

C(p,O) =c10 E [O. I]. (4) 

C(p,n) = C(p,O) fl C(op.rr). (5) 
r?/lEO/r\i,‘, 

I - C(op,n) = n (I ‘- C(p,rz - I,). (6) 
/‘E P,_c,l “,I 1 

We again prove that rhis is an additive criticality function. It therefore satisfies all 

the theoretical properties identified in Section 4 like convergence and operator and 

precondition monotonicity. 

Theorem 14. The PROBABILITY 1wxie1 i.5 (~1 additive criticality function. 

Proof. WC need to verify that 1% and E satisfy the definition of an additive criticality 

function. Property ( I) holds by definition. Property (2) holds as numerical criticalities 
correspond to probabilities and so cannot be negative. We thus merely need to check 

property (3). 
The operator C$ is trivially an associative and commutative operator with x @ y = 

x.~<.xasO<~~< l.Inaddition,ify<,- thenx,~.y=x.?,~x.z=x~e. 
The operator @ is trivially a commutative operator. It is also associative as 

xcg((?~@~)=x+(~~i;;) -.r’(y8~~) 

=I+(?‘+, -,Y.z)-.r~(p+,: -J).Z) 

=(.r+v--.r~~)+; -i.4-+!‘-.r.,Y)‘: 

=(xcf?‘) ‘ti,. 

In addition, .Y ~3 J = _Y + y -- .r y = .Y + y i I - s) > x as ( I - x) 3 0. And if y < z 
then.r@y=x-+!.(I -.r) <.ri:.(l --x)=x$z. 0 

By Eq. (4), unsupervised preconditions are assigned the numerical criticality a0 at 
II = 0. By Eq. (5), their numerical criticality remains at a0 for all subsequent II. 
Unsupervised preconditions are again assigned the maximum numerical criticality a0 as 
required. 

One disadvantage of the PROBABILITY model over the RESISTOR model is that the 

!?RO5ABILITY mode! is more computationally expensive to compute. In addition, by 
repeatedly taking differences, errors may propagate more easily in the computation. In- 
terestingly, the initial value an does not factor out of the calculations. Because of this 
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sensitivity to initial values, this model may be most useful when we allow precondi- 
tions to take different initial numerical criticalities, perhaps according to an estimate of 
their probability of being true in the initial state. In this paper, we compute numerical 

criticalities in the absence of any domain knowledge. We set a0 = l/2 to reflect our 
ambivalence about whether a given precondition holds in the initial state. With this 

value, the PROBABILITY model gave very similar results to the RESISTOR model on 

the benchmark problems. 
Since the PROBABILITY model is an additive criticality function it converges. Con- 

vergence is again typically very rapid. In the domains studied in Section 8, each iteration 
adds at least another digit of precision. To explore this analytically, we used the same 
simple model as before in which each operator has m preconditions (that is, for any op, 

IFre(op)l = ) d m an each precondition can be achieved by 1 distinct operators (that is, 
for any p, l@(p) 1 = I). In Appendix B, we show that there exists p < 1 and m such 

that for n 3 m, 

IC(p,n + 1) - Cohn)I 
IC(p,n> -C(p,n - l>l < p. 

In other words, the difference between successive iterations decreases by at least a 

constant factor p with each iteration. 

8. Test examples 

We will illustrate our approach by computing the numerical criticalities for four 
benchmark domains using the RESISTOR model. The PROBABILITY model computes the 

same abstraction hierarchies as the RESISTOR model on these domains, taking a similar 
number of iterations to converge on the final numerical criticalities. For reasons of space, 
we therefore only give the computations of both the RESISTOR and PROBABILJTY 
models on the first domain. The criticalities computed on these domains are tested 
empirically in Section 9 using the AB’IWEAK system. These experiments demonstrate 

that the abstraction hierarchies computed by the RESISTOR and PROBABILITY models 

tend to minimize the amount of backtracking between abstraction levels. The operators 
for these four domains are given in Appendix A. 

8.1. Tower of Hanoi 

The representation of this well-known problem consists of a single unsupervised 
precondition Is-peg, and three predicates On-small, On-medium and On-large. There 
are three operators: one moves the large disk, another the medium size disk and the 
third the small disk. In Tables 1 and 2 we give the numerical criticalities computed 
by the RESISTOR and PROBABILITY models for the different preconditions in this 
domain. Every iteration gives approximately another decimal place of precision to the 
computation. 

We group these numerical criticalities together, and order them using the less than 
relation. Both models give the same abstraction hierarchy. On-Small is assigned the 
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Table I 
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Numerical critic&ties for the Tower of Hanoi domain using the RESISTOR model 

X c ( x3 n) /~10 

I, = 0 I, = I I, = 2 n=3 n=4 n=oO 

urlslrpervi,sed I .oooo I .oooo I .oooo I .oooo I .oooo I .oooo 

On-Large I .oooo 0.x7.50 0.8.580 0.8561 0.8559 0.8559 

On-Medium I .oooo 0.8333 OR125 0.8106 0.8104 0.8 104 

On-Small I .oooo 0.7500 0.7x3.1 0.732 I 0.7321 0.732 I 

Table 2 

Numerical criticalities for the Tower of Hanoi dornain using the PROBABILITY model 

X c’ ( x. II ) /(I,, 

!f = 0 II = I ,I = 2 li = 3 II = 4 

If,l.W/Wl~i,S~rl I .oooo I .oooo I .oooo I .oooo I .oooo 

On-Large I .oooo 0.9922 0.9894 0.9889 0.9888 

On-Medium I .oooo 0.96X7 0.9592 0.9577 0.9575 

On-Small I .oooo 0.8750 0.8597 0.8574 0.8572 

fl=Kl 

I .oooo 

0.9889 

0.9575 

0.8572 

lowest criticality of 0, On-Medium is given a criticality of I, On-Large is assigned a 

criticality of 2, and Is-peg is given the highest criticality of 3. This is in line with 
our intuitions for this domain. The operator for moving the medium disk subsumes 
the operator for moving the large disk since it is has strictly fewer preconditions. The 
large disk is therefore more difficult to move than the medium disk. By precondition 

monotonicity the criticality of On-Large is greater than that of On-Medium. Similarly 
the medium disk is more difficult to move than the small disk. On-Medium is therefore 
given a greater criticality than On-Small. 

8.2. Robot-box domain 

This domain comes from 1 I I and is a variant of the well-known ABSTFUPS robot 
domain [ 121. The robot can either carry or pull boxes between one of six rooms. The 
doors connecting rooms may be either open or closed. Closed doors may be either 
openable or not openable. A typical contiguration is given in Fig. 1. In Table 3, we 
give the numerical criticalities computed by the RESISTOR model for the different 
preconditions in this domain. The unsupervised preconditions are Connects, Is-Box, 
Is-Door, Is-Room, and Openable. As in the Tower of Hanoi domain, every iteration 
gives approximately another decimal place of precision to the computation. 

As before, we group these numerical criticalities together, and order them using the 
less than relation. Attached and Loaded are assigned the lowest criticality of 0, Open is 
given a criticality of 1, Box-In-Room is assigned a criticality of 2, and the unsupervised 
preconditions are given a criticality of 3. Again this is in fine with our intuitions for the 
domain. The unsupervised preconditions cannot be changed so are the most important. 
Getting a box into a given room is then the next most difficult state to achieve. Opening 
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Room 1 Room2 Room3 

Room6 

/ lhd6 Room4 

Door45 

Room5 

Fig. I The robot-box domain 

Table 3 

Numerical criticalities for the robot domain using the RESISTOR model 

X C(X, n)/w 

unsupervised 

Box-In-Room 

Open 

Loaded 

Attached 

n=O n= I n=2 n=3 n=4 n=m 

I .oooo 1 .oooo I .oooo I .oooo I .oooo 1 .oooo 

I .oooo 0.8000 0.7830 0.7812 0.78 10 0.7810 

I .OOoo 0.7500 0.7333 0.732 1 0.7321 0.732 I 

I .oooo 0.6667 0.6250 0.6190 0.6182 0.6182 

I .oooo 0.6667 0.6250 0.6190 0.6182 0.6182 

a door is the next most difficult task to perform. Finally, attaching and loading boxes 
have equivalent preconditions and are equally easy to achieve. 

8.3. Computer hardware 

This domain has four operators which print files, turn on devices, plug devices into 
power outlets, and transfer files onto computers [ I]. In Table 4, we give the numerical 
criticalities computed by the RESISTOR model for the different preconditions in this do- 
main. The unsupervised preconditions are CableCanReach, Functional, IsComputer, 
IsOutlet, and IsPrinter. As in the previous domains, every iteration gives approxi- 
mately another decimal place of precision to the computation. 

We group these numerical criticalities together, and order them using the less than 
relation. Loaded is assigned the lowest criticality of 0, PowerOn is given a criticality of 
1, PluggedIn is assigned a criticality of 2, Printed is given a criticality of 3 and the 
unsupervised preconditions are given the highest criticality of 4. This is again in line 
with our intuitions for this domain. The unsupervised preconditions cannot be changed 
so must be achieved in the most abstract space. The next hardest precondition to achieve 
is Printed since we must have a computer and printer turned on, and the file to print 
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Table 4 
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Numerical criticalities for the computer hardware domain using the RESISTOR model 

X C(X,n)lw 

ur~,supervised 

Printed 

PluggedIn 

PowerOn 

Loaded 

I, = 0 II = I II = 2 I, = 3 II = 4 II = 00 

I .oooo I .oooo I .oooo I .oooo I .oooo I .oooo 

I .oooo 0.8331 0.8000 0.7949 0.7946 0.7946 

I .oooo 0.6667 0.6667 0.6667 0.6667 0.6667 

I .oooo 0.6667 0.6250 0.6250 0.6250 0.6250 

I .oooo 0.6667 0.62.50 0.6190 0.6 I90 0.6190 

Table 5 
Numerical criticalities for the manufacturing domain using the RESISTOR model 

X C(X, n)lnn 

I, = 0 I, = I ,I = 2 n=OZ 

ut~.supen~iserl I .oooo I .oooo I .oooo I .oooo 

Painted I .oooo 0.6667 0.6667 0.6667 
Shaped I .oooo 0.5000 0.5000 0.5000 
Drilled I .oooo 0.5000 0.5000 0.5000 

loaded on the computer. As we must plug in a device before turning it on, PluggedIn 

is assigned a greater numerical criticality than PowerOn. Finally, as loading a file onto 
a computer is less important than getting computers and printers plugged in and turned 
on, Loaded is given the lowest numerical criticality. 

8.4. Manufacturirrg 

We return to the manufacturing domain of [ I 1, 131 in which there are three operators 

which shape, drill and paint various objects from stock. Table 5 gives the numerical 
criticalities computed by the RESISTOR model for the different preconditions in this 

domain. 
Drilled and Shaped are assigned the lowest criticality of 0, Painted is given a 

criticality of 1, and the unsupervised preconditions are given the highest criticality of 
2. The Shaped and Drilled preconditions are equivalent and should be placed at the 
bottom of the abstraction hierarchy. The Painted precondition appears above them as 
the operator for achieving it has an additional unsupervised precondition. By precondition 
monotonicity, Painted is therefore given a greater criticality. This hierarchy agrees with 
the suggestions of Smith and Peot in [ 131. 

9. Empirical results 

To demonstrate the empirical advantages of the criticalities computed by the two 
models, we ran a set of four benchmark experiments using the ASTWEAK system [ 141, 
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a state-of-the-art nonlinear planner combining AsSTRIPS style abstractions [ 121 with 
Tweak style partial order planning [ 41. In each experiment we compared the quality 
of the abstraction hierarchies generated by the RESISTOR and PROBABILITY models 

with those built by the ALPINE and HIGHPOINT algorithms [ 1, lo]. These are two 
of the best available procedures for generating abstraction hierarchies. Recall that the 

abstraction hierarchies computed by the PROBABILITY model on these four examples 
were identical to those computed by the RESISTOR model. The results of this section 
therefore also apply to the PROBABILITY model (except that the CPU time needed to 

compute the criticalities is, of course, slightly different). 
The four experiments use standard benchmark problems taken from the literature. 

The first domain appears in [ 10,141. The next three are presented in [ I]. We either 
repeated exactly the same experiments (for example, in the manufacturing domain), or 
we run them in a more exhaustive manner (for example, in the robot-box domain). We 

used two different measurements to evaluate the performance of ABTWEAK with the 

different abstraction hierarchies: CPU time and the number of nodes expanded. The later 
is often a more reliable measurement of performance. All experiments were on a SUN 
Spare 10 workstation with 32Mbytes RAM running compiled Allegro CL 4.2 under 
the Solaris 2 operating system.4 

9.1. Tower of Hanoi 

The goal is to move a pile of three disks of different sizes from one peg to another 
using a third intermediate peg. At no time is a larger disk allowed to sit on a smaller 
one. Recall that the representation consists of an unsupervised type predicate Is-peg, 
and three predicates On-small, On-medium and On-large. ALPINE, HIGHPOINT and 

RESISTOR all produced the same abstraction hierarchy in which preconditions are ab- 

stracted according to their size. Thus, in the most abstract space, we just consider the 
large disk. In the next level of abstraction, we consider both the medium and large disks. 
And in the ground space, we consider all the disks. ALPINE generates this hierarchy 
in 0.01 seconds, RESISTOR in 0.06 seconds, and HIGHPOINT in 7.79 seconds. Similar 
abstraction levels are generated for problems with more disks. In [9], Knoblock shows 

that such abstraction hierarchies reduce a breadth first search from exponential to linear. 
To determine the savings possible in practice, we ran an experiment with and without 

abstraction. Using abstraction, the Tower of Hanoi was solved in 11.56 seconds, expand- 
ing out 57 nodes. Without abstraction, the Tower of Hanoi took more than three times 
as long to be solved; ABTWEAK used 38.5 seconds and expanded 379 nodes before 
finding a solution. 

9.2. Robot-box domain 

For this domain, both ALPINE or HIGHPOINT return criticalities which are order 

dependent. The lowest three preconditions can be permuted by reordering the operators. 

4 Code used in these experiments can be found at ftp: //f tp.mrg.dist .unige . it/ in directory 
/pub/mrg-systems/criticalities. 
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Table 6 

Criticalities for the “easy” robot-box domain 

ALPINE / HIGHPOINT RESISTOR 

J connects 3 Connects 

Is-Box Is-Box 

Is-Door Is-Door 

Is-Room Is-Room 

Openable Openable 

? Box-In-Room 2 Box-In-Room 

2 Attached I Open 

I Loaded 0 Attached 

0 Open Loaded 

Table 7 

The “easy” robot-box domain with unlocked doors 

Plan length Mean CPU times (sets) Mean nodes expanded Samples 

ALP/HIGH RESIST ALP/HIGH RESIST 

3 0.66 0.62 28.86 27.86 14 

6 4.24 -l 07 143.64 142.64 14 

R I2.95 12.55 379.50 378.50 2 

This is because ALPINE constructs a partial order on preconditions which is then topo- 
logically sorted. To compare results, we used the ordering of operators which generates 

the same abstraction hierarchy as in [ 1 1. 
We ran experiments with both “easy” and “hard” problems. In the first set of ex- 

periments, all doors are openable. HIGHPOINT then constructs the same abstraction 
hierarchy as ALPINE . The criticalities are given in Table 6. ALPINE took 0.01 seconds, 

HIGHPOLNT 22.32 seconds, and RESISTOR 0.18 seconds to generate these hierarchies. 
We ran ABTWEAK on all 30 possible goals of moving between different rooms using 
these criticalities. Table 7 shows that while RESISTOR performs marginally better than 

ALPINE and HIGHPOINT, the differences between the hierarchies are not significant as 
backtracking is never needed. 

In the harder set of experiments, certain doors are locked. As in the RESISTOR model, 
HIGHPOINT increases the criticality of Open so that it is above Attached and Loaded. 
This reduces the probability of the robot meeting a locked door and thus the amount of 
backtracking. All other criticalities remain the same. ALPINE and RESISTOR return the 
same criticalities as before. We ran four sets of experiments. In each, door25 and one of 
door23, door26, door35 and door56 are locked. In each case, there is just one unique 
path connecting any pair of rooms. For each set of experiments, we ran ABTWEAK 
on all 30 possible goals. In 8 out of the 120 problems, ASTWEAK exceeded the cut 
off bound of 2000 nodes using the HIGHPOINT and RESISTOR abstraction hierarchies. 
Using the ALPINE hierarchy, an additional problem also failed. The results are given in 
Table 8. 
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Table 8 

The “hard” robot-box domain with two locked doors 

Plan length Mean CPU times (sets) Mean nodes expanded 

ALP HIGH RESIST ALP HIGH RESST 

59 

Samples 

3 0.91 0.74 0.82 28.30 28.30 27.30 40 

6 6.20 5.33 5.32 162.92 160.32 159.32 40 

8 39.42 29.03 28.99 775.08 752.67 751.67 24 

IO 8258 69.64 67.4.5 1729.78 1654.87 1653.87 71818 

Table 9 

Criticalities for the computer hardware domain 

ALPINE H~GHPOINT 

4 Cable-Can-Reach 3 Cable-Can-Reach 

Functional Functional 

Is-Computer Is-Computer 

Is-Printer Is-Printer 

Is-Outlet Is-Outlet 

3 Printed 2 Printed 

2 Loaded I Loaded 

I Power-On 0 Power-On 

0 Plugged-In Plugged-In 

RESISTOR 

4 Cable-Can-Reach 

Functional 

Is-Computer 

Is-Printer 

Is-Outlet 

3 Printed 

2 Plugged-In 

1 Power-On 

0 Loaded 

On this harder domain, the RESISTOR and HIGHPOINT hierarchies give similar results. 
Both perform significantly better than the ALPINE hierarchy as there is less backtracking 

caused by meeting locked doors. The poor mean performance of the ALPINE hierarchy 
was, in fact, entirely due to a small number of problems where AESTWEAK backtracked 
extensively. 

9.3. Computer hardware 

In the computer hardware domain of [ 11, the goal is to print a file in an environment 
where there are a number of computers and printers. Computers and printers may not 

be turned on, may not be functional, or located near to a power outlet. As in [ 11, we 
ran experiments in a domain in which at the initial situation just one computer and 
printer are within reach of a power outlet. The criticalities generated by the different 
methods are given in Table 9. ALPINE took 0.01 seconds, HIGHPOINT 15.26 seconds, 
and RESISTOR 0.12 seconds to generate these hierarchies. As in [ 11, we ran ABTWEAK 
on 30 different problems involving between 1 and 3 files to print, and with between 1 
and 10 computers, using a time limit of 1800 seconds. The results are given in Figs. 2-4. 

ALPINE performs poorly in this domain, again due to backtracking when devices are 
not plugged in. RESISTOR and HIGHPOINT both require much less backtracking. The 
RESISTOR hierarchy gives slightly better performance, most noticeably on the larger 
problems. 
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Fig. 2. CPU time and nodes explored, I file to print 

Fig. 3. CPU time and nodes explored, 2 files to print 

Fig. 4. CPU time and nodes explored, 3 files to print. 
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Criticalities for the manufacturing domain 

ALPINE HIGHPOINT RWISTOR 

3 Object I Object 2 Object 

Steel Steel Steel 

2 Shaped 0 Painted I Painted 

I Drilled Drilled 0 Shaped 

0 Painted Shaped Drilled 

Fig. 5. CPU time and nodes explored for the manufacturing domain. 

9.4. Manufacturing 

We return to the manufacturing domain of [ 11,131. The goal is to shape, drill and 

paint an object from stock. Recall that only steel objects can be painted. We assume 
that just one out of the large number of objects in stock are made from steel. The 
criticalities generated by the different methods are given in Table 10. ALPINE took 0.01 

seconds, HIGHPOINT 13.33 seconds, and RESISTOR 0.68 seconds to generate these 
hierarchies. 

ALPINE’s abstraction hierarchy violates the precondition monotonicity property as the 
Painted precondition should not be lower than either the Shaped or Drilled pre- 

conditions. HIGHPOINT compensates for the low probability of an object from stock 
being paintable by collapsing together the bottom three levels of ALPINE’s abstrac- 
tion hierarchy. This reduces the need to backtrack but gives just one level of abstrac- 
tion. By comparison, RESISTOR is able to generate an additional level of abstrac- 
tion. 

As in [ 11, we ran ABTWEAK on problems with between 100 and 200 objects in stock. 

Results are plotted in Fig. 5. The RESISTOR hierarchy results in less backtracking than 
the ALPINE hierarchy, and performs significantly better than the HIGHPOINT hierarchy 
due to the additional level of abstraction. 
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10. Conclusions 

We have proposed a novel method for building AMTRIPS style abstractions auto- 

matically based upon a simple theory of numerical criticalities. The aim of our method 

is to minimize the amount of backtracking within and between abstraction levels. Un- 
like previous approaches which reasoned about plans directly, we simulate the planning 
process numerically. We have identified a family of solutions for building abstractions 
in this way based upon two general operators. The first operator computes the critical- 

ity of an operator in terms of the criticalities of’ its preconditions, whilst the second 
computes the criticality of a precondition in terms of the criticalities of the operators 

that achieve it. We give two examples of solutions. The first is based upon an anal- 
ogy with electrical resistance. whilst the second takes ideas from probability theory. 
Both solutions are fast and simple to compute. The simplicity of our approach allows 

us to guarantee that various theoretical properties hold which are lacking in previous 
approaches. In particular, the abstraction hierarchies constructed by our method satisfy 

two simple “monotonicity” properties. These ensure that the harder preconditions are 
achieved in the higher abstract levels. These monotonicity properties limit the amount 
of backtracking required between and within abstraction levels. We have compared our 
method with those in the ALPINE and HIGHPOINT procedures. Using four benchmark 

experiments, we have demonstrated that the hierarchies constructed are better than those 

generated by ALPINE and HIGHPOINT. In addition, our methods build these hierarchies 

rapidly. 

Appendix A. Problem domains 

The following are the operators I‘or the problem domains used in Section 9. All 
the operators are taken from [ I, 14 1. The columns of each table give the preconditions, 
adds and (where appropriate) deletes respectively. The “*” symbol identifies the primary 

effects. 

A. I. Tower of Harloi domuir 

Is-peg(x) 

Is-peg(y) 

-i On-small (x1 

1 On-medium(x) 

7 On-small(y) 

1 On-medium(x) 

On-large(x) 

Move-large (x y) 

On-large(y) * 1 On-large (x1 
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Move-medium(x y> 

63 

Is-peg(x) 

Is-peg(y) 
1 On-small(x) 

7 On-small(y) 

On-medium(x) 

On-medium(y)* 7 On-medium(x) 

Is-peg(x) 

Is-peg(y) 

On-small(x) 

Move-small(x y> 

On-small(y)* 1 On-small(x) 

A.2. Robot-box domain 

Carry-Thru-Door(b d rl r2) 

Is-Door(d) Box-In-Room(b r2)* 7 Box-In-Room(b rl) 

Is-Box(b) 

Is-Room(r1) 

Is-Room(r2) 

Connects(d rl r2) 

Loaded(b) 

Box-In-Room(b rl> 

Open(d) 

Pull-Thru-Door(b d i-1 r2) 

Is-Door(d) 

Is-Box(b) 

Is-Room(rl) 

Is-Room(r2) 

Connects(d rl r2) 

Attached(b) 

Box-In-Roomtb ri> 

Open(d) 

Box-In-Room(b r2)* 

Attach-Box(b) 

7 Box-In-Room(b rl> 

Is-Box(b) 

1 Loaded(b) 

Attached(b)* 

Load-Box(b) 

Is-Box(b) 

1 Loaded(b) 

Is-Door(d) 

Openable(d) 

7 Open(d) 

Loaded(b)* 

Open-Door(d) 

Open(d)* 
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A.3. Computer hardware domain 

Print(file computer printer) 

Power-On(computer) 
Power-Oncprinter) 
Is-Computer(computer) 
Is-Printercprinter) 
Loadedcfile computer) 

Printedcf ile) * 

Turn-On(device) 

Plugged-Incdevice) 
Functional (device) 

Power-On(device)* 

Plug-In(device outlet) 

Is-Outlet(outlet) Plugged-In(device) 
Cable-Can-Reachcdevice outlet) 

Load(file computer) 

Is-Computer(computer1 Loaded(f ile computer) * 
Power-On(computer) 

A.4. Manufacturing domain 

Object (x) 

Shape(x) 

Shape (x> * 

Drill(x) 

7 Drilled(x) 
7 Painted(x) 

Object(x) Drilled(x)* 

Paint (x1 

7 Painted(x) 

Object(x) 
Steel(x) 

Painted(x) * 

Appendix B. Convergence of simple Resistor model 

Recall that each operator has m preconditions and each precondition can be achieved 
by 1 distinct operators. Unfolding the definitions gives, 

C(p, 0) = ao, 

I I 
=L+L--_- 

C(p,n+ 1) a0 m’C(p.n) 

To identify a closed form solution, we compute the first few iterations 
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1 1 -=_ 
C(p,l) a0 ( > 

I,: , 

i=1(,+;+ (i)‘), 
C(P,2) a0 

&=;(l+;+ (;)‘+ (;)3), 

A simple induction therefore shows 

Thus, 

if I = m, 

if 1 # m. 

The difference between successive iterations is therefore 0( (Z/m)“) for I < m, 0( l/n*) 
for 1= m, and 0( (m/Z)“) for 1 > m. 

Convergence of simple PROBABILITY model 

Each operator again has m preconditions and each precondition can be achieved by 1 
distinct operators. Unfolding the definitions gives 

C(P, 0) = a03 

C(p,n+l) =aa(l --(I -C(p,n))“‘)‘. 

To simplify notation, we write c, for C(p, n). We therefore have, 

c,+] = cc( 1 - (1 - cn)‘?‘)! 

We will identify a bound on the rate of convergence of this equation by considering the 
fixed points of the following function, 

f(x) d:fco(l - (1 -.q’)‘. 

Note that c,+t = f (c,). We assume that cc < 1 since if CO = 1 then c, = 1 for all n. 
For all 1 and m, it is easy to see that f(0) = 0, f ( 1) = CO and f(x) is continuous in 

[0, I]. In addition, f’(0) = f’( 1) = 0 and f’(x) > 0 for all x E (0,l). 
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Fig. B.I 

Let bl < bt < < DX be the fixed points of f in [0, I ] (i.e., f( bj) = b,). Note that 

bt = 0 SO k 3 I. The diagram shown in Fig. B. I illustrates how c, converges towards 
bk, the greatest fixed point as y1 increases. 

Since f’(x) > 0 in (0, I), it follows that 6k < CO. If k > 1 then for x E (&I,&), 
f(x) > X. And for x E (bk, I 1, ,f’( x) < .x. Hence, at bk the gradient of v = f(x) must 
be less than that of y = s. In other words, f’( 01) < I. Alternatively if k = 1, then 
,f’( hi ) = 0 < I. By the definition of differentiation, there exists p < I and b > bk such 
that for all xt.s2 E [bk,b]. 

.f’Gl) - f(X2) 

XI -x2 
< P. 

Hence, there exists m with c,,,_I C. 1) such that for all rr > m, 

.f‘(c,,) - f(c,,-I) 
< P. 

c,, - c,,-I 

That is, 

C,,+I ~ Cl, 
<P 

C/l - c,,-I 

As c,, is monotonically decreasing, 

/Clkl - c,,l 

IG, -G-l/ <p. 

The difference between successive iterations thus decreases by at least a constant factor 
after the mth iteration. 
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