
Artificial Intelligence 88 (1996) 39-67

Artificial
Intelligence

Calculating criticalities *

A. Bundy a~l, F. Giunchiglia b*c,*, R. Sebastiani d,2, T. Walsh b,d,3
il Department of Al, University of Edinburgh, Edinburgh EHI IHN, Scotland, UK

b IRS7: Povo. 38100 Trento, Italy
c UniversiQ of Trento, Via Inama 5, 38100 Trento, Italy

d DIST, University of Genoa, Viale Causa I5A, I6146 Genova. Italy

Received January 1992; revised April 1996

Abstract

We present a novel method for building ABSTRIPS style abstraction hierarchies in planning. The
aim of this method is to minimize search by limiting backtracking both between abstraction levels
and within an abstraction level. Previous approaches for building ABSTRIPS style abstractions
have determined the criticality of operator preconditions by reasoning about plans directly. Here,
we adopt a simpler and faster approach where we use numerical simulation of the planning
process. We develop a simple but powerful theory to demonstrate the theoretical advantages of
our approach. We use this theory to identify some simple properties lacking in previous approaches
but possessed by our method. We demonstrate the empirical advantages of our approach by a set
of four benchmark experiments using the ABTWEAK system. We compare the quality of the
abstraction hierarchies generated with those built by the ALPINE and HIGHPOINT algorithms.

1. Introduction

Abstraction is a powerful heuristic for tackling combinatorial complexity. Informally,

it can be described as the process of mapping a representation of a problem (often
called the “ground)‘, or “concrete”, representation) onto a new representation (often

* Authors are listed in alphabetical order. The first author is supported by EPSRC grant GR/J/80702, and the

last by an HCM personal fellowship. We thank Qiang Yang for assistance with ABIWEAK and HIGHPOINT,
and Alessandro Coglio for assistance with the proof of the rate of convergence of the simplified PROBABILITY

model.

* Corresponding author. E-mail: fausto@irst.itc.it.

’ E-mail: A.Bundy@ed.ac.uk.

* E-mail: rseba@mrg.dist.unige.it.

3 E-mail: toby@irst.itc.it.

0004-3702/96/$15.00 Copyright @ 1996 Elsevier Science B.V. All rights reserved

PIISOOO4-3702(96)00019-7

called the “nbstruct” representation) which is simpler to handle [71. This process can
be iterated to give a hierarchy of abstract spaces. The aim of abstracting a problem is

to factor the search space into a set of smaller subspaces, ordered hierarchically by the

amount of detail within them. We can then search locally within each of these spaces.
We reline the solution between levels by patching the steps which do not go through.
Abstraction may not. however. always reduce runtime (for example, see [21). Whilst
the various overheads (e.g. generating the abstract space) usually have a minor impact
[61. “thrashing” between and within abstraction levels can result in poor performance.

For instance, in order to prove a goal at one level, it may be necessary to undo goals
satisfied at the upper levels. This causes backtracking between levels. Such backtracking

can increase runtime exponentially [S]. Determining a good abstraction is therefore vital.
The goal of this paper is to propose a general methodology for building abstractions
automatically which minimize search by limiting both the amount of backtracking within

and between abstraction levels.
The paper is structured as follows. In Section 2 we describe ABSTRIPS style ab-

stractions and previous work in this area. We identify how ABSTRIPS style abstractions
can reduce search in Section 3. WC then define the theoretical properties that a method
for building such abstractions should possess in Section 4. In Section 5, we propose
a simple family of methods for building A~STRIPS style abstractions based upon two
simple operators for adding together criticalities. In Section 6 we prove that this family

of methods has all the theoretical properties identified in Section 4. We then propose
two methods for building abstractions based upon this framework in Section 7. We
illustrate how our methods compute criticalities by means of four examples in Section
8. We show the empirical advantages of our methods in Section 9 using a set of four
benchmark experiments with the ABMAK system. In each experiment, we compare

the quality of the abstraction hierarchies generated with those built by two state of the
art algorithms. Finally, we end with conclusions (Section 10). Some parts of this paper

appear in [3].

2. ABSTRIPS

A planning problem is defined by the goal to be achieved, a set of facts true in the
initial state, and a set of operators. Operators are described by a set of preconditions
(i.e. a set of conditions which must be true for the operator to be applicable) and a
set of effects. Effects are divided into adds (i.e. a set of facts which become true) and
deletes (i.e. a set of facts which become false). In addition, one effect is labeled as
the primary effect of an operator. Unsupervised preconditions are those that are not the
effects of any operator. See Appendix A for some examples of operators.

In ABSTR~PS style abstractions, operator preconditions are ranked according to a
criticality [121. The ith abstract space is constructed by ignoring preconditions with
rank i or less. To refine a plan at the ith level, we need to achieve those preconditions
of rank i (for a formal definition of ABSTRIPS style abstractions using Green’s situation
calculus [81 see [7]). ABSTRIPS style abstractions can give an exponential speed-up
in the time needed to build a plan [6,9 1. However, as mentioned in the introduction,

A. Bundy et al. /ArtQiciai intelligence 88 (1996) 39-67 41

if we have to backtrack, abstraction can greatly increase the time to find a plan. The
“downward refinement property” [1] removes the need to backtrack between abstraction
levels as every abstract plan can be refined to a concrete plan. Unfortunately, relatively
few abstraction hierarchies possess this property. In practice, we try to build abstractions

which limit the amount of backtracking between abstraction levels but do not preclude
it altogether.

Previous approaches for building ABSTRIPS style abstractions have reasoned about

plans directly. For example, in ABSTRIPS [121 low criticalities were assigned to those
preconditions which can be achieved with short plans assuming all higher criticality
preconditions are true. More recently, ALPINE reasoned about operators to build ab-

straction hierarchies which satisfy the “ordered monotonicity” property [lo]. In [I],
Bacchus and Yang show that backtracking between abstraction levels may be needed
with such abstraction hierarchies. To reduce such backtracking, they propose the HIGH-

POINT procedure. This refines the abstraction hierarchies produced by the ALPINE

procedure using estimates of the probability for successful refinement. The abstractions

produced by HIGHPOINT are close to having the downward refinement property (in the
terminology of [11, they are “near-DRP”) but may still cause backtracking.

We propose here a novel method for building ABSTRIPS style abstractions which is
both fast and simple. Instead of reasoning about plans directly, we simulate the planning
process numerically. The simplicity of this simulation allows us to impose two simple

“monotonicity” conditions not guaranteed by previous methods. These conditions ensure
that harder preconditions are achieved at higher levels of abstractions. This greatly limits
the amount of backtracking. To test our method empirically, we perform the complete

set of experiments presented in [IO] and [1 I. On each of these benchmark problems,
our method gives hierarchies which offer superior performance to those generated by
both the ALPINE and HIGHPOINT algorithms. We have not yet found a problem domain

on which our method offers worse performance.

3. Minimizing search

To understand how abstraction can reduce search in planning, it is helpful to visualize

the search space associated with a planning problem (see [5] for a longer discussion
about the effects of ABSTRIPS abstractions on a planning search space). The search
space can be seen as a directed graph where nodes correspond to states and arcs

correspond to operator applications. A planning problem is then to find a path from an
initial node to some target node. In what follows, we confuse nodes with states, arcs
with operator applications and paths with plans. The search space is a graph as there is
usually more than one path between two states.

If we delete preconditions then we construct a new abstract search space. Finding a
plan in the abstract search space is typically easier than finding it in the ground space as
there is no need to check for the deleted preconditions. To refine a plan, we must satisfy
the deleted preconditions. Consider a single precondition, p deleted from an operator
op (our argument will generalize to multiple preconditions). Suppose our plan applies
the operator to a given state s. There are two possibilities. If p holds in s then we are

42 A. Bundy rt c/l. /Arbjicinl Intelligence 88 (1996) 39-67

done. Alternatively if p does not hold then we need to find a plan from s to a new state
in which p holds. In addition, we hope that we do not clobber any other preconditions
along the way. Abstraction thereby restricts search in the ground space to just the subset

of paths which pass through s.
If we cannot find a plan to satisfy the deleted precondition p, then we will have

to backtrack to the abstract space and find an alternative path between the initial and
target nodes. If there are many alternative paths, we can spend exponentially more time
backtracking than planning without abstraction in the original ground space. To limit

the amount of backtracking between and within abstract spaces, we therefore want to

ensure that the hardest preconditions are satisfied as soon as possible. In other words,

we abstract the hardest preconditions in just the most abstract space. This agrees with

Sacerdoti’s original proposal.

. . literals omitted will be those that are “details” in the sense that a simple plan

can be found to achieve them once the more “critical” literals have been achieved

. [121.

However, unlike Sacerdoti, we do not consider short plans to be “simple” plans. A
classic example is found in the manufacturing domain of [I 1, 131 (see Sections 4 and
9.4 for more details). The goal of shaping, drilling and painting a steel object has a
short plan but this is difficult to find. Simple plans are those that are easy to find. As it

is usually too expensive to run a planner exhaustively and compare the cost of finding
different plans, we need some method for approximating the cost of finding a plan. In
the rest of this paper, we outline a methodology for doing this based upon simulating
the planning process numerically using “criticality functions”.

4. Criticality functions

To make finding the cost of plans easier. we make two simplifying assumptions.
First, we assume that we are building abstractions for a changing world. We therefore
consider just the operators, ignoring the specific goal to be achieved and the facts which
happen to be true in the initial state. Our methods could, however, be generalized to take
into account both the goal and those facts true in the initial state. Second, to simplify
the numerical simulation, we apply a “granularity” abstraction [7] which deletes the
arguments to literals. Again, this simplification could be lifted if it proved necessary
for a particular domain. It is not necessary in any of the benchmark problems tested in
Section 9.

Given a set of operators, Ops, we compute the criticality of the operator precondition,
p, by successive approximation. At the nth iteration, the criticality function C(p, n)
returns the numerical criticality of p. This converges to a limiting value as we iterate n.

The intuition is that the easier it is to achieve p, the smaller the numerical criticality of
p should be. We collect together the limiting numerical criticalities of the same value
to give the sets Si. We then order these sets using less than, giving Se < . . < S,,.
Following [121, the criticality of a precondition, p, is the index i such that p E S;. In
the ith level of abstraction, we drop all preconditions of criticality i or less. We thereby

A. Bundy et al. /Artijicial Intelligence 88 (1996) 39-67 43

achieve the hardest preconditions in the most abstract space.
We impose various restrictions on criticality functions. There are several obvious

computational properties required like totality (every precondition must have a single
criticality) and convergence (numerical criticalities must converge to some limiting

value). There are also various domain dependent properties. For example, criticality
functions should be order independent. That is, they should not depend on the order we
present the operators or their preconditions. This is why we described operators and their

preconditions as sets. Criticality functions also ought to treat symmetric preconditions
symmetrically. If swapping the precondition p for the precondition 4 merely reorders
the operators, then p and q are said to be symmetric preconditions.

Definition 1 (Symmetry). If p and q are symmetric preconditions then C (p, n) =

C(q,n).

Whilst this property (and indeed all the following properties) are only actually re-

quired of the final limiting numerical criticalities, insisting that the property holds at

each iteration n is a small burden and makes proofs much easier. We also demand that
criticality functions treat equivalent effects equivalently. Let Pre(op) be the precondi-
tions of the operator op and Ops(p) be the subset of operators which have p as primary

effects. We say that a set of operators, S, is equivalent to a set of operators, T, iff
(SI = ITI (that is, the sets are the same size) and for any opl E S there is some 0~2 E T
with Pre(opl) = Pre(op2) and vice versa.

Definition 2 (Precondition equivalence). If Ops(p) is equivalent to Ops(q) then

C(p,n) =C(q,n).

To reduce backtracking, we demand that the numerical criticality of a precondition
decreases with the number of operators which achieve it (operator monotonicity) , and
increases with the number of preconditions to operators which achieve it (precondition
monotonicity).

Definition 3 (Operator monotonicity). If Ops(p) is equivalent to a subset of Ops(q)
then C(p,n) 2 C(q,n).

We say that a set of operators, S, is subsumed by a set of operators, T, iff ISI = ITJ
and for any opl E S there is some 0~2 E T with Pre(opl) 2 Pre(op2). Note that if S
is equivalent to T then S is subsumed by T and T is subsumed by S.

Definition 4 (Precondition monotonicity) . If Ops(p) is subsumed by Ops(q) then

C(p,n> b C(q,n>.

If operator monotonicity is satisfied, hard preconditions (those that are primary ef-
fects of few operators) will be proved in the higher abstraction levels. This will tend
to minimize backtracking. Similarly, if precondition monotonicity is satisfied, hard pre-
conditions (those primary effects of operators with many preconditions) will be proved

in the higher abstraction levels. Again this will tend to minimize the need to backtrack.
Precondition and operator monotonicity both imply precondition equivalence.

Theorem 5. Precondition or opemtor monotonicity implies precondition equivalence.

Proof. In the first case, assume precondition monotonicity holds. If Ops(p) is equivalent
to Op.~(q) then Ops(p) is subsumed by OpsVq). Hence. by precondition monotonicity,

C(p,n) > C(q,n). But by a symmetric argument, C(q,n) 3 C(p,n). Thus C(p,n) =

C(q, n). And this satisfies precondition equivalence. A similar argument holds in the

second case for operator monotonicity. fl

ALPINE and HIGHPOINT generate abstraction hierarchies which fail to satisfy these
properties and therefore cause unnecessary backtracking. Consider, for example, the
manufacturing domain of [I 1, I.3 1 listed in Appendix A. There are three operators which
shape, drill and paint objects. The lirst operator has a single precondition Object and

has Shaped as its primary effect. The second operator also has the single precondition

Object and has Drilled as its primary effect. The third operator paints a steel object.
It has Object and Steel as preconditions and has Painted as its primary effect.

Precondition monotonicity ensures that the numerical criticality of Painted is greater
or equal to that of both Shaped and Drilled. This agrees with our intuitions, as

Painted requires an extra precondition. ALPINE, by comparison, assigns Painted the
lowest criticality. As we will see in Section 9, this can result in a large amount of

backtracking.
Note that the trivial criticality function which assigns every precondition the same

numerical criticality satisfies every one of these properties. This corresponds to no
abstraction levels. We therefore maximize the number of abstraction levels by treating
the “greater than or equal to” relations derived from the monotonicity properties as
“strictly greater than” relations wherever possible. There are many nontrivial functions
which satisfy these properties. However, these properties are often sufficient to rank
numerical criticalities. For example. the abstraction hierarchies generated by the methods

proposed in the next section for the examples of Section 9 follow immediately from

these properties.

5. Additive criticality functions

We can identify a family of solutions by interpreting C (p, n). the numerical criticality
of the precondition p, as the difficulty of finding a plan for p of depth 0 to II. To simplify
presentation, we also introduce the numerical criticality of the operator op, C(op,n)

for II > 0. This is interpreted as the difficulty of finding a plan of depth I to n which
ends with application of the operator op. Since the plan contains an application of op,

it must be at least of depth I.
We now define a family of additive criticality functions based upon this interpretation,

In the step case, the difficulty of finding a plan for p of depth 0 to FZ is a function of the
difficulty of finding a plan of depth 0 and of the difficulty of finding plans of depth 1

A. Bundy et AI. /Arbjicial Intelligence 88 (I 996) 39-67 45

to n ending in an operator that achieves p. And the difficulty of finding a plan of depth
1 to n ending in the operator op is a function of the difficulty of finding plans of depth
0 to n - 1 for the preconditions of op. In the base case (that is, at the 0th iteration),

we assign all preconditions the same numerical criticality, as.
Our definition of an additive criticality function hinges upon two “additive” operators,

@ and $, used to add together numerical criticalities. The operator @ determines how
the criticality of a precondition is computed as a function of the criticalities of the

operators that achieve it. By comparison, the operator $ determines how the criticality
of an operator is computed as a function of the criticalities of its preconditions.

Definition 6 (Additive criticality functions).

(1) C(P,O) =ao;

(2) C(p, n) is nonnegative;
(3) there are two associative and commutative operators, @ and @, with

Ctp,n) =C(p,O) @C(opt,n) @...@C(Opn,,fi),

C(op,n) =C(prel,n- 1) $...@C(prej,n- l),

where op; E Ops(p) and pre; E Pre(op) and for y < z,

X@Y>X, x@yVx,

xCBy<xCBz, x@y<x@z.

Properties (1) and (2) state that every precondition is given the same initial numer-

ical criticality, aa 2 0. This condition can be weakened to allow different initial values

provided these initial values satisfy order independence, symmetry and precondition and
operator monotonicity. Property (3) is then sufficient to guarantee all the required prop-
erties like precondition and operator monotonicity continue to hold at every iteration n.

For precondition monotonicity to hold, an operator is harder if it has more precondi-

tions. Since @ is the operator for “adding” the numerical criticalities of preconditions to
an operator, we therefore require that x@y > x. And an operator is easier if it has easier

preconditions. We therefore also require that y < z, implies x CD y < x CB z. For operator
monotonicity to hold, a precondition p is easier if we have more operators to achieve it.
Since @ is the operator for “adding” the numerical criticalities of operators that achieve

p, we therefore require that x @ y 6 x. And a precondition is easier if the operators that
achieve it are easier. We therefore also require that y < z implies x 8 y 6 x ~9 z.

6. Theoretical properties

We now show that additive criticality functions satisfy the theoretical properties iden-
tified in Section 4. By simulating the planning process numerically it is easy both to
identify and to prove these properties. It is more difficult to guarantee such properties in
previous approaches as they reason directly with plans. To simplify proofs, we introduce
some notation for repeated application of @ and @. If the set S contains the elements,

YI up to Y,,, then

To show convergence, we first prove that, with an additive criticality function, the
numerical criticality of preconditions is monotonically decreasing.

Proof. By induction on II. In the base case.

Thus C(/>, I) < c(p,())
In the step case.

By the induction hypothesis.

C(q,n) < C(q,n - I)

By repeated application of such hypotheses and the fact that y < z implies x@y < x@z,

qE Prc (“,’) i/E t+P(“{I)

By repeated application of this result and the identity, y < z implies x ‘@ y < x @ z,

Thus, c(p,rz + i) < c(P,fl). r

A. Bundy et al./Artificial Intelligence 88 (1996) 39-67 47

Numerical criticalities computed by an additive criticality function are therefore
bounded.

Theorem 8. C(p,n) E [o,aol.

Proof. By induction on n. In the base case, C (p, 0) = ao. In the step case, the numerical

criticality is monotonically decreasing. Hence C(p, n+ 1) 6 C(p, n) < ao. But C(p, n)

is nonnegative by definition. Hence C(p,n) E [O,aol. q

Note that both ends of this bound can be achieved.
As a simple consequence of the last two theorems, the numerical criticality converges

to a limiting value irrespective of the operators.

Theorem 9. C (p, n) is convergent.

Proof. Any bounded monotonically decreasing sequence is convergent. 0

Just as importantly as convergence, additive criticality functions satisfy the other
properties identified in Section 4. They are order independent and symmetric since @
and @ are associative and commutative operators. Additive criticality functions also treat
equivalent preconditions equivalently.

Theorem 10. C (p, n) is precondition equivalent.

Proof. By cases. If II = 0, all preconditions are assigned the same numerical criticality,
ua. Equivalent preconditions therefore have the same numerical criticality. If n > 0, we

assume that p and 9 are equivalent preconditions.

C(p,n> =a0 @ @ C(r,n- 1)
wEm(P) (r E Prr (op) >

-a0 @)
WEOP.~(9)

(@ C(r,n-- 1))
r-ePw(op)

=C(q,n). 0

Additive criticality functions also satisfy both the monotonicity properties. To simplify

the inductive proof, we introduce a more general monotonicity property that subsumes
both operator and precondition monotonicity.

Definition 11 (Monotonicity). If @s(p) is subsumed by a subset of Ops(q) then

C(p*n) 2 C(q,n).

The precondition p is more difficult to achieve than the precondition q as there are
fewer operators for achieving p compared to q, and the operators for achieving p each
have more preconditions. Trivially, monotonicity implies both operator and precondition
monotonicity.

48 A. Bundy et (11. /Art~Jiciul Intelligence 88 (1996) 39-67

Theorem 12. C (p, n) is monotonic.

Proof. The proof uses induction on 12. The base case is trivial as all preconditions have

the same numerical criticality, au. In the step case, we assume that @s(p) is subsumed

by a subset of @s(q). Then

C(p,n+ I) =a0 @

i
@ c(r,fz) .

f’/‘EOpY(,’ 1 rEPret “,‘J 1
We compare this term for term with

C(q,n+l) =a0 @ (@ C(r,n)
r,p EO/‘S(r,) rlz PreC “,’))

As Ops(p) is subsumed by a subset of @s(y), IOps(p)) < lops(q)/. Hence C(p,n+
I) has fewer terms in the @ repeated sum than C(q, II + 1). As Ops(p) is subsumed
by a subset of Ops(q), the preconditions of an operator achieving p are a superset of
the preconditions of one of the operators achieving q. The common terms in the @
repeated sum of C(p, n+ I) thus contain more repeated @ terms than the corresponding

terms in the repeated @ sum of C (q, II + 1) . Thus, by repeated application of x $ y 2
X, the common terms in the repeated $3 sum of C (p, n + 1) never have a smaller

numerical criticality than the corresponding terms in the repeated @ sum of C(q, n + 1)

With fewer terms and common terms having a larger numerical criticality, by repeated

application of x 3 x @ y and v 3 z implying x @ y 3 x @ z, the repeated 8 sum with

fewer and larger terms never has a smaller numerical criticality. Hence, C(p, n + 1) 3

C(q,n + 1). 0

We could define even more general properties which, instead of comparing the pre-

conditions to operators, merely compared the numerical criticalities of the preconditions.
For example, we say that a set of operators. S, is weakly equivalent to a set of operators,
T, iff for any opl E S there is some opz E T with the numerical criticalities of Pre(opl)
equal to the numerical criticalities of Pre(0~2) and vice versa. Equivalence implies weak
equivalence but not vice versa. Similar definitions could be made for weak subsumption,
and weak precondition and operator monotonicity. All the theorems proved in this sec-
tion would still hold under such more general definitions as the proofs depend just on
the value of the numerical criticality of a precondition. Substituting a precondition for a
different one of the same numerical criticality will therefore leave the result unaffected.
However, as we demonstrate in the next sections, we do not need such a generalization
to build good abstraction hierarchies for our benchmark experiments.

7. Two solutions

To calculate criticalities, we now merely need to decide on a p&r of associative
and commutative operators @ and @ for “adding” criticalities that satisfy the simple
properties of an additive criticality function. Since 8 and @ are commutative, x@y < x

A. Bundy et al. /Arr#cial Intelligence 88 (1996) 39-67 49

means that x @ y < min(x, y) and x @ y 3 x means that x @ y 2 max(x, y). One of
the simplest solutions treats these inequalities as equalities. That is, we define

x@y=min(x,y),

x@y=max(x,y).

The numerical criticality of a precondition is therefore the same as that of the easiest
operator that achieves it. And the numerical criticality of an operator is the same as that

of its hardest precondition. As min and max satisfy property (3) of the definition of
an additive criticality function, this solution has all the required theoretical properties
like operator and precondition monotonicity. Unfortunately, it is not a very interesting

solution as C (p, n) = ae for all p and fr. We can obtain non-identical limiting criticalities
if we allow different initial values. However, the final limiting criticalities will always
have limited diversity as they must be a subset of the initial values. To get nontrivial

solutions, we need more complex operators for @ and $. In Sections 7.1 and 7.2 we
propose two novel solutions. The first is based on an analogy with electrical resistance

whilst the second uses ideas from probability theory. We demonstrate that these solutions
are empirically useful in Section 9.

7.1. The RESISTOR model

Our first solution is based upon the notion of “resistance to change” using an analogy

with electrical resistance. This solution first appeared in [31. To capture the difficulty of

achieving preconditions, we model them like resistors. The preconditions to an operator
act like resistors in series. Increasing the number of preconditions makes an operator
harder to apply. Treating operator preconditions like resistors in series ensures precondi-
tion monotonicity is satisfied. Operators with the same primary effects act like resistors
in parallel. Increasing the number of operators with the effect p reduces the difficulty

of achieving p since we have parallel paths for achieving p. Treating operators with the
same effects like resistors in parallel ensures that operator monotonicity is satisfied. We
shall refer to this as the RESISTOR model for computing criticalities.

As with serial resistors, the numerical criticality of an operator is thus simply the sum

of the numerical criticalities of its preconditions. We therefore define

xtBy=x+y.

As with electrical resistors in parallel, the numerical criticality of a precondition is
thus simply the parallel sum of the numerical criticalities of the operators with this
precondition as primary effect. We therefore define,

-=1+L. 1

X@Y x Y

Or equivalently,

1
x@y=-.

i+f

so A. Bun& CI nl. /Arri’ciczl intelligence 88 (1996) 39-67

A simple induction shows that.

The

I

XI c? ,cG x,,
=I+.

I
I

RESISTOR model therefore satisfies the following equations.

C(p, 0) = no. (1)

I I
-=
C(p, n) C(P, 0)

(2)

C(op,n) = c C(P,tl- 1).
,’ E Pr? (0,’ 1

(3)

Note that a0 always factors out of the final numerical criticalities. The recursive nature

of these definitions naturally leads to an iterative procedure for computing numerical
criticalities. The numerical criticalities defined by these equations are always rational

numbers. Whilst the limiting value of a rational sequence can be irrational, in practice the
limiting values are usually rational. For efficiency, we compute the numerical criticalities

to some predetined accuracy and terminate computation when an iteration produces no

change to the values.
We now show that this model is indeed an additive criticality function. It therefore

satisfies all the theoretical properties identified in Section 4 like convergence and operator

and precondition monotonicity.

Theorem 13. The RESISTOR tmdel is atI udditive criticality function.

Proof. We need to verify that @ and @ satisfy the definition of an additive criticality
function. Property (1) holds by definition. Property (2) holds as numerical criticalities

correspond to resistances, and so cannot he negative. We thus merely need to check
property (3) .

The operator 8~1 is trivially an associative and commutative operator, and x @ y =
x+vax.Ify<z thenx~y=.r+~~x+,=x~~.

The operator @ is trivially a commutative operator. It is an associative operator since

As J’ cannot be negative, x ;r~ y < .r. In addition, if y 6 ; then 1 /y > 1 /z and

Previous methods have conventionally given unsupervised preconditions, those that
cannot be changed by any operator, the maximum criticality. By Eq. (I), unsupervised

A. Bundy et al. /Artificial Intelligence 88 (1996) 39-67 51

preconditions are assigned the numerical criticality aa at n = 0. By Eq. (2), their
numerical criticality remains at a0 for all subsequent n. In Section 6 we proved that aa is
the largest numerical criticality possible for an additive criticality function. Unsupervised

preconditions are therefore assigned the maximum criticality as required.

Since the RESISTOR model is an additive criticality function it converges, Indeed
convergence is typically very rapid. In the domains studied in Section 8, each iteration
adds approximately another decimal digit of precision. This suggests that the difference
between criticalities at each iteration decreases by at least a constant factor. To explore
this analytically, we developed a simple model of the RESISTOR model in which each

operator has m preconditions (that is, for any op, IPre(op> (= m) and each precondition

can be achieved by 1 distinct operators (that is, for any p, lops(p) / = 1). This gives an
and-or search tree in which m is the and-branching and 1 is the or-branching. Under these
assumptions, the numerical criticality of a precondition converges rapidly. In Appendix

B, we show that the difference between successive iterations is 0((Z/m)n) for 1 < m,
0(1 /n2) for 1 = m, and O((m/Z)“) for I > m. This supports our empirical evidence that
convergence is usually very rapid, and that the difference between successive iterations

tends to decrease by at least a constant factor with each iteration.

7.2. The PROBABILITY model

Our second solution is based upon a probabilistic interpretation of C(p, n). We

interpret C (p, n), the difficulty of a precondition p, as the probability that there does

not exist a plan for p of depth 0 to rz. As a simplifying assumption, we assume that
these probabilities are statistically independent events for different p and n. Since the

model is based on probabilities, we assume that the initial numerical criticality a0 6 1.
The preconditions to an operator behave probabilistically like conjunctive events since

each must be simultaneously true. Increasing the number of events/preconditions in-
creases the probability of a plan not existing with this operator. By comparison, operators

with the same primary effects behave probabilistically like disjunctive events. Increasing
the number of events/operators with the same primary effect p reduces the probability

of a plan not existing that achieves p. We shall refer to this as the PROBABILITY model
for computing criticalities.

As with independent and disjunctive events, the probability that no plan exists for a

precondition is simply the product of the probabilities that no plan exists for any of the
operators which achieve it. We therefore define

x@y=x.y.

As with independent and conjunctive events, the probability that no plan exists for an
operator with two preconditions is simply the sum of the probabilities that no plan exists
for the two preconditions less their product. We therefore define

x@y=x+y--x.y.

Or equivalently,

(l-x@y)=(l-x).(1-y).

This equation demonstrates the duality between two conjunctive events not occurring
and two disjunctive events occuring. A simple induction shows that

(I-x,& &X,,)=fl(l -.r,)

I

The PROBABILITY model therefore satisfies the following equations.

C(p,O) =c10 E [O. I]. (4)

C(p,n) = C(p,O) fl C(op.rr). (5)
r?/lEO/r\i,‘,

I - C(op,n) = n (I ‘- C(p,rz - I,). (6)
/‘E P,_c,l “,I 1

We again prove that rhis is an additive criticality function. It therefore satisfies all

the theoretical properties identified in Section 4 like convergence and operator and

precondition monotonicity.

Theorem 14. The PROBABILITY 1wxie1 i.5 (~1 additive criticality function.

Proof. WC need to verify that 1% and E satisfy the definition of an additive criticality

function. Property (I) holds by definition. Property (2) holds as numerical criticalities
correspond to probabilities and so cannot be negative. We thus merely need to check

property (3).
The operator C$ is trivially an associative and commutative operator with x @ y =

x.~<.xasO<~~< l.Inaddition,ify<,- thenx,~.y=x.?,~x.z=x~e.
The operator @ is trivially a commutative operator. It is also associative as

xcg((?~@~)=x+(~~i;;) -.r’(y8~~)

=I+(?‘+, -,Y.z)-.r~(p+,: -J).Z)

=(.r+v--.r~~)+; -i.4-+!‘-.r.,Y)‘:

=(xcf?‘) ‘ti,.

In addition, .Y ~3 J = _Y + y -- .r y = .Y + y i I - s) > x as (I - x) 3 0. And if y < z
then.r@y=x-+!.(I -.r) <.ri:.(l --x)=x$z. 0

By Eq. (4), unsupervised preconditions are assigned the numerical criticality a0 at
II = 0. By Eq. (5), their numerical criticality remains at a0 for all subsequent II.
Unsupervised preconditions are again assigned the maximum numerical criticality a0 as
required.

One disadvantage of the PROBABILITY model over the RESISTOR model is that the

!?RO5ABILITY mode! is more computationally expensive to compute. In addition, by
repeatedly taking differences, errors may propagate more easily in the computation. In-
terestingly, the initial value an does not factor out of the calculations. Because of this

A. Bundy el al./Artijcial Intelligence 88 (1996) 39-67 53

sensitivity to initial values, this model may be most useful when we allow precondi-
tions to take different initial numerical criticalities, perhaps according to an estimate of
their probability of being true in the initial state. In this paper, we compute numerical

criticalities in the absence of any domain knowledge. We set a0 = l/2 to reflect our
ambivalence about whether a given precondition holds in the initial state. With this

value, the PROBABILITY model gave very similar results to the RESISTOR model on

the benchmark problems.
Since the PROBABILITY model is an additive criticality function it converges. Con-

vergence is again typically very rapid. In the domains studied in Section 8, each iteration
adds at least another digit of precision. To explore this analytically, we used the same
simple model as before in which each operator has m preconditions (that is, for any op,

IFre(op)l =) d m an each precondition can be achieved by 1 distinct operators (that is,
for any p, l@(p) 1 = I). In Appendix B, we show that there exists p < 1 and m such

that for n 3 m,

IC(p,n + 1) - Cohn)I
IC(p,n> -C(p,n - l>l < p.

In other words, the difference between successive iterations decreases by at least a

constant factor p with each iteration.

8. Test examples

We will illustrate our approach by computing the numerical criticalities for four
benchmark domains using the RESISTOR model. The PROBABILITY model computes the

same abstraction hierarchies as the RESISTOR model on these domains, taking a similar
number of iterations to converge on the final numerical criticalities. For reasons of space,
we therefore only give the computations of both the RESISTOR and PROBABILJTY
models on the first domain. The criticalities computed on these domains are tested
empirically in Section 9 using the AB’IWEAK system. These experiments demonstrate

that the abstraction hierarchies computed by the RESISTOR and PROBABILITY models

tend to minimize the amount of backtracking between abstraction levels. The operators
for these four domains are given in Appendix A.

8.1. Tower of Hanoi

The representation of this well-known problem consists of a single unsupervised
precondition Is-peg, and three predicates On-small, On-medium and On-large. There
are three operators: one moves the large disk, another the medium size disk and the
third the small disk. In Tables 1 and 2 we give the numerical criticalities computed
by the RESISTOR and PROBABILITY models for the different preconditions in this
domain. Every iteration gives approximately another decimal place of precision to the
computation.

We group these numerical criticalities together, and order them using the less than
relation. Both models give the same abstraction hierarchy. On-Small is assigned the

54

Table I

A. Bum/y et a/. /Art@icitr/ Intellipncr 88 (1996) 39-67

Numerical critic&ties for the Tower of Hanoi domain using the RESISTOR model

X c (x3 n) /~10

I, = 0 I, = I I, = 2 n=3 n=4 n=oO

urlslrpervi,sed I .oooo I .oooo I .oooo I .oooo I .oooo I .oooo

On-Large I .oooo 0.x7.50 0.8.580 0.8561 0.8559 0.8559

On-Medium I .oooo 0.8333 OR125 0.8106 0.8104 0.8 104

On-Small I .oooo 0.7500 0.7x3.1 0.732 I 0.7321 0.732 I

Table 2

Numerical criticalities for the Tower of Hanoi dornain using the PROBABILITY model

X c’ (x. II) /(I,,

!f = 0 II = I ,I = 2 li = 3 II = 4

If,l.W/Wl~i,S~rl I .oooo I .oooo I .oooo I .oooo I .oooo

On-Large I .oooo 0.9922 0.9894 0.9889 0.9888

On-Medium I .oooo 0.96X7 0.9592 0.9577 0.9575

On-Small I .oooo 0.8750 0.8597 0.8574 0.8572

fl=Kl

I .oooo

0.9889

0.9575

0.8572

lowest criticality of 0, On-Medium is given a criticality of I, On-Large is assigned a

criticality of 2, and Is-peg is given the highest criticality of 3. This is in line with
our intuitions for this domain. The operator for moving the medium disk subsumes
the operator for moving the large disk since it is has strictly fewer preconditions. The
large disk is therefore more difficult to move than the medium disk. By precondition

monotonicity the criticality of On-Large is greater than that of On-Medium. Similarly
the medium disk is more difficult to move than the small disk. On-Medium is therefore
given a greater criticality than On-Small.

8.2. Robot-box domain

This domain comes from 1 I I and is a variant of the well-known ABSTFUPS robot
domain [121. The robot can either carry or pull boxes between one of six rooms. The
doors connecting rooms may be either open or closed. Closed doors may be either
openable or not openable. A typical contiguration is given in Fig. 1. In Table 3, we
give the numerical criticalities computed by the RESISTOR model for the different
preconditions in this domain. The unsupervised preconditions are Connects, Is-Box,
Is-Door, Is-Room, and Openable. As in the Tower of Hanoi domain, every iteration
gives approximately another decimal place of precision to the computation.

As before, we group these numerical criticalities together, and order them using the
less than relation. Attached and Loaded are assigned the lowest criticality of 0, Open is
given a criticality of 1, Box-In-Room is assigned a criticality of 2, and the unsupervised
preconditions are given a criticality of 3. Again this is in fine with our intuitions for the
domain. The unsupervised preconditions cannot be changed so are the most important.
Getting a box into a given room is then the next most difficult state to achieve. Opening

A. Bundy et al. /Art@cial Intelligence 88 (1996) 39-67 55

Room 1 Room2 Room3

Room6

/ lhd6 Room4

Door45

Room5

Fig. I The robot-box domain

Table 3

Numerical criticalities for the robot domain using the RESISTOR model

X C(X, n)/w

unsupervised

Box-In-Room

Open

Loaded

Attached

n=O n= I n=2 n=3 n=4 n=m

I .oooo 1 .oooo I .oooo I .oooo I .oooo 1 .oooo

I .oooo 0.8000 0.7830 0.7812 0.78 10 0.7810

I .OOoo 0.7500 0.7333 0.732 1 0.7321 0.732 I

I .oooo 0.6667 0.6250 0.6190 0.6182 0.6182

I .oooo 0.6667 0.6250 0.6190 0.6182 0.6182

a door is the next most difficult task to perform. Finally, attaching and loading boxes
have equivalent preconditions and are equally easy to achieve.

8.3. Computer hardware

This domain has four operators which print files, turn on devices, plug devices into
power outlets, and transfer files onto computers [I]. In Table 4, we give the numerical
criticalities computed by the RESISTOR model for the different preconditions in this do-
main. The unsupervised preconditions are CableCanReach, Functional, IsComputer,
IsOutlet, and IsPrinter. As in the previous domains, every iteration gives approxi-
mately another decimal place of precision to the computation.

We group these numerical criticalities together, and order them using the less than
relation. Loaded is assigned the lowest criticality of 0, PowerOn is given a criticality of
1, PluggedIn is assigned a criticality of 2, Printed is given a criticality of 3 and the
unsupervised preconditions are given the highest criticality of 4. This is again in line
with our intuitions for this domain. The unsupervised preconditions cannot be changed
so must be achieved in the most abstract space. The next hardest precondition to achieve
is Printed since we must have a computer and printer turned on, and the file to print

56

Table 4

A. Bum& P! trl. /Art$cid lntellipwce 88 (1996) 39-67

Numerical criticalities for the computer hardware domain using the RESISTOR model

X C(X,n)lw

ur~,supervised

Printed

PluggedIn

PowerOn

Loaded

I, = 0 II = I II = 2 I, = 3 II = 4 II = 00

I .oooo I .oooo I .oooo I .oooo I .oooo I .oooo

I .oooo 0.8331 0.8000 0.7949 0.7946 0.7946

I .oooo 0.6667 0.6667 0.6667 0.6667 0.6667

I .oooo 0.6667 0.6250 0.6250 0.6250 0.6250

I .oooo 0.6667 0.62.50 0.6190 0.6 I90 0.6190

Table 5
Numerical criticalities for the manufacturing domain using the RESISTOR model

X C(X, n)lnn

I, = 0 I, = I ,I = 2 n=OZ

ut~.supen~iserl I .oooo I .oooo I .oooo I .oooo

Painted I .oooo 0.6667 0.6667 0.6667
Shaped I .oooo 0.5000 0.5000 0.5000
Drilled I .oooo 0.5000 0.5000 0.5000

loaded on the computer. As we must plug in a device before turning it on, PluggedIn

is assigned a greater numerical criticality than PowerOn. Finally, as loading a file onto
a computer is less important than getting computers and printers plugged in and turned
on, Loaded is given the lowest numerical criticality.

8.4. Manufacturirrg

We return to the manufacturing domain of [I 1, 131 in which there are three operators

which shape, drill and paint various objects from stock. Table 5 gives the numerical
criticalities computed by the RESISTOR model for the different preconditions in this

domain.
Drilled and Shaped are assigned the lowest criticality of 0, Painted is given a

criticality of 1, and the unsupervised preconditions are given the highest criticality of
2. The Shaped and Drilled preconditions are equivalent and should be placed at the
bottom of the abstraction hierarchy. The Painted precondition appears above them as
the operator for achieving it has an additional unsupervised precondition. By precondition
monotonicity, Painted is therefore given a greater criticality. This hierarchy agrees with
the suggestions of Smith and Peot in [131.

9. Empirical results

To demonstrate the empirical advantages of the criticalities computed by the two
models, we ran a set of four benchmark experiments using the ASTWEAK system [141,

A. Bundy et al. /Art$icial Intelligence 88 (1996) 39-67 51

a state-of-the-art nonlinear planner combining AsSTRIPS style abstractions [121 with
Tweak style partial order planning [41. In each experiment we compared the quality
of the abstraction hierarchies generated by the RESISTOR and PROBABILITY models

with those built by the ALPINE and HIGHPOINT algorithms [1, lo]. These are two
of the best available procedures for generating abstraction hierarchies. Recall that the

abstraction hierarchies computed by the PROBABILITY model on these four examples
were identical to those computed by the RESISTOR model. The results of this section
therefore also apply to the PROBABILITY model (except that the CPU time needed to

compute the criticalities is, of course, slightly different).
The four experiments use standard benchmark problems taken from the literature.

The first domain appears in [10,141. The next three are presented in [I]. We either
repeated exactly the same experiments (for example, in the manufacturing domain), or
we run them in a more exhaustive manner (for example, in the robot-box domain). We

used two different measurements to evaluate the performance of ABTWEAK with the

different abstraction hierarchies: CPU time and the number of nodes expanded. The later
is often a more reliable measurement of performance. All experiments were on a SUN
Spare 10 workstation with 32Mbytes RAM running compiled Allegro CL 4.2 under
the Solaris 2 operating system.4

9.1. Tower of Hanoi

The goal is to move a pile of three disks of different sizes from one peg to another
using a third intermediate peg. At no time is a larger disk allowed to sit on a smaller
one. Recall that the representation consists of an unsupervised type predicate Is-peg,
and three predicates On-small, On-medium and On-large. ALPINE, HIGHPOINT and

RESISTOR all produced the same abstraction hierarchy in which preconditions are ab-

stracted according to their size. Thus, in the most abstract space, we just consider the
large disk. In the next level of abstraction, we consider both the medium and large disks.
And in the ground space, we consider all the disks. ALPINE generates this hierarchy
in 0.01 seconds, RESISTOR in 0.06 seconds, and HIGHPOINT in 7.79 seconds. Similar
abstraction levels are generated for problems with more disks. In [9], Knoblock shows

that such abstraction hierarchies reduce a breadth first search from exponential to linear.
To determine the savings possible in practice, we ran an experiment with and without

abstraction. Using abstraction, the Tower of Hanoi was solved in 11.56 seconds, expand-
ing out 57 nodes. Without abstraction, the Tower of Hanoi took more than three times
as long to be solved; ABTWEAK used 38.5 seconds and expanded 379 nodes before
finding a solution.

9.2. Robot-box domain

For this domain, both ALPINE or HIGHPOINT return criticalities which are order

dependent. The lowest three preconditions can be permuted by reordering the operators.

4 Code used in these experiments can be found at ftp: //f tp.mrg.dist .unige . it/ in directory
/pub/mrg-systems/criticalities.

5x A. Bundy ef trl. /Art@xz/ Intelligence 88 (1996) 39-67

Table 6

Criticalities for the “easy” robot-box domain

ALPINE / HIGHPOINT RESISTOR

J connects 3 Connects

Is-Box Is-Box

Is-Door Is-Door

Is-Room Is-Room

Openable Openable

? Box-In-Room 2 Box-In-Room

2 Attached I Open

I Loaded 0 Attached

0 Open Loaded

Table 7

The “easy” robot-box domain with unlocked doors

Plan length Mean CPU times (sets) Mean nodes expanded Samples

ALP/HIGH RESIST ALP/HIGH RESIST

3 0.66 0.62 28.86 27.86 14

6 4.24 -l 07 143.64 142.64 14

R I2.95 12.55 379.50 378.50 2

This is because ALPINE constructs a partial order on preconditions which is then topo-
logically sorted. To compare results, we used the ordering of operators which generates

the same abstraction hierarchy as in [1 1.
We ran experiments with both “easy” and “hard” problems. In the first set of ex-

periments, all doors are openable. HIGHPOINT then constructs the same abstraction
hierarchy as ALPINE . The criticalities are given in Table 6. ALPINE took 0.01 seconds,

HIGHPOLNT 22.32 seconds, and RESISTOR 0.18 seconds to generate these hierarchies.
We ran ABTWEAK on all 30 possible goals of moving between different rooms using
these criticalities. Table 7 shows that while RESISTOR performs marginally better than

ALPINE and HIGHPOINT, the differences between the hierarchies are not significant as
backtracking is never needed.

In the harder set of experiments, certain doors are locked. As in the RESISTOR model,
HIGHPOINT increases the criticality of Open so that it is above Attached and Loaded.
This reduces the probability of the robot meeting a locked door and thus the amount of
backtracking. All other criticalities remain the same. ALPINE and RESISTOR return the
same criticalities as before. We ran four sets of experiments. In each, door25 and one of
door23, door26, door35 and door56 are locked. In each case, there is just one unique
path connecting any pair of rooms. For each set of experiments, we ran ABTWEAK
on all 30 possible goals. In 8 out of the 120 problems, ASTWEAK exceeded the cut
off bound of 2000 nodes using the HIGHPOINT and RESISTOR abstraction hierarchies.
Using the ALPINE hierarchy, an additional problem also failed. The results are given in
Table 8.

A. Bundy et al. /Arttjicial Intelligence 88 (1996) 39-67

Table 8

The “hard” robot-box domain with two locked doors

Plan length Mean CPU times (sets) Mean nodes expanded

ALP HIGH RESIST ALP HIGH RESST

59

Samples

3 0.91 0.74 0.82 28.30 28.30 27.30 40

6 6.20 5.33 5.32 162.92 160.32 159.32 40

8 39.42 29.03 28.99 775.08 752.67 751.67 24

IO 8258 69.64 67.4.5 1729.78 1654.87 1653.87 71818

Table 9

Criticalities for the computer hardware domain

ALPINE H~GHPOINT

4 Cable-Can-Reach 3 Cable-Can-Reach

Functional Functional

Is-Computer Is-Computer

Is-Printer Is-Printer

Is-Outlet Is-Outlet

3 Printed 2 Printed

2 Loaded I Loaded

I Power-On 0 Power-On

0 Plugged-In Plugged-In

RESISTOR

4 Cable-Can-Reach

Functional

Is-Computer

Is-Printer

Is-Outlet

3 Printed

2 Plugged-In

1 Power-On

0 Loaded

On this harder domain, the RESISTOR and HIGHPOINT hierarchies give similar results.
Both perform significantly better than the ALPINE hierarchy as there is less backtracking

caused by meeting locked doors. The poor mean performance of the ALPINE hierarchy
was, in fact, entirely due to a small number of problems where AESTWEAK backtracked
extensively.

9.3. Computer hardware

In the computer hardware domain of [11, the goal is to print a file in an environment
where there are a number of computers and printers. Computers and printers may not

be turned on, may not be functional, or located near to a power outlet. As in [11, we
ran experiments in a domain in which at the initial situation just one computer and
printer are within reach of a power outlet. The criticalities generated by the different
methods are given in Table 9. ALPINE took 0.01 seconds, HIGHPOINT 15.26 seconds,
and RESISTOR 0.12 seconds to generate these hierarchies. As in [11, we ran ABTWEAK
on 30 different problems involving between 1 and 3 files to print, and with between 1
and 10 computers, using a time limit of 1800 seconds. The results are given in Figs. 2-4.

ALPINE performs poorly in this domain, again due to backtracking when devices are
not plugged in. RESISTOR and HIGHPOINT both require much less backtracking. The
RESISTOR hierarchy gives slightly better performance, most noticeably on the larger
problems.

60 A. Bundy rt cd. /Artijiml lntellipmx RR (1996) 39-67

Fig. 2. CPU time and nodes explored, I file to print

Fig. 3. CPU time and nodes explored, 2 files to print

Fig. 4. CPU time and nodes explored, 3 files to print.

Table 10

A. Bundy et al./ArtQicial Intelligence 88 (1996) 39-67 61

Criticalities for the manufacturing domain

ALPINE HIGHPOINT RWISTOR

3 Object I Object 2 Object

Steel Steel Steel

2 Shaped 0 Painted I Painted

I Drilled Drilled 0 Shaped

0 Painted Shaped Drilled

Fig. 5. CPU time and nodes explored for the manufacturing domain.

9.4. Manufacturing

We return to the manufacturing domain of [11,131. The goal is to shape, drill and

paint an object from stock. Recall that only steel objects can be painted. We assume
that just one out of the large number of objects in stock are made from steel. The
criticalities generated by the different methods are given in Table 10. ALPINE took 0.01

seconds, HIGHPOINT 13.33 seconds, and RESISTOR 0.68 seconds to generate these
hierarchies.

ALPINE’s abstraction hierarchy violates the precondition monotonicity property as the
Painted precondition should not be lower than either the Shaped or Drilled pre-

conditions. HIGHPOINT compensates for the low probability of an object from stock
being paintable by collapsing together the bottom three levels of ALPINE’s abstrac-
tion hierarchy. This reduces the need to backtrack but gives just one level of abstrac-
tion. By comparison, RESISTOR is able to generate an additional level of abstrac-
tion.

As in [11, we ran ABTWEAK on problems with between 100 and 200 objects in stock.

Results are plotted in Fig. 5. The RESISTOR hierarchy results in less backtracking than
the ALPINE hierarchy, and performs significantly better than the HIGHPOINT hierarchy
due to the additional level of abstraction.

62 A. Bunfly et d. /Artificitr/ Intelligence 88 (1996) 39-67

10. Conclusions

We have proposed a novel method for building AMTRIPS style abstractions auto-

matically based upon a simple theory of numerical criticalities. The aim of our method

is to minimize the amount of backtracking within and between abstraction levels. Un-
like previous approaches which reasoned about plans directly, we simulate the planning
process numerically. We have identified a family of solutions for building abstractions
in this way based upon two general operators. The first operator computes the critical-

ity of an operator in terms of the criticalities of’ its preconditions, whilst the second
computes the criticality of a precondition in terms of the criticalities of the operators

that achieve it. We give two examples of solutions. The first is based upon an anal-
ogy with electrical resistance. whilst the second takes ideas from probability theory.
Both solutions are fast and simple to compute. The simplicity of our approach allows

us to guarantee that various theoretical properties hold which are lacking in previous
approaches. In particular, the abstraction hierarchies constructed by our method satisfy

two simple “monotonicity” properties. These ensure that the harder preconditions are
achieved in the higher abstract levels. These monotonicity properties limit the amount
of backtracking required between and within abstraction levels. We have compared our
method with those in the ALPINE and HIGHPOINT procedures. Using four benchmark

experiments, we have demonstrated that the hierarchies constructed are better than those

generated by ALPINE and HIGHPOINT. In addition, our methods build these hierarchies

rapidly.

Appendix A. Problem domains

The following are the operators I‘or the problem domains used in Section 9. All
the operators are taken from [I, 14 1. The columns of each table give the preconditions,
adds and (where appropriate) deletes respectively. The “*” symbol identifies the primary

effects.

A. I. Tower of Harloi domuir

Is-peg(x)

Is-peg(y)

-i On-small (x1

1 On-medium(x)

7 On-small(y)

1 On-medium(x)

On-large(x)

Move-large (x y)

On-large(y) * 1 On-large (x1

A. Bundy et al./ArtiJicial Intelligence 88 (1996) 39-67

Move-medium(x y>

63

Is-peg(x)

Is-peg(y)
1 On-small(x)

7 On-small(y)

On-medium(x)

On-medium(y)* 7 On-medium(x)

Is-peg(x)

Is-peg(y)

On-small(x)

Move-small(x y>

On-small(y)* 1 On-small(x)

A.2. Robot-box domain

Carry-Thru-Door(b d rl r2)

Is-Door(d) Box-In-Room(b r2)* 7 Box-In-Room(b rl)

Is-Box(b)

Is-Room(r1)

Is-Room(r2)

Connects(d rl r2)

Loaded(b)

Box-In-Room(b rl>

Open(d)

Pull-Thru-Door(b d i-1 r2)

Is-Door(d)

Is-Box(b)

Is-Room(rl)

Is-Room(r2)

Connects(d rl r2)

Attached(b)

Box-In-Roomtb ri>

Open(d)

Box-In-Room(b r2)*

Attach-Box(b)

7 Box-In-Room(b rl>

Is-Box(b)

1 Loaded(b)

Attached(b)*

Load-Box(b)

Is-Box(b)

1 Loaded(b)

Is-Door(d)

Openable(d)

7 Open(d)

Loaded(b)*

Open-Door(d)

Open(d)*

64 A. Bundy er al. /Artificial In/elligence RR (I 996) 39-67

A.3. Computer hardware domain

Print(file computer printer)

Power-On(computer)
Power-Oncprinter)
Is-Computer(computer)
Is-Printercprinter)
Loadedcfile computer)

Printedcf ile) *

Turn-On(device)

Plugged-Incdevice)
Functional (device)

Power-On(device)*

Plug-In(device outlet)

Is-Outlet(outlet) Plugged-In(device)
Cable-Can-Reachcdevice outlet)

Load(file computer)

Is-Computer(computer1 Loaded(f ile computer) *
Power-On(computer)

A.4. Manufacturing domain

Object (x)

Shape(x)

Shape (x> *

Drill(x)

7 Drilled(x)
7 Painted(x)

Object(x) Drilled(x)*

Paint (x1

7 Painted(x)

Object(x)
Steel(x)

Painted(x) *

Appendix B. Convergence of simple Resistor model

Recall that each operator has m preconditions and each precondition can be achieved
by 1 distinct operators. Unfolding the definitions gives,

C(p, 0) = ao,

I I
=L+L--_-

C(p,n+ 1) a0 m’C(p.n)

To identify a closed form solution, we compute the first few iterations

A. Bundy et al./Artificinl Intelligence 88 (1996) 39-67 65

1 1 -=_
C(p,l) a0 (>

I,: ,

i=1(,+;+ (i)‘),
C(P,2) a0

&=;(l+;+ (;)‘+ (;)3),

A simple induction therefore shows

Thus,

if I = m,

if 1 # m.

The difference between successive iterations is therefore 0((Z/m)“) for I < m, 0(l/n*)
for 1= m, and 0((m/Z)“) for 1 > m.

Convergence of simple PROBABILITY model

Each operator again has m preconditions and each precondition can be achieved by 1
distinct operators. Unfolding the definitions gives

C(P, 0) = a03

C(p,n+l) =aa(l --(I -C(p,n))“‘)‘.

To simplify notation, we write c, for C(p, n). We therefore have,

c,+] = cc(1 - (1 - cn)‘?‘)!

We will identify a bound on the rate of convergence of this equation by considering the
fixed points of the following function,

f(x) d:fco(l - (1 -.q’)‘.

Note that c,+t = f (c,). We assume that cc < 1 since if CO = 1 then c, = 1 for all n.
For all 1 and m, it is easy to see that f(0) = 0, f (1) = CO and f(x) is continuous in

[0, I]. In addition, f’(0) = f’(1) = 0 and f’(x) > 0 for all x E (0,l).

66 A. Bundy et 01. /Art$ficia/ Intelligence 88 (I 996) 39-67

Fig. B.I

Let bl < bt < < DX be the fixed points of f in [0, I] (i.e., f(bj) = b,). Note that

bt = 0 SO k 3 I. The diagram shown in Fig. B. I illustrates how c, converges towards
bk, the greatest fixed point as y1 increases.

Since f’(x) > 0 in (0, I), it follows that 6k < CO. If k > 1 then for x E (&I,&),
f(x) > X. And for x E (bk, I 1, ,f’(x) < .x. Hence, at bk the gradient of v = f(x) must
be less than that of y = s. In other words, f’(01) < I. Alternatively if k = 1, then
,f’(hi) = 0 < I. By the definition of differentiation, there exists p < I and b > bk such
that for all xt.s2 E [bk,b].

.f’Gl) - f(X2)

XI -x2
< P.

Hence, there exists m with c,,,_I C. 1) such that for all rr > m,

.f‘(c,,) - f(c,,-I)
< P.

c,, - c,,-I

That is,

C,,+I ~ Cl,
<P

C/l - c,,-I

As c,, is monotonically decreasing,

/Clkl - c,,l

IG, -G-l/ <p.

The difference between successive iterations thus decreases by at least a constant factor
after the mth iteration.

A. Bundy et al. /Ar@cial Intelligence 8R (1996) 39-67 67

References

[I 1 F. Bacchus and Q. Yang, Downward refinement and the efficiency of hierarchical problem solving, Artif:
Infell. 71 (1994) 43-100.

12 1 C. Backstrom and P Jonsson, Planning with abstractions hierarchies can be exponentially less efficient,
in: Proceedings IJCAI-95, Montreal, Que. (1995) 1599-1604.

13 1 A. Bundy, F. Giunchiglia, R. Sebastiani and T. Walsh, Computing abstraction hierarchies by numerical

simulation, in: Proceedings AAAI-96, Portland, OR (1996).

14 1 D. Chapman, Planning for conjunctive goals, Art$ Infell. 32 (1987) 333-377.
15 1 F. Giunchiglia, Using ABSTRIPS abstractions-where do we stand?, IRST-Technical Report, IRST,

Trento (1996).

16) E Giunchiglia and T. Walsh, Using abstraction, in: Proceedings 8th Conference of the Society for the
Study of Artificial Intelligence and Simulation of Behaviour, Leeds (199 I); also: IRST-Technical Report

90 IO-OS, IRST, Trento; also: DA1 Research Paper 5 15, University of Edinburgh, Edinburgh.

171 E Giunchiglia and T. Walsh, A theory of abstraction, Artif Intell. 56 (1992) 323-390; also: IRST-

Technical Report 9001-14, IRST, Trento.

I 8 1 C. Green, Application of theorem proving to problem solving, in: Proceedings IJCAI-69, Washington,

DC (1969) 219-239.

19 I C.A. Knoblock, Abstracting the Tower of Hanoi, in: Working Notes of AAAI-90 Workshop on Auromaric
Generation of Approximations and Abstractions (1990) 13-23.

[IO 1 CA. Knoblock, Automatically generating abstractions for planning, Art$ Infell. 68 (1994) 243-302.
I I I I M.A. Peot and D.A. Smith, Threat-removal strategies for partial-order planning, in: Proceedings AAAI-

93, Washington, DC (1993).

I I2 1 E.D. Sacerdoti, Planning in a hierarchy of abstraction spaces, in: Proceedings IJCAI-73, Stanford, CA

(1973).

I 131 D.E. Smith and M.A. Peot, A critical look at Knoblock’s hierarchy mechanism, in: Proceedings 1st
international Conference on Artijicial Intelligence Planning Systems (1992) 307-308.

1 141 Q, Yang, J. Tenenberg and S. Woods, On the implementation and evaluation of ABNEAK, Com~m~.

Intell. 12 (1996).

