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Abstract

Since logical knowledge representation is com-
monly based on nonclassical formalisms like de-
fault logic, autoepistemic logic, or circumscrip-
tion, it is necessary to perform abductive rea-
soning from theories of nonclassical logics. In
this paper, we investigate how abduction can be
performed from theories in default logic. Diffe-
rent modes of abduction are plausible, based on
credulous and skeptical default reasoning; they
appear useful for different applications such as
diagnosis and planning. Moreover, we analyze
the complexity of the main abductive reasoning
tasks. They are intractable in the general case;
we also present known classes of default theo-
ries for which abduction is tractable.

1 Introduction

Abductive reasoning has been recognized as an import-
ant principle of common-sense reasoning having fruit-
ful applications in a number of areas such diverse as
model-based diagnosis [Poole, 1989], speech recognition
[Hobbs et al, 1988], maintenance of database views [Ka-
kas and Mancarella, 1990], and vision [Charniak and
McDermott, 1985]. Until now, mainly abduction from
theories of classical logic has been studied. However,
logical knowledge representation is commonly based on
nonclassical formalisms like default logic, autoepistemic
logic, or circumscription. Thus, in such situations it is
necessary to perform abductive reasoning from theories
(i.e. knowledge bases) of nonclassical logics.

Since default logic is widely proposed for knowledge
representation, it is important to investigate how abduc-
tion can be performed from theories (W, D) in default
logic. We informally pursue this on an example.
Example 1 Consider the following set of default rules,
which represent knowledge about Bill's skiing habits:

D= : ~gkiing_Bill weekend : - ng wing
7] -skiing Bill ' akiing_Bill ' asnowing

* A more elaborate version including proofs is available on
email request to the authors.

"Work carried out while visiting the Christian Doppler
Lab.
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The defaults intuitively state the following: (i) Bill is
usually not out for skiing; (ii) Bill is out for skiing on
weekends, if we can assume that it is not snowing; (iii)
usually it is not snowing. For the certain knowledge W =
{weekend} (encoding that it is Saturday or Sunday),
the default theory T — (W, D) has one extension which
contains -\ snowing and skiing.Bill.

Suppose now we observe that Bill is not out for ski-
ing (which is inconsistent with the extension). Abduc-
tion means to find an explanation for this observation,
that is, to identify a set of facts, chosen from a set
of hypotheses, whose presence in the theory at hand
would entail the observation -skiing-Bill, i.e., cause
that -skiing-Bill is in the extension. We find such
an explanation by adopting the hypothesis snowing.
Indeed, if we add snowing to W, the default theory
T' = ({ weekend, snowing],D) has a single extension,
which contains -1 skiing .Bill. We say that snowing is ab-
duced from the observation -iskiing.Bill, or that it is an
abductive explanation of -*skiing.Bill. |
Observe that the description of the above situation re-
quires the specification of some default properties that
can not be represented properly in classical logic.

In general, as opposed to the example, a default theory
may have several or even no extensions. For deductive
entailment, this gives rise to credulous entailment, un-
der which ¢ is entailed from a default theory T (denoted
T k. ¢) iff & belongs to at least one extension of T, and
to skeptical entailment, under which ¢ follows from T
(T +, ¢) iff ¢ belongs to all extensions of T. Accor-
dingly, two variants of abduction from default theories
arise: credulous abduction, where entailment of an ob-
servation is based on ¥, and skeptical abduction, which
is based on s In practice, the user will choose credu-
lous or skeptical abduction on the basis of the particular
application domain.

We argue that credulous abduction is well suited
for diagnosis, while skeptical abduction is adequate
for planning. (Cf. [Poole, 1989] and [Eshghi, 1988,
Ng and Mooney, 1991] for abduction in logic-based dia-
gnosis and planning & plan recognition, respectively.) In
fact, consider a system represented by a default theory
(W,D). If it receives some input, reflected by adding a
set A of facts to W, then each extension of {W U A, D}
is a possible evolution of the system, i.e., each extension
represents a possible reaction of the system to A.



Abductive diagnosis consists, loosely speaking, in de-
riving from an observed system state (characterized by
the truth of a set F of facts), a suitable input A which
caused this evolution (cf. [Poole, 1989]). Now, since each
extension of (WA, D) is a possible evolution of the sy-
stem with input A, we can assert that A is a possible
input that caused F if {W U A, D) k. F. Thus, diagno-
stic problems can be naturally represented by abductive
problems with credulous entailment.

Example 2 Assume there are two sky routes, rv\ and
ru, between Rome and Vienna, and three sky routes
mvl, mv2, and mvZ between Milan and Vienna. Route
mvl intersects route rvl, and mv2 intersects rv2. On
normal speed and flight conditions, two planes from Mi-
lan and Rome to Vienna will collide if the plane from Mi-
lan takes off 20 minutes after the plane from Rome and
they fly on intersecting routes. This knowledge about
possible collisions is represented in simplified form by
the following set D of propositional defaults:

myl Arvl Am20mindater : collision
collision

D=

k]

mu2 A rv2 A m_20min later : collision
colligion !

: collision

s =rel
—collision ' —rvl '
: el }

—mul

carp?  omel  omel2

-ry2

mvl ' -mp? "

Now, you are informed that planes flying from Milan
and Rome to Vienna collided. A diagnosis for the colli-
sion can be obtained by abducing an explanation for the
observation collision from the theory T = (B, D}. In this
case, we want to know possible flight schedules that can
have caused the collision. In other words, we are looking
for schedules S such that collision is in some extension
of the theory T = {5, D} (T' . eollision). Credulous
abduction correctly identifies such explanations. For in-
stance, it is easy to recognize that both El= {mul, rv],
m_20minJater}  and E2 = {mu2, rv2, m.20minlater}
are credulous explanations for collision. |

Suppose now we want that the system evolves into a
certain state (described by a set F of facts), and we have
to determine the "right" input that enforces this state of
the system (planning). In this case it is not sufficient to
choose an input A such that F is true in some possible
evolution of the system; rather, we look for an input A
such that F is true in all possible evolutions, as we want
be sure that the system reacts in that particular way. In
other words, we look for A such that (WU AsD} Fs F.
Hence, planning activities can be represented by abduc-
tive problems with skeptical entailment.

Example 3 We know that a plane from Rome to Vi-
enna left at 7.50 (r.7.50), but we do not know on which
route. We have to schedule the flight of a plane from Mi-
lan to Vienna, where takeoff is possible at 8.10 (m.8.10)
and at 8.20 (rn.8.20). The collision-free schedules can
be obtained by finding an abductive explanation out of

the hypotheses m_8.10, m.8.20, mvl, mv2, mv3 for the
observation -colligion from the theory T' = (W, D1},

W = {r7580, rvivre?, m.S8.10Vm.8.20,
mul V mul V mud,
r.7.50 A m_8.10 O m._20min later )
=~ 810 -m 820
br = bu { -m.8.10 ° -m=B8.20 }

As we can not risk a collision, we want that every pos-
sible evolution of the system is collision-free. Thus, we
have to look for skeptical explanations of —colfision. For
instance, both E3 = {m.8.20} and E4 = {mv3} are
skeptical explanations for —colliston; that is, takeoff at
8.20 or using route mu3 prevents a collision, where the
route in E3 and the time in E4 can be chosen freely. {

The two examples above support the intuition that
credulons abduction is feasible for diagnosis, while skep-
tical abduction is well-suited for planning. On the other
hand, Section 4 shows that skeptical abduction has most
likely a higher complexity than tredulous abduction;
thus, from the above point of view, planning is most
likely harder than diagnosis.

For space reasons, we only present some proof sket-
ches. Proofs of all results are given in the fuli paper.

2 Preliminaries and Notation

We assume that the reader knows the basic concepts
of default logic [Reiter, 1980] (cf also [Marek and
Truszezyniski, 1993} for an extensive study). We focus
on propositional default thearies T = {W, D) over a pro-
positional language £ (including 1 for falsity)}, i.e. W is
a subset of £ and D a set of defaults lgh_f—ﬁﬂ-, m>1
where o, 3,...,Bm, v are from £. The extensions of T,
which are deductively closed sets E C £, are defined by
a fixpoint equation; in particular, £ is an extension of T’
{and, in this case, unique) iff W is not consistent. Hecall
that T is normel iff each defsult in I is normal, ie., of
form %ﬁ, a normal T always has an extension.

For NP-completeness and complexity theory, of. [John-
son, 1990}. The classes =f and II{ of the polynomial
hierarchy are defined as follows: £f = IIf = P, and

TP = NP1, I = o BF, forall k > 11.

In particular, NP = £f and ¢o-NP = [If. The class
ka, which is defined as the class of prablems that
consist of the conjunction of two (independent} pro-
blems from Ef and II], respectively, is considered to
be further restricted in computational power. For all
k > 1, cleatly Ef ¢ Df € Zf,,; both inclusions
are believed to be strict. Many nonmonotonic reaso-
ning problems are complete for classes at the lower end
of the pelynomial hierarchy {Cadoli and Schaerf, 1993,
Nebel, 1994]. It is well-known that deciding whether
a propositional default theory has an extension is Lf-
complete, and that credulous and skeptical reasoning
from default theories are complete for £5 and If, re-
speciively. This remains true if inconsistent extensi-
ons are excluded and, for the latter problems, if de-
fault theories are in addition normal [Gottlob, 1992,
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Stillman, 1992]. Cases of lower complexity and tractable
fragments were identified in [Kautz and Selman, 1991,
Stillman, 1990].

3 Formalizing default abduction

In this section, we describe a basic formal model for ab-
duction from propositional default theories and state the
main decisional reasoning tasks for abductive reasoning,

Gur formalization of an abduction scenario is as fol-
lows.

Definition 1 A propositional default abduciton probiem
{PDAP) is o quadruple (H, M, W, D} where H is a set of
propositional literals (called hypotheses, or abducibles),
M is a set of propositional literals {observations, or
manifestations}, end (W,D) is ¢ propositionel defoult
theory. P 18 normal iff each default m D is normal. ]

Note that hypotheses and manifestations may be lite-
rals rather than atoms. Allowing literals as hypotheses is
commeon in abduction, of. [Selman and Levesque, 1990].
However, this has no effect on the expressive power or
complexity of the formalism in general.

Credulous and skeptical explanations are as follows.

Definition 2 Let P = {H, M, W, D) be a PDAP, and let
E C H. Then, E is a credulous explanation for P iff (i)
{(WUE, D)t M, and {it] (W UE, D} has a consistent
extension. Simslarly, E is a skeptical ezplanation for
Piff i) {WUE,DYF, M and (i) (WUE,D) has a
consigtent extengion.

The existence of a consistent extension for (WUE, D)
(in this case, all extensions are consistent) assures that
the explanation E is consistent with the knowledge re-
presented in (W, D). This is analogous to the consistency
criterion in abduction from classical theories.

It is common in abductive reasoning to prune the set
of all explanations and to focus, guided by some principle
of explanation preference, on a set of preferred explana-
tions. The most important such principle is, following
Occam's principle of parsimony, to prefer nonredundant
explanations, i.e., explanations which do not contain any
other explanation properly, cf. [Peng and Reggia, 1990,
Selman and Levesque, 1990, Konolige, 1992]. We refer to
such explanations as minimal explanations. In Exam-
ple 3 E3 = {m_8.20} and E4 = {mv3) are the minimal
explanations; they represent the smallest partial sche-
dules that can be arbitrarily completed to collision-free
schedules, and thus provide the greatest flexibility.

In the sequel, we will write Exp(V) for the set of ex-
planations for the PDAP V, abstracting from the chosen
type of explanations (credulous, skeptical, minimal cre-
dulous, or minimal skeptical).

The following properties of a hypothesis in a PDAP V
are important with respect to computing explanations.

Definition 8 Let P = {(H M, W,D) be a PDAP ard h €
H. Then, R is relevant {resp. necessary) for Piffh € E
for some (resp. every) E € Ep(P).

The opposite of necessity is also termed dispen-

sability (cf. [Josephson et ol, 1987)). In Exam-
ple 2, m_20rmin Jater is necessary, while each hypothesis
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ruvl, rv2, my1, mv2 is relevant, but not necessary. Moreo-
ver, in Example 3 mu3 i8 relevant w.r.t. minimal (skep-
tical) explanations, but not necessary. Note that in the
same example rv] is relevant under arbitrary explanati-
ons, but not relevant under minimal explanations.

The main decisional problems in abductive reaso-
ning amount to the following. Given a FDAP P =
{H M 1 W: D ) *

(Consistency): does there exist an explanation for P?

(Relevance): is a given hypothesis h € H relevant for
P, i.e., does h contribuie to some explanation of P?

(Necessity): is a given hypothesis k € H necessary for
P, i.e., is A contained in all explanations of P?

Due to the following simple fact, we shall not deal
in our analysis explicitly with Necessity in the cage of
minimal explanations.

Proposition 1 Let P = (H,M,W,D) be a PDAP and
let h € H. Then, h is necessery for P under mintmal
credwlous (resp. skeptical) explanations iff h is necessary
Jor P under credulous (resp. skeptical) explanations.

4 Results

The main results on the complexity of abduction from
general propositional default theories are summarized in
Table 1. In our analysis, we pay particular attention to
normal PDAPs, since this class corresponds to the most
important fragment of default logic. All hardness re-
sults in Table 1 have been derived for the case where the
underlying default theory (W, D} is normal. Thus like
deduction, abduction from nortnal default theories is as
hard as abduction from arbitrary default theories.

We introduce some additional notation. For a set
A of propositional atoms, we denote by —A the set
{—~a|a € A} and by A’ the set. of atoms {a' | a € A}.

4.1 Arbitrary explanations

QOur first result shows that abduction from default theo-
ries based on credulous explanations can be efficiently re-
duced to deductive reasoning from propositional default
theories. This is somewhat unexpected and surprising,
since in case of classical theories, abduction can not be
efficiently reduced to deduction.

Given a PDAP P = (H, M, W, D}, we construct a de-
fault theory Tp = (Wp,Dp) such that the credulous
explanations of P correspond to the extensions of Tp.
Indeed, define

e Wp=Wu{ey, 2h|heH},
* Dp = DU{+™ |me MYu{-o, 2% | he H)

where for each h € H, a) is a new propositional atom.
Then, we have;

Theorem 1 Let P = (H, M W,D) be ¢ PDAP. Thenr,
(i) if E is a credulous ezplanation for P, then there
eztsts a consistent eziension E' of Tp suck that E =
{h€ H|ay € B'Y; (ii) if E' is a consistent eztension of
Tp, then E={h € H| s € E'} i3 o credulous ezplana-
tion for P.



PDAP P =(H M W, D} | arbitrary explanations | minimal explenations
Problem: credulous | skeptical | credulous | skeptical
Erp(P) # 0 >4 >4 4 5
E ¢ Exp(P) 4 D} D} m;
E € Erp(P) is minimal I I
k € H is relevant. for P =5 Ef E{: Ef
h € H is necessary for P n m n 1 4

Table 1: Complexity resulis for abduction from propositional default thecries

Using {1) and (ii), the main decisional abductive reaso-
ning tasks can be efficiently transformed to similar de-
ductive reasoning tasks in default logic.

Corollary 1 Let P be u PDAP based on credulous ez-
planations. Tken, (i} Consistency, (ii) Relevance, and
(ili) Necessity are equivalent to (i’} existence of a con-
sistent extension of Tp, (#') membership of vy, in some
conststent extension of Tp, end (iii") membership of as
tn all extensions of Tp, respectively.

By the results on the complexity of propositional de-
fault logic [Gottlab, 1092, Stillman, 1992], it follows that
{i) and (i) are in £ and that (i) is in IIf . We also
obtain matching hardness by reductions from deductive
default reasening. Let T = (W, D} be a normal default
theory such that W is vonsistent, and ¢ a formula. Let
h, g be new propositional atoms. Then, the PDAP

(#)  @{gt.Wwu{s2gql.D}

has a credulous explanation Hf T k. ¢; A is relevant for
the PDAP

(+x}  {{h}.{a},WU{¢D0q}.D}
iff T+, ¢; and k is necessary far the PDAP

(#+%) {{h},{g} WU{éVhDq},D)
iff T I/ ¢. Since the reasoning problems for T"in (*), (**)
are £F-hard and the one in (***) is 1§ -hard [Gottlob,
1992}, the hardness results follow.

It is interesting to note that verifying a credulous ex-
planation is as hard as finding one. The former prgblem
can be easily reduced to the latier, moreover, B is the
¢nly possible eredulous explanation for the PDAP (*).

Thus,

Theorem 2 Let P = (H,M, W, D)} be o PDAP. ‘D“g'
ding if E C H i3 n credulous ezplanation for P is L -
complete, with hardness holding even for normal P,

Now consider abduction based on skeptical reasoning.
It would be useful to have a reduction of abductive re-
asoning to deductive reasoning which can be computed
efficiently. However, by using skeptical reasoning the ab-
ductive reasoning tasks grow more complex, by one level
of the polynomial hierarchy. This strongly suggests that
such an efficient reduction is not possible.

We first consider the problem of recognizing skepti-
cal solutions. Clearly, this reduces to deciding if a cer-
tain default theory has a consistent extension (which is

in ') and if each exiension includes all manifestations
(Y. Thus, the problem is a logical conjunction of a
problem in F and a problet in 117", and hence in the
class DE. Moreover, it is also hard for this class.

Theorem 3 Lei P = {H M ,W,D} be a PDAP. Dect-
ding if E C H is a skeptical explanation for P is Df-
complete,

Thus, as in the case of credulous explanations, reco-
gnizing a skeptical explanation is at the second level of
the polynomial hierarchy. However, since this problems
involves hoth a EF and a IIf-hard subtask {as opposed
to only a E{ -hard cne), finding a skeptical explanation
resides at the third level.

We sketch here the £f-hardness proof for Consi-
stency by a transformation of deciding if a guantified
Boolean formuln (QBF) & = 3XVY3IAZF is valid (cf.
[Johnsen, 1990] for a definition of QBFs). Define

p={-== 2lacXxuY}ju{},

-n?
P=(Xu{~zlze X}, {/}.{f=F}. D)
where / is a new atom. Then, V has a skeptical expla-
nation iff $ is valid.

How does this result compare to other nonmonoto-
nic logics, in particular, which nonmonotonic logic has
similar complexity ? We know that Konolige's mo-
derately grounded autoepistemic logic [Konolige, 1988]
and several other ground nonmonotonic modal logics
have the same complexity [Eiter and Gottlob, 1992,
Donini et a/.,, 1995]; thus, we can use a theorem pro-
ver for such logics to perform abductive reasoning from
default theories based on skeptical explanations.

4.2 Minimal explanations

As mentioned above, one is usually interested in mini-
mal explanations for observations. The results in [Eiter
and Gottlob, 1995] were that the complexity of abduc-
tion from classical theories does not increase if minimal
explanations are used instead of arbitrary explanations.
However, this is not true in for abduction from default
logic. Here, checking minimality of an explanation is a
source of complexity, which causes an increase in com-
plexity by one level of the polynomial hierarchy.
Consider first credulous explanations. Checking mi-
nimality of an explanation E has complementary com-
plexity of checking the explanation property. Notice
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that E is not minimal iff for some h € E, the PDAP
{E — {h}, M, W, D) has a credulous solution; hence, it
follows that the problem is in ﬂl On the other hand,
reconsider (***). Clearly, {h} is a credulous explanation;
moreover, it is minimal iff h is necessary for V. Thus,
IIf-hardness follows.

Note that recognizing minimal credulous explanations,
which consists in checkln%’the solution property and te-
sting minimality, is in D , and also complete for this
class. Thus, this problem can be transformed into re-
cognition of skeptical explanations for a certain PDAP
and vice versa. Due to the complexity of minimality
checking, problem Relevance migrates to the next level
of the polynomial hierarchy.

Theorem 4 Let V be a PDAP based on minimal cre-
dulous explanations. Then, problem Relevance is E; .
complete, with hardness holding even for normal P.
Proof. (Sketch) Membership. A guess E for a minimal
credulous explanation for V such that h € E can be
verified by two calls to a ﬂz oracle. Hence, the problem
is in 33

Hardness. We outline a reduction from deciding va-
lidity of a QBF & = 3XVY3ZF. Let 5 and g be new
atoms, and define

bl H . iy o
D = {5 wmre, cesiey
(e, 222 sex}u{Fiver].

Let P = {Xu-XuYuU{s}, X' u{g},® D). Then,
one can show that s is relevant for a minimal credulous
explanation for V iff & is valid. |

Now let us consider minimal skeptical explanations.
Testing minimality of a skeptical explanation is much
more involved than of a credulous explanation. While
the latter has roughly the same complexity as testing
the explanation property, the former is harder by one
level of the polynomial hierarchy. Intuitively, this can
be explained as follows. Since verifying a credulous ex-
planation E is in E.f:, it has a polynomial-size "proof"
which can be checked with an NP oracle in polynomial
time. Thus, if we ask for a smaller explanation E'C E,
we can simultaneously guess E' and its proof, and check
the proofin polynomial time with the NP oracle. Howe-
ver, verifying a skeptical explanation Eis H;—hard, and
hence E does not have such a "proof". Here, verification
needs the full power of a H-f oracle.

Theorem 5 Let V = (HMW,D) be a PDAP. Deci-
ding if a skeptical explanation E for V is minimal is
H? -complete, with hardness holding even for normal V.
Proof. (Sketch) Membership. A guess for a smaller
skeptical explanation E' C E can be verified with two
calls to A EqP oracle, and hence deciding the existence
of such an E' is in Eg’.. Consequently, the problem is in

Hardness. We describe here a reduction from deciding

whether a QBF & = YX3IYVZF is valid. Let s and g be

new atoms, and define
= —g:=F
D = |5t ke My {St)zeX )

u{& Ziyer},

oy
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={XU{s},{g},8. D). Check that E = X U {s}
is a skeptlcal explanation for V. Moreover, E is minimal
iff $ is valid. |

Note that recognizing minimal skeptical explanations
is in Ha since the complexity of deciding minimality
(Ha A domlnates the complexity of the solution property
("only" E ), and is also complete for this class.

The compIeX|ty of deciding relevance of a hypothesis
increases by the same amount as testing minimality if
skeptical explanations are used instead of credulous ex-
planations. In fact, the problem resides at the fourth
level of the polynomial hierarchy.

Theorem 6 Let V be a PDAP based on minimal skep-
tical explanations. Then, problem Relevance is E‘
complete, with hardness holding even for normal V

Proof. (Sketch) Membership. A guess for a minimal
skeptical explanaf for Puch that h € E can be
verified with one call to a Ef oracle.

Hardness. We outline a reduction from deciding vali-
dity of a QBF ¥ = 3RYXIYVZF, which is an extension
to the reduction in the proof of Theorem 5. Let as there
be s and g new atoms, and define

A
=pArt

D1 = pu{zEMt

FarT 1

frER}

where D is the same set of defaults as in the proof of
Theorem 5. Define P = {H,R" U {q},®, D1}, where
H = R'U-~R'UXU{s}. (Note that if W would be empty,
then V would be identical to the PDAP in the proof of
Theorem 5). It holds that for each subset 1 C R, the
set RI'U~{R— R1)' UX U{s} is a skeptical explanation
for V. Moreover, it can be shown that s is relevant for
a minimal skeptical explanation for P iff ¥ is valid. |

There is no well-known nonmonotonic logic that has
similar complexity, and thus one can not take advantage
of theorem provers for such logics to perform skeptical
abduction from default theories.

4.3 Tractable cases

From the practical side, the results from above are dis-
couraging, since abduction from default theories has
even higher complexity than deduction, in particular for
skeptical explanations. The reasoning tasks suffer from
several intermingled sources of complexity, whose num-
ber is (at least) the level at the polynomial hierarchy.

For example, Relevance for V — (HMW,D) using
minimal skeptical explanations (complete for 24) suf-
fers from the following four "orthogonal” sources of com-
plexity: (1.) classical deductive inference (f=), {2.) the
number of extensions of {W U E, D), (3.) the number
of candidates E for a skeptical explanation, and (4.)
the number of possible smaller explanations, where each
number can be exponential.

For dealing with abduction from default theories in
practice, we have to find tractable cases or cases where
ood algorithms for handling hard problems like GSAT
gSeIman et al., 1992] are applicable.

An example of the latter case is credulous abduction
from default theories where all propositional formulas



are from a tractable fragment of the propositional lan-
guage, e.g. Horn formulas or Krom formulas (clauses
with at most two literals). In such a case, classical infe-
rence = vanishes as source of complexity, In particular,
the L3 -complete abductive reasoning tasks fall back to
NP. Thus, we can use e.g. GSAT [Selman et al., 1952],
which provides a good heuristics for solving NP-complete
problems, 1o solve the problems quickly.

For tractable cases of default abduction, all sources
of complexity must be eliminated. In particular, the
underlying default reasoning tasks must be tractable.
Kautz and Selman [Kautz and Selman, 1991] and Still-
man [Stillman, 19%0] gave a very detailed picture of po-
lynomial vs. intractable cases of deductive default rea-
soning. For the following two classes of default theories
(W, D}, they proved tractability of credulous inference
{W, D) b, £ of asingle literal £

Literal-Horn [Kautz and Selman, 1991): W is a set
of literals and each default in D is Horp, ie., of form
@Azpeul where the o,’s are atoms and £ is a literal.

Krom-pf-normal [Stillman, 1990]: W is a set, of Krom
formulas, and each default in D is of form S0

[Tatral S
where all ¢;’s are literals.

A patural generalization of the proof in [Kautz and
Selman, 1991 yields the following.

Lemma 1 Let {W, D) be a Literal-Homn defaxlt theory,
and let £;,... &, be Kiterals. Then, deciding (W, D) F,
£ A - ALy, is polynomiol.

Yor Krom-pf-normal, such a generalization is not evi-
dent as (W, D) F. £, A -Afy, is NP-hard. However, it is
possible for a small conjunction.

In what follows, we call a set L of literals small iff
IL| € ¢ for some fixed constant c.

Lemma 2 Let (W, D) be Krom-pf-normal, and lei L =
{€1,..., €} be « small sel of literals. Then, deciding
(W,D) . & A~ - Ay is polynominl.

Based on these tractabie cases of credulous default re-
asuning, we obtain tractable cases of credulous defanlt
abduction. Similar tractability results for skeptical de-
fault abduction are unlikely, since the underlying skep-
tical inference (W, D) F, £ is co-NP-complete in both
cages (cf. [Kautz and Selman, 1991} for Literal-Horn}.

Literal-Horn default theories

In this case, the main reasoning tasks for credulous ab-
duction are tractable.

Theorem 7 Let P = (H, M, W, D} be a PDAP based on
credulous explanations and (W, D) Literal-Horn. Then,
Consistency, Relevance, and Necessity are polyno-
mtal.

Proof. (Sketch} Construct a Literal-Horn T1 = {W,
D1}, where D1 = {%, o, B |he H}. where
each by is a new propositional atom. Then, it can be
shown that P has an explanation iff W is consistent and
T1k & A Aly, where M = {£1,..., £} By Lemmal,
this can be decided in polynomial time. Thus, Consi-
stency is polynomial. Relevance and Necessity can be
easily reduced to Consistency resp. its complement. |

Notice that a polynomial algorithm for finding a cre-
dulous explanation {even containing a given hypothesis),
can be extracted from the proof.

Moreover, there is also a polynomial algorithm for
finding a minimal credulous ezplanation. Indeed, an
explanation £ for P = (H,M,W,D) is minimal iff
{E — {h}, M, W, D) has no explanation for each h € E.
Thus, for P as above, one can check in polytime whe-
ther E is minimal and, if not, find a smaller explanation
El C E. By repeating this test, we can minimize E.

Theorem 8 Let P = (H,M,W,D) be a PDAP where
(W, D} is Literal-Horn. Then, a mwnimal credulous ez-
planation for P can be found in polynomial time.

However, Relevance based on minimal credulous ex-
planations for PDAPs with Literal-Horn default theories
can be shown to be NP-complete.

Krom-pf-normal default theories

For this fragment, we have the following results.

Theorem 9 Let P = (H,M,W,D} be a PDAP based
on credulons ecplanations such that M = {f1,... 6]}
is small and (W, D) is Krom-pf-normal. Then, Consi-
stency, Relevance, end Necessity are polynomial.
Proof. (Sketch) Construct a Krom-pf-normal default
theory T2 = (W2, D2}, where

W2={cn Dh|he H}, Dzzou{-gih ;‘ameﬂ},

ATy

where each ¢, is a new propositional atom, Then, P
has an explanation iff W2 is consistent and T2 . & A
-+ A #;, which are both polynomial. Consistency fo W2
and T2 F. £, A - - A £ can be decided in polynomial
time {cf. Letnma 2). Hence, Consistency is polynomial.
Since Relevance and Necessity can be easily reduced to
Consistency resp. its complernent, these problems are
also polynomial, [ |

Again, a polyncmial time algorithm for finding an ex-
planation can be extracted from the proof. Unfortuna-
tely, Theorem 9 can not be generalized to an arbitrary
set M of literals. In fact, due to the NP-hardness of
{(W,D) k. f; A--- A&y, for Krom-pf-normal (W, D), the
problem is NP-hard.

Interestingly, the number of hypotheses in a minimal
credulous explanation is bounded by the number of ma-
nifestations. Intuitively, this is explained by the fact that
always a single hypothesis can explain a manifestation.

Proposition 2 Let E be any minimal credulous ezpla-
nation for P = {H M, W, D} where (W, D} i Krom-pf-
normal and M = {&1,...,4:). Then, |E| < |M].

In particular, for a single manifestation (M = {#}),
the minimal explanations consist of single hypotheses, if
hypotheses are needed for an explanation.

A consequence of this characterization and Lemma 2

is that all minimal credulous explanations for a small set
M can be computed by exhaustive testing of all subsets
E € H with |E| < |M] in polynomial time.
Theorem 10 Given e PDAP P = (H, M, W, D} where
{W, D) is Krom-pf-normal and M iz small, all minimal
credulous ezplanations for P can be computed in polyno-
mial time.
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Consequently, also Relevance for minimal explanati-
ons is polynomial if M is small.

5 Conclusion and further research

We proposed a basic model of abduction from default
theories, and analyzed its computational complexity.
Moreover, we have shown that credulous abduction from
the previously known classes of Literal-Horn and Krom-
pf-normal default theories is tractable.

Besides identifying further tractable and manageable
cases of default abduction, the following issues are cur-
rently under investigation.

The size of an explanation (cf. [Peng and Reggia,
1990]) or, more general, its cost, given by the sum of
the predefined costs of its hypotheses, can be used for
further pruning minimal (i.e., nonredundant) explanati-
ons. Results for abduction from classical theories [Eiter
and Gottlob, 1995] suggest using such explanations, ab-
duction from default theories yields complete problems
for the ¢ | Al and Af[O(logn)] f the polynomial
hierarchy.

Another issue is default logic with an underlying lan-
guage richer than a plain propositional one. A genera-
lization of our abduction model to a propositional lan-
guage over atoms p(ts,... ,t;) where the t{ are varia-
bles or constants, is straightforward; here, an instance
of an abduction problem reduces to the propositional
abduction problem obtained by replacing formulas with
all ground instances. Since the grounded propositional
version can be exponentially larger, this leads intuitively
to an exponential increase in complexity. Thus, abduc-
tion from default theories in this nonground language is
expected to be complete for the exponential analogues
of Zf, If etc.
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