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Abst rac t 

Since logical knowledge representation is com­
monly based on nonclassical formalisms like de­
fault logic, autoepistemic logic, or circumscrip­
t ion, it is necessary to perform abductive rea­
soning f rom theories of nonclassical logics. In 
this paper, we investigate how abduction can be 
performed from theories in default logic. Diffe­
rent modes of abduction are plausible, based on 
credulous and skeptical default reasoning; they 
appear useful for different applications such as 
diagnosis and planning. Moreover, we analyze 
the complexity of the main abductive reasoning 
tasks. They are intractable in the general case; 
we also present known classes of default theo­
ries for which abduction is tractable. 

1 I n t r oduc t i on 
Abductive reasoning has been recognized as an import­
ant principle of common-sense reasoning having frui t ­
fu l applications in a number of areas such diverse as 
model-based diagnosis [Poole, 1989], speech recognition 
[Hobbs et al, 1988], maintenance of database views [Ka-
kas and Mancarella, 1990], and vision [Charniak and 
McDermot t , 1985]. Unt i l now, mainly abduction from 
theories of classical logic has been studied. However, 
logical knowledge representation is commonly based on 
nonclassical formalisms like default logic, autoepistemic 
logic, or circumscription. Thus, in such situations it is 
necessary to perform abductive reasoning from theories 
(i.e. knowledge bases) of nonclassical logics. 

Since default logic is widely proposed for knowledge 
representation, it is important to investigate how abduc­
t ion can be performed from theories (W, D) in default 
logic. We informally pursue this on an example. 

E x a m p l e 1 Consider the following set of default rules, 
which represent knowledge about Bil l 's skiing habits: 

* A more elaborate version including proofs is available on 
email request to the authors. 

fWork carried out while visiting the Christian Doppler 
Lab. 

The defaults intuitively state the following: (i) Bill is 
usually not out for skiing; (ii) Bill is out for skiing on 
weekends, if we can assume that it is not snowing; (iii) 
usually it is not snowing. For the certain knowledge W = 
{weekend} (encoding that it is Saturday or Sunday), 
the default theory T — (W, D) has one extension which 
contains -\ snowing and skiing.Bill. 

Suppose now we observe that Bill is not out for ski­
ing (which is inconsistent with the extension). Abduc­
tion means to find an explanation for this observation, 
that is, to identify a set of facts, chosen from a set 
of hypotheses, whose presence in the theory at hand 
would entail the observation -skiing-Bill, i.e., cause 
that -skiing-Bill is in the extension. We find such 
an explanation by adopting the hypothesis snowing. 
Indeed, if we add snowing to W, the default theory 
T' = ({ weekend, snowing],D) has a single extension, 
which contains -1 skiing .Bill. We say that snowing is ab-
duced from the observation -iskiing.Bill, or that it is an 
abductive explanation of -^skiing.Bill. | 
Observe that the description of the above situation re­
quires the specification of some default properties that 
can not be represented properly in classical logic. 

In general, as opposed to the example, a default theory 
may have several or even no extensions. For deductive 
entailment, this gives rise to credulous entailment, un­
der which 7 is entailed from a default theory T (denoted 

iff belongs to at least one extension of T, and 
to skeptical entailment, under which follows from T 

iff belongs to all extensions of T. Accor­
dingly, two variants of abduction from default theories 
arise: credulous abduction, where entailment of an ob­
servation is based on and skeptical abduction, which 
is based on s In practice, the user will choose credu­
lous or skeptical abduction on the basis of the particular 
application domain. 

We argue that credulous abduction is well suited 
for diagnosis, while skeptical abduction is adequate 
for planning. (Cf. [Poole, 1989] and [Eshghi, 1988, 
Ng and Mooney, 1991] for abduction in logic-based dia­
gnosis and planning & plan recognition, respectively.) In 
fact, consider a system represented by a default theory 
(W,D). If it receives some input, reflected by adding a 
set A of facts to W, then each extension of 
is a possible evolution of the system, i.e., each extension 
represents a possible reaction of the system to A. 
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Abductive diagnosis consists, loosely speaking, in de­
r iv ing f rom an observed system state (characterized by 
the t r u th of a set F of facts), a suitable input A which 
caused this evolution (cf. [Poole, 1989]). Now, since each 
extension of ) is a possible evolution of the sy­
stem w i th input A, we can assert that A is a possible 
input that caused F if Thus, diagno­
stic problems can be natural ly represented by abductive 
problems w i th credulous entailment. 

E x a m p l e 2 Assume there are two sky routes, rv\ and 
r u 2 , between Rome and Vienna, and three sky routes 
mvl, mv2, and mvZ between Mi lan and Vienna. Route 
mvl intersects route rvl, and mv2 intersects rv2. On 
normal speed and fl ight conditions, two planes from Mi ­
lan and Rome to Vienna wi l l collide if the plane from M i ­
lan takes off 20 minutes after the plane from Rome and 
they fly on intersecting routes. This knowledge about 
possible collisions is represented in simplified form by 
the following set D of propositional defaults: 

Now, you are informed that planes flying from Milan 
and Rome to Vienna collided. A diagnosis for the colli­
sion can be obtained by abducing an explanation for the 
observation collision f rom the theory . In this 
case, we want to know possible flight schedules that can 
have caused the collision. In other words, we are looking 
for schedules S such that collision is in some extension 
of the theory Credulous 
abduction correctly identifies such explanations. For in­
stance, it is easy to recognize that both 
m_20minJater} and E2 = 
are credulous explanations for collision. I 

Suppose now we want that the system evolves into a 
certain state (described by a set F of facts), and we have 
to determine the "r ight" input that enforces this state of 
the system (planning). In this case it is not sufficient to 
choose an input A such that F is true in some possible 
evolution of the system; rather, we look for an input A 
such that F is true in all possible evolutions, as we want 
be sure that the system reacts in that particular way. In 
other words, we look for A such that 
Hence, planning activities can be represented by abduc­
tive problems w i th skeptical entailment. 

E x a m p l e 3 We know that a plane from Rome to V i ­
enna left at 7.50 (r.7.50), but we do not know on which 
route. We have to schedule the flight of a plane from Mi ­
lan to Vienna, where takeoff is possible at 8.10 (m.8.10) 
and at 8.20 (rn.8.20). The collision-free schedules can 
be obtained by finding an abductive explanation out of 
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The existence of a consistent extension for (WUE, D) 
(in this case, all extensions are consistent) assures that 
the explanation E is consistent with the knowledge re­
presented in (W, D). This is analogous to the consistency 
criterion in abduction from classical theories. 

It is common in abductive reasoning to prune the set 
of all explanations and to focus, guided by some principle 
of explanation preference, on a set of preferred explana­
tions. The most important such principle is, following 
Occam's principle of parsimony, to prefer nonredundant 
explanations, i.e., explanations which do not contain any 
other explanation properly, cf. [Peng and Reggia, 1990, 
Selman and Levesque, 1990, Konolige, 1992]. We refer to 
such explanations as minimal explanations. In Exam­
ple 3 E3 = {m_8.20} and E4 = {mv3) are the minimal 
explanations; they represent the smallest partial sche­
dules that can be arbitrarily completed to collision-free 
schedules, and thus provide the greatest flexibility. 

In the sequel, we will write Exp(V) for the set of ex­
planations for the PDAP V, abstracting from the chosen 
type of explanations (credulous, skeptical, minimal cre­
dulous, or minimal skeptical). 

The following properties of a hypothesis in a PDAP V 
are important with respect to computing explanations. 
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Now consider abduction based on skeptical reasoning. 
It would be useful to have a reduction of abductive re­
asoning to deductive reasoning which can be computed 
efficiently. However, by using skeptical reasoning the ab­
ductive reasoning tasks grow more complex, by one level 
of the polynomial hierarchy. This strongly suggests that 
such an efficient reduction is not possible. 

We first consider the problem of recognizing skepti­
cal solutions. Clearly, this reduces to deciding if a cer­
tain default theory has a consistent extension (which is 

where / is a new atom. Then, V has a skeptical expla­
nation iff $ is valid. 

How does this result compare to other nonmonoto­
nic logics, in particular, which nonmonotonic logic has 
similar complexity ? We know that Konolige's mo­
derately grounded autoepistemic logic [Konolige, 1988] 
and several other ground nonmonotonic modal logics 
have the same complexity [Eiter and Gott lob, 1992, 
Donini et a/., 1995]; thus, we can use a theorem pro-
ver for such logics to perform abductive reasoning from 
default theories based on skeptical explanations. 

4.2 Min imal explanations 
As mentioned above, one is usually interested in mini­
mal explanations for observations. The results in [Eiter 
and Gott lob, 1995] were that the complexity of abduc­
tion from classical theories does not increase if minimal 
explanations are used instead of arbitrary explanations. 
However, this is not true in for abduction from default 
logic. Here, checking minimal i ty of an explanation is a 
source of complexity, which causes an increase in com­
plexity by one level of the polynomial hierarchy. 

Consider first credulous explanations. Checking mi ­
nimality of an explanation E has complementary com­
plexity of checking the explanation property. Notice 
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that E is not min imal iff for some h E, the PDAP 
, M, W, D) has a credulous solution; hence, it 

follows that the problem is in '. _ . On the other hand, 
reconsider ( * * * ) . Clearly, {h} is a credulous explanation; 
moreover, it is min imal iff h is necessary for V. Thus, 
I l f -hardness follows. 

Note that recognizing minimal credulous explanations, 
which consists in checking the solution property and te­
sting minimal i ty, is in , and also complete for this 
class. Thus, this problem can be transformed into re­
cognition of skeptical explanations for a certain PDAP 
and vice versa. Due to the complexity of minimal i ty 
checking, problem Relevance migrates to the next level 
of the polynomial hierarchy. 
T h e o r e m 4 Let V be a PDAP based on minimal cre­
dulous explanations. Then, problem Relevance is 
complete, with hardness holding even for normal P. 
Proof . (Sketch) Membership. A guess E for a minimal 
credulous explanation for V such that h E can be 
verified by two calls to a oracle. Hence, the problem 
is in 

one can show that s is relevant tor a minimal credulous 
explanation for V iff - is valid. I 

Now let us consider min imal skeptical explanations. 
Testing min imal i ty of a skeptical explanation is much 
more involved than of a credulous explanation. Whi le 
the latter has roughly the same complexity as testing 
the explanation property, the former is harder by one 
level of the polynomial hierarchy. Intuit ively, this can 
be explained as follows. Since verifying a credulous ex­
planation E is in , it has a polynomial-size "proof" 
which can be checked w i th an NP oracle in polynomial 
t ime. Thus, if we ask for a smaller explanation E' E, 
we can simultaneously guess E' and its proof, and check 
the proof in polynomial t ime w i th the NP oracle. Howe­
ver, verifying a skeptical explanation -hard, and 
hence E does not have such a "proof" . Here, verification 
needs the ful l power of a oracle. 
T h e o r e m 5 Let V = (H,M,W,D) be a PDAP. Deci­
ding if a skeptical explanation E for V is minimal is 

-complete, with hardness holding even for normal V. 
Proof . (Sketch) Membership. A guess for a smaller 
skeptical explanation E' E can be verified w i th two 
calls to i oracle, and hence deciding the existence 
of such an E' is in . Consequently, the problem is in 

nf-
Hardness. We describe here a reduction from deciding 

whether a is valid. Let s and q be 
new atoms, and define 

Check that 
is a skeptical explanation for V. Moreover, E is min imal 
iff $ is valid. | 

Note that recognizing min imal skeptical explanations 
is in , since the complexity of deciding minimal i ty 

I dominates the complexity of the solution property 
("only" , and is also complete for this class. 

The complexity of deciding relevance of a hypothesis 
increases by the same amount as testing min imal i ty if 
skeptical explanations are used instead of credulous ex­
planations. In fact, the problem resides at the four th 
level of the polynomial hierarchy. 

T h e o r e m 6 Let V be a PDAP based on minimal skep­
tical explanations. Then, problem Relevance is 
complete, with hardness holding even for normal V • 

Proof. (Sketch) Membership. A guess for a minimal 
skeptical e x p l a n a t i o n s u c h that h E can be 
verified w i th one call oracle. 

Hardness. We outl ine a reduction from deciding vali­
d i ty of a which is an extension 
to the reduction in the proof of Theorem 5. Let as there 
be s and q new atoms, and define 

where D is the same set of defaults as in the proof of 
Theorem 5. Define , where 

. (Note that if W would be empty, 
then V would be identical to the in the proof of 
Theorem 5). It holds that for each subset _ R, the 
set is a skeptical explanation 
for V. Moreover, it can be shown that s is relevant for 
a minimal skeptical explanation for is valid. | 

There is no well-known nonmonotonic logic that has 
similar complexity, and thus one can not take advantage 
of theorem provers for such logics to perform skeptical 
abduction from default theories. 

4 .3 T r a c t a b l e cases 

From the practical side, the results from above are dis­
couraging, since abduction f rom default theories has 
even higher complexity than deduction, in part icular for 
skeptical explanations. The reasoning tasks suffer f rom 
several intermingled sources of complexity, whose num­
ber is (at least) the level at the polynomial hierarchy. 

For example, Relevance for V — (H,M,W,D) using 
minimal skeptical explanations (complete for suf­
fers from the following four "orthogonal" sources of com­
plexity: (1.) classical deductive inference the 
number of extensions of (3.) the number 
of candidates E for a skeptical explanation, and (4.) 
the number of possible smaller explanations, where each 
number can be exponential. 

For dealing w i th abduction f rom default theories in 
practice, we have to find tractable cases or cases where 

good algorithms for handling hard problems like GSAT 
Selman et a/., 1992] are applicable. 

An example of the latter case is credulous abduction 
from default theories where all proposit ional formulas 
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Consequently, also Relevance for minimal explanati­
ons is polynomial if M is small. 

5 Conclusion and further research 
We proposed a basic model of abduction from default 
theories, and analyzed its computational complexity. 
Moreover, we have shown that credulous abduction from 
the previously known classes of Literal-Horn and Krom-
pf-normal default theories is tractable. 

Besides identifying further tractable and manageable 
cases of default abduction, the following issues are cur­
rently under investigation. 

The size of an explanation (cf. [Peng and Reggia, 
1990]) or, more general, its cost, given by the sum of 
the predefined costs of its hypotheses, can be used for 
further pruning minimal (i.e., nonredundant) explanati­
ons. Results for abduction from classical theories [Eiter 
and Gottlob, 1995] suggest using such explanations, ab­
duction from default theories yields complete problems 
for the c l a s s e s o f the polynomial 
hierarchy. 

Another issue is default logic with an underlying lan­
guage richer than a plain propositional one. A genera­
lization of our abduction model to a propositional lan­
guage over atoms p(t1,... ,tn) where the t{ are varia­
bles or constants, is straightforward; here, an instance 
of an abduction problem reduces to the propositional 
abduction problem obtained by replacing formulas with 
all ground instances. Since the grounded propositional 
version can be exponentially larger, this leads intuitively 
to an exponential increase in complexity. Thus, abduc­
tion from default theories in this nonground language is 
expected to be complete for the exponential analogues 
of 
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