
Reasoning about Nondeterministic and Concurrent Actions:
A Process Algebra Approach

In this paper, we study reasoning about actions fol-
lowing a model checlcing approach in contrast to the
usual validity checlcing one. Specifically, we model a
dynamic system as a transition graph which represents
all the possible system evolutions in terms of state
changes caused by actions. Such a transition graph
is defined by means of a suitable process algebra asso-
ciated with an explicit global store. To reason about
system properties we introduce an extension of modal
p-calculus. This setting, although directly applica-
ble only when complete information on the system is
available, has several interesting features for reasoning
about actions. On one hand, it inherits from the vast
literature on process algebras tools for dealing with
complex systems, treating suitably important aspects
like parallelism, communications, interruptions, coor-
dinations among agents. On the other hand, reasoning
by model checking is typically much easier than more
general logical services such as validity checking.

Giuseppe De Giacomo
Dipartimento di Informatica e Sistemistica

Universita di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy

degiacomo@dis.uniromal.it

Abstract

Introduction

To describe the behaviors of a dynamic system,
choose among several levels of abstraction.

we may

1. At a very concrete level, we characterize the sys-
tem by its unique actual evolution, which can be rep-
resented as a sequence of states/actions. At this level,
we assume complete information on each state, and we
assume knowledge of which action will be performed
next.

2. At a more abstract level, we characterize the sys-
tem by all its possible evolutions, which can be col-
lectively represented as a transition graph (transition
system). A single evolution at Level 1 is represented
as a path on such graph. One of these paths is going
to be the actual evolution of the system, yet we do not
know which one it will be. Each node, representing a
state, has several labeled out-arcs representing the ac-
tions that can be performed in that state. Each action
causes the transition of the system from the current
state to a possible successor. We remark that different
out-arcs may be labeled by the same action: in this
case, the action is nondeterministic. At this level, we

Xiao Jun Chen
Dipartimento di Scienze dell’Informazione

Universita di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy

chen@dsi.uniromal.it

assume complete information on all the possible evolu-
tions of the system, i.e. on all its states, and on which
actions can be performed in each state. However, we do
not have knowledge on which action will be performed
next.

3. At the third level, we do not assume anymore
complete information on the possible evolutions of the
system, and we model the system by selecting a set of
transition systems instead of a unique one. Each of
such transition systems represents an alternative pos-
sible behavior. In other words, we assume partial in-
formation both on the current state, and on the states
resulting from performing an action.

While Level 1 is generally considered too concrete to
be realistic, both Level 2 and 3 have been used in mod-
eling dynamic systems. In particular, Level 3 is the one
usually adopted by research on reasoning about actions
(Rosenschein 1981; Reiter 1993; Lin & Shoham 1991;
1992; Lifschitz 1990; Lifshitz & Karta 1994). In this
case, a certain logic (situation calculus, dynamic logic,
etc.) is used both to represent and to reason about the
dynamic systems. The typical reasoning problem of
interest is logical implication (validity) in the form

where: I’ are axioms, used to select the set of transition
systems that represent the dynamic system; Sinit is a
formula, which is a (partial) description of the initial
state; @ is a formula expressing the property we want
to prove, e.g. the reachability of a state where a certain
property (the goal) holds.

In this paper, we adopt the viewpoint of Level 2.
Following the model checking approach proposed in
(Halpern & Vardi 1991), we use a description formal-
ism to define the transition system representing the
possible evolutions of the system, and a reasoning for-
malism, i.e. a suitable logic for specifying properties we
want to check. Notably, this setting is the one typically
used in Process Algebras (e.g. CCS (Milner 1989), CSP
(Hoare 1985), ACP (Bergstra & Klop 1984)) to model
concurrent and reactive systems.’

‘In Artificial Intelligence, research on search-based plan-

658 Knowledge Representation

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

The state (configuration) of the system is composed
of a passive component (global store) and an active
component (process). The passive component is de-
scribed as a set of primitive propositions, which char-
acterizes univocally the properties held in the passive
component of the configuration. The active component
describes the activities of all the agents (e.g. robots,
persons, pieces of software, subroutines, environment,
etc.) in the system, in terms of actions, which cause
the changes of the system. The state of the passive
component can only be changed by the activities of
the active component, which in fact make the system
evolve.

Making use of a global store associated to a pro-
cess, we specify the effects of an action in terms of
the difference between the current and the resulting
global stores. Properties not mentioned among such
effects are kept unchanged (in this way we address the
frame problem). Note that, this treatment is different
from most approaches in the literature on logics of pro-
grams, where all properties of the state resulting from
an action are specified explicitely.

We adopt a- specifically designed process algebra
to describe processes. Indeed, process algebras are
generally recognized as a convenient tool for describ-
ing concurrent and multiagent systems. They offer
useful techniques for constructing more complicated
processes from simpler ones using various construc-
tors. Especially, they provide us with the ability to
express communications, interruptions, coordinations,
etc. among processes, by way of synchronizations (or
asynchronizations).

The reasoning problem of interest in this case is
model checking in the form

where: 7 is a transition system representing the pos-
sible evolutions of our dynamic system; sinit is a state
of 7; @ is a formula expressing the property we want
to verify.

We develop a suitable extension of modal p-calculus
(Kozen 1983)) a powerful logic of programs which in-
cludes PDL (Kozen & Tiuryn 1990), CTL, CTL*
(Emerson 1990). We show that model checking in our
logic can be linearly reduced to model checking
dard modal ,+calculus. We remark that, in the

; in stan-
context

of process algebra, for finite state processes (processes
that can be interpreted on finite transition systems),
various model checking tools (e.g. (Boudol et al. 1990;
Cleaveland, Parrow, & Steffen 1993)) have been de-
veloped and implemented to verify whether a given
modal/temporal logic formulae is satisfied by the pro-
cess. By means of our reduction, it is possible to use

tools for reason- efficiently
ing about

such existing implemented
actions in our setting.

ning, including much work on STRIP (e.g. (Bylander
1991)) can be considered at this level. In contrast, research
on deductive planning is typically carried out at Level 3.

Atomic and synchronized actions
The evolution of the system from one configuration to
another is caused by one or more atomic actions. An
atomic action is an elementary uninterruptible action
executed by one agent. A set of atomic actions per-
formed together by various agents constitutes a syn-
chronized action. We use Act to denote the finite set
of all possible atomic actions (ranged over by a, b, . . .),
and (al,..., a,} the synchronized action composed by
al,..., a, E Act.

Each action causes certain eflects on the global store.
The effects of a synchronized action c~ are defined on
the basis of the effects of the atomic actions in cy.

Effects of an atomic action may depend on the
current configuration. We introduce premises of an
atomic action to distinguish different configurations
under which the action is being executed. Further-
more, alternative effects of an action are still permitted
under the same configuration. In this case, the actual
effect is chosen nondeterministicaZZy among those that
are possible.

Formally, let Prop denote the finite set of all possi-
ble primitive propositions (ranged over by A, B, . . .).
We define a function ey9rct which associates to each
action a E Act, a finite set of pairs eflct(a) =
Wl, El)> * * . , (&, En)}, where for each pair (&, Ei):
a & is a propositional formula over Prop describing

the properties the global store must satisfy to have
effect Ei: $i is the premise of Ei.

o Ei is a set of literals - atomic propositions or their
negations - over Prop that describes a possible eflect
of the execution of action a under premise $Q. The
literals in Ei are forced to hold in the successive
configuration. We require that for no A, we have
both A E Ei and -A E Ei.

Given configuration u and action a: (i) if no premise
of a is satisfied by 0, then a will be performed without
any effect on a; (ii) it is possible that more than one
pair in eflct(a) has its premise satisfied in cr: in this
case, we say that action a is nondeterministic, i.e. it
leads to more than one successive configuration.

We now define the change of a global store caused
by an (atomic or synchronized) action. Note that, to
each global store we can associate an interpretation
over Prop. We first introduce a simple update oper-
ator o, which takes an interpretation u and a set of
non-contradictory literals L, and returns a new inter-
pretation 6’.
Definition 1 Let u be an interpretation over Prop
and ,!Z a set of non-contradictory literals over Prop. We
define update operator o (infix) as follows: VA E Prop,

AEC
-AEL
A @ L and -A @ ic

Intuitively, the operator returns an interpretation
which satisfies the non-contradictory literals in L, and

Reasoning about Action 659

retains the value of the original interpretation 0 for
those literals not occurring in L2.

Making use of this update operator, we can describe
how an (atomic or synchronized) action affects the
global store. Recall that, in general, actions are non-
deterministic, hence several alternative changes to the
global store can be produced. The set of possible global
stores caused by a synchronized action {ai, . . . , a,) on
CT, denoted by a/{ai, . . . , a,), is defined below. As a
special case, we have cr/{a) when the action is in fact
an atomic action a.

Definition 2 Let {al, . . . , a,) be a set of atomic ac-
tions in Act, and 0 an interpretation of the propositions
in Prop. a/{al, . . . , a,} is defined as the set of all in-
terpretations of the form 0 o (,Ci U . . . U ,&) such that
for i= l,...n:

a & = .f if 3($, E) E eflct(ai) s.t. a($) = tt
otherwise

0 c&J.. . U ,& does not contain contradictory literals.

Consider an atomic action a: (i) a is deterministic
in CT iff o/(a) is singleton; (ii) if no effect E has its
premises satisfied in (T, then o/(a) = 0, i.e. the action
has no effect (though it may still be performed).

In general, the effects of a synchronized action are
the sum of the effects of the participating atomic
actions. However, the effects of the atomic actions
composing a synchronized action must be compatible.
For example, pushing an pulling an handle cannot be
synchronized. Intuitively, synchronizing two actions
means not only to perform them at the same time, but
also to perform each of them taking into account the
feedback from the other. Consider action {a, b} where
the only applicable effect of a is Ei = {A} and the
only applicable effect of b is E2 = (1A). Then the
set of alternative global stores a/{a, b} resulting from
executing {a, b} is empty: a and b cannot be synchro-
nized.

Observe the difference of the synchronized action
{a, b} and performing a and b simply in parallel. When
a and b are performed in parallel, they are performed
together, but independently. In such a case, it is rea-
sonable to assume that they can be performed together
even though they have contradictory effects. The con-
tradiction can be resolved into nondeterminism. For
example, let A and 1A be the only applicable effect of
a and b respectively. Both a and b try to set the propo-
sition A to the desired value independently. Nondeter-
ministically, one of the two actions has “the last word”
and succeeds, hence we have both the state in which
A holds, and the state in which A does not hold. This
intuition is often modeled by an interleaving model of
parallel execution of actions. Interleaving is going to
be the base of our treatment of parallel processes.

‘We discuss possible
end of the paper.

extensions of form of update at the

Processes
We adopt CCS-style (Milner 1989) to combine actions
into processes. Due to the appearances of recursions,
we use process equations P G p to define processes.
Here P is a process name and p is a process expression
(or simply process). For each process name we asso-
ciate a unique process definition. We will use Proc to
denote the set of process names. Processes follow the
syntax below:

P ::= nil 1 P 1 (C#J -4PIPl+P2 IPl IIP2 IP\Y
where nil denotes a predefined atomic process, P is a
process name defined in Proc, 4 denotes a propositional
formula over Prop, a denotes an atomic action in Act,
and y denotes a set of expression of the form 4 ---)
Q with 4 a propositional formula over Prop and Q a
propositional formula over Act. Intuitively,
1. nil represents the termination of a process.
2. (4 + a) .p is the process which is capable of perform-

ing, under the precondition 4, action a, and then be-
haves as process p. This term can be viewed as an
extension of CCS-term a.p where no preconditions
are specified.
pl + p2 represents the alternative composition of p1
and ~2.

p1 II ~2, the parallel composition of p1 and ~2, is
the process which can perform any interleaving or
synchronizations of the actions of p1 and pa - i.e.
the performance of more actions together.
p\y behaves like p but only actions in

A=b+W-+~~~4=~=4=/=e)
are allowed. This is an extention of CCS-term p\y
where y is simply a set of atomic actions that are
not allowed.
Given an initial configuration, the semantics of a sys-

tern is given in terms of the transition relation ---+ _
defined as the least relation satisfying the structural
rules in Table 1. In this table, (;Y (possibly with a sub-
script) denotes a set {al, . . . , a,} of atomic actions ex-
ecuted together, and a(~) denotes the truth value of Q
in a.

Indeed, these rules permit us to associate to a config-
uration (pi,it, crinit), a transition system (Kripke struc-
ture) whose states are the configurations reachable
from (PM, hit), via the transitions inferred by the
structural rules.
Definition 3 Given a set P of propositions, and set
A of atomic actions, a transition system is a triple
(& Wcrl~ E 2”v-Q with a set of states S, a fam-
ily of transition relations R, E S x S, and a mapping
II from P to subsets of S.

We associate to each configuration (pinit, ai,at), a
transition system 7 = (S, {X&la E 2Aj,n), where
P = Prop, A = Act, and

660 Knowledge Representation

Act :
((4 - a).% a> Ia’@, 0’)

where a(4) = tt, 0’ E #/{a}

Sum1 :
(PI f a) qp;, 6’)

(Pl + P?,f-7)+4,4

Sums :
(P2 > 0) ‘-(A, 6’)

(Pl +PzF) -qP:, 4

Intl :
(PlT) --qPh’)

(PI II P214 --qPi II P2, a'>

Int2 :
(P2, a> --qPi, a’)

(PI II P2,4 $(Pl II A 0’)

Syn :
(PI 7 4 Z(Pi, 4) (P2,43P:,4

(Pl II P2 9 0)
of1ua2

-(Pi II P:, J)
where o’ E C/CY~ u ap

Res :
(P, 0) z(P’, 6’)

(P\Y, 0) ,(P’\Y, a’)
where t/(4 - e) E y s.t. a(4) = tt: a(~) = tt

Table 1: Structural Rules

* S = {(P, 0) I (pinit, ~&(A)*(p,g)}, where A+-
is the least relation satisfying all rules in Table 1,
and -(A)*- t fl is i s re exive transitive closure;

((24 4, (P’, 0’)) E % ifl (P, fl) 2(p’, a’);

. II(A) = {(p,+(A) = tt}.

roving system properties
Once we have a description of a dynamic system, we
can use it to infer properties of the system, like invari-
ance of certain statements, the possibility to reach a
configuration where a certain property holds (i.e. where
a certain “goal” is satisfied).

Many temporal and modal logics have been proposed
in the process algebra literature for verifying proper-
ties of concurrent systems (Emerson & Halpern 1986;
Kozen 1983; Manna & Pnueli 1989). Among these,

we focus on one of the most powerful logic of pro-
grams, modal p-calculus (Kozen 1983; Streett & Emer-
son 1989)), which includes logics like PDL, CTL and
CTL*, and has been investigated (e.g. (Stirling 1992;
Cleaveland 1990)) in the context of process algebra for
expressing “temporal” properties of reactive and par-
allel processes.

Specifically, we introduce an extension of standard
modal p-calculus, called M,, which is suitable to ver-
ify properties of systems specified in our description
formalism. M, comprises (i) a set of propositions to
denote properties of the global store; (ii) a family of
modal operators to denote the capability of the active
component to perform a certain action; and (iii) a fam-
ily of fixpoint operators to denote “temporal” proper-
ties defined by induction and coinduction.

The formulae of M, is defined on the base of action
formulae generated by (a E A):

e ::= a 1 le 1 ,gl A ~2.

The meaning of such formulae is given by the following
satisfaction relation, where cr is a set of atomic actions
denoting a synchronized action in general.

Formulae of M, are formed from action formulae,
propositions in P, and variable symbols in Vur, accord-
ing to the following abstract syntax (A E P, X E Vur):

@ ::= A I +D I <PI A @2 I (e)@ 1 pX.Qe I X

We make use of standard notions of scope, bound and
free occurrences of variables, closed formulas, etc. As
usual in j.4-calculus, we require syntactic monotonicity:
every variable X must occur in the scope of an even
number of negation signs (7). The semantics of M,
is based on the notions of transition system and valu-
ation, where, given a transition system 7, a valuation
V on 7 is a mapping from variables in Vur to subsets
of the states in 7 (Kozen 1983).

Let 7 = (S, {&lo E 2”}, II) be a transition system
and V a valuation on 7. We assign meaning to formu-
lae of the logic by associating to 7 and V an extension
function (.)c, which maps formulae to subsets of S.
The extension function (.)c is defined inductively ac-
cording to Table 2, where we use V[X/C] to denote the
valuation identical to Y except for Y[X/s](X) = 1.

Let us comment Table 2. The boolean connectives
have the expected meaning. The modal operator (s) is
interpreted so that (Q)@ is satisfied by a configuration
iff there is an execution of some action satisfying e,
that leads to a successive configuration where de holds.
(pX.Q)$ is interpreted as the least fixpoint of the op-
erator (Q)&,El : the unique existence of such fixpoint
is guaranteed by Tarski’s Theorem, since (Q)&I,l

Reasoning about Action 661

Table 2: Definition of the extension function (e);

is monotonic according to the restriction of syntactic
monotonicity.

Let us consider some examples. If only deterministic
atomic actions are considered, then

where any denotes a V la, expresses the existence of a
plan (sequence of actions) to reach the goal $s from the
initial configuration. If nondeterministic actions are
present, the formula above does not suffice anymore,
and needs to be replaced by

pX.qS, V V (any)tt A [a]X.
ac Act

A more complicated expression

vX.pY.[a](((b)tt A X) V Y)

states that b is possible infinitely often throughtout
any infinite length run consisting wholly of a actions.
Here vX.@ = lpX.+[X/lX] where @[X/lx] is the
formula obtained substituting all free occurrences of
X by the formula 1X. Note that vX.Q is a greatest
fixpoint.

As mentioned above, the reasoning problem we are
interested in is model checking. Let 7 = (S, {R,]m E
2A}, II) be a transition system, s E S, @ a closed M,
formula. The related model checking problem (denoted
by 7, s + @) is to verify whether s E (@)c where V is
any valuation, since @ is closed.

To relate M, (where modalities have action formu-
lae as indices) with the standard p-calculus (where
modalities are indexed by single actions), we can con-
struct two transformations F and H on transition sys-
tems 7 and formulae @ respectively, so that the ver-
ification of 7, s k @ (s is a state of 7) can be lin-
early reduced into the verification of standard modal
p-calculus formulae. This is formally stated below:

Proposition 1 Let S denote the set of transition sys-
tems and L the set of standard modal ,v-culculus for-
mulae. There exist transformations F : S + S and
H: M,+,Csuchthutforuny7ES,@EMCL:

(i) F(7) and H(Q) are linearly bounded by 7 and <p
respectively;

(ii) For any state s of 7, let F(s) denote the image of
state s in F(7), then

7,s I= @ iff F(7)3’(4 I= H(Q)

The construction of such F is based on reifying tran-
sitions, i.e. on introducing a new state for each tran-
sition, so that the action formula is transformed into
a formula on the new state. These transformations
of 7 and @ by F and H respectively, allow us to ex-
ploit efficiently the existing model checking tools, e.g.
(Cleaveland, Parrow, & Steffen 1993).

Discussion and conclusion
It is not difficult to build a formula that denotes ex-
actly a given transition system 7 wrt a given state s.
Such a formula x~,~, which has essentially the same
size as 7, is called characteristic formula (Steffen &
Ingolfsdottir 1994; Halpern & Vardi 1991), and can be
used to reduce model checking into validity checking.
Indeed, we have 7, s k @ iff b ~7,~ 3 a. This
shows that model checking is in fact a specilization of
validity checking, the one you get when you have com-
plete information on the system.

Further extensions of the present work are possible
along several directions. We outline some of them.

The first extension concerns the form of the update
for the global store. The only essential point, in or-
der to retain precisely the proposed setting, is to have
some function returning c/{al, . . . , a,} from the in-
puts {al,..., a,} and 0. It follows that we may adopt
a more complex form of update, based, for example, on
some notion of distance among global stores. In this
way, we can specify effects of actions as general for-
mulae over Prop instead of literals, and furthermore,
we can address indirect effects by specifying domain
constrains that must hold in each global store. Ob-
serve that the update we are interested in applies to
interpretations, and thus is much simpler than update
of theories discussed, e.g., in (Katsuno & Mendelzon
1991).

Another possible extension is to consider the global
store as a set of multi-valued variables instead of
boolean variables, or even as a first order interpretation
over some fixed domain. Such extension can be easily
accommodated in our setting. Indeed the way tran-
sition systems are built remains essentially the same,
while the logic used for verification needs to be ex-
tended in order to take into account the new kind of
properties expressed in the global store. Research in
Databases on query languages based on first-order logic
plus fixpoints e.g. (Abiteboul, Hull, & Vianu 1995),

662 Knowledge Representation

and that on complex transactions e.g. (Bonner & Kifer
1995) are relevant.

Finally, we believe that it is of great interest mov-
ing from Level 2 to Level 3 by mixing the process al-
gebra approach presented here, with the usual logical
approach. This would allow us to introduce incomplete
information in a better controlled way. For example,
we could specify agents whose behavior is completely
known by means of process description presented here,
and agents whose behavior is only partially known (as
happens typically for the environment) by logical ax-
ioms. To this end the research on “loose specification”
in process algebras (Boudol & Larsen 1992), as well
as research in knowledge representation on description
logics that include assertions on “individuals” (which
can be interpreted as a partial description of a transi-
tion system) (De Giacomo & Lenzerini 1994), is rele-
vant .

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Fuunda-
tions of Databases. Addison Wesley Publ. Co., Read-
ing, Massachussetts.
Bergstra, J., and Klop, J. 1984. Process algebra for
synchronous communication. Information and Con-
trol 60:109-137.
Bonner, A. J., and Kifer, M. 1995. Concurrency and
communication in transaction logic. In Proceedings of
ICD T ‘95.
Boudol, G.; de Simone, R.; Roy, V.; and Vergamini,
D. 1990. Process calculi, from theory to practice:
Verification tools. Lecture Notes in Computer Science
407.
Boudol, G. and Larsen, K. 1992. Graphical versus
logical specifications. Theoretical Computer Science
106:3-20.
Bylander, T. 1991. Complexity results for planning.
In Proceedings of IJCAI-91, 274-279.
Cleaveland, R.; Parrow, J.; and Steffen, B. 1993. The
concurrency workbench: A semantics-based tool for
the verification of concurrent systems. ACM Trunsuc-
tion on Programming Languages and Systems 15:36-
72.
Cleaveland, R. 1990. Tableaux-based model checking
in the propositional mu-calculus. Actu Informutica
271725-747.
De Giacomo, G. and Lenzerini, M. 1994. Boosting the
correspondence between description logics and propo-
sitional dynamic logics. In Proceedings of AAAI-94,
205-212.
Emerson, E., and Halpern, J. 1986. “sometimes” and
“not never” revisited: on branching time versus linear
time temporal logic. Journal of ACM 33(1):151-178.
Emerson, E. A. 1990. Handbook of Theoretical Com-
puter Science, volume B. Elsevier Science Publishers
B.V. chapter 16.

Halpern, J., and Vardi, M. 199 1. Model checking
vs. theorem proving: a manifesto. In Proceedings of
KR-91, 325-334.
Hoare, C. 1985. Communicating Sequential Processes.
London: Prentice Hall Int.
Katsuno, H., and Mendelzon, A. 1991. On the differ-
ence between updating a knowledge base and revising
it. In Proceedings of KR-91, 387-394.
Kozen, D., and Tiuryn, J. 1990. Logics of pro-
grams. In van Leeuwen, J., ed., Handbook of Theo-
retical Computer Science. Elsevier Science Publishers.
790-840.
Kozen, D. 1983. Results on the propositional mu-
calculus. Theoretical Computer Science 27:333-355.
Lifschitz, V. 1990. Frame in the space of situations.
Artificial Intelligence 46:365-376.
Lifshitz, V., and Karta, G. 1994. Actions with in-
direct effects (preliminary report). In Proceedings of
KR-94, 341-350.
Lin, F., and Shoham, Y. 1991. Provably correct the-
ories of action (preliminary report). In Proceedings of
AAAI-91, 349-354.
Lin, F., and Shoham, Y. 1992. Concurrent actions
in the situation calculus. In Proceedings of AAAI-92,
590-595.
Manna, Z., and Pnueli, A. 1989. The anchored ver-
sion of the temporal framework. In Lecture Notes in
Computer Science 354, 201-284.
Milner, R. 1989. Communication and Concurrency.
London: Prentice Hall.
Reiter, R. 1993. Proving properties of states in the
situation calculus. Artificial Intelligence 64:337-351.
Rosenschein, S. 1981. Plan synthesis: a logical ap-
proach. In Proceedings of IJCAI-81.
Steffen, B., and Ingolfsdottir, A. 1994. Characteristic
formulae for processes with divergence. Information
and Computation llO(1):149-163.
Stirling, C. 1992. Modal and temporal logic. In
Abramsky, S. ; Gabbay, D. M.; and Maibaum, T.
S. E., eds., Handbook of Logic in Computer Science.
Oxford: Clarendon Press. 477-563.
Streett, R. S., and Emerson, E. A. 1989. An automata
theoretic decision procedure for the propositional mu-
calculus. Information and Control 81:249-264.

Reasoning about Action 663

