
Reasoning about Nondeterministic and Concurrent Actions: 
A Process Algebra Approach 

In this paper, we study reasoning about actions fol- 
lowing a model checlcing approach in contrast to the 
usual validity checlcing one. Specifically, we model a 
dynamic system as a transition graph which represents 
all the possible system evolutions in terms of state 
changes caused by actions. Such a transition graph 
is defined by means of a suitable process algebra asso- 
ciated with an explicit global store. To reason about 
system properties we introduce an extension of modal 
p-calculus. This setting, although directly applica- 
ble only when complete information on the system is 
available, has several interesting features for reasoning 
about actions. On one hand, it inherits from the vast 
literature on process algebras tools for dealing with 
complex systems, treating suitably important aspects 
like parallelism, communications, interruptions, coor- 
dinations among agents. On the other hand, reasoning 
by model checking is typically much easier than more 
general logical services such as validity checking. 
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Abstract 

Introduction 

To describe the behaviors of a dynamic system, 
choose among several levels of abstraction. 

we may 

1. At a very concrete level, we characterize the sys- 
tem by its unique actual evolution, which can be rep- 
resented as a sequence of states/actions. At this level, 
we assume complete information on each state, and we 
assume knowledge of which action will be performed 
next. 

2. At a more abstract level, we characterize the sys- 
tem by all its possible evolutions, which can be col- 
lectively represented as a transition graph (transition 
system). A single evolution at Level 1 is represented 
as a path on such graph. One of these paths is going 
to be the actual evolution of the system, yet we do not 
know which one it will be. Each node, representing a 
state, has several labeled out-arcs representing the ac- 
tions that can be performed in that state. Each action 
causes the transition of the system from the current 
state to a possible successor. We remark that different 
out-arcs may be labeled by the same action: in this 
case, the action is nondeterministic. At this level, we 
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assume complete information on all the possible evolu- 
tions of the system, i.e. on all its states, and on which 
actions can be performed in each state. However, we do 
not have knowledge on which action will be performed 
next. 

3. At the third level, we do not assume anymore 
complete information on the possible evolutions of the 
system, and we model the system by selecting a set of 
transition systems instead of a unique one. Each of 
such transition systems represents an alternative pos- 
sible behavior. In other words, we assume partial in- 
formation both on the current state, and on the states 
resulting from performing an action. 

While Level 1 is generally considered too concrete to 
be realistic, both Level 2 and 3 have been used in mod- 
eling dynamic systems. In particular, Level 3 is the one 
usually adopted by research on reasoning about actions 
(Rosenschein 1981; Reiter 1993; Lin & Shoham 1991; 
1992; Lifschitz 1990; Lifshitz & Karta 1994). In this 
case, a certain logic (situation calculus, dynamic logic, 
etc.) is used both to represent and to reason about the 
dynamic systems. The typical reasoning problem of 
interest is logical implication (validity) in the form 

where: I’ are axioms, used to select the set of transition 
systems that represent the dynamic system; Sinit is a 
formula, which is a (partial) description of the initial 
state; @ is a formula expressing the property we want 
to prove, e.g. the reachability of a state where a certain 
property (the goal) holds. 

In this paper, we adopt the viewpoint of Level 2. 
Following the model checking approach proposed in 
(Halpern & Vardi 1991), we use a description formal- 
ism to define the transition system representing the 
possible evolutions of the system, and a reasoning for- 
malism, i.e. a suitable logic for specifying properties we 
want to check. Notably, this setting is the one typically 
used in Process Algebras (e.g. CCS (Milner 1989), CSP 
(Hoare 1985), ACP (Bergstra & Klop 1984)) to model 
concurrent and reactive systems.’ 

‘In Artificial Intelligence, research on search-based plan- 
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The state (configuration) of the system is composed 
of a passive component (global store) and an active 
component (process). The passive component is de- 
scribed as a set of primitive propositions, which char- 
acterizes univocally the properties held in the passive 
component of the configuration. The active component 
describes the activities of all the agents (e.g. robots, 
persons, pieces of software, subroutines, environment, 
etc.) in the system, in terms of actions, which cause 
the changes of the system. The state of the passive 
component can only be changed by the activities of 
the active component, which in fact make the system 
evolve. 

Making use of a global store associated to a pro- 
cess, we specify the effects of an action in terms of 
the difference between the current and the resulting 
global stores. Properties not mentioned among such 
effects are kept unchanged (in this way we address the 
frame problem). Note that, this treatment is different 
from most approaches in the literature on logics of pro- 
grams, where all properties of the state resulting from 
an action are specified explicitely. 

We adopt a- specifically designed process algebra 
to describe processes. Indeed, process algebras are 
generally recognized as a convenient tool for describ- 
ing concurrent and multiagent systems. They offer 
useful techniques for constructing more complicated 
processes from simpler ones using various construc- 
tors. Especially, they provide us with the ability to 
express communications, interruptions, coordinations, 
etc. among processes, by way of synchronizations (or 
asynchronizations). 

The reasoning problem of interest in this case is 
model checking in the form 

where: 7 is a transition system representing the pos- 
sible evolutions of our dynamic system; sinit is a state 
of 7; @ is a formula expressing the property we want 
to verify. 

We develop a suitable extension of modal p-calculus 
(Kozen 1983)) a powerful logic of programs which in- 
cludes PDL (Kozen & Tiuryn 1990), CTL, CTL* 
(Emerson 1990). We show that model checking in our 
logic can be linearly reduced to model checking 
dard modal ,+calculus. We remark that, in the 

; in stan- 
context 

of process algebra, for finite state processes (processes 
that can be interpreted on finite transition systems), 
various model checking tools (e.g. (Boudol et al. 1990; 
Cleaveland, Parrow, & Steffen 1993)) have been de- 
veloped and implemented to verify whether a given 
modal/temporal logic formulae is satisfied by the pro- 
cess. By means of our reduction, it is possible to use 

tools for reason- efficiently 
ing about 

such existing implemented 
actions in our setting. 

ning, including much work on STRIP (e.g. (Bylander 
1991)) can be considered at this level. In contrast, research 
on deductive planning is typically carried out at Level 3. 

Atomic and synchronized actions 
The evolution of the system from one configuration to 
another is caused by one or more atomic actions. An 
atomic action is an elementary uninterruptible action 
executed by one agent. A set of atomic actions per- 
formed together by various agents constitutes a syn- 
chronized action. We use Act to denote the finite set 
of all possible atomic actions (ranged over by a, b, . . .), 
and (al,..., a,} the synchronized action composed by 
al,..., a, E Act. 

Each action causes certain eflects on the global store. 
The effects of a synchronized action c~ are defined on 
the basis of the effects of the atomic actions in cy. 

Effects of an atomic action may depend on the 
current configuration. We introduce premises of an 
atomic action to distinguish different configurations 
under which the action is being executed. Further- 
more, alternative effects of an action are still permitted 
under the same configuration. In this case, the actual 
effect is chosen nondeterministicaZZy among those that 
are possible. 

Formally, let Prop denote the finite set of all possi- 
ble primitive propositions (ranged over by A, B, . . .). 
We define a function ey9rct which associates to each 
action a E Act, a finite set of pairs eflct(a) = 
Wl, El)> * * . , (&, En)}, where for each pair (&, Ei): 
a & is a propositional formula over Prop describing 

the properties the global store must satisfy to have 
effect Ei: $i is the premise of Ei. 

o Ei is a set of literals - atomic propositions or their 
negations - over Prop that describes a possible eflect 
of the execution of action a under premise $Q. The 
literals in Ei are forced to hold in the successive 
configuration. We require that for no A, we have 
both A E Ei and -A E Ei. 

Given configuration u and action a: (i) if no premise 
of a is satisfied by 0, then a will be performed without 
any effect on a; (ii) it is possible that more than one 
pair in eflct(a) has its premise satisfied in cr: in this 
case, we say that action a is nondeterministic, i.e. it 
leads to more than one successive configuration. 

We now define the change of a global store caused 
by an (atomic or synchronized) action. Note that, to 
each global store we can associate an interpretation 
over Prop. We first introduce a simple update oper- 
ator o, which takes an interpretation u and a set of 
non-contradictory literals L, and returns a new inter- 
pretation 6’. 
Definition 1 Let u be an interpretation over Prop 
and ,!Z a set of non-contradictory literals over Prop. We 
define update operator o (infix) as follows: VA E Prop, 

AEC 
-AEL 
A @ L and -A @ ic 

Intuitively, the operator returns an interpretation 
which satisfies the non-contradictory literals in L, and 
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retains the value of the original interpretation 0 for 
those literals not occurring in L2. 

Making use of this update operator, we can describe 
how an (atomic or synchronized) action affects the 
global store. Recall that, in general, actions are non- 
deterministic, hence several alternative changes to the 
global store can be produced. The set of possible global 
stores caused by a synchronized action {ai, . . . , a,) on 
CT, denoted by a/{ai, . . . , a, ), is defined below. As a 
special case, we have cr/{a) when the action is in fact 
an atomic action a. 

Definition 2 Let {al, . . . , a,) be a set of atomic ac- 
tions in Act, and 0 an interpretation of the propositions 
in Prop. a/{al, . . . , a,} is defined as the set of all in- 
terpretations of the form 0 o (,Ci U . . . U ,&) such that 
for i= l,...n: 

a & = .f if 3($, E) E eflct(ai) s.t. a($) = tt 
otherwise 

0 c&J.. . U ,& does not contain contradictory literals. 

Consider an atomic action a: (i) a is deterministic 
in CT iff o/(a) is singleton; (ii) if no effect E has its 
premises satisfied in (T, then o/(a) = 0, i.e. the action 
has no effect (though it may still be performed). 

In general, the effects of a synchronized action are 
the sum of the effects of the participating atomic 
actions. However, the effects of the atomic actions 
composing a synchronized action must be compatible. 
For example, pushing an pulling an handle cannot be 
synchronized. Intuitively, synchronizing two actions 
means not only to perform them at the same time, but 
also to perform each of them taking into account the 
feedback from the other. Consider action {a, b} where 
the only applicable effect of a is Ei = {A} and the 
only applicable effect of b is E2 = (1A). Then the 
set of alternative global stores a/{a, b} resulting from 
executing {a, b} is empty: a and b cannot be synchro- 
nized. 

Observe the difference of the synchronized action 
{a, b} and performing a and b simply in parallel. When 
a and b are performed in parallel, they are performed 
together, but independently. In such a case, it is rea- 
sonable to assume that they can be performed together 
even though they have contradictory effects. The con- 
tradiction can be resolved into nondeterminism. For 
example, let A and 1A be the only applicable effect of 
a and b respectively. Both a and b try to set the propo- 
sition A to the desired value independently. Nondeter- 
ministically, one of the two actions has “the last word” 
and succeeds, hence we have both the state in which 
A holds, and the state in which A does not hold. This 
intuition is often modeled by an interleaving model of 
parallel execution of actions. Interleaving is going to 
be the base of our treatment of parallel processes. 

‘We discuss possible 
end of the paper. 

extensions of form of update at the 

Processes 
We adopt CCS-style (Milner 1989) to combine actions 
into processes. Due to the appearances of recursions, 
we use process equations P G p to define processes. 
Here P is a process name and p is a process expression 
(or simply process). For each process name we asso- 
ciate a unique process definition. We will use Proc to 
denote the set of process names. Processes follow the 
syntax below: 

P ::= nil 1 P 1 (C#J -4PIPl+P2 IPl IIP2 IP\Y 
where nil denotes a predefined atomic process, P is a 
process name defined in Proc, 4 denotes a propositional 
formula over Prop, a denotes an atomic action in Act, 
and y denotes a set of expression of the form 4 ---) 
Q with 4 a propositional formula over Prop and Q a 
propositional formula over Act. Intuitively, 
1. nil represents the termination of a process. 
2. (4 + a) .p is the process which is capable of perform- 

ing, under the precondition 4, action a, and then be- 
haves as process p. This term can be viewed as an 
extension of CCS-term a.p where no preconditions 
are specified. 
pl + p2 represents the alternative composition of p1 
and ~2. 

p1 II ~2, the parallel composition of p1 and ~2, is 
the process which can perform any interleaving or 
synchronizations of the actions of p1 and pa - i.e. 
the performance of more actions together. 
p\y behaves like p but only actions in 

A=b+W-+~~~4=~=4=/=e) 
are allowed. This is an extention of CCS-term p\y 
where y is simply a set of atomic actions that are 
not allowed. 
Given an initial configuration, the semantics of a sys- 

tern is given in terms of the transition relation ---+ _ 
defined as the least relation satisfying the structural 
rules in Table 1. In this table, (;Y (possibly with a sub- 
script) denotes a set {al, . . . , a,} of atomic actions ex- 
ecuted together, and a(~) denotes the truth value of Q 
in a. 

Indeed, these rules permit us to associate to a config- 
uration (pi,it, crinit), a transition system (Kripke struc- 
ture) whose states are the configurations reachable 
from (PM, hit), via the transitions inferred by the 
structural rules. 
Definition 3 Given a set P of propositions, and set 
A of atomic actions, a transition system is a triple 
(& Wcrl~ E 2”v-Q with a set of states S, a fam- 
ily of transition relations R, E S x S, and a mapping 
II from P to subsets of S. 

We associate to each configuration (pinit, ai,at), a 
transition system 7 = (S, {X&la E 2Aj,n), where 
P = Prop, A = Act, and 
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Act : 
((4 - a).% a> Ia’@, 0’) 

where a(4) = tt, 0’ E #/{a} 

Sum1 : 
(PI f a) qp;, 6’) 

(Pl + P?,f-7)+4,4 

Sums : 
(P2 > 0) ‘-(A, 6’) 

(Pl +PzF) -qP:, 4 

Intl : 
(PlT) --qPh’) 

(PI II P214 --qPi II P2, a'> 

Int2 : 
(P2, a> --qPi, a’) 

(PI II P2,4 $(Pl II A 0’) 

Syn : 
(PI 7 4 Z(Pi, 4 ) (P2,43P:,4 

(Pl II P2 9 0) 
of1ua2 

-(Pi II P:, J) 
where o’ E C/CY~ u ap 

Res : 
(P, 0) z(P’, 6’) 

(P\Y, 0) ,(P’\Y, a’) 
where t/(4 - e) E y s.t. a(4) = tt: a(~) = tt 

Table 1: Structural Rules 

* S = {(P, 0) I (pinit, ~&(A)*(p,g)}, where A+- 
is the least relation satisfying all rules in Table 1, 
and -(A)*- t fl is i s re exive transitive closure; 

((24 4, (P’, 0’)) E % ifl (P, fl) 2(p’, a’); 

. II(A) = {(p,+(A) = tt}. 

roving system properties 
Once we have a description of a dynamic system, we 
can use it to infer properties of the system, like invari- 
ance of certain statements, the possibility to reach a 
configuration where a certain property holds (i.e. where 
a certain “goal” is satisfied). 

Many temporal and modal logics have been proposed 
in the process algebra literature for verifying proper- 
ties of concurrent systems (Emerson & Halpern 1986; 
Kozen 1983; Manna & Pnueli 1989). Among these, 

we focus on one of the most powerful logic of pro- 
grams, modal p-calculus (Kozen 1983; Streett & Emer- 
son 1989)), which includes logics like PDL, CTL and 
CTL*, and has been investigated (e.g. (Stirling 1992; 
Cleaveland 1990)) in the context of process algebra for 
expressing “temporal” properties of reactive and par- 
allel processes. 

Specifically, we introduce an extension of standard 
modal p-calculus, called M,, which is suitable to ver- 
ify properties of systems specified in our description 
formalism. M, comprises (i) a set of propositions to 
denote properties of the global store; (ii) a family of 
modal operators to denote the capability of the active 
component to perform a certain action; and (iii) a fam- 
ily of fixpoint operators to denote “temporal” proper- 
ties defined by induction and coinduction. 

The formulae of M, is defined on the base of action 
formulae generated by (a E A): 

e ::= a 1 le 1 ,gl A ~2. 

The meaning of such formulae is given by the following 
satisfaction relation, where cr is a set of atomic actions 
denoting a synchronized action in general. 

Formulae of M, are formed from action formulae, 
propositions in P, and variable symbols in Vur, accord- 
ing to the following abstract syntax (A E P, X E Vur): 

@ ::= A I +D I <PI A @2 I (e)@ 1 pX.Qe I X 

We make use of standard notions of scope, bound and 
free occurrences of variables, closed formulas, etc. As 
usual in j.4-calculus, we require syntactic monotonicity: 
every variable X must occur in the scope of an even 
number of negation signs (7). The semantics of M, 
is based on the notions of transition system and valu- 
ation, where, given a transition system 7, a valuation 
V on 7 is a mapping from variables in Vur to subsets 
of the states in 7 (Kozen 1983). 

Let 7 = (S, {&lo E 2”}, II) be a transition system 
and V a valuation on 7. We assign meaning to formu- 
lae of the logic by associating to 7 and V an extension 
function (.)c, which maps formulae to subsets of S. 
The extension function (.)c is defined inductively ac- 
cording to Table 2, where we use V[X/C] to denote the 
valuation identical to Y except for Y[X/s](X) = 1. 

Let us comment Table 2. The boolean connectives 
have the expected meaning. The modal operator (s) is 
interpreted so that (Q)@ is satisfied by a configuration 
iff there is an execution of some action satisfying e, 
that leads to a successive configuration where de holds. 
(pX.Q)$ is interpreted as the least fixpoint of the op- 
erator (Q)&,El : the unique existence of such fixpoint 
is guaranteed by Tarski’s Theorem, since (Q)&I,l 
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Table 2: Definition of the extension function (e); 

is monotonic according to the restriction of syntactic 
monotonicity. 

Let us consider some examples. If only deterministic 
atomic actions are considered, then 

where any denotes a V la, expresses the existence of a 
plan (sequence of actions) to reach the goal $s from the 
initial configuration. If nondeterministic actions are 
present, the formula above does not suffice anymore, 
and needs to be replaced by 

pX.qS, V V (any)tt A [a]X. 
ac Act 

A more complicated expression 

vX.pY.[a](((b)tt A X) V Y) 

states that b is possible infinitely often throughtout 
any infinite length run consisting wholly of a actions. 
Here vX.@ = lpX.+[X/lX] where @[X/lx] is the 
formula obtained substituting all free occurrences of 
X by the formula 1X. Note that vX.Q is a greatest 
fixpoint. 

As mentioned above, the reasoning problem we are 
interested in is model checking. Let 7 = (S, {R,]m E 
2A}, II) be a transition system, s E S, @ a closed M, 
formula. The related model checking problem (denoted 
by 7, s + @) is to verify whether s E (@)c where V is 
any valuation, since @ is closed. 

To relate M, (where modalities have action formu- 
lae as indices) with the standard p-calculus (where 
modalities are indexed by single actions), we can con- 
struct two transformations F and H on transition sys- 
tems 7 and formulae @ respectively, so that the ver- 
ification of 7, s k @ (s is a state of 7) can be lin- 
early reduced into the verification of standard modal 
p-calculus formulae. This is formally stated below: 

Proposition 1 Let S denote the set of transition sys- 
tems and L the set of standard modal ,v-culculus for- 
mulae. There exist transformations F : S + S and 
H: M,+,Csuchthutforuny7ES,@EMCL: 

(i) F(7) and H(Q) are linearly bounded by 7 and <p 
respectively; 

(ii) For any state s of 7, let F(s) denote the image of 
state s in F(7), then 

7,s I= @ iff F(7)3’(4 I= H(Q) 

The construction of such F is based on reifying tran- 
sitions, i.e. on introducing a new state for each tran- 
sition, so that the action formula is transformed into 
a formula on the new state. These transformations 
of 7 and @ by F and H respectively, allow us to ex- 
ploit efficiently the existing model checking tools, e.g. 
(Cleaveland, Parrow, & Steffen 1993). 

Discussion and conclusion 
It is not difficult to build a formula that denotes ex- 
actly a given transition system 7 wrt a given state s. 
Such a formula x~,~, which has essentially the same 
size as 7, is called characteristic formula (Steffen & 
Ingolfsdottir 1994; Halpern & Vardi 1991), and can be 
used to reduce model checking into validity checking. 
Indeed, we have 7, s k @ iff b ~7,~ 3 a. This 
shows that model checking is in fact a specilization of 
validity checking, the one you get when you have com- 
plete information on the system. 

Further extensions of the present work are possible 
along several directions. We outline some of them. 

The first extension concerns the form of the update 
for the global store. The only essential point, in or- 
der to retain precisely the proposed setting, is to have 
some function returning c/{al, . . . , a,} from the in- 
puts {al,..., a,} and 0. It follows that we may adopt 
a more complex form of update, based, for example, on 
some notion of distance among global stores. In this 
way, we can specify effects of actions as general for- 
mulae over Prop instead of literals, and furthermore, 
we can address indirect effects by specifying domain 
constrains that must hold in each global store. Ob- 
serve that the update we are interested in applies to 
interpretations, and thus is much simpler than update 
of theories discussed, e.g., in (Katsuno & Mendelzon 
1991). 

Another possible extension is to consider the global 
store as a set of multi-valued variables instead of 
boolean variables, or even as a first order interpretation 
over some fixed domain. Such extension can be easily 
accommodated in our setting. Indeed the way tran- 
sition systems are built remains essentially the same, 
while the logic used for verification needs to be ex- 
tended in order to take into account the new kind of 
properties expressed in the global store. Research in 
Databases on query languages based on first-order logic 
plus fixpoints e.g. (Abiteboul, Hull, & Vianu 1995), 
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and that on complex transactions e.g. (Bonner & Kifer 
1995) are relevant. 

Finally, we believe that it is of great interest mov- 
ing from Level 2 to Level 3 by mixing the process al- 
gebra approach presented here, with the usual logical 
approach. This would allow us to introduce incomplete 
information in a better controlled way. For example, 
we could specify agents whose behavior is completely 
known by means of process description presented here, 
and agents whose behavior is only partially known (as 
happens typically for the environment) by logical ax- 
ioms. To this end the research on “loose specification” 
in process algebras (Boudol & Larsen 1992), as well 
as research in knowledge representation on description 
logics that include assertions on “individuals” (which 
can be interpreted as a partial description of a transi- 
tion system) (De Giacomo & Lenzerini 1994), is rele- 
vant . 
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