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Abstract

The rapid development of new learning algorithms increases the need for improved accuracy
estimation methods. Moreover, methods allowing the comparison of several different learning
algorithms are important for the performance evaluation of new ones. In this paper we propose
new accuracy estimation methods which are extensions of thek-fold cross-validation method. The
methods proposed construct cross-validation folds deterministically instead of using the random
sampling approach. The deterministic construction of folds is performed using unsupervised
stratification by exploiting the distribution of instances in the instance space. Our methods are
based either on the one-center approach or on clustering procedures. These methods attempt to
construct more representative folds, therefore reducing the bias of the resulting estimator. At the
same time, our methods allow direct comparisons between the performance of learning algorithms
in different experiments, since no randomness is present. A simulation experiment examining the
performance of the proposed methods is reported, depicting their behavior in a variety of situations.
The new methods reduce mainly the bias of the estimator. 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

A large amount of research in machine learning has been devoted to inductive learning,
with the goal of constructing classification rules from a set of observations. In inductive
learning, a learning algorithm processes a set ofN instancesx1, x2, . . . , xN collectively
called the training setx. Each instance is described by an attribute-valued vector along
with a class denoted byC(xi). For example, in medical diagnosis the attributes can be
clinical characteristics of the patient, while the class can be the diagnosis for this patient.
Suppose that there ares distinct classes with values,y1, . . . , ys and thatC(xi) = yj (i =
1, . . . ,N, j = 1, . . . , s) implies that theith instance belongs to the class with valueyj .
In our example, the classes are the different possible diagnoses. The problem of inductive
learning is to construct a classifier based on the currently available training set.

The performance of a classifier can be measured by its accuracy, which expresses the
degree of success in classifying correctly new instances. Thetrue accuracyθ of a classifier
is defined as the probability of correctly predicting the class for a randomly selected
instance. It can be computed as the ratio of correctly classified instances to the total number
of instances when the classifier is tested on the population. However, in the real world,
samples are always finite and in many cases their size is relatively small. This makes
reliable estimation of the true, but unknown, accuracy of a learning algorithm an important
but difficult task.

The most obvious method for estimation of the true accuracy is to use the initial dataset
for both training and testing the classifier. This estimator of accuracy is calledapparent
accuracy. Apparent accuracŷθc is an optimistic estimator, since it favors classifiers that
overfit the data. In practice, accuracy estimates are made by constructing disjoint training
and test sets using sampling methods.

Reliable estimates of classification accuracy are important, not only for estimating
the true accuracy of a classifier, but also for finding the best classifier from a set of
competitive ones (model selection). There is no universal learning algorithm giving the
best performance in all possible learning situations [24]. The development of inductive
learning algorithms is more concentrated on designing algorithms that can deal with
real world applications. In this direction, collections of datasets related to real world
situations (for example, the UCI repository of machine learning databases [18]), are being
continuously used to compare learning algorithms. Researchers often use the results of
these comparisons in order to draw conclusions on the superiority of one algorithm over
another. Therefore, objective methods for estimating accuracy are needed.

Three main methods have been applied for accuracy estimation purposes:
(a) holdout with random resampling,
(b) cross-validation, and
(c) bootstrap.

All these methods are based on random sampling techniques and, thus, randomness may
affect their behavior, especially with respect to the comparison of learning algorithms in
different experiments. In this paper we propose deterministic approaches fork-fold cross-
validation that construct representative rather than random folds. We refer to these methods
as unsupervised stratification of cross-validation, because they exploit the distribution
of instances in the instance space in an unsupervised manner, ignoring the class. The
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principle for constructing representative folds in unsupervised stratification is to direct
similar instances to different folds. With these methods we attempt to reduce the effects
of using less instances for training. Furthermore, the proposed methods are deterministic,
i.e., given the dataset, unsupervised stratification always constructs the same folds. Hence,
unsupervised stratification can be used as a tool by researchers for comparing learning
algorithms in different experiments, as an alternative to predefined holdout test sets or
specific cross-validation folds.

The rest of this paper is organized as follows: In Section 2 we review some methods for
accuracy estimation and examine the factors that influence their performance. In Section
3 we present the idea of unsupervised stratification of cross-validation. Section 4 presents
a method for unsupervised stratification based on the notion of the center of the instance
space. A method of unsupervised stratification based on clustering procedures is presented
in Section 5. An experimental comparison of the new methods to random cross-validation
ones is reported in Section 6. Finally, some concluding remarks can be found in Section 7.

2. Accuracy estimation methods

In this paper we focus on the application of accuracy estimation to classification
problems. A supervised learning algorithm constructs a classifier, in order to predict the
class of unlabelled instances. Classifiers can be decision trees [2,21], production rules [5],
or classification rules such as nearest neighbor and naive Bayes [27]. Several methods
have been proposed for calculating an estimatorθ̂ of the true accuracyθ . Generally,
the bias of an estimator̂θ is defined asBias= E[θ̂ ] − θ , whereE denotes expectation.
The varianceof the method is defined asVar(θ̂) = E[(θ̂ − E[θ̂ ])2]. The bias expresses
how the estimator overestimates or underestimates the true accuracy, while the variance
expresses the variability of the estimator. An estimator is reliable if it has low bias
and variance. In practice, an appropriate tradeoff between bias and variance is a more
realistic target. Squared error can be decomposed to bias plus variance, a well-known
result in statistics [22]. Similar decompositions apply to zero-one loss functions appearing
in classification problems [15,16].

A simple method for accuracy estimation isholdout with random resampling. In this
method the dataset is randomly partitioned in two disjoint subsets ofp ·N and(1−p) ·N
instances (typicallyp = 1/2 orp = 2/3). The first subset serves as the training set and the
second as the test set. The classifier is built using the training set and it is tested on the test
set. This procedure is repeated for a number of times and the mean accuracy is computed.
The drawback of this method is that it makes inefficient use of data, since typically a
relatively large proportion of the instances is used for testing. The resulting estimates can
be highly pessimistic.

Cross-validation[26] attempts to resolve this drawback by successively removing some
instances from the initial set, treating them as a test set. Ink-fold cross-validation, the
dataset is randomly partitioned intok disjoint blocks (thefolds), of (approximately) equal
sized (d ≈ N/k). The learning algorithm runsk times. In theith run, theith training
set is formed by the initial dataset without theith fold, while the test set is formed using
the ith fold alone. Letθ̂(i) be the ratio of correctly classified instances to the total number
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of tested instances in theith run. The estimator̂θk of the accuracy for thek-fold cross-
validation method is calculated asθ̂k =∑k

i=1 θ̂(i)/k. Note that complete cross-validation
implies the construction of all possible folds containingd instances, making the evaluation
computationally intractable even for small sample sizes.

A variation of cross-validation isstratified cross-validation, where the class distribution
in each fold is approximately the same as in the initial dataset. In general, cross-
validation is appropriate for both accuracy estimation and model selection [2,3,23].
However, it usually produces pessimistic accuracy estimations, because in each iteration
only a subset of the instances is used for training. Typically, the bias is smaller than in
the holdout with random resampling method. Pessimism in accuracy estimation occurs
if for a specified algorithm and dataset, more training instances improve classification
performance. Theoretical studies and empirical evaluation show that this does not always
happen [13,24].

The tradeoff between bias and variance in cross-validation depends on the number of
folds [13,27]. A small number of folds typically results in small variance and large bias.
Since in each run a much smaller portion of examples is used for training, accuracy
estimation is more pessimistic. On the other hand, for larger numbers of folds, bias
becomes lower but variance increases. For example, when applying theleave one out
method in which each fold contains only one instance, the estimate is almost unbiased but
its variance is relatively high. Empirical studies show that stratified cross-validation gives
better estimates for both bias and variance [13]. Finally, multiple runs of cross-validation
produce more stable estimations as they reduce the variance [13].

Another widely used technique is thebootstrapmethod [8]. In bootstrap, each training
set is formed by randomly drawing instances from the initial dataset with replacement.
The classifier constructed using theith training set is tested on the remaining instances,
resulting in an estimatêθi . This is repeatedb times. The 0.632 bootstrap estimatorθ̂B is
defined as [7]:

θ̂B = 1

b

b∑
i=1

(
0.632θ̂i + 0.368θ̂c

)
,

whereθ̂c is the apparent accuracy defined earlier.
Weiss and Kulikowski [27] suggested using the bootstrap method for small datasets

because it makes better use of the data. However, the 0.632 bootstrap estimator
favors overfitting classifiers (e.g., perfect memorizers) and it is not suitable for model
selection [13]. Efron and Tibshirani [9] proposed new estimators to deal with this form
of bias. They combined the leave one out with the bootstrap method to obtain smoother
estimates. They also proposed reducing the bias of the 0.632 bootstrap estimator by using
the 0.632+ estimator which is defined as

θ̂B+ = 1

b

b∑
i=1

(
ŵθ̂i + (1− ŵ)θ̂c

)
,

whereŵ is a weight that ranges from 0.632 to 1, estimated from the dataset so as to reduce
the bias. This estimator provides a better balance between the pessimisticθ̂i estimator and
the optimisticθ̂c estimator.
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3. Representative partitioning for cross-validation

The cross-validation methods presented previously were based on randomly constructed
folds. This has two disadvantages. The first is due to the fact that cross-validation is
used by researchers for comparing inductive algorithms. Even though cross-validation may
give good results, the randomness in partitioning the dataset results in different estimates
between runs. Thus, the comparison of different learning experiments becomes difficult.
The second disadvantage is that the folds can be quite unrepresentative, consequently
biasing the estimator. The deterministic variations of cross-validation described below
exploit the instance space and attempt to direct similar instances to different folds. We
refer to these methods as unsupervised stratification, to distinguish them from stratification
based on class distribution, referred to assupervised stratificationin the rest of this paper.

The hypothetical two-class learning problem shown in Fig. 1 illustrates the idea behind
unsupervised stratification. In the two-dimensional instance space shown, the points
representing the instances clearly belong to two regions A and B. Consider now a case
of two-fold cross-validation, in which the first fold mostly contains instances from region
A while the second fold mostly contains instances from region B. In this scenario it is
possible to get pessimistic results. In the first run the learning algorithm is trained mainly
from the instances of region B and tested on many instances from region A. Similarly, in
the second run the learning algorithm is trained on many instances from region A and tested
on many instances from region B. The estimates produced in this case will be pessimistic
if we make the (plausible) assumption that when a test case is closer to the training set
the probability of a correct prediction is higher [7]. An alternative scenario for the example
above is to sample an (approximately) equal number of instances from both regions to form
the cross-validation folds. From this example we can see that a more objective partitioning
method is to direct similar instances to different folds. Application of this principle to the
example of Fig. 1 results in more balanced folds, containing instances from both regions,
which are expected to give better estimates.

Fig. 1. A hypothetical two-dimensional learning problem. Instances belong to two regions A and B (dotted lines).
The partitioning shown is unrepresentative and hence it may give unreliable results.
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The objective of directing similar instances to different folds is to reduce the pessimistic
effects caused by the removal of instances from the dataset. At the same time each of the
k classifiers is tested on as many different testing situations as possible. When an instance
is used for testing, we expect that we have left as many instances from the same region
as possible for training. Thus, the effect of the absence of this instance is reduced, and
consequently the bias is also reduced. In addition, with this method each fold contains
distant instances. Hence, each classifier is tested on different testing situations.

The application of a systematic procedure to the construction of folds provides the ability
to construct folds deterministically rather than randomly. We will describe algorithms for
such partitions in the next sections.

4. Ordering instances using a single center

In order to discover regions having similar instances in the instance space, we need to
define asimilarity measure. The similarity measure used in this paper is a variation of
Euclidean distance proposed by Aha et al. [1]. Forn attributes the similarity between two
instancesxi andxj is defined as

Sim(xi, xj )=−
√√√√ n∑

t=1

f (xit , xjt ),

wherexit is the value for attributet of theith instance. The functionf (xit , xjt ) is defined
for continuous attributes asf (xit , xjt ) = (xit − xjt )2 while for discrete attributes it is
defined as

f (xit , xjt )=
{

0 if xit = xjt ,
1 if xit 6= xjt .

Missing attribute values are presumed to be maximally different. Continuous attributes
are normalised to the [0,1] interval so that all attributes will have the same effect on the
computation of similarity. Other similarity functions can also be used.

A first approach to the deterministic ordering of instances is to order them according to
their similarity to the center of the instance space. In this approach we assume that instances
close to the center of the instance space are themselves close. For discrete attributes
the value with maximum frequency is considered the attribute value of the center. For
continuous attributes the center attribute value is the mean of the known attribute values of
all instances. Fig. 2 shows this method (1C-CV).

In the method shown in Fig. 2, instances with close similarities to the center are directed
to different folds. Fig. 3 shows graphically the distribution of similar instances to different
folds.

The single center approach is the fastest method for unsupervised stratification. The
algorithm makes two passes over the data, one to find the attribute values for the center of
the instance space and a second to sort instances according to their similarity to the center.
Therefore, the running time for the procedure is O(N logN).
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Find the Center of the instance space

Sort instances according to their similarity to the Center

For each instance x (i ) (in order)

m= i mod k

if m = 0 then m = k

Assign instance x (i ) to fold m

End For

Fig. 2. Ordering instances using a single center. The 1C-CV method.

Fig. 3. Assignment of similar instances to different folds. Instances are sorted according to their similarity to the
center of the instance space.

5. Ordering instances with clustering methods

The implicit assumption of the single center approach is that instances having identical
similarities to the center are themselves close. Obviously this assumption does not hold in
general, especially for datasets with continuous attributes. Thus, we need to find regions in
the instance space where the instances are themselves close. Such a search for regions with
similar instances arises also in cluster analysis [10]. Methods developed for cluster analysis
can be applied to unsupervised stratification, in order to find a better approximation
of the true similarity between instances. The aim of clustering is to form groups of
instances, where the instances in each group are similar, and at the same time there is
small similarity between clusters. We describe two approaches commonly used in cluster
analysis, hierarchical clustering andK-means clustering, and discuss their application to
unsupervised stratification.

5.1. Hierarchical clustering

Hierarchical clustering starts by treating each instance as a cluster and iteratively merges
the two most similar clusters until a single cluster remains. Two critical issues arise in
hierarchical clustering. The first is choosing a method for forming clusters and the second
is choosing the number of clusters which better represents the structure of the data.
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Several measures of similarity between two clusters have been proposed, such assingle
linkage(the similarity of the two closest instances),complete linkage(the similarity of the
two furthest instances), andaverage linkage. In the context of our work, we implemented
theaverage linkage between groupsmethod. The definition of similarity for two clusters
g1 andg2 in this method is defined as:

ClustSim(g1, g2)=
∑
xi∈g1,xj∈g2

Sim(xi, xj )

size(g1) · size(g2)
,

where size(g1) and size(g2) denote the number of instances assigned to each cluster.
The average linkage between groups method leads to the construction of clusters having
spherical form. This method is suitable for discovering regions that contain instances that
are themselves close.

On the other hand, there is no standard statistical procedure to determine the optimal
number of clusters. The decision is highly based on the subjective judgment of the
researcher analyst or on heuristic procedures. In our work we adopt the criterion introduced
in [20]. This criterion examines the distribution of theclustering coefficient, which is the
similarity between the clusters merged in each repetition of the clustering procedure. As
the number of clusters decreases, the value of the coefficient also decreases. The optimal
number of clusters is given by the stage in which the obtained coefficient is smaller than
a critical value derived from the distribution of the coefficient. ForN instances we have
N − 1 stages of hierarchical clustering. The number of clusters is determined by the first
stagej (16 j 6N − 2) in which

αj+1< ᾱ− 2 · sα,
whereαj is the coefficient at stagej ; ᾱ andsα are the mean and the standard deviation of
the coefficients. The value of the coefficient in stagej +1 indicates that the last merging of
clusters is unrepresentative, becauseαj+1 lies in the lower tail of the distribution. If there
is no stage satisfying the inequality above, we can assume either that there is no structure
in the data, or that the single cluster solution represents better the structure of the data.
Other criteria for choosing the optimal number of clusters and experimental comparisons
between them can be found in [4,12,20].

Hierarchical clustering requiresN − 1 iterations until we reach one cluster. Since the
similarity of all pairs of instances must be considered, the running time of the method
is O(N2). Moreover, the similarity matrix of instances has space complexity O(N2).
Therefore, hierarchical clustering is suitable only for relatively small datasets.

5.2. K-means clustering

In K-means clustering, the number of clusters is provided by the user.K-means
clustering partitions the data into a specified number of clusters in an iterative manner.
The method is performed in three steps:

Step 1. Select theK initial centers.
Step 2. Assign each instance to the cluster with the closest center.
Step 3. Refine cluster centers. If there are significant changes to the cluster centers

repeat from Step 2.
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/*C r ,Cf ,Ch denote cluster centers*/

For f = 1 to K

Cf = xf

End For

For i = K+ 1 to N

Cr = the closest center to x i

S1 =Sim(xi ,Cr )

/*compute the similarity S 2 between the two closest centers*/

S2 =max{Sim(Cf ,Ch), f = 1, . . . ,K, h = 1, . . . ,K, f 6= h}
/*find the largest similarity between the center C r and all

other centers*/

S3 =max{Sim(Cr ,Cf ), f = 1, . . . ,K, f 6= r }
if (S1 < S2) or (S1 < S3) then

Cr = xi

End if

End For

Fig. 4. Selection of initial centers forK-means clustering.

There are several variations onK-means clustering. For example, the selection of initial
centers (Step 1) can be random or guided by more sophisticated methods. In Step 3 the
cluster centers are refined. New cluster centers are computed from the instances assigned
to each cluster. This can be performed when an instance is assigned to a cluster or after the
end of each repetition. In our work we applied a modified version of the method used by
the SPSS statistical package [25]. In Step 1 the initial centers are selected by the procedure
shown in Fig. 4. The aim of the procedure shown in Fig. 4 is the selection of distant
instances for the initial centers.

In Step 3 the cluster centers are refined after the end of each repetition. The clustering
procedure finishes when the largest change in the similarity of cluster centers is lower than
2% of the largest similarity between the cluster centers of the previous iteration.

SinceK-means clustering processes the raw data there is no need for a similarity matrix,
but we need to make more than one pass over the data. The running time of the clustering
procedure is O(KN). Cutting et al. [6] propose fast algorithms forK-means clustering for
large datasets. The drawback ofK-means clustering is that the number of clusters has to
be defined by the user. We can estimate the number of clusters by sampling a fraction
of instances from the dataset and applying hierarchical clustering using the heuristic
procedure described above.

5.3. Ordering instances using clusters

After the application of any of the clustering procedures above to the dataset, we have the
instance space partitioned into clusters. The next step is to order the clusters. The clusters
are sorted according to the similarity between cluster centers and the center of the first
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For each cluster

Find the Center of the cluster

Sort the instances of the cluster according to their

similarity to the Cluster Center

End For

Sort Cluster according to their similarity to the first Cluster

For each instance g (in order)

For each instance x (g,i ) in the cluster g

m= i mod k

if m = 0 then m = k

Assign instance x (g,i ) to fold m

End For

End For

Fig. 5. Ordering instances with clustering. The CL-CV method.

cluster. After the clusters have been ordered, we can sort the instances within each cluster.
Instances are sorted according to their similarity to the cluster center. Suppose thatx(g,i)
denotes theith ordered instance in thegth ordered cluster. For each cluster we distribute
the instances in folds in the same manner as in the ordering procedure of the single center
method. Fig. 5 shows this method (CL-CV).

Sorting the clusters has small computational cost (whenK � N). The additional
computational cost of sorting the instances within the clusters is O(KN logN). Finally,
note that if the clustering procedure reduces to a single cluster solution, then the resulting
ordering is identical to the one produced using the single center approach.

6. Experimental comparison

In the previous section we introduced two new methods for deterministic ordering of
instances fork-fold cross-validation. For the experimental comparison of these methods
with random cross-validation (R-CV) and random supervised stratification of cross-
validation (RS-CV) we followed a methodology similar to the one in [13]. In order
to compare different accuracy estimation methods Kohavi experimented with datasets
from the UCI repository. The datasets used were Breast Cancer, Chess, Hypothyroid,
Mushroom, Soybean Large and Vehicle. Kohavi tested the C4.5 learning algorithm [21]
that constructs decision tree classifiers and naive Bayes classification. Cross-validation
runs were performed on subsets of the entire datasets. Using the learning curves of C4.5
and naive Bayes, the number of instances in each subset was chosen at points where the
learning curve was not flat. The comparison of the accuracy estimation methods on datasets
that do not have flat learning curves shows the difference of these methods more clearly. In
our work, the same datasets were used for the comparison of the cross-validation methods,
plus the Letter Recognition dataset from the UCI repository. The latter was chosen in order
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to test the application of the methods on larger datasets. For the first six datasets we used
the sample sizes reported in [13] while for the Letter Recognition the sample size was
chosen according to the learning curve shown in Fig 6.

Table 1 shows the sample size for each dataset. Given that these sample sizes typically
lead to pessimistic estimates, we are interested to find the less pessimistic methods. The
method giving the highest accuracy is the less pessimistic one.

The methodology used can be described as follows: Each accuracy estimation method
ran 50 times on different samples of the size shown in Table 1. The mean accuracy
and standard deviation of the runs were computed. For the clustering procedure we used
K-means clustering. The number of clusters for the first six of the datasets was estimated
by sampling 50 times a subset of 100 instances and choosing the number of clusters using
the hierarchical clustering method. We used the same procedure for the Letter Recognition
dataset but with subsets containing 200 instances. Table 2 shows the number of clusters
chosen for each dataset, computed by averaging the number of clusters from each run. The
standard deviations of the estimations are also presented.

Fig. 6. The learning curve for C4.5 for the Letter Recognition dataset. Each point on the learning curve is the mean
accuracy of the decision tree on the instances not found in the training set. The mean accuracy is computed over
10 runs. The empty circle indicates the dataset size used for experimentation. The learning curve was generated
by the MLC++LearnCurveutility [14].

Table 1
Datasets and sample sizes for experimentation

Dataset Classes Attributes Discrete Continuous Total size Sample size

Breast Cancer 2 9 0 9 699 50

Chess 2 36 36 0 3196 900

Hypothyroid 2 25 18 7 3163 400

Mushroom 2 22 22 0 8124 800

Soybean Large 19 35 35 0 683 100

Vehicle 4 18 0 18 846 100

Letter Recognition 26 16 0 16 20000 8000
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Table 2
Estimated number of clusters. Rounded values
were used in the experiment

Dataset Number of clusters

Breast Cancer 4.18± 0.825

Chess 2.86± 0.880

Hypothyroid 4.16± 1.251

Mushroom 6.06± 0.711

Soybean Large 4.78± 1.183

Vehicle 4.42± 0.859

Letter Recognition 8.44± 0.907

Although the Breast Cancer, Soybean Large and Vehicle datasets permit hierarchical
clustering (because of their size), we appliedK-means clustering in order to get results
comparable to those of other datasets. Given the number of clusters, we applied the four
accuracy estimation methods (R-CV, RS-CV, 1C-CV, CL-CV) to 50 samples from each
dataset using the C4.5 algorithm as the learning algorithm.

Table 3 shows the mean accuracy and standard deviation of the cross-validation methods
for 2, 5, 10 and 20 folds.

Table 3 highlights the least pessimistic methods and the methods with the smallest
variance for each dataset and each fold. Given the seven datasets and four cases of folds
for each dataset, we need to compare all methods for both bias and variance. In Table 4 we
summarize the results.

Inspection of Table 4 reveals some interesting features of unsupervised stratification.
It is clear that the clustering method reduces the bias. The differences in variance are
not significant enough to lead to conclusions on which method outperforms the rest. The
methods proposed improve the variance compared to random cross-validation. However,
random supervised stratification of cross-validation seems to slightly outperform the
clustering method. The one center method does not improve significantly the estimates
compared to random cross-validation. This method requires less computational effort,
but it may lead to sub-optimal results when the instance space contains singularities.
This method can be used as a tool for the deterministic construction of folds with
low computational time. In contrast, the clustering method is more reliable, but it is
computationally demanding.

Some other important points concerning the clustering method are:
(1) The clustering method gives better results for a moderate number of folds. When

the number of folds is large (close to the leave one out method), it is expected that
the effect of unsupervised stratification is smaller.

(2) The clustering method produces better estimates for datasets with low variance.
Unsupervised stratification improves mainly the bias. Therefore, for datasets with
low estimator variance the bias reduction is more important.
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Table 3
Mean accuracy and standard deviation of the C4.5 algorithm for the four variations of cross-validation. Bold
indicates the best results for a specified combination of fold and dataset

Dataset/method 2-folds 5-folds 10-folds 20-folds

Breast Cancer Acc Stdv Acc Stdv Acc Stdv Acc Stdv

R-CV 89.92 4.91 90.60 4.26 90.36 4.51 90.52 4.63

RS-CV 90.40 3.79 91.20 3.73 90.76 4.48 90.97 4.79

1C-CV 90.28 4.54 91.40 4.38 91.20 4.10 90.42 5.10

CL-CV 90.04 5.12 91.36 4.15 91.36 4.17 90.97 4.60

Chess Acc Stdv Acc Stdv Acc Stdv Acc Stdv

R-CV 96.76 0.70 97.72 0.47 97.93 0.45 98.08 0.42

RS-CV 96.69 0.70 97.69 0.50 97.95 0.43 98.07 0.50

1C-CV 96.73 0.96 97.66 0.46 97.93 0.51 98.05 0.49

CL-CV 96.52 0.86 97.63 0.65 97.97 0.47 98.12 0.47

Hypothyroid Acc Stdv Acc Stdv Acc Stdv Acc Stdv

R-CV 97.92 0.72 98.27 0.74 98.31 0.75 98.44 0.71

RS-CV 97.94 0.77 98.29 0.63 98.42 0.62 98.41 0.69

1C-CV 98.00 0.76 98.39 0.60 98.36 0.73 98.44 0.68

CL-CV 98.02 0.70 98.26 0.56 98.45 0.67 98.43 0.71

Mushroom Acc Stdv Acc Stdv Acc Stdv Acc Stdv

R-CV 98.91 0.48 99.14 0.40 99.26 0.38 99.31 0.40

RS-CV 98.86 0.49 99.13 0.42 99.30 0.35 99.36 0.42

1C-CV 98.94 0.46 99.23 0.37 99.31 0.37 99.36 0.40

CL-CV 98.98 0.39 99.22 0.39 99.35 0.38 99.37 0.42

Soybean Large Acc Stdv Acc Stdv Acc Stdv Acc Stdv

R-CV 55.32 7.09 64.54 5.58 67.84 5.10 69.06 5.45

RS-CV 60.40 6.46 67.16 5.06 69.26 5.20 69.06 5.57

1C-CV 56.60 6.85 66.56 5.89 68.66 5.48 70.14 4.99

CL-CV 58.72 7.07 67.40 5.10 69.70 4.47 70.72 4.84

Vehicle Acc Stdv Acc Stdv Acc Stdv Acc Stdv

R-CV 52.10 6.42 57.26 5.41 58.76 6.77 58.10 6.85

RS-CV 51.98 6.38 57.40 5.30 58.94 6.66 58.64 6.08

1C-CV 50.72 6.01 58.10 5.17 57.94 6.85 58.58 6.14

CL-CV 51.46 6.69 57.74 6.90 58.98 6.49 58.46 6.48

Letter Recognition Acc Stdv Acc Stdv Acc Stdv Acc Stdv

R-CV 77.22 1.04 80.73 0.48 81.64 0.54 82.04 0.51

RS-CV 77.21 1.03 80.86 0.54 81.68 0.45 82.08 0.47

1C-CV 77.09 1.17 80.82 0.53 81.67 0.47 82.05 0.55

CL-CV 77.10 0.58 80.82 0.48 81.63 0.51 82.11 0.49
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Table 4
Summary of the results. Each entry shows the number of times a method gave the best
results out of the 28 cases. The first column does not add up to 28 because for many
cases the method producing the best result for bias and variance differs. The last two
columns do not add up to 28 because there are draws

Method Best results for both Best results for bias Best results for variance
bias and variance

R-CV 1 5 3

RS-CV 4 6 11

1C-CV 3 5 7

CL-CV 6 14 9

(3) If we have a large instance space (i.e., there are many attributes) with a small number
of instances, then the clustering methods may give better estimates. In such cases
it is more likely to find clusters of instances. A typical example of a dataset with
many attributes from the experiment above is the Soybean Large one. The clustering
method clearly gives better estimates. On the other hand, if we have a small number
of attributes and many instances, then the clustering methods have less effect, since
it is less likely to have instances belonging to well separated clusters.

(4) The clustering method can mainly improve the estimates for relatively small
datasets. There is some evidence that estimates can also be improved for larger
datasets. Application of the clustering method to the Letter Recognition dataset
improved the variance for small numbers of folds (2 or 5) and the bias for 20
folds. However, for very large datasets, we expect the proposed methods to be less
beneficial. Since there is plenty of data, we can employ enough data for testing
without significantly affecting the training phase. In the case of large datasets
(e.g., data mining) random cross-validation can give reliable estimates. Moreover,
sampling methods can have a different goal: to construct efficiently an accurate
classifier from a subset of the data, as opposed to accuracy estimation. In this case,
the role of sampling methods is to find a training set much smaller than the whole
dataset and to construct an accurate classifier, with a low running time [11,17,21,28].

The above points show the potential advantages of the clustering method. These points
also serve as a guide for researchers and data analysts concerning the application of
unsupervised stratification.

Finally, we must point out that, as in random cross-validation, the proposed methods
suffer from the law of generalization performance [23,24]. This has to be taken into
account when the methods are applied for model selection. When using cross-validation
for model selection (including the newly proposed methods), there is a form of inductive
bias in the same way as in learning algorithms [19]. As a result, using cross-validation
for model selection cannot guarantee that we will select the best algorithm for all learning
situations. On the other hand the assumption made by unsupervised stratification is that a
test instance is more likely to be classified correctly when it is closer to the training set.
This is a plausible assumption for real world applications [7], making the proposed method
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applicable to a wide range of learning situations. Similar assumptions made by supervised
stratification seem to hold in practice [13].

7. Conclusions

The development of new and the evolution of known learning algorithms increases
the need for estimation methods which can produce more reliable accuracy estimates. In
this paper we presented new methods for the construction of folds for cross-validation in
an objective manner without using random sampling from the initial dataset. Moreover,
the accuracy estimates among different experiments are comparable since there is no
randomness. The two approaches proposed for the deterministic construction of folds are
the one center method and the clustering one. Our methods result in more representative
allocation of observations into folds, and hence they reduce the bias.

The clustering based algorithm produces better results, but it requires more computa-
tional time. Experimental comparisons illustrated the performance of the new algorithms
for several distinct datasets. The results of the experiments showed that unsupervised strat-
ification can improve the estimates, especially in learning situations where

(a) we use a moderate number of folds,
(b) cross-validation produces estimates with small variance, or
(c) there is a large number of attributes relative to the number of instances.
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