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The MOESP class of identixcation algorithms are made recursive on the basis of various updating
schemes for subspace tracking

Abstract

The problem of MIMO recursive identi"cation is analyzed within the framework of subspace model identi"cation (SMI) and the
use of recent signal processing algorithms for the recursive update of the singular value decomposition (SVD) is proposed. To
accommodate for arbitrary correlation of the disturbances, an instrumental variable (IV) approach is followed. In particular, recursive
formulations for the subspace identi"cation algorithms of the multivariable output-error state space (MOESP) class are given.
A recursive algorithm for the identi"cation of non-linear models of the Wiener type is also obtained. ( 2000 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Subspace model identi"cation (SMI) methods have
attracted an increasing attention in the last few years
(Van Overschee & De Moor, 1996; Verhaegen, 1994;
Viberg, 1995). Among the advantages of such methods
we mention the ability to deal with MIMO identi"cation
in a straightforward way, and the ease of use due to the
small number of parameters which have to be chosen by
the user. Also, unlike prediction error methods (PEM),
SMI algorithms do not require non-linear searches in the
parameter space but are based on computational tools
such as the QR factorization and the singular-value
decomposition (SVD), which make them intrinsically
robust from a numerical point of view.

Part of the research in SMI has been dedicated to the
problem of deriving recursive versions of such algo-
rithms. Various solutions to the problem of recursive
SMI (RSMI) have been proposed in the literature (see,
e.g., Cho & Kailath, 1995; Gustafsson, 1997a,b,c; Lovera
& Verhaegen, 1998; Lovera, 1987; Verhaegen & Depret-
tere, 1991), with di!erent characteristics in terms of com-
putational load, tracking performance, etc. The main
obstacle with implementation of RSMI is that the SVD is
computationally burdensome to update. Consequently,
all of the above cited RSMI algorithms apply certain
updating techniques that avoid direct application of the
SVD.

Furthermore, a drawback of Cho and Kailath (1995)
and Verhaegen and Deprettere (1991) is that the distur-
bances acting on the system output are required to be
spatially and temporally white. When this restrictive as-
sumption is not ful"lled, biased estimates are obtained.

The aims of this work are to provide an overview of the
recursive implementations of the SMI algorithms of the
MOESP class, and to present some recent developments.
First of all, a faster version (compared with Verhaegen
& Deprettere, 1991) of the recursive (ordinary) MOESP
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is proposed, based on subspace tracking ideas for the
update of the SVD. See Comon and Golub (1990) for
a review of subspace tracking algorithms. The recursive
ordinary MOESP algorithm, however, su!ers from the
same assumptions as Cho and Kailath (1995) and
Verhaegen and Deprettere (1991). To overcome this
problem, recursive versions of the instrumental variable
based algorithms past inputs (PI) MOESP and past
outputs (PO) MOESP (Verhaegen, 1993, 1994) are inves-
tigated. The recently developed errors-in-variables (EIV)
MOESP algorithm (see Chou & Verhaegen, 1997) is also
given a recursive formulation.

The idea of applying subspace tracking algorithms to
the RSMI problem was originally introduced in Gustafs-
son (1997). The basic idea of that algorithm is to use the
close relationship between SMI and sensor array signal
processing (SAP) problems. The main advantage of this
algorithm is its low complexity, as it is comparable with
the algorithm in Cho and Kailath (1995), but can deliver
consistent estimates also when process noise is present.
However, this approach relies on successive subtractions
involving an estimated quantity, and hence its numerical
reliability can be questioned. These drawbacks can be
overcome by a combination of the approaches studied in
Gustafsson (1997a,b,c), Lovera and Verhaegen (1998) and
Lovera (1998), and such an approach is proposed in the
present paper.

Finally, PI MOESP can also be applied to the estima-
tion of the linear part of Wiener-type nonlinear models,
see Westwick and Verhaegen (1996). Therefore, a recur-
sive algorithm for identi"cation of this kind of models
has also been developed, by combining the above-men-
tioned RSMI algorithms with recursive estimators of
static nonlinearities, using orthogonal polynomials.

2. Overview of the MOESP family of SMI algorithms

The MOESP family of SMI algorithms is studied in
this paper for its combination of numerical simplicity and
accuracy. Currently, the MOESP family consists of "ve
di!erent variants:

(1) The Elementary MOESP (EM) scheme (Verhaegen
& Dewilde, 1992).

(2) The Ordinary MOESP (OM) scheme (Verhaegen
& Dewilde, 1992).

(3) The PI MOESP scheme (Verhaegen, 1993).
(4) The PO MOESP scheme (Verhaegen, 1994).
(5) The PO extension for the errors-in-variables identi-
"cation problem, indicated by PO}EIV in Chou and
Verhaegen (1997).

These variants re#ect the type of perturbations that
can be tolerated on the recorded input and output sam-
ples, the class of systems, and the nature of the input

signal. In this section, we review the computational pro-
cedures and the identi"cation problems addressed by
these schemes. The latter are all variants of the following
general identi"cation problem:

Consider the xnite dimensional, linear time-invariant
(¸¹I) state-space model:
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One important equation in the derivation of SMI
algorithms is a data equation relating (block) Hankel
matrices constructed from the i}o data samples. Let the
following block-Hankel matrices be de"ned:
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and let the following block-Toeplitz matrix be de"ned:
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Consider the special case of absence of f
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the data equation is denoted as
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A summary of the computational scheme and the neces-
sary additional assumptions on f
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t
, w
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required for the

scheme to produce a consistent estimate of span
#0-

(!) is
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given in the following. The consistency results imply
assumptions on the input u

t
(some kind of persistence of

excitation notion) and on the true system. We restrict
making additional remarks and refrain a precise de"ni-
tion of the required degree of persistence of excitation for
the SMI schemes, since the latter notion is still not well
understood for a number of them (cf. Jansson, 1997;
Verhaegen & Dewilde, 1992).

(1) The EM scheme: The EM scheme relies on the (re-
strictive) assumption that an estimate of the quadru-
ple of system matrices [A,B,C,D] (up to a similarity
transformation) is available. In that case, we can
construct an estimate HK of H, and form the modi"ed
data matrix
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the data equation, then

Z
t,i,j

"!X
t,j
#E

t,i,j
#(H!HK );

t,i,j
. (5)

If f
t
, w

t
are zero, and v

t
is a zero-mean white noise

independent of the input u
t
, and a consistent estimate
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(2) The OM scheme: This scheme considers the factoriz-
ation of the matrix
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with tM "t#i#j!2. Then a consistent estimate of
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same assumptions on the perturbations for the EM
scheme.
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where HK
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denotes the unconstrained minimizing
argument of DD>
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F
. Here DD ) DD2

F
denotes

the Frobenius norm. One appealing feature of the

EM algorithm is that the structure of H is taken into
account, in contrast to the OM approach. On the
other hand, in the EM scheme we did not specify how
the estimates of the system matrices were obtained.

(3) The PI scheme: This scheme considers the RQ factor-
ization
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(4) The PO scheme: This scheme considers the RQ
factorization
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(5) The PO}EIV scheme: This scheme considers the RQ
factorization:

C
;

t`i,i,j
;T

t,i,j
;

t`i,i,j
>T

t,i,j
>

t`i,i,j
;T

t,i,j
>

t`i,i,j
>T

t,i,j
D"C

R
11

(tM ) 0

R
21

(tM ) R
22

(tM )D
]C

Q
1
(tM )

Q
2
(tM )D (11)

with tM "t#2i#j!1. Then a consistent estimate of
span

#0-
(!) is provided via an SVD of the matrix

R
22

(tM ) under the assumptions that f
t
, v

t
, w

t
are er-

godic sequences of "nite variance satisfying

E C C
f
t
w
t

v
t
D[ f T

s
wT

s
vT
s
]D"C

&
11

&
12

&
13

&T
12

&
22

&
23

&T
13

&T
23

&
33
Dds,t .

M. Lovera et al. / Automatica 36 (2000) 1639}1650 1641



Once an estimate of span
#0-

(!) has been obtained, we can
derive an estimate of A and C by exploiting the shift
invariance of span

#0-
(!). As for the estimation of B and D,

it can be based on the minimization of the simulation
error over the identi"cation data set (see McKelvey,
1994; Van Overschee & De Moor, 1996; Westwick
& Verhaegen, 1996).

3. Review of PAST and IV-PAST

The update of the SVD is of particular relevance when
it comes to recursive implementations of SMI schemes,
as was highlighted for the OM scheme in Verhaegen
and Deprettere (1991), where the computational
complexity of the update of the SVD was O((pi)3). In the
literature of sensor array signal processing, a large
number of methods for partial update of the SVD are
available. In this paper, we will exploit the close relation-
ship between array signal processing and SMI to derive
e$cient update schemes for the SVD. More precisely, the
Projection Approximation Subspace Tracking (PAST)
algorm ithm (Yang, 1995, 1996) and its instrumental
variables modi"cation IV-PAST (Gustafsson, 1997a,b,c)
are used and modi"ed to derive an e$cient partial
SVD update in the di!erent SMI schemes considered in
Section 2.

3.1. The PAST scheme

Consider a random vector x3Rm, and study the uncon-
strained criterion
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If the expectation operator in (12) is replaced with
a "nite summation, one gets
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with obvious de"nitions of the involved matrices. When
the matrix inversion lemma is applied to (18), an RLS-
like algorithm of O(mn) complexity is derived, see Yang
(1995).

3.2. The IV-PAST scheme

Recently, an IV generalization of PAST was proposed,
see Gustafsson (1997a,b,c). In this scenario it is assumed
that the cross-correlation matrix R
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"E[xyT] has a low

rank ("n) structure:

E[xyT]"!( (19)
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and only if =(t)"QM K ¹ where QM K contains the n dominat-
ing left singular vectors of RK

xy
(t) and ¹ is an

arbitrary unitary matrix. All other stationary points are
saddle points.

Applying the previous projection approximation, a
recursive O(ml) algorithm can be derived, see Gustafsson
(1997a,b,c).
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4. Recursive updating of span
#0-

(!)

To apply the PAST schemes to RSMI, the essential
step is to derive a low rank update/downdate of the
matrix from which the span

#0-
(!) is estimated. This will be

outlined in the subsequent sections.

4.1. The update in the EM scheme

Let tM "t#i#j!2. Then we assume the following
new set of i}o data vectors to become available:
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where a MATLAB-like notation has been used. This is
simpler than evaluating (2), since AK k is not explicitly
computed. The remaining columns of HK (tM ) are obtained
from partitions of this (block) vector.

The vector to be fed to the PAST algorithm is
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4.2. The update in the OM scheme

Following Verhaegen and Deprettere (1991), let the
new i}o data vectors be de"ned as in Eq. (23). Then we
can restrict to a partial update of the RQ factorization
required in the OM scheme, making use of the classical
method of Givens rotations (see Golub & Van Loan,
1989).

The appropriate sequence of Givens rotations, repre-
sented by the matrix P(tM#1), makes the following matrix
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4.3. The update and downdate in the PI and PO schemes

We outline the update only for the PI scheme. Let
tM"t#2i#j!2 and assume the following new set of
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In analogy with Eq. (27), the update in the PI scheme is
characterized by the following update and downdate:
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In order to derive a PAST-like algorithm for this rank
two perturbation, consider the matrix
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(/M
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(k)T!/MM
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provided one can ensure the positive de"niteness of the
matrix the inverse of which appears in the above equa-
tion. We conjecture that these inverses exists under
appropriate assumptions on the persistence of excitation
of the applied input and the scaling of the available
data. However, the precise requirements that assure
the existence of the matrix inverse in (34) are still a
matter of investigation. The resulting algorithm for
subspace tracking will in the sequel be referred to as
UD-PAST.

An alternative update for the PI/PO scheme can be
obtained by using IV-PAST instead of UD-PAST. For
that purpose, we consider the explicit form of the data
equation, namely

>
t`i,i,j`1

"![X
t`i,j

x
t`i`j

]#H;
t`i,i,j`1

#[E
t`i,i,j

/
ef

(tM #1)].

Then we consider the following factorization, as in the
OM scheme:

C
;

t`i,i,j
>

t`i,i,j
D"C

R
11

(tM ) 0

R
21

(tM ) R
22

(tM )DC
Q

1
(tM )

Q
2
(tM )D.

When a new data point is obtained, the decomposition
must be updated as

C
;

t`i,i,j`1
>

t`i,i,j`1
D"C

R
11

(tM ) 0 /
uf

(tM #1)

R
21

(tM ) R
22

(tM ) /
yf

(tM#1)D C
Q

1
(tM ) 0

Q
2
(tM ) 0

0 1D ,

where, in particular

R
21

(tM )"!X
t`i,j

Q
1
(tM )T#HR

11
(tM )#E

t`i,i,j
Q

1
(tM )T.

The sequence of Givens rotations necessary to annihilate
/
uf

(tM #1) is

P(tM #1)"C
P
11

(tM #1) 0 P
12

(tM #1)

0 I 0

PT
21

(tM #1) 0 P
22

(tM #1)D (35)

and the above factorization becomes

C
R

11
(tM ) 0 /

uf
(tM #1)

R
21

(tM ) R
22

(tM ) /
yf

(tM #1)D

]C
P
11

(tM #1) 0 P
12

(tM #1)

0 I 0

PT
21

(tM #1) 0 P
22

(tM #1)D
]C

P
11

(tM #1)TQ
1
(tM ) P

21
(tM #1)

Q
2
(tM ) 0

P
12

(tM #1)Q
1
(tM ) P

22
(tM #1)D.

Using the fact that the input u
t
is independent from the

v
t
and f

t
and letting

R
11

(tM #1)"R
11

(tM )P
11

(tM#1)

#/
uf

(tM#1)PT
21

(tM#1), (36)

R
21

(tM #1)"R
21

(tM )P11
(tM #1)

#/
yf

(tM #1)PT
21

(tM #1), (37)

we obtain for the R factor:

C
R

11
(tM #1) 0 0

R
21

(tM #1) R
22

(tM ) /M
yf

(tM #1)D,
where

/M
yf

(tM #1)"!(X
t`i,j

Q
1
(tM )TP12

(tM #1)

#x
t`i`j

P
22

(tM #1))

#E
t`i,i,j

QT
1
(tM )P12

(tM#1)

#/
ef

(tM #1)P
22

(tM #1). (38)

By feeding /M
yf

(tM #1) to the PAST algorithm to update
the column space of the matrix R

22
(tM ) we would in

general obtain a biased estimate. A rescue to this prob-
lem is the introduction of IVs:

m(tM #1)"F/
up

(tM #1), (39)

m(tM #1)"FC
/
up

(tM #1)

/
yp

(tM #1)D, (40)

where F is a user-de"ned matrix (or "lter operator), see
Gustafsson (1997) for the design of F. A necessary re-
quirement on the dimension of m(tM ) is that it is larger than
or equal to n, the system order.
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Table 1
The major steps of the proposed algorithms. The complexity column
denotes the number of multiplications necessary in each step

Algorithm Computations Complexity

ROM QR-update O((m
2
#p)mi2)

PAST O(pin)

REM Subtraction O(mpi2)
IV-PAST O(mpi2)

RPI
1

QR-update O((2m#p)2i2)
UD-PAST O(2pin)

RPO
1

QR-update O((2m#2p)2i2)
UD-PAST O(2pin)

RPI
2

QR-update O((m
2
#p)mi2)

IV-PAST O(mpi2)

RPO
2

QR-update O((m
2
#p)mi2)

IV-PAST O(p(m#p)i2)

RPO}EIV Subtraction O(mpi2)
EIV-PAST O((m#p)pi2)

For updating the approximation of span
#0-

(!), we use
the IV-PAST algorithm of Section 3.2 with x and y taken
equal to /M

yf
(tM #1) and m(tM #1), respectively.

4.4. The update in the PO}EIV scheme

Let tM "t#2i#j!2 and assume the new i}o data
vectors be available and de"ne /

yp
(tM #1) accordingly to

/
up

(tM #1). Then the update of the left-hand side of
Eq. (11) reads

C
;

t`i,i,j`1
;T

t,i,j`1
;

t`i,i,j`1
>T

t,i,j`1
>

t`i,i,j`1
;T

t,i,j`1
>

t`i,i,j`1
>T

t,i,j`1
D

"C
;

t`i,i,j
;T

t,i,j
;

t`i,i,j
>T

t,i,j
>

t`i,i,j
;T

t,i,j
>

t`i,i,j
>T

t,i,j
D

#C
/
u,f

(tM #1)

/
yf

(tM #1) D[/up
(tM #1)T/

yp
(tM #1)T].

To get a simple expression for the low rank update of the
matrix containing an estimate of the column space of !,
we consider the EM-like rank-one update:

(>
t`i,i,j`1

!HK (tM );
t`i,i,j`1

)[;T
t,i,j`1

>T
t,i,j`1

]

"(>
t`i,i,j

!HK (tM );
t`i,i,j

)[;T
t,i,j
>T

t,i,j
]

# (/
yf

(tM #1)!HK (tM )/
uf

(tM #1))

][/
up

(tM #1)T/M
yp

(tM #1)T]. (41)

For updating the approximation of span
#0-

(!), we
again use the IV-PAST algorithm of Section 3.2 with x
and y now replaced by (/

yf
(tM #1)!HK (tM )/

uf
(tM #1)) and

[/
up

(tM #1)T/M
yp

(tM #1)T].

4.5. Comments and discussion

We will refer to the di!erent algorithms as recursive
implementations of their o!-line counterparts, ab-
breviated by putting an R before their corresponding
acronym. An exception is made for the two variants of
the PI and PO implementations. Here the "rst variant
based on the update and downdate is referred to as the
RPI

1
/RPO

1
scheme, while the second variant based on

the IV-PAST algorithms is referred to as the RPI
2
/RPO

2
variant. The aim of this section is to discuss the relative
merits of the algorithms.

REM's main drawback is that the subtraction
/
y
(tM#1)!HK (tM )/

u
(tM#1) may turn out to be not fully

reliable; it is an approximate solution, the accuracy of
which is very di$cult to analyze in a precise way. On the
other hand, this approach is attractive from a computa-
tional point of view and in our simulations reliable esti-
mates were obtained in all the considered cases.
ROM/RPI

1
and RPO

1
are based on the update of the

RQ factorization, so they provide an exact recursive ver-
sion of the OM, PI and PO methods, up to the approxi-

mation introduced by the subspace tracking algorithm.
This theoretical solidity is to be paid with a higher com-
putational cost. The above considerations lead then to
consider the RPI

2
and RPO

2
variants. This approach can

be considered as a sound compromise between the "rst
two classes of methods. In particular, IVs are introduced
in the PAST algorithm, at a low computational cost, and
the update of the RQ factorization is performed on the
same data matrix as in the ROM method. That is, on
a data matrix which has smaller dimensions than the ones
for the RPI

1
and RPO

1
methods.

In Table 1 the major steps of the di!erent algorithms
are summarized and the involved complexities are stated.
In terms of execution time, our experience shows that in
these conditions one iteration can usually be performed
in less than 0.1 s on a Pentium PC.

5. Recursive update of the system matrices

When !K (tM ) is found, we estimate the system matrices
AK (tM ) and CK (tM ) as in the non-recursive case. Common to all
SMI schemes, we discuss the update of the estimates of
B and D.

When tM<1 and when the eigenvalues of AK (tM ) lie strict-
ly inside the unit-circle, the linear regression

y
tM
"uT(tM )h#e

tM
, (42)

where

uT(tM )"CuTtM ?I
p

tM~1
+
s/1

(uT
s
?CAtM~s~1)D (43)
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is applicable. Here, I
p

denotes the p]p identity matrix,
and ? denotes the Kronecker product. Partition
uT(tM )"[uT

1
(tM ) uT

2
(tM )] conformably with

h"[vecT(D) vecT(B)]T, (44)

where vec( ) ) denotes the vectorization operator. It
follows that

uT
2
(tM#1)"

tM
+
s/1

(uT
s
?CAtM~s)

"uT
2
(tM )(I

m
?A)#(uT

tM
?C). (45)

Hence, there is a recursion in one of the regressors. The
parameter vector h can be computed at time tM , by using
(42) and updating u(tM ) with AK (tM ) and CK (tM ), for example
with the multivariate RLS-algorithm [Ljung, 1987, Sec-
tion 11]. Notice that when dealing with EIV problems,
a recursive IV-algorithm should be considered. Such an
algorithm can be derived from a recursive implementa-
tion of the one given in Chou and Verhaegen (1997),
which is not reported here for brevity. When the current
RLS variant is run using the exact A and C matrix, it
would provide consistent estimates of the B and D
matrices.

6. Recursive identi5cation of Wiener-type nonlinear
models

A Wiener system is given by the cascade interconnec-
tion of a linear time-invariant system with a static nonlin-
earity:

x
t`1

"Ax
t
#Bu

t
,

y
t
"Cx

t
#Du

t
, (46)

z
t
"'(y

t
)#v

t
,

where '( ) ) is a nonlinear function and v
t
is a zero mean

stochastic process with arbitrary color.
Wiener models are often useful in practical applica-

tions (for a recent example see Verhaegen, 1998). For this
kind of models, the identi"cation problem can be for-
mulated as follows: given data sequences of u and z, "nd
consistent estimates of the linear part of the model and of
the nonlinear mapping '( ) ).

In the literature, the problem of Wiener model
identi"cation has been mostly analyzed in the prediction
error framework (see, e.g., Wigren, 1993, 1994 and
the references therein). Recently, in Westwick and Ver-
haegen (1996), a subspace-based approach to the prob-
lem was proposed, making use of the PI MOESP method
for the estimation of the system matrices of the linear
part.

In this section a recursive identi"cation method for
Wiener models is discussed, based on the above proposed
recursive versions of PI MOESP.

6.1. The PI scheme for Wiener systems

The PI scheme provides a consistent estimate of the
linear dynamic part of Wiener models when the input is
a stochastic sequence with a Gaussian distribution (see
Westwick & Verhaegen, 1996). More precisely, some
additional assumptions are required, concerning the
nature of the nonlinear mapping '( ) ): consistent
estimates of the linear part can be obtained when the
nonlinear mapping '( ) ) is odd, i.e., it is an odd func-
tion of its arguments. While extensions of the basic algo-
rithm to the case when '( ) ) contains even terms have
been derived (see Westwick & Verhaegen, 1996 for de-
tails), we will restrict the present analysis to the case with
an odd nonlinearity, for which the following Theorem
holds:

Theorem 3. For the Wiener system (46) awected by
Gaussian measurement noise v of arbitrary color and
independent of the Gaussian input u, consider the RQ
factorization

C
;

t`i,i,j
;

t,i,j
Z

t`i,i,j
D"C

R
11

(tM ) 0 0

R
21

(tM ) R
22

(tM ) 0

R
31

(tM ) R
32

(tM ) R
33

(tM )D C
Q

1
(tM )

Q
2
(tM )

Q
3
(tM )D. (47)

Then the R
32

block in the factorization provides a
consistent estimate of the observability subspace of the
linear part of the model.

On the basis of the above theorem, the system matrices
can be consistently recovered. Once the linear part is
known, one can estimate the data sequence y by simula-
ting the estimated linear model and subsequently obtain
an estimate of the nonlinearity '( ) ) by estimating the
parameters of some appropriate model class.

6.2. A recursive subspace algorithm for Wiener systems

Given the similarity between the PI algorithm for
linear systems and the identi"cation procedure for
Wiener systems, one can consider the development of
a recursive identi"cation method for such class of nonlin-
ear systems.

In particular, if the chosen parameterization for the
static nonlinearity is linear in the parameters, one can use
RLS for their update. The generic iteration (time tM ) of the
algorithm is structured as follows:

(1) Use of the recursive PI scheme described in Section
4.3, to update the estimates of A, B, C and D.

(2) Use the updated estimates of the system matrices to
compute an estimate y( (t) of y(t).

(3) Using y( (t) and the output measurement z(t), update
the estimate of the static nonlinearity '( ) ) by means,
e.g., of an RLS algorithm.
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Fig. 1. Minimast model. Mean trajectory of subspace angles in Fig. 1.
b"0.999.

Table 2
Matlab #op count relative to REM

REM RPO
1

RPO
2

MIMO 100% 210% 120%
SISO 100% 201% 161%

Concerning the choice of a parameterization for the
static nonlinearities, there are many possibilities. In
Wigren (1993) (where however only the SISO case is
treated), a piecewise linear approximation is used. In
this paper the MIMO case is dealt with, so more appro-
priate parameterizations have been considered. In
particular, the MIMO Tchebice! polynomials described
in Westwick and Verhaegen (1996) have been used in
the simulation examples, while the use of neural net-
works is currently being investigated.

The class of Tchebice! polynomials (( ) ) is de"ned
recursively as

(
k`1

(y)"2y(
k
(y)!(

k~1
(y), k"3,2 (48)

with

(
1
(y)"1, (

2
(y)"y. (49)

The considered nonlinearity is hence approximated as

'(y)"
M
+
i/1

w
i
(

i
(y), (50)

where w
i
is the set of coe$cients in the Tchebice! expan-

sion to be estimated, and M is a prede"ned constant. The
above model for the nonlinearity is linear in the param-
eters w

i
so a least squares estimator can be used for their

recursive update.

7. Simulation examples

The RSMI algorithms proposed in this paper have
been applied in a series of simulated experiments. The
simulations have been performed using Matlab and
batch versions of the algorithms from the SMI Toolbox
(Haverkamp & Verhaegen, 1997) have been used for
initialisation.

7.1. A MIMO linear time-invariant system

We considered an n"10 state space model of the
Minimast structure, which is a 20 m long deployable-
retractable truss located at NASA Langley research
Center. The model considers the "rst two bending modes,
the "rst torsional mode and the second two bending
modes (see Abdelghani & Verhaegen, 1995 for additional
details) and has two inputs and two outputs. This is
a di$cult model to identify, because of closely spaced
eigenfrequencies and lightly damped poles.

The model of Abdelghani and Verhaegen (1995) is
converted to discrete time using zero-order hold with
sampling frequency 30 Hz. The system and measurement
noise covariances are given as follows: (a) Perform
a noise-free simulation using a white-noise input se-
quence with standard deviation 10. (b) Determine the
noise-free sequences Bu

t
and y

t
. (c) The standard devi-

ation of the process noise is chosen to be 10% of the
standard deviation of Bu

t
, and similarly for the measure-

ment noise. Both the process noise and the measurement
noise are stationary zero-mean Gaussian random pro-
cesses. Furthermore, the following user-de"ned quantit-
ies have been applied: i"20,b"0.999.

In Fig. 1 the subspace angle (Golub & Van Loan, 1989,
Section 12.4.3) (in degrees) between !K and ! is shown;
from the "gure, one sees the accuracy of RPO

1
is the

best, and the accuracy of REM is the worst, still surpris-
ingly accurate in this di$cult identi"cation scenario. We
explain the superiority of RPO

1
with its built-in pre-

whitening of the instruments. It is conjectured that the
accuracy of RPO

2
is improved when a pre-whitening of

the instruments is applied. However, all of the studied
algorithms are capable of improving the initial accuracy
provided by the corresponding batch-version. Finally, in
Table 2 the #op count from our speci"c Matlab imple-
mentations are given.

7.2. A SISO time-varying system

As a second example, consider the following SISO
system similar to the one studied in Cho and Kailath
(1995):

A
t
"C

0.7#0.1%91(~t@1000)~1
%91(~1)~1

0

0 0.2!0.15%91(~t@1000)~1
%91(~1)~1

D ,
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Fig. 2. SISO model. Estimated poles using REM: b"0.99. Fig. 3. SISO model. Estimated poles using RPI
1
: b"0.99.

Fig. 4. SISO model. Estimated poles using RPI
2
: b"0.99.

B
t
"C

2

1D ,

C
t
"[1 2], D

t
"0.05. (51)

The eigenvalues of A drift from M0.7,0.2N to M0.8,0.05N
during the simulation. The same PRBS (pseudo-random
binary sequence) was applied in all simulations. Colored
measurement noise was added to the noise-free output,
generated as

e
t
"

1

1#0.8q~1
e
t
, (52)

where e
t

is white Gaussian noise. The noise level was
adjusted so that the output SNR was 25 dB. In this
example we are not interested in estimating the noise
dynamics. Therefore, the PI approach is applied, i.e. only
delayed inputs are used as IVs.

The eigenvalue trajectories for three di!erent
noise realizations are shown in Figs. 2}4. Note, all of
the proposed algorithms produce eigenvalue estimates
that are essentially equally accurate. In Table 2 the
Matlab #op counts for the proposed algorithms are
given.

7.3. A Wiener system

Consider the following system:

x
1
(t#1)"0.8x

1
(t)#u(t), (53)

x
2
(t#1)"0.1x

1
(t)#u(t), (54)

y(t)"x
1
(t)#x

2
(t), (55)

z(t)"sin(2y(t))#v(t), (56)

where v and u both are realizations of white Gaussian
noise, of variance 0.01 and 0.1, respectively.

RPI
1

was applied to 500 samples of input-output data,
with i"10 and no forgetting. Fifth-order Tchebiche!
polynomials were used for the approximation of the
nonlinear map.

The results obtained in the estimation of the eigen-
values of the system are given in Fig. 5, while a compari-
son between the true and the estimated nonlinear
functions is given in Fig. 6.

As in the previous case, the initial estimate for
the initialization of the recursive algorithm has
been obtained by applying the batch version of PI to
the "rst 50 data samples and the function tchebest.m
from the SMI Toolbox (Haverkamp & Verhaegen,
1997).
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Fig. 5. Wiener system: Estimated poles using RPI
1
. True poles at z"0 and z"0.8.

Fig. 6. True (x) and estimated (o) nonlinearity.

8. Concluding remarks

The problem of recursive identi"cation in the frame-
work of subspace methods has been considered and sev-
eral recursive formulations for the algorithms of the
MOESP class have been derived. The proposed algo-
rithms are based on IV ideas and on the use of subspace
tracking for the update of the SVD. A recursive algo-
rithm for the identi"cation of nonlinear models of the
Wiener type has also been obtained, by exploiting the
similarities existing in the subspace formulation between
the linear and the Wiener identi"cation problems. Simu-
lation examples illustrate the performance of the pro-
posed algorithms. The outlined approach of making
recursive many of the MOESP family of subspace identi-
"cation schemes is very general.
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