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Abstract

In the literature results can be found which claim consistency for the subspace method under certain quite weak assumptions.
Unfortunately, a new result gives a counter example showing inconsistency under these assumptions and then gives new more strict
sufficient assumptions which however does not include important model structures such as, e.g. Box-Jenkins. Based on a simple
least-squares approach this paper shows the possible inconsistency under the weak assumptions and develops only slightly stricter
assumptions sufficient for consistency and which includes any model structure. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Subspace identification roughly consists of a basic step
estimating the extended observability matrix I', and a
second step estimating the model parameters.

For the basic step three approaches have recently been
in focus. The first relies heavily on linear algebra tools
such as orthogonal and oblique projections (van Over-
schee & De Moor, 1996; Verhaegen, 1993, 1994). The
second approach uses the instrumental variable frame-
work (Gustafsson, 1997; Ottersten & Viberg, 1994). In
this paper the third least-square (LS) approach (Peternell,
Scherrer & Deistler, 1996; Jansson & Wahlberg, 1996) is
used as it is more straight forward and gives new insight.

The second parameter estimation step can be based on
an estimated state sequence (van Overschee & De Moor,
1996) but the use of states can also be avoided
(Verhaegen, 1993, 1994). As the state sequence is merely
a result of the measurable input and output it seems
natural to derive the estimates without using the inter-
mediate states. All parameter estimates in this paper are
based directly on the input—-output measurements.

“This paper was not presented at any IFAC meeting. This paper was
recommended for publication in revised form by Associate Editor Brett
Ninness under the direction of Editor Torsten Soderstrom.

*Tel: + 45-96-35-87-46; fax: + 45-98-15-17-39.
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Consistency results are most easily obtained by assum-
ing the number of past samples in the regressor (row
dimension in the Hankel matrices) as well as the number
of observations in the regression (column dimension in
Hankel matrix) to increase to infinity with the number
of samples (Peternell et al., 1996). However, the sum of
dimensions is limited by the number of samples and it is
therefore desirable to keep the row dimension low to
allow high column dimension, i.e. many observations in
the regression.

Consistency analysis for general systems and a limited
Hankel row dimension also exists (van Overschee & De
Moor, 1996; Verhaegen, 1994; Jansson & Wahlberg,
1998) but there is a contradiction in the results.

Focus for a while on consistency for I', because bias on
this parameter will propagate to the other parameter
estimates. There is then a gap between (van Overschee
& De Moor, 1996; Verhaegen, 1994), who claim consist-
ency for T, if the system is minimal, the input persistently
exciting and the number of past samples in the regressor
larger or equal to the system order and a very recent
result Jansson and Wahlberg (1998) which provides
a counterexample showing bias on I', under the same
assumptions. To avoid this bias sufficient conditions are
given in Jansson and Wahlberg (1998). These are how-
ever a very serious limitation as they do not include
Box-Jenkins (BJ)-type models with colored input. Based
on the LS approach this paper fills the gap by proving the
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consistency for I, under these assumptions except that
the number of past data in the regressor possibly needs to
be larger than the system order but still limited. Under
these conditions this paper actually extends the consist-
ency proof from I, to all parameters in the deterministic
part of the model in question in a way which also ex-
plains the counterexample given in Jansson and Wah-
Iberg (1998).

The results above do not seem to be available in
conference or journal papers. However, one of the anony-
mous reviewers has kindly supplied the author with
a Ph.D. thesis by Chui (1997) which includes similar
results based on different approaches and proofs.

The remaining paper is organized as follows. First the
problem and notation are introduced. Then the regres-
sion model is established and system matrices, e.g. I’
are estimated. The consistency analysis for these system
matrix estimates are then presented. Next, the model
parameters are extracted from the system matrices and
consistency results for this step are derived. The results
are illustrated with two numerical examples. Finally, the
conclusions are drawn.

2. The problem

Subspace identification is used to estimate linear sta-
tionary state space models from experimental input and
output data. The innovation representation of a state
space model is given in Definition 1 and is considered
most useful. Below u;, € R™ is the input, x; € R" is the state,
yr € R is the output and e, € R' is the innovation which
are zero mean white noise with covariance R. The order
n is assumed known or estimated correctly for which
there are methods (Picci, 1997; Sorelius, Soderstrom,
Stoica & Cedervall, 1997; Peternell, 1995; Baur, 1998).

Definition 1 (Innovation model).
Xi+1 = Ax; + Buy, + Key,

Vi = Cxi + Duy + ¢y,

E(eyel) 2R3,

The problem is then:

Given a series of input—-output measurements: esti-
mate all the parameters, that is the system matrices
AeR"*" BeR"™ CeR"*"and DeR“™up to within
a similarity transformation and the noise parameters
KeR"™!, ReR'*!so that the covariance of the output
is given by the model.

3. Preliminaries

The basic relation used in the prediction error method
(Ljung, 1999) is the recursive state space model relating

single samples of the signals. One of the principal new
ideas in subspace identification is to combine the recur-
sive state space model into single linear equations relat-
ing matrices with parameters to matrices with signals. To
do this some definitions are needed.

Definition 2 (Matrices related to signals). The input
block Hankel matrix is divided into two parts called
“past” and “future”, where the dimensions are
U,eR™*/, U eR"™*/. Based on the output and inno-
vation there are similar definitions for Y,eR"™/
Y eR" E, e R"/ and E; e R"*/. The total number of
samples used in, e.g. (1)is N=i+h+j— 1.

Ug Uy Uj—1

u1 u2 Uj
Uy A Hiz1 u; vt Ui -2 )
U u; Wivr o Uitj—1

Ui+t Uiya oo Ui+ j

Uirp—1  Uit+n Uith+j—2

Remark 2.1. Note that the two parameters i and h allow
for a different number of block rows in past U, and
future U;. This choice is supported in Bauer, Deistler and
Scherrer (1997), Gustafsson (1997), Ljung and McKelvey
(1997), Ottersten and Viberg (1994), Viberg (1995) while
others (Peternell et al., 1996; van Overschee & De Moor,
1996; Deistler, Peternell & Scherrer, 1995; Ohsumi,
Takashima & Kameyama, 1997) assume h = i probably
for simplicity.

The state matrix X, is defined as a sequence of states
starting from some sample k. Past and future state ma-
trices are defined by k = 0 and i, respectively.

N nxj
X2 (X Xest xk+j—2xk+j—1)ER s

X,2Xo, Xi2X.
A column in a matrix, e.g. Y; will be denoted with lower
letters y; and y¢(k) if the specific column number is

needed. This convention is used for all the signal-related
matrices.

Definition 3 (System matrices related to model param-
eter). The extended observability matrix I, is defined as

C

r,2 A e R¥ X",

CA.kfl
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A generic reversed extended controllability matrices ;
is defined below where .«/ and % represent system and

input matrices, respectively.
Ci(ARB)VE(A B AR AR B).

Two lower block triangular Toeplitz matrices Hy and
Hj corresponding to the deterministic and stochastic
parts, respectively, are defined below based on the gen-
eric block triangular Toeplitz matrices 7.

Hg ée%k(fla Ba Ca D)a
Hi éjfk(/l’ Ky C, I)a

%k(&ia %7 (ga @)
9 0 0 0
CH 9 0 0
L GAR €A 9 0
CA 2B CA B CA B - 9

Finally the covariance matrix for one column in H}E; is
needed.

P, éCOV( nee) = Hy (I ®R)(HZ)T~

The basic assumptions needed are listed below. They are
very standard in system identification.

(4, C) is observable. (O)
(A,[B K]) is controllable. (©)
The input u is quasi-stationary. (S)

The transfer function from e to y has all zeros
strictly inside the unit circle. (2)

The input u and noise e is jointly quasi-
stationary and uncorrelated. U)

Assumption (S) ensures that the limits for time averages
involving u exists (Ljung, 1999, Definition 2.1). For these
limits the notation E (2) will be used, it reduces to E in
pure stationary stochastic cases and lim;_,(1/j)} 1 _, in
pure deterministic cases.

_ 1
E((®)# lim - kZ E((®)). )

Notice that uncorrelated in assumptions (U) involves
a quasi-stationary signal and is then defined by (3) and
holds for systems operating in open loop.

E(uy4ce;) =0 V1. )

4. Estimating I',, H; and P,

The overall estimation method can be outlined in three
steps as follows: First, use the signal and parameter

matrices to establish a linear regression model. Second,
estimate a sufficient number of parameter matrices. The
choice in this paper is ', Hy and P,. Third, based on
these matrices extract the basic parameters in the model
(Definition 1). The third step is postponed until Section 6.

The first matrix equation (4) is derived directly from
the model in Definition 1.

Yf = thf + HﬂUf + H?,Ef (4)

Unfortunately I';, cannot be estimated from this model
because X; is not measurable. Therefore X is related to
measurable signals, i.e. input and output as follows:

X, = Axp—1 + Bup—1 + Key—1 =
Vi—1 = Cx—1 + Dy + €41,
X = (A = KCO)xy—y + Kyy—1 + (B — KD)uy -4
=(4 = KCPxi—» + (4 — KO(Kyy -,
+ (B — KD)u—,) + Ky;—1 + (B — KD)uy

= (A — KO)x—i + (A — KC) ™ (Ky,—;
+(B—KD)uy—;) + -+ + (A — KC)Ky,—»
+ (B — KD)uk_z) + Kyk—l + (B - KD)uk—l'

If the terms with y are taken first followed by terms with
u and the equation is collected for k =i...i +j — 1 the
second matrix equation below is obtained.

X, =L, Y, + L, U, + L.X,, (5
L,2%(A —KC,K), L,2%(4—KC,B—KD),
L.2(4—KC). (6)

Inserting (5) in (4) gives (7) which can be written in a more
regression type of way (8) by introducing Definition 4.

Ye = TW(L,Y, + LU, + L,X,) + HiU; + H}E;.  (7)

Definition 4 (Regression parameters and regressors).

®p él—‘hl:Ly Lu]; ®féH27 ®é[®p ®f]s

) )
P f

Note that (8) is a LS regression model in the sense that
the residuals, columns in Hj E¢, is uncorrelated with the
regressors, columns in Z and X, due to assumption (U)
and ¢, being white noise.

YP
Yf == [thy thu Hﬂ] Up + thxXp + H;Ef
Us

w, .
= [®p @f:l U + thxXp + Hth
f
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If the term with X, in (8) is overlooked the regression
model (9) appears and the LS estimate (10) is obtained if
Z has full row rank.

Y, =0OZ+V, )
0=YZ%zz" (10)

Section 5 shows that this can give a useful estimate of ©.
Assume therefore for a while that ® is known and that
the residual v = Hje;. Under this assumption Hj is dir-
ectly given by ©; (11) and the covariance P, for Hje; is
estimated by (12).

Hj = 6, (11)

1

P, =-vVv". (12)
j

Finally T, is found by the SVD step below which is
similar to the use of SVD in other subspace approaches.

Theorem 1 (I, from ). Under assumption (O),
(C), h=>n,i>n, W{eR"™M and nonsingular and
W, eRUHT™>" v > i(l + m) and full rank, T, is given by
(13) where T is a similarity transformation and U is
calculated by the singular value decomposition (14).

T,=W{'U,T, |T|#0, TeR"*" (13)

T S
Wi0,W, =USVT=[U, U,] 0

o 1o
 I—
1
N
= =
[ S—

S, eR"*". (14)

Remark 1.1. Notice that I';, is not unique but dependent
on the users choice of T. If the state space basis
xy corresponds to using T = I then the state space basis
x = T~ 'x; corresponds to the choice T. The choice of
T will affect the estimates of parameters A4, B, C, K and
I}, discussed in the rest of the paper in a well-known way
(Zhou, Doyle & Glover, 1996).

Remark 1.2. From practical experience the impact of
T seems to be small, T = I, i.e. omitting T is therefore the
simple choice used in this paper.

Remark 1.3. Practical experience also shows that
W, = (W, W})'? gives less uncertainty than W, =1 so
the choice here is the former and W, = I as W, seems to
have only little impact.

Proof. T', has full column rank »n under (O) if h > n. In
Appendix A it is proven that [L, L,] has full row rank
nunder (C)if i > n, then due to ®, = I',[L, L,] (Defini-
tion 4) I', and ®, have the same image (left space).
Consequently im([,) = im(®,) = im(W;'U;) under
the assumptions on W, and W, which completes the
proof. O

Based on measurement the system matrices are cal-
culated as follows.

Definition 5 (Calculating I, H! and P,). Based on in-
put/output data I',,, HY and P, are obtained by substitu-
ting © for ® and Y; — OZ for V in (11)(14).

5. Consistency analysis for ©, T',,, (['H)" H{, H{ and P,

Inserting (8) in (10) gives (15) which allows the main
Theorems 2 and 3.

O=Y.2Z%zz"H!
=(©Z + T, L. X, + HyE))Z"(zZ") !
=0+ I,L X, Z"(ZZ" ' + H5E Z"(zZ") "' (15)

Theorem 2 (Limit for ®). Assuming (S), the input persist-
ently exciting of order i + h and (U) then

O-0 +T,L,A forj— oo (wpl)

=[0, 6,]1-[0, O]+T,LJ[A, A
for j— oo (wpl), (106)
where
X, ZNZZY) ' 5 A=[A, Al forj— oo (wpl),

AeRn><i(l+m)+hm’ ApeRnXi(ler), AfEanXhm.

Proof. Due to (U) e and z are uncorrelated so
E(ecz") = 0 and E(zz") exist due to (S) and is nonsingular
because of persistent excitation (Soderstrom & Stoica,
1989). The limit for the third term in (15) is then 0 by (17)

and the limit of the second term exists due to (S) which
completes the proof.

1 1 !
EfZT(ZZT)7 1 = .EfZT< ZZT>
J J

1 J 1y -
— 1% et ( 1 ¥ ey

k=1
— E(e;z")E(zz") "' =0

forj— oo (wpl). O (17)

The limits below are necessary for the model param-
eter estimation step in Section 6. The orthogonal com-
pliment [} in the theorem is found as U, in the SVD of
Theorem 1 because W, = I.

Theorem 3 (Consistency conditions for T, (FF)THE,
H¢ and P,). Assuming h > n, the input persistently exciting
of order i + h and all basic assumptions (O), (C), (S), (Z)
and (U) then T, and (CH)'HY are consistent for some
limited iy and i > iy > n (18)-(19). HY and P, are asymp-
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totically consistent (20)-(21).

r,-T, forj— o0, i>i; (wpl), (18)
(Ui)"Hi: - (Ti) ' Hy - for j— o0, i =i (wpl), (19)
H! > H} forj— c0,i—> o (wpl), (20)
P,—>P, forj— w,i— o (wpl). (21)

Remark 3.1. Notice that for (20) and (21) the assumption
is that the input is persistently exciting of any order.

Remark 3.2. In (20) and (21) j must increase sufficiently
much faster than i in order for (17) to hold, see e.g.
Peternell et al. (1996).

Proof. In (16) the bias term (22) includes L, = (4 — KC)'
which decreases with i because the eigenvalues of
(A — KC) equals the zeros in the transfer function from
e to y which are strictly inside the unit circle due to (Z).
This proves (20) and (21).

O, 2T, L,A=T,A—KCYA—>0Q fori— oo. (22

From Theorem 2 and Definition 4 it follows that the limit
for ©, is left multiplied by I,(23). If the matrix
L =[[L, L,]+ L.A,]hasfull rank then I, is consistent
according to Theorem 1. Theorem A.l1 in Appendix
A guarantees that [L, L,] has full rank under (C) and
L, = (A — KC)' can be made arbitrarily small by in-
creasing i. Because of continuity there exists an i where
the matrix L does not lose rank and finally singular
values and the space spanned by the left singular vectors
are continuous (Bauer, 1998, p. 160; Harville, 1997,
p- 564) which proves (18)

0, >0, + I, LA, =T,[[L, L,] + L,A,]=T,L

forj— oo (wpl). (23)

From the above and Theorem 2 follows that ' — 'y
and HY=0; > H! +T,L.A; when j— oo which
will cancel the bias part of Hy as ([7)'T), = 0 which
proves (19). O

Theorem 3 is the main result of this paper for the follow-
ing reasons. The sufficient conditions for consistency of
I, given in Jansson and Wahlberg (1998) for colored
persistent exciting input is that (4, B) is controllable
which excludes the large and important class of BJ-type
models. Theorem 3 only requires (C), i.e. (4,[B K]) to be
controllable and consequently does not have this limita-
tion. On the other hand consistency is only guaranteed
for i not less than some limited but unspecified iy > n
which is in accordance with the counterexample in Jan-
sson and Wahlberg (1998) where i = n. Practise shows
that iy does not need to be large, often the minimal #n is
sufficient as in the BJ examples in Section 7. By including

an extra assumption Chui (1997), Theorem 5.18 obtains
for his approach a more strict sufficient condition corre-
sponding to i > 3n, i.e. iy = 3n.

As indicated in Theorem 3 there will be bias on P, for
limited i. This bias decreases fast with i as stated in the
theorem below where the proof is omitted.

Theorem 4 (Limit for P,). Under the assumptions of
Theorem 2 the limit for P, is

P, — P, +T,L,Ps LT} forj— oo (wpl), (24)

Py = E(x,x;) — E(x,z")E(zz") " 'E(zx}). (25)

Remark 4.1. The limit for P, for limited i (24) includes
P which is interpreted as the covariance for the estima-
tion error X, = x, — X,|z which also decreases with i.
Consequently the convergence for P, with respect to i is
fast due to the three factors L, Ps, LT all decreasing with i.

6. Estimation and consistency for model parameters

After having estimated the system matrices, e.g. I';, the
model parameters must be estimated. For this, the litera-
ture holds a variety of methods. However, no method
seems to be superior. The principle for methods, which
avoids the use of an estimated state sequence, is to solve
the following, or similar, equations for the model
parameters. The right-hand sides are simply the func-
tional relationship given in Definition 3. Left multiplying
with (F'#)" in the middle equation is done to avoid bias as
explained in Theorem 3.

=T1,(4, ), (Cn)™Hy = (TiHTH(A, B, C, D),

P, = P,(A,C,K,R). (26)

As these equations are over-determined there are many
solutions. A simple method is shown below.

Theorem 5 (Estimated model parameters from estimated
system matrices). Let model parameters be estimated by
(29)—(33) where a MATLAB like notation is used and 1 de-
notes the More-Penrose pseudoinverse. Assume h > n + 1,
the input persistently exciting of order i + h and all basic
assumptions (O), (C), (S), (Z) and (U) then

A,B,D, and C are consistent for some iy and i > iy (27)
and R are assymtotically consistent, i.e. for i — oo
(28)
C=",1:11:n), (29)
A= @', Thah(1:(h— 1Ly,
2T, (0 + 1:hl:), (30)
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— (CD'HY(A,BC, D)3, (31)

:

} = arg min |(F,, HrAg

”) >

hﬂihu (32)
:(ﬁﬁﬁ“l+1ﬂ¢h0ﬁ*3 (33)

Remark 5.1. For a limited number of samples there is
a risk that the estimated model parameters result in an
unstable predictor. In this case a stable K and R are
obtained from a stationary Kalman filter based on the
first estimates. This additional step is similar to mirroring
unstable zeros in a noise transfer function and will leave
estimated models with a stable predictor unchanged.

Remark 5.2. A much simpler but biased alternative to
(31)is

D=H,1:1,1:m), B=OHH,(I+ 1:hl, 1:m).

Remark 5.3. The bias on the stochastic part for limited
i seems to be a unresolved problem.

Proof. According to Theorem 3 and the continuity prop-
erties of More-Penrose pseudoinverse all the matrices
I, (CHE T and (TF)THS tends to there true values as
j— oo for fixed i > i; whereas the matrix P, only con-
verges to the true value if also i > oo . Then Egs. (29)-(33)
only must be verified for true values to prove (27)—(28).

Eq. (29) follows directly from Definition 3. If h > n + 1
then I'y, =I',_; has full column rank n under (O) and
then (30) is proved below by using the shift property
of T'.
I'A4=T, = A=T%T}.
The minimization in (31) is a LS problem because the
squared term is linear in B, D, see Verhaegen (1994),
Westwick and Verhaegen (1996) and Bauer (1998, p. 146)
for details on a similar method based on a alternative
estimate of Hy. Clearly B, D is a solution to (31) in the
limit. Now it only remains to show that (31) has a unique
solution (in the limit) which can be proved Bauer (1998,
p- 147). This completes the proof of (27).

Eq. (32) follows directly from Definition 3 and (33) is
proven in a similar way as (30) by observing that

CKR

CAKR

Ph(l+1, hl,ll)= =Fh_1KR

CA" ?KR
which ends the proof of (28). O
7. Numerical examples

Below a few examples illustrate the theorems above.
First the possible but unlikely lag of consistency for small

i is demonstrated by means of the counterexample con-
structed and described in Jansson and Wahlberg (1998).
Then it is shown that raising i gives consistency for the
deterministic part also for the counterexample. An
example from the widely used class of BJ systems is also
included to show consistency and bias for the determinis-
tic and stochastic parts, respectively.

The counterexample (34) is SISO with a low-pass de-
terministic part with a double pole at 0.9184. It is
controllable from the input only. The stochastic part
has the same poles as the deterministic and zeros at
0.9791 + 0.1045i with an absolute value of 0.9847. These
zeros are very close to the unit circle which is important
because these are the poles in the observer, i.e. eigen-
values in A — KC. The input is a fourth-order moving
average process of high-pass type which in practice
would never be chosen for a low-pass system. The S/N is
approximately 0.5 which is very low. Thus, both system
and experimental conditions are really worst case.

B Ci
y(k) = A((‘qf;u(k) " AEZ;e(k), E(e(k)) =
E(e(K)e(D) = 0. (34)

In the counterexample h =3 and i = 2 which are the
smallest possible. For this case and for h =i =3 the
parameters are estimated with an increasing number of
samples. The method used is given by Definition 5, Re-
marks 1.2-1.3 and Theorem 5. The estimated state space
parameters are converted to parameters in the transfer
function model (34). The resulting parameter estimation
errors are shown in Figs. 1 and 2 and Table 1. As shown
in Jansson and Wahlberg (1998), the estimates do not
converge to the correct parameters for i = 2. The result of
raising i to 3 is seemingly consistent for all dynamic
parameters as illustrated in Fig. 2. For the deterministic
part this is explained by Theorem 5. The figures in
Table 1 for i = 3 shows a relative error for the determinis-

Counterexample, h=3, i=2

Parameter estimation errors

Number of samples

Fig. 1. Convergence for counter example with h = 3 and i = 2.
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Counterexample, h=3, i= 3

Parameter estimation errors

10 10* 10 10
Number of samples

Fig. 2. Convergence for the modified counter example with h = 3 and
i=3.

Table 1

Maximum relative error in transfer function coefficient estimates, if the
correct parameter is zero then the absolute error is used. The number of
samples are 10° in all cases. The deterministic part includes nominator
and the common denominator. The stochastic part includes only the
nominator

Example h i Det. Stoch. [

Counter 3 2 3.622 1.180 276.089
Counter 3 3 0.027 0.127 155.165
BJ 5 4 0.011 0.362 0.103
BJ 5 12 0.005 0.026 0.005

tic part at less than 3% whereas the figure is 13% for the
dynamical stochastic part and huge for the white noise
variance. Consequently, what seems to be consistency for
¢ parameters in Fig. 2 is really a small bias as explained
by Remark 4.1.

The BJ example (35) is a fourth-order SISO system
with a low-pass deterministic and stochastic part. They
are both discretizations of second-order continuous sys-
tems with natural frequency and damping 0.1 Hz and 0.5
for the deterministic part B(q)/F(q) and 0.05 Hz and 0.7
for the stochastic part C(q)/D(q). Furthermore there is
a direct feed-through with gain 0.1. This system is of
course not controllable from the input alone. The input is
band-limited white noise with a cut off frequency of
0.125 Hz (Soderstrom & Stoica, 1987), Example 5.11).
The S/N is approximately 1 which does not make the
estimation too easy.

Bi C
Wk = %u(k) n %em E(e(k) = 0,
E(e(kle(l) = duo?. (39)

In Fig. 3 and Table 1 the results of using h = 5 and i = 4
are shown. Notice that this & and i are the smallest
possible. Clearly, the deterministic part is consistent, the

BJ example, h=5, i= 4
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Fig. 3. Convergence for fourth-order BJ example with h = Sand i = 4.

BJ example, h=5, i= 12, with 10 sequences of first a paramete
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Fig. 4. Convergence for a; in the fourth-order BJ example with h = 5
and i = 12. The upper plot shows 10 sequences of estimates for a,, the
correct parameter a; = — 2.814 is shown with an extra tick mark. The
lower plot shows the corresponding averages with 95% confidence
limits.

maximal relative error after 10° samples is 1% whereas it
is 36% for the stochastic part which is biased.

Another example using h = 5 and i = 12 are shown in
Table 1 and Fig. 4. Here only the estimate of a, is shown
but for 10 sequences of 10° samples. In general consist-
ency does not imply unbiased estimators for a limited
number of samples. This is exactly the case with this
subspace method. The estimates are consistent but there
is bias for at least some fixed number of samples. The
picture for the other parameters is the same as for a;.

8. Conclusion
The derivation of the subspace method is in this paper

based on an LS regression model which is a simple
alternative approach given new insight.
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The particular method for estimating the stochastic
parameters K and R is simple and new to the authors
knowledge. Simulations not included here indicate that it
is superior for BJ models.

However, the consistency analysis with focus on the
extended observability matrix is the main contribution.
Previously sufficient conditions have been given which
apply to most practical identification problems. Unfortu-
nately new published result shows that these conditions
are not sufficient in all cases and then gives new stricter
conditions which excludes many practical problems as,
e.g. BJ type of models. In this paper the consistency
conditions boil down to a sum of two matrices having full
rank. It is shown in Theorem 3 that the first one has full
rank under the general conditions whereas the second
one can result in loss of rank. This supports the new
result. The encouraging result in the paper then is that
the second matrix can be made arbitrarily small by in-
cluding a sufficient number of past data in the regression.
Consequently we are back to the previous general condi-
tions if the number of past data is chosen correctly. In
this case the consistency is shown to extend to the com-
plete deterministic part of the model.

Appendix A. Controllability conditions

Theorem A.1. [L, L,] defined in (6) has full row rank n if
and only if (A,[B K]) is controllable (assumption (C)).

Proof.
[L, L,]=[%:(4—-KC,K) %:(A—KC,B— KD)]
=[(4 - KC)K

K(A — KC)(B — KD) (B— KD)].
Sorting the blocks by i retains the rank and gives the
observability matrix

%A — KC,[B— KD KJ)

=[(4 — KCY[B — KD K] [B— KD KT].

This matrix has full rank »n if the system
(A — KC,[B— KD K]) is controllable which is equiva-
lent to the closed-loop system matrix (A.2) which can
be assigned any eigenvalues by choosing the feed-
back F (Zhou et al., 1996, Section 3.2). Introduce the
bijective mapping (A.1). Then the two systems
(A— KC,[B— KD K],F) and (4,[B K],F)) have the
same closed-loop system matrix (A.2) and (A.3), here
the notation (system matrix, input matrix, feedback
matrix) is used. Consequently if and only if a set of
eigenvalues can be assigned to the first system by F it
can also be assigned to the second by F’ which completes

the proof.

Fy Fi
F=| "] F= ,
F, F
F2: ,2+C+DF1<:>F,2:F2_C—DF1,

Fy =F, (A.1)

A—KC+[B—KD K][?} (A2)

2

A—KC + (B — KD)F, + KF,
A+ BF, + KF)

F
A+ Kl | O (A.3)
2
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