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Abstract

The receding}horizon (RH) methodology is extended to the design of a robust controller of H
=

type for nonlinear systems. Using
the nonlinear analogue of the Fake H

=
algebraic Riccati equation, we derive an inverse optimality result for the RH schemes for

which increasing the horizon causes a decrease of the optimal cost function. This inverse optimality result shows that the input}output
map of the closed-loop system obtained with the RH control law has a bounded ¸

2
-gain. Robustness properties of the nonlinear

H
=

control law in face of dynamic input uncertainty are considered. ( 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Nonlinear receding}horizon (RH) control has received
much interest in the academic community in the last
years (Keerthi & Gilbert, 1988; Mayne & Michalska,
1990; Michalska & Mayne, 1993; Parisini & Zoppoli,
1995; De Nicolao, Magni, & Scattolini, 1996, 1997,
1998; Chen & AllgoK wer, 1998; Scokaert, Rawlings,
& Meadows, 1997), due to the capacity of obtaining
a stabilizing state feedback controller based on the solu-
tion of a "nite horizon optimal control problem. The
main advantage of such a scheme is its ability to handle
nonlinear multivariable systems that are subject to con-
straints in the state and/or in the control variables. In
Magni & Sepulchre (1997), it is shown that all these
control laws, although based on an (open-loop) solution
of a "nite horizon optimal control problem, also yield

a (feedback) solution of an associated in"nite horizon
optimal control problem. This inverse optimality result
establishes an important robustness property of receding
horizon control since the control laws are shown to
possess stability margins of optimal control laws (Glad,
1987; Jacobson, 1977; Sepulchre, Jankovic, & Kokotovic,
1996). Nevertheless, disturbance attenuation speci"ca-
tions are not directly considered in the formulation of the
problem. From this motivation comes the idea to con-
sider a game theoretic approach to nonlinear RH con-
trol. This approach can be seen as a way to consider
disturbance attenuation speci"cations in the synthesis of
the RH control law but also as a possible way to achieve
a solution of nonlinear H

=
problems. It is well known

that H
=

theory provides an excellent theoretical frame-
work for dealing with nonlinear stability and robustness
issues. On the other hand, the computational e!ort of the
in"nite horizon formulation for nonlinear systems makes
the application to real systems often almost impossible
(van der Schaft, 1992; Isidori & Astol", 1992).

In the present paper the RH methodology is extended
to design robust controllers of H

=
type for nonlinear

systems. A RH approach for the solution of an H
=

con-
trol problem was "rst proposed in Tadmor (1992) and
Lall and Glover (1994) for linear unconstrained system
and recently in Scokaert and Mayne (1998) for linear
constrained systems. The RH control law is based on the
solution of a closed-loop "nite horizon di!erential game
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with two di!erent players (inputs) that try, respectively,
to minimize and to maximize a suitable "nite horizon
cost function. Based on the derivation of a stationary
Hamilton}Jacobi}Isaacs (HJI) equation, which is the
nonlinear analogous of the FHARE (fake H

=
algebraic

Riccati equation) (De Nicolao & Bitmead, 1997), it is
shown that the H

=
RH control law is the solution of an

associated in"nite horizon H
=

control problem, for the
RH schemes for which increasing the horizon causes
a decrease of the optimal cost function. In this way, it is
easy to show that this RH control law has the same
robustness properties as the standard H

=
control law.

For another recent approach to the inverse optimality
problem see Isidori and Lin (1997), where for a restrictive
class of (triangular form) nonlinear systems the problem
was dealt with.

In the second part of the paper robustness properties
of the H

=
control law are analyzed. In particular, follow-

ing the arguments in Sepulchre et al. (1996), dynamic
input uncertainty is considered. This analysis is an exten-
sion of the results obtained in van der Schaft (1993) for
static input uncertainty. Moreover, it is shown that the
nonlinear H

=
control guarantees the same stability

margins in the face of dynamic input uncertainty as the
H

2
optimal control law with an additional robustness

margin.
The paper is organized as follows. Section 2 introduces

a game theoretic approach to RH control. The inverse
optimality via a fake HJI equation is derived in Section 3.
The robustness analysis is reported in Section 4, and
Section 5 contains the conclusions.

2. Receding}horizon strategy

We consider a nonlinear system (NS)

x5 "a(x)#b(x)u#g(x)d, (1)

z"C
h(x)

u D, (2)

where x3Rn, u3Rm, d3Rp, h(x)3Rq, a(0)"0, h(0)"0.
In the sequel a nonlinear (RH) approach is used to

solve the nonlinear sub-optimal H
=

problem, i.e. the
problem to "nd a control law that guarantees a "nite
disturbance attenuation level.

The RH control law in this setting is based, instead of
only on the standard minimization problem, on a "nite
horizon di!erential game, where u(t) is the input of the
minimizing player (the controller) and d(t) is the input of
the maximizing player (the nature). The solution of the
di!erential game will be in sets of piecewise continuous
time-varying feedback-type functions K"Mi : [0,¸]]
RnPRmN and N"Ml : [0,¸]]RnPRpN. These spaces
are the strategy spaces that we shall call as i and l to
distinguish them from signals u and d. Di!erently from

the standard RH approach, in this case it is in general not
su$cient to consider only open-loop control laws u(t)
and d(t) since the control action of a given player would
not account for changes in the state, due to unpredictable
control actions of the other player (see also Scokaert and
Mayne, 1998). In the following, according to the RH
paradigm, at each time instant q, we will focus on a "nite
interval, i.e. t3[q, q#¸].

The xnite horizon optimal diwerential game (FHODG)
at time q consists of the minimization with respect to
i(t!q,x(t))3K, t3[q, q#¸], and the maximization
with respect to l(t!q,x(t))3N, t3[q, q#¸], of the cost
function

J(x6 ,i, l,¸)"P
q`L

q
(DDz(t)DD2!c2DDd(t)DD2) dt

#<
f
(x(q#¸)), x(q#¸)3X

f
LRn (3)

subject to (1) and (2), with x(q)"x6 , u(t)"i(t!q, x(t))
and d(t)"l(t!q, x(t)) where <

f
(x) is a C2 nonnegative

function with <
f
(0)"0. Here c is a constant, which can

be interpreted as the disturbance attenuation level. h

For a given initial condition x6 3Rn, if a feedback
saddle-point solution exists, we denote this solution
of the FHODG as iH(t!q,x(t)) and lH(t!q,x(t)),
q4t4q#¸. In the following, the optimal value of
the FHODG will be denoted by <(x,¸), i.e.
<(x6 ,¸) :"J(x6 ,iH, lH,¸). In receding horizon control, at
each time q, the resulting feedback control at state x6 is
obtained by solving the FHODG and setting

iRH(x6 )"iH(0, x6 ). (4)

We now introduce the following de"nitions.

De5nition 1. Let U(x(q),¸) be the set of all strategy
i such that starting from x(q), x(q#¸)3X

f
for every

admissible strategy l3N.

De5nition 2 (Playable set (<incent & Grantham,
1997)). Let )RH(¸) the set of initial states x(q) such that
U(x(q),¸) is nonempty.

Assumption 1. The control law (4) is continuously di!er-
entiable and the value function <(x,¸) is two times con-
tinuously di!erentiable function with respect to all its
arguments.

3. Inverse optimality via a Fake HJI equation

As it is clari"ed for the linear case (Poubelle, Bitmead,
& Gevers, 1988), the `fakea algebraic Riccati equation
(ARE) is a useful tool to analyze the properties of a RH
control scheme. In fact, the solution at time t of the
di!erential Riccati equation (DRE), associated with
the "nite horizon problem, is viewed as the steady state
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solution of a new suitably de"ned ARE. For design
purposes, the `fakea Riccati analysis suggests the use of
"nite horizon cost functions with a terminal-state penalty
<
f

and a terminal region X
f

properly chosen so as to
ensure monotonicity of the solution of the associated
DRE from its initial condition. In the following we
show that the value function <(x,¸) satis"es a `fakea
Hamilton}Jacobi}Isaacs equation that is the nonlinear
version of the linear `fakea H

=
ARE (De Nicolao & Bi-

tmead, 1997).

Theorem 1. Assume that !(L/L¸)<(x,¸) is nonnegative
and that Assumption 1 holds. Then, the control law
u"iRH(x) solves the state feedback H

=
optimal control

problem associated with the cost function

J
IH

(x(q), u, d)"P
=

q
(DDz6 (t)DD2!c2DDd(t)DD2) dt (5)

with

z6 "C
hM (x)

u D (6)

and

hM (x)"C
h(x)

(!(L/L¸)<(x,¸))1@2D (7)

Proof. Given l6 (t!q,x(t))"0, t3[q, q#¸], for every
i6 ( ) ,x( ) )) we have J(x6 , i6 , l6 ,¸)50 and than <(x,¸)5
J(x6 ,i6 , l6 ,¸)50.

We now show that the value function <(x,¸) satis"es
the HJI equation

0"hM (x)@hM (x)#<
x
(x,¸)a(x)

!

1

4
<
x
(x,¸)Cb(x)b(x)@!

1

c2
g(x)g(x)@D<x (x,¸)@ (8)

with boundary condition <(0,¸)"0 and with hM (x) given
by (7). From standard results on dynamic programming,
the value function < satis"es the equation

!

L
Lt
<(x6 ,¸!t#q)

"min
i

max
l

Mh(x(t))@h(x(t))#u(t)@u(t)!c2d(t)@d(t)

#<
x
(x(t),¸!t#q)[a(x(t))#b(x(t))u(t)#g(x(t))d(t)]N,

t3[q,q#¸].

In particular, we have for t"q

!

L
Lt
<(x6 ,¸!t#q)D

t/q

"h(x6 )@h(x6 )#<
x
(x6 ,¸)a(x6 )

!

1

4
<
x
(x6 ,¸)Cb(x6 )b(x6 )@!

1

c2
g(x6 )g(x6 )@D<x(x6 ,¸)@.

Note that

<(x6 ,¸!(t#*t)#q)"<(x6 , (¸!*t)!t#q)

which implies

!

L
Lt
<(x6 ,¸!t#q)D

t/q"
L
L¸
<(x6 ,¸)

and then (8) holds. Finally, since <
f
(0)"0, <(x,¸)50

and (L/L¸)<(x,¸)40 it follows that <(0,¸)"0 for all
¸50. Note also that this implies that hM (0)"0. Then, in
view of the assumption that !(L/L¸)<(x,¸) is non-
negative, the proof follows from standard results (van der
Schaft, 1996). h

The receding horizon control scheme does not guar-
antee that !(L/L¸)<(x,¸)50 unless the "nal-state
penalty <

f
( ) ) and the terminal region X

f
are chosen

appropriately. This condition is essential to guarantee
that hM (x) is well de"ned. One way to achieve the mono-
tonicity property, with a particular class of uncertainties,
can be derived by Chen, Scherer, and AllgoK wer (1997),
where a quadratic terminal penalty and a terminal region
de"ne as the interior of a suitable level set of such a quad-
ratic function is used. In Chen et al. (1997) an open-loop
optimization problem is solved to derive the RH control
law. To do this a precompensation feedback control law
is used. The main drawback of this approach is that the
playable set can be very small and it is not even possible
to guarantee that it is larger than the terminal region X

f
.

On the other hand, in the approach presented here the
optimization is carried out in an in"nite-dimensional
space, due to the use of feedback strategies, and this
complicates the complexity of the optimal control
problem.

Furthermore, assume that the uncertainty is such that

DDd(t)DD24
1

c2
DDz(t)DD2. (9)

For many practical systems, bounded disturbances or
parameter uncertainty can be rewritten in this form. In
Chen et al. (1997), it is shown that given the quadratic
function

<
f
(x)"x@Px, (10)

where P is a positive-de"nite solution of the matrix
Riccati inequality

A@P#PA!

1

4
PAB@B!

1

c2
GG@BP#H@H4!pI

with p a "xed positive constant, A"La(0)/Lx, B"b(0),
G"g(0), H"Lh(0)/Lx there exists a region ) (de"ned as
the interior of a suitable level set of <

f
) that is invariant

for the uncertain system with control law

u"i(x)"!1
2
b(x)@<

f
(x)@

x
(11)
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and such that along the trajectories of the closed-loop
system

L
Lt
<
f
(x(t))#DDz(t)DD2!c2DDd(t)DD24!eDDx(t)DD2 ∀x(t)3),

(12)

where e is a positive constant. For further details on the
computation of the set ) see Chen et al. (1997) and
Michalska and Mayne (1993) where a numerical proced-
ure is given for a similar problem.

Owing to this result, we are now in the position to
introduce a RH control scheme that solves the nonlinear
sub-optimal H

=
problem.

Theorem 2. Consider the RH control scheme based on the
solution of a FHODG with<

f
(x)"x@Px given by (10) and

X
f
") where ) is the interior of a suitable level set of

<
f
(x) such that, along the trajectories of the closed-loop

system (1), (2), (11), condition (12) is satisxed. Suppose that
the uncertainty is of the form (9) and that Assumption
1 holds, then the control law u"iRH(x) solves the state
feedback H

=
optimal control problem associated with the

cost function (5).

Proof. The proof of this theorem follows by Theorem 1
by showing that if ¸

1
4¸

2
and x6 3)RH(¸

1
) then

<(x6 ,¸
1
)5<(x6 ,¸

2
)

We rewrite the considered functional as

<
f
(x(q#¸

2
))#P

q`L2

q
DDz(t)DD2!c2DDd(t)DD2 dt

"<
f
(x(q#¸

2
))!<

f
(x(q#¸

1
))

#P
q`L2

q`L1

DDz(t)DD2!c2DDd(t)DD2dt

#<
f
(x(q#¸

1
))#P

q`L1

q
DDz(t)DD2!c2DDd(t)DD2dt (13)

Let us now consider the following feasible state-feedback
control law:

i8 (t!q,x(t))

"G
iH(t!q,x(t)) for t3[q, q#¸

1
],

!1
2
b(x(t))@<

f
(x(t))@

x
for t3[q#¸

1
, q#¸

2
],

(14)

where iH(t!q,x(t)) is an optimal solution for the
FHODG with horizon ¸

1
. Note that u8 (t)"i8 (t!q, x(t))

3U(x6 ,¸
2
). By integrating (12), we obtain for any admiss-

ible disturbance

<
f
(x(q#¸

2
))#P

q`L2

q`L1

DDz(t)DD2!c2DDd(t)DD2 dt

4<
f
(x(q#¸

1
)).

Therefore, denoting by N(i) the set of strategy l of the
form (9), (13) implies

max
l | N(i8 ) C<f(x(q#¸

2
))#P

q`L2

q
DDz(t)DD2!c2DDd(t)DD2 dtD

4 max
l |N(i8 ) C<f(x(q#¸

1
))#P

q`L1

q
DDz(t)DD2!c2DDd(t)DD2dtD

The maximum on the right-hand side over all l3N(i8 )
restricted to [q, q#¸

1
] is equal to the maximum over all

function l3N(iH) restricted to [q, q#¸
1
]. Hence, this

maximum is nothing but <(x6 ,¸
1
), and then

<(x6 ,¸
2
)"min

i | K

max
l | N(i)

J(x6 ,i, l,¸
2
)

4 max
l | N(i8 )

J(x6 , i8 , l,¸
2
)4 max

l | N(i8 )
J(x6 , i8 , l,¸

1
)

" max
l | N(iH)

J(x6 ,i, l,¸
1
)"<(x6 ,¸

1
)

as required.
Note that di!erently than with the scheme proposed

in Chen et al. (1997) it is easily shown that )RH(¸
2
).

)RH(¸
1
).), ∀¸

2
5¸

1
.

4. Robustness analysis

The main engineering importance of this inverse opti-
mality result is the possibility to achieve robustness of the
closed-loop system. In the previous section it is shown
that the input}output map of the closed-loop system
(1)}(2)}(4) has a "nite ¸

2
-gain. In this section, uncertain-

ties that can be tolerated at the input without loosing of
stability are considered. In particular, we will show that
the nonlinear H

=
control guarantees the same stability

margins in the face of input uncertainty as the H
2

opti-
mal control law with an additional robustness margin.

We "rst introduce some de"nitions.

De5nition 3 (Sepulchre et al., 1996). Consider the follow-
ing system (C):

x5 "f (x, u),

y"h(x, u) (15)

with u3;, x3X and y3Rm, where X and ; are connec-
ted subsets of Rn, respectively Rm, containing the origin.
Assume that associated with the system C is a function
s :;]RmPR` called the supply rate, which is locally
integrable for every admissible time-function u with
u(t)3;. We say that the system C is dissipative in X
with supply rate s(u, y) if there exists a function
S(x), S(0)"0, S(x)50, such that for all x3X

S(x(¹))!S(x(0))4P
T

0

s(u(t), y(t)) dt (16)
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Fig. 1. Nonlinear feedback loop with the control law k(x), input uncer-
tainty *

1
and disturbance d.

for all u3; and all ¹50 such that x(t)3X is the solu-
tion of (15) for all t3[0,¹]. The function S is called
a storage function.

De5nition 4. System C is said to be passive if it is dis-
sipative with supply rate s(u, y)"u@y.

Consider now the input uncertainty *
1

reported in
Fig. 1, that is a type of uncertainty that cannot be
represented by uncertainty (9). In the nominal case *

1
is

identity, and the feedback loop consists of the (nominal)
nonlinear plant in the feedback loop with the nominal
control u"i(x). This uncertainty is a common physical
situation, in particular, when simpli"ed models of ac-
tuators are used for design. For more details on this type
of uncertainty see Sepulchre et al. (1996). In the following,
we will show that the nonlinear H

=
control guarantees

the same stability margins in the face of input uncertainty
as the H

2
optimal control law with an additional robust-

ness margin.

De5nition 5 (Sepulchre et al., 1996). System C is said to
be output feedback passive (OFP) if it is dissipative with
respect to s(u, y)"u@y!oy@y for some o3R.

This means that the input}output system C has an
excess or shortage of passivity, that depends on the sign
of o, characterized by the fact that it is rendered passive
by the output feedback transformation u"oy#v. The
possibility of achieving passivity of interconnected sys-
tems with excess or shortage of passivity motivates the
interest in OFP systems. The relevance of OFP property
in the study of stability margin and the equivalence
between OFP property and the disk margin property are
reviewed in the recent monograph by Sepulchre et al.
(1996).

Theorem 3. If there exists a C1, positive-semidexnite
function <(x) such that

0"h(x)@h(x)#<
x
(x)a(x)

!

1

4
<
x
(x)Cb(x)b(x)@!

1

c2
g(x)g(x)@D<x (x)@, (17)

and

i(x)"!1
2
b(x)@<

x
(x)@,

l(x)"
1

2c2
g(x)@<

x
(x)@

then the system

x5 "a(x)#b(x)u#g(x)d, (18)

y"!i(x) (19)

with input u and output y is OFP, with o"!1
2
, with

a C1 storage function S(x) for every d such that

c2(DDdDD2!DDl(x)!dDD2)4DDh(x)DD2. (20)

Proof. Let S(x)"1
2
<(x), then

S
x
(x)b(x)"!i(x)@,

S
x
(x)g(x)"c2l(x)@,

S
x
(x)a(x)"!

1

2
h(x)@h(x)#

1

2
i(x)@i(x)!

c2
2

l(x)@l(x).

Then along the solutions of system (18),

L
Lt

S(x)"S
x
(x)[a(x)#b(x)u#g(x)d]

"!

1

2
h(x)@h(x)#

1

2
i(x)@i(x)

!

c2
2

l(x)@l(x)!i(x)@u#c2l(x)@d

"!

1

2
h(x)@h(x)#

1

2
i(x)@i(x)

!

c2
2

l(x)@l(x)!i(x)@u#c2l(x)@d

#

c2
2

d@d!
c2
2

d@d

"

1

2
i(x)@i(x)!i(x)@u

#

c2
2

(DDdDD2!DDl(x)!dDD2)!
1

2
DDh(x)DD2 (21)

and then for all d such that c2(DDdDD2!DDl(x)!dDD2)4
DDh(x)DD2,

L
Lt

S(x)4
1

2
i(x)@i(x)!i(x)@u"

1

2
y@y#y@u

and so system (18), (19), with input u and output y, is
OFP with o"!1

2
. h

This means that the input}output system (18), (19) has
a shortage of passivity characterized by the fact that it is
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Fig. 2. Nonlinear feedback loop with the control law k(x) and uncer-
tainties *

1
and *

2
.

rendered passive by the output feedback transformation
u"!1

2
y#v. In the linear case, this shortage of passiv-

ity translates into the fact that the Nyquist plot of the
input}output transfer function (18), (19) does not enter
the circle of radius one and centered at (!1,0) (Sepulchre
et al., 1996). To guarantee the stability of the feedback
interconnection in Fig. 1, the shortage of passivity of (18),
(19) must be compensated for by a su$cient excess of
passivity of the uncertainty *

1
.

So *
1

represents some dynamic uncertainty of the form

u"!*
1
y (22)

that can be tolerated at the input if the system is OFP
with o"!1

2
(Sepulchre et al., 1996). This class of uncer-

tainties includes static sector nonlinearity u"/( ) ) in the
sector (1

2
,R), that is, 1

2
q@q(q@/(q)(R for all q in Rm, for

which a similar result is derived in van der Schaft (1993),
but also all the linear dynamic uncertainties whose
Nyquist plot lie to the right of the vertical line with
abscissa 1

2
.

In the formulation of Theorem 3, the extra constraint
(20) imposed on the disturbance d is rather arti"cial, just
to enforce that the correct inequality is satis"ed. We
therefore consider the following class of disturbances that
is more restrictive than the previous one but it is more
understandable. Suppose that the disturbance d is given
by

d"*
2
h(x), (23)

where *
2

is an arbitrary nonlinear system having a "nite
¸
2
-gain (1/c. Then the robustness of the closed-loop

system (18), (19), (23), given in Fig. 2, is stated in the
following corollary.

Corollary 4. If there exists a C1, positive-semidexnite func-
tion <(x) such that (17) holds then the input}output map of
the closed-loop system (18), (19), (22), with input d and
output h(x), has ¸

2
-gain4c. Moreover, in view of the

small-gain theorem, the closed-loop system (18), (19), (22),
(23), reported in Fig. 2, will be closed-loop stable (see
Dexnition 1.2.5 in van der Schaft, 1996) for all perturba-
tions *

1
and *

2
of the form (22) and (23) with *

1
such that

can be tolerated at the input of an OFP system with
o"!1

2
and *

2
having an ¸

2
-gain smaller than 1/c.

Proof. From (21) and (22), with *
1

such that can be
tolerated at the input of an OFP system with o"!1

2
, it

immediately follows that the closed-loop system (18),
(19), (22), with input d and output h(x) satis"es

L
Lt

S(x)4
c2
2

(DDdDD2!DDl(x)!dDD2)!
1

2
DDh(x)DD2

4

1

2
(c2DDdDD2!DDh(x)DD2)

and then it is dissipative with a supply rate
s(d, y)"c2DDdDD2!DDyDD2 that means that the input}output
map of the closed-loop system (18), (19), (22) has ¸

2
-

gain4c (van der Schaft, 1996). Moreover, from the small
gain theorem it follows that the closed-loop system (18),
(19), (22), (23) will be stable for all perturbation *

1
and

*
2

of the form (22) and (23) with *
1

such that can be
tolerated at the input of an OFP system with o"!1

2
and *

2
having an ¸

2
-gain smaller than 1/c.

5. Conclusion

In this paper, we have shown that, under regularity
assumptions, a RH nonlinear H

=
control law, which is

based on a "nite horizon optimal control problem, is
inverse optimal with respect to a modi"ed in"nite hor-
izon H

=
problem if increasing the horizon causes a de-

crease of the optimal cost function. This inverse optimal
result has been obtained by showing that the value
function of the "nite horizon problem is solution of
a stationary HJI equation and, even if it has been ob-
tained without considering any constraints, it gives some
important guidelines to achieve RH control schemes that
solve the H

=
problem. Beyond the standard robustness

results of the H
=

problem, also robustness properties of
the H

=
control law in face of dynamic input uncertainties

are analyzed.
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